HOKKAIDO UNIVERSITY

Title	Characterization of a thermophilic 4-O- β-d-mannosyl-d-glucose phosphorylase fromRhodothermus marinus
Author(s)	Jaito, Nongluck; Saburi, W ataru; Odaka, Rei; Kido, Y usuke; Hamura, Ken; Nishimoto, Mamoru; Kitaoka, Motomitsu; Matsui, Hirokazu; Mori, Haruhide
Citation	Bioscience, Biotechnology, and Biochemistry, 78(2), 263-270 https:/doi.org/10.1080/09168451.2014.882760
Issue Date	2014
Doc URL	http:/hdl.handle.net/2115/67498
Rights	This is an A ccepted Manuscript of an article published by Taylor \& Francis in Bioscience biotechnology and biochemistry on 2014, available online: http://www.tandfonline.com/10.1080/09168451.2014.882760
Type	article (author version)
File Information	131224_RmCE(HUSCAP).pdf

Instructions for use

Running title: Characterization of R. marinus MGP

Characterization of a Thermophilic 4-O- β-d-Mannosyl-d-glucose Phosphorylase from Rhodothermus marinus

Nongluck Jaito, ${ }^{1}$ Wataru Saburi, ${ }^{1}$ Rei OdaKa, ${ }^{1}$ Yusuke Kido, ${ }^{1}$ Ken Hamura, ${ }^{1}$ Mamoru Nishimoto, ${ }^{2}$ Motomitsu Kitaoka, ${ }^{2}$ Hirokazu Matsui, ${ }^{1}$ and Haruhide Mori ${ }^{1, \dagger}$ ${ }^{1}$ Research Faculty of Agriculture, Hokkaido University, N-9, W-9, Sapporo 060-8589, Japan
${ }^{2}$ National Food Research Institute, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
Received October 28, 2013; Accepted November 11, 2013
${ }^{\dagger}$ To whom correspondence should be addressed. Tel/Fax: +81-11-706-2497; E-mail: hmori@chem.agr.hokudai.ac.jp
Abbreviations: β-mannanase, mannan endo-1,4- β-mannosidase; CE, cellobiose 2epimerase; Man-Glc, 4-O- β-D-mannosyl-D-glucose; Man1P, α-D-mannosyl phosphate; MGP, 4-O- β-D-mannosyl-D-glucose phosphorylase; BfMGP, MGP from Bacteroides fragilis NCTC9343; RmMBP, Rmar_2440-encoded protein from Rhodothermus marinus ATCC43812; RaMP, MGP from Ruminococcus albus NE1; MES, morpholine ethanesulfonic acid; SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel electrophoresis; HEPES, 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid; Pi, inorganic phosphate

4-O- β-D-Mannosyl-D-glucose phosphorylase (MGP), found in anaerobes, converts 4-$O-\beta$-D-mannosyl-D-glucose (Man-Glc) to α-D-mannosyl phosphate and D-glucose. It participates in mannan metabolism with cellobiose 2-epimerase (CE), which converts β -1,4-mannobiose to Man-Glc. A putative MGP gene is present in the genome of the thermophilic aerobe Rhodothermus marinus (Rm) upstream of the gene encoding CE. Konjac glucomannan enhanced production by R. marinus of MGP, CE, and extracellular mannan endo-1,4- β-mannosidase. Recombinant RmMGP catalyzed the phosphorolysis of Man-Glc through a sequential bi-bi mechanism involving ternary complex formation. Its molecular masses were 45 kDa and 222 kDa under denaturing and nondenaturing conditions, respectively. Its pH and temperature optima were 6.5 and $75^{\circ} \mathrm{C}$, and it was stable between $\mathrm{pH} 5.5-8.3$ and below $80^{\circ} \mathrm{C}$. In the reverse reaction, RmMGP had higher acceptor preferences for 6-deoxy-D-glucose and D-xylose than R. albus NE1 MGP. In contrast to R. albus NE1 MGP, RmMGP utilized methyl β-Dglucoside and 1,5-anhydro-D-glucitol as acceptor substrates.

Key words: Rhodothermus marinus; 4-O- β-D-mannosyl-D-glucose phosphorylase; mannan; substrate specificity; phosphorolysis

Plant mannan is a major component of hemicellulose in the cell wall. Its main chain is formed by β-1,4-linked D-mannosyl residues or a combination of β-1,4-linked D mannosyl and D-glucosyl residues (glucomannan). ${ }^{1)}$ Branches of single $\alpha-1,6$-linked Dgalactosyl residues are present in the backbones of mannan. The 2-OH or 3-OH groups of some D-mannosyl and D-glucosyl residues in the main chain are acetylated. Several microbial enzymes degrade mannan, ${ }^{1-3)}$ including mannan endo-1,4- β-mannosidase (β mannanase, EC 3.2.1.78), β-mannosidase (EC 3.2.1.25), and β-glucosidase (EC
3.2.1.21). β-Mannanase is an endo-acting enzyme that hydrolyzes internal $\beta-1,4-$ mannosidic linkages to produce oligosaccharides. β-Mannosidase and β-glucosidase catalyze exo-hydrolysis of the non-reducing-end β - 1,4 -mannosidic and β-1,4-glucosidic linkages of the resulting oligosaccharides, respectively. α-Galactosidase (EC 3.2.1.22) removes the galactosyl branches to enhance the degradation of mannan. Acetyl mannan esterase (EC 3.1.1.6) contributes to the deacetylation of mannan.

A novel degradation pathway of β-1,4-mannooligosaccharides has been discovered in intestinal and ruminal anaerobes Bacteroides fragilis and Ruminococcus albus NE1.4,5) In this pathway, cellobiose 2-epimerase (CE, EC 5.1.3.11), which catalyzes the interconversion of D-glucose residues at the reducing end of $\beta-1,4$-linked oligosaccharides to D-mannose residues, epimerizes β-1,4-mannobiose to β-1,4- β-D-mannosyl-D-glucose (Man-Glc). Man-Glc is phosphorolyzed to α-D-mannosyl phosphate (Man1P) and D-glucose by 4-O- β-D-mannosyl-D-glucose phosphorylase (MGP, EC 2.4.1.281). In addition to MGP, R. albus NE1 produces a $\beta-1,4-$ mannooligosaccharide phosphorylase (RaMP2) that catalyzes the sequential phosphorolysis of β-1,4-mannooligosaccharides longer than $\beta-1,4$-mannobiose to liberate Man1P. Based on their amino acid sequences, ${ }^{6)}$ these mannoside phosphorylases are classified as glycoside hydrolase family 130 together with β-1,4-D-mannosyl-N-acetyl-D-glucosamine phosphorylase ${ }^{7}$) and unknown human gut bacterium Mannoside Phosphorylase which catalyzes the phosphorolysis of β-1,4-D-mannosyl- β -$1,4-N$-acetyl-D-glucosaminyl- β-1,4- N-acetyl-D-glucosamine ${ }^{8)}$.

Rhodothermus marinus, first isolated from submarine alkaline hot springs in Iceland, is an obligatory aerobic, moderately halophilic, thermophilic Gram-negative bacterium. ${ }^{9)}$ It produces thermophilic glycoside hydrolases, including endo- $\beta-1,4-$ xylanase (EC 3.2.1.8), ${ }^{10)}$ xylan 1,4- β-xylosidase (EC 3.2.1.37), ${ }^{11)}$ cellulase (EC 3.2.1.4), ${ }^{12}$) endo-1,3(4)- β-glucanase (EC 3.2.1.6), ${ }^{13)}$ chitinase (EC 3.2.1.14), ${ }^{14)} \beta$ mannanase, ${ }^{15)}$ trehalase (EC 3.2.1.28), ${ }^{16)} \alpha$-glucosidase (EC 3.2.1.20), ${ }^{17)}$ pullulanase (EC 3.2.1.41), ${ }^{17)}$ and α-amylase (EC 3.2.1.1). ${ }^{17}$. Recently we discovered that R. marinus produces a CE that we subsequently characterized in detail. ${ }^{18)}$ Because this enzyme is fully stable at high temperatures and prefers lactose over cellobiose, unlike other enzymes, it is an attractive candidate for producing the prebiotic oligosaccharide epilactose ${ }^{19)}$ from lactose. A system for the continuous production of epilactose by means of immobilized R. marinus CE has been established. ${ }^{20)}$

Analysis of the R. marinus $\mathrm{R}-10^{\mathrm{T}}$ genome revealed that a putative MGP (RmMGP) is encoded by Rmar_2440, which is located upstream of the gene, Rmar_2439, that encodes CE. ${ }^{21)}$ The amino acid sequence of RmMGP is 68% and 61% identical to those of BfMGP and R. albus NE1 MGP (RaMGP, called RaMP1 in reference 5), respectively. Two genes encoding glycoside hydrolase family 26β-mannanase (Rmar_0016, ManA; ${ }^{15}$) and Rumal_0467, a putative β-mannanase) are also present, suggesting that R. marinus $\mathrm{R}-10^{\mathrm{T}}$ also degrades mannan through a metabolic pathway similar to those of B. fragilis NCTC9343 and R. albus NE1. In the present study, we compared the activities of β-mannanase, CE, and MGP of R. marinus cultured in the presence and the absence of konjac glucomannan, and investigated the enzymatic properties of the recombinant Rmar_2440 protein produced in Escherichia coli.

Materials and Methods

Bacterial strain. R. marinus R-10 ${ }^{\mathrm{T}}$ (ATCC43812) was purchased from the American Type Culture Collection (Manassas, VA).

Culture conditions and protein extraction. R. marinus was cultured in 50 mL of Marine Broth 2216 (Becton Dickinson, Sparks, MD) with ($2 \mathrm{mg} / \mathrm{mL}$) and without glucomannan (Shimizu Kagaku, Hiroshima, Japan) at $50^{\circ} \mathrm{C}$ for 60 h . Ten mL of culture broth was harvested every 12 h , and the cells were harvested by centrifugation at 5,400 $\times g$ for 10 min at $4^{\circ} \mathrm{C}$. The culture supernatant was assayed for β-mannanase activity. Bacteria suspended in 1 mL of 10 mm potassium phosphate buffer (pH 7.0) were disrupted using an Ultrasonic Disruptor UD-201 (Tomy, Tokyo). Cell debris was removed by centrifugation at $19,000 \times g$ for 5 min at $4^{\circ} \mathrm{C}$. Protein concentrations and the activities of CE, MGP, and β-mannanase were measured as described below.

Preparation of an Rmar_2440 expression plasmid. Rmar_2440 was amplified by the polymerase chain reaction with primer pair 5'-

AATGCATATGGAAGTGCGAATGGCACCGAC-3' (NdeI site underlined) and 5'-TTAACTCGAGTCACGGGCGCTTCAGCAGTT-3' (XhoI site underlined). R. marinus ATCC43812 genomic DNA was used as template. ${ }^{18)}$ The amplified DNA fragment was cloned into the EcoRV site of pBluescript II SK (+) vector (Stratagene, La Jolla, CA). A DNA fragment prepared by double-digestion with NdeI and XhoI was inserted into the NdeI and XhoI sites of pET23a (Novagen, Darmstadt, Germany). The DNA sequence of the inserted region was determined using an Applied Biosystems 3130 Genetic Analyzer (Life Technologies, Carlsbad, CA).

Production and purification of recombinant RmMGP. E. coli BL21 (DE3), transformed with the RmMGP expression vector, was cultured in 1 L of Luria-Bertani medium containing $50 \mu \mathrm{~g} / \mathrm{mL}$ of ampicillin at $37^{\circ} \mathrm{C}$ until the absorbance at 600 nm reached 0.6. Protein expression was induced by adding 1 mL of 0.1 m isopropyl β-dthiogalactoside to the culture medium (final concentration, 0.1 mm), and incubation was continued at $18^{\circ} \mathrm{C}$ for 24 h with vigorous shaking. Bacterial cells were harvested by
centrifugation at $8,400 \times g$ at $4^{\circ} \mathrm{C}$ for 10 min , resuspended in 40 mL of 20 mm 4 morpholine ethanesulfonic acid (MES)-NaOH buffer (pH 7.0), and disrupted by sonication. A cell-free extract was prepared by centrifuging the suspension of the disrupted cells at $13,000 \times g$ at $4^{\circ} \mathrm{C}$ for 10 min , and the supernatant was subjected to anion exchange chromatography using a Toyopearl DEAE-650 M column (i.d. $3.0 \times$ 10.5 cm , Tosoh, Tokyo). After a thorough washing the column with 20 mm MES-NaOH buffer (pH 7.0), the adsorbed protein was eluted with a linear gradient of NaCl from 0 to 0.5 m (total elution volume, 250 mL). The active fractions were pooled and applied to a Toyopearl Butyl-650M column (i.d. $3.0 \times 10.5 \mathrm{~cm}$, Tosoh) equilibrated with 10 mm MES-NaOH buffer (pH 7.0) containing $300 \mathrm{~g} / \mathrm{L}$ of ammonium sulfate. Non-adsorbed protein was completely eluted with the same buffer, and the adsorbed protein was eluted using a descending linear gradient of ammonium sulfate from 300 to $0 \mathrm{~g} / \mathrm{L}$ (total elution volume, 250 mL). The active fractions were pooled and concentrated to 3 mL with a Vivaspin 20 (nominal molecular weight limit 30,000, Sartorius, Göttingen, Germany) and subjected to Sephacryl S-300 column chromatography (i.d. $1.6 \times 67 \mathrm{~cm}$, GE Healthcare Bio-Sciences, Uppsala, Sweden). The column was eluted with 10 mm MESNaOH buffer (pH 7.0) containing 0.2 m NaCl at a flow rate of $0.3 \mathrm{~mL} / \mathrm{min}$. The purity of the fractions was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and highly purified fractions were collected. The purified enzyme was dialyzed against 10 mm MES-NaOH buffer (pH 7.0) and stored at $-80^{\circ} \mathrm{C}$.

Protein assay. The protein concentration of the cell-free extract was measured by the Bradford method ${ }^{22)}$ with bovine serum albumin (Nacalai Tesque, Kyoto, Japan) as standard. The protein concentrations of the column chromatography fractions were determined using the UV method, ${ }^{23)}$ assuming an extinction coefficient of $1 \mathrm{mg} / \mathrm{mL}$ of protein equal to 1.00 . The concentration of the purified enzyme was calculated from the amino acid concentrations of an acid hydrolysate (6 m HCl at $110^{\circ} \mathrm{C}$ for 24 h). The
amino acids concentrations were measured by the ninhydrin colorimetric method with a JLC-500/V (JEOL, Tokyo, Japan). ${ }^{24)}$

Enzyme activity assays. MGP activity: The reaction mixture ($50 \mu \mathrm{~L}$) contained 2 mm Man-Glc, 100 mm sodium phosphate buffer (pH 6.5), 4 mm MES-NaOH buffer (pH $6.5), 0.2 \mathrm{mg} / \mathrm{mL}$ of bovine serum albumin, and an appropriate concentration of enzyme. After incubation at $50^{\circ} \mathrm{C}$ for 10 min , the reaction was stopped by adding $100 \mu \mathrm{~L}$ of 2 m Tris- HCl buffer (pH 7.0) and incubated immediately at $100^{\circ} \mathrm{C}$ for 3 min . The liberated D-glucose was measured using a Glucose CII test (Wako Pure Chemical Industries, Osaka, Japan). Man-Glc was prepared as described previously. ${ }^{5)}$ The enzyme was diluted with 20 mm MES-NaOH buffer (pH 6.5) containing $1 \mathrm{mg} / \mathrm{mL}$ of bovine serum albumin. One unit (U) of enzyme activity was defined as the amount of enzyme that produces $1 \mu \mathrm{~mol}$ of D-glucose from Man-Glc in 1 min .
β-Mannanase activity: The reaction mixture ($100 \mu \mathrm{~L}$) containing $1 \mathrm{mg} / \mathrm{mL}$ of glucomannan, 25 mm sodium phosphate buffer (pH 6.0), and the enzyme was incubated at $60^{\circ} \mathrm{C}$ for 10 min . The reducing sugar product was quantified by the Somogyi-Nelson method ${ }^{25)}$ with 0-1 mm D-mannose as standard. One U of enzyme activity was defined as the amount of enzyme that produces $1 \mu \mathrm{~mol}$ of reducing sugar in 1 min .

CE activity: The reaction mixture ($100 \mu \mathrm{~L}$), containing $100 \mathrm{~mm} \beta$-1,4-mannobiose (Megazyme, Wicklow, Ireland), 20 mm potassium phosphate buffer (pH 7.0), and the enzyme, was incubated at $50^{\circ} \mathrm{C}$ for 1 h , and the reaction was stopped by incubation at $100^{\circ} \mathrm{C}$ for 5 min . The yield of the reaction product Man-Glc was measured by highperformance liquid chromatography under the conditions as follows: injection volume, $5 \mu \mathrm{~L}$; columns, two tandem Sugar SP0810 columns (i.d. $8.0 \times 300 \mathrm{~mm} \times 2$; Shodex, Tokyo), column temperature, $70^{\circ} \mathrm{C}$; eluant, water; flow rate, $0.5 \mathrm{~mL} / \mathrm{min}$. One U of enzyme activity was defined as the amount of enzyme that produces $1 \mu \mathrm{~mol}$ of Man-Glc in 1 min .

Effects of pH and temperature on the activity and stability of RmMGP. Enzyme activity was determined over a pH range of 3.1-9.7 and a temperature range of 30$100^{\circ} \mathrm{C}$. To determine the optimum pH , reaction mixtures containing 74.8 nm RmMGP, 2 mm Man-Glc, 10 mm sodium phosphate, and 100 mm reaction buffer (sodium citrate buffer, MES-NaOH buffer, 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES)- NaOH buffer, and glycine-NaOH buffers at pH values of 3.1-6.4, 6.5-6.9, $7.3-8.1$, and $8.2-9.7$, respectively) were incubated at $50^{\circ} \mathrm{C}$ for 10 min . The concentrations of D-glucose were measured as described above. To determine the optimum temperature, a reaction mixture containing 150 nm RmMGP, 2 mm Man-Glc, 10 mm sodium phosphate, and 100 mm MES-NaOH buffer (pH 6.5) was incubated at $30-90^{\circ} \mathrm{C}$ at $5^{\circ} \mathrm{C}$ increments for 10 min . The concentrations of D-glucose were measured as described above.

The pH stability and thermostability of RmMGP were evaluated by measuring residual activity after pH and heat treatment, respectively. To determine enzyme stability as a function of pH , mixtures ($100 \mu \mathrm{~L}$) containing $3.74 \mu \mathrm{M}$ RmMGP and 80 mm buffers described above ($\mathrm{pH} 3.1-9.7$) were incubated at $4^{\circ} \mathrm{C}$ for 24 h . To determine enzyme stability as a function of temperature, mixtures ($40 \mu \mathrm{~L}$) containing 93.5 nm RmMGP, 12.5 mm sodium phosphate, and 125 mm MES-NaOH buffer (pH 6.5) were incubated at $30-90^{\circ} \mathrm{C}$ for 20 min . The enzyme was considered stable under conditions that caused the retention of $\geq 90 \%$ of activity before treatment.

Kinetic analysis of MGP. Kinetic parameters for the phosphorolysis of Man-Glc were determined from reaction rates at various concentrations of Man-Glc and inorganic phosphate (Pi). A reaction mixture ($50 \mu \mathrm{~L}$) containing 37 nm RmMGP, $1-20 \mathrm{~mm}$ ManGlc, $1-10 \mathrm{~mm}$ sodium phosphate, and 100 mm MES-NaOH buffer (pH 6.5) was incubated at $50^{\circ} \mathrm{C}$ for 10 min , and D-glucose was measured as described above. The
kinetic parameters were calculated by fitting the reaction rates to the equation for a sequential bi-bi mechanism, ${ }^{26)}$ as follows:

$$
\begin{aligned}
& v=k_{\mathrm{cat}}[\mathrm{~A}][\mathrm{B}] /\left(K_{\mathrm{iA}} K_{\mathrm{mB}}+K_{\mathrm{mB}}[\mathrm{~A}]+K_{\mathrm{mA}}[\mathrm{~B}]+[\mathrm{A}][\mathrm{B}]\right) \\
& (\mathrm{A}=\text { Man-Glc, } \mathrm{B}=\mathrm{Pi})
\end{aligned}
$$

Non-linear regression was carried out using Grafit version 7.0.2 (Erithacus Software, West Sussex, UK).

Acceptor specificity of RmCE in the synthetic (reverse) reaction. Twenty-five $\mu \mathrm{L}$ of a reaction mixture containing the enzyme, 10 mm Man1P, 10 mm acceptor substrate, and 50 mm MES-NaOH buffer (pH 6.5) was incubated at $50^{\circ} \mathrm{C}$ for 10 min . The enzyme reaction was stopped by adding $62.5 \mu \mathrm{~L}$ of $100 \mathrm{~g} / \mathrm{L}$ of ascorbic acid solution, and Pi was measured following the method published by Lowry and Lopez. ${ }^{27)}$ Man1P (dicyclohexylamine salt) was synthesized from D-mannose and ATP using N acetylhexosamine 1-kinase. ${ }^{28)}$ The acceptor substrates were as follows: D-glucose, Dmannose, D-allose, D-xylose, 1,5-anhydro-D-glucitol, methyl α-D-glucoside, and methyl β-D-glucoside (Wako Pure Chemical Industries); 6-deoxy-D-glucose and cellobiose (Sigma, St. Louis, MO); D-glucosamine (Tokyo Chemical Industries, Tokyo); D-glucitol and N-acetyl-D-glucosamine (Nacalai Tesque); and β-1,4-mannobiose. Apparent kinetic parameters were determined by fitting the reaction rates at varying concentrations of acceptor substrates ($1.25-40 \mathrm{~mm}$) and 10 mm Man1P to the Michaelis-Menten equation.

Estimation of molecular mass by gel filtration column chromatography. One hundred $\mu \mathrm{L}$ of $0.42 \mathrm{mg} / \mathrm{mL}$ of RmMGP was subjected to gel filtration column chromatography as follows: column, Superose 12 10/300 GL (i.d. $1.0 \times 30 \mathrm{~cm}$, GE Healthcare BioSciences); buffer, 20 mm MES-NaOH buffer (pH 7.0) containing 0.2 M NaCl ; flow rate, $0.5 \mathrm{~mL} / \mathrm{min}$; detection, absorbance at 280 nm . A gel filtration molecular mass standard (Bio-Rad, Hercules, CA) was used to generate a calibration curve.

Results and Discussion

CE, MGP, and β-mannanase activities of a cell-free extract of R. marinus cultured in the presence and the absence of mannan

The growth of R. marinus and the production of mannan-metabolizing enzymes in the presence ($2 \mathrm{mg} / \mathrm{mL}$) and the absence of glucomannan were compared (Fig. 1). Growth was more abundant in the presence of glucomannan as carbon source than in its absence. Thus the absorbance at 600 nm of the culture broth with glucomannan at 60 h was higher than that of the control by a factor of approximately 2 . The production of extracellular β-mannanase in the presence of glucomannan reached a maximum in the early phase of cell growth (36 h). β-Mannanase activity at 36 h was $0.087 \mathrm{U} / \mathrm{mL}$, higher by a factor of 37 than that in the absence of glucomannan. β-Mannanase activity in the presence of glucomannan was maintained until 48 h , but had decreased significantly by 60 h . The reason for a decrease in extracellular β-mannanase activity remains unclear. ManA is fully stable at a culture temperature $50^{\circ} \mathrm{C},,^{15)}$ and heat inactivation does not appear to occur during a culture. At a late stage of culture, extracellular enzymes might be degraded proteolytically as nitrogen source. The intracellular MGP and CE activities of cells grown in the presence of glucomannan were significantly higher than for the control. The maximum activities of intracellular MGP and CE in the cells cultured in the presence of glucomannan were higher by factors of 6.1 (60 h) and $34(48 \mathrm{~h})$, respectively, than in the control.

Production and purification of recombinant RmMGP

Recombinant RmMGP was successfully produced in E. coli BL21 (DE3) in soluble form and was purified to homogeneity at a yield of $3.32 \mathrm{mg} / \mathrm{L}$ (Fig. 2). The recombinant enzyme catalyzed the phosphorolysis of Man-Glc, and its specific activity was 7.17 U / mg in the presence of 2 mm Man-Glc and 100 mm Pi at pH 6.5 at $50^{\circ} \mathrm{C}$. The
molecular mass of RmMGP was estimated as 45 kDa by SDS-PAGE, which is consistent with 45,295.67 Da calculated from its amino acid sequence, and is close to those of BfMGP and RaMGP. ${ }^{4,5)}$ Under nondenaturing conditions, the molecular mass of RmMGP was estimated as 222 kDa , indicating that RmMGP forms a homopentamer. In contrast, RaMGP and BfMGP form homodimers and homohexamers, respectively. ${ }^{5,29)}$

Fig. 2

Effects of pH and temperature on enzyme activity and stability

RmMGP activity was highest at pH 6.5 , similarly to those of other MGPs (Fig. 3a), ${ }^{4,5)}$ and was stable at $\mathrm{pH} 5.5-8.3$. Activity was highest at $75^{\circ} \mathrm{C}$, similarly to those of other R. marinus enzymes. ${ }^{9-18)}$ RmMGP retained more than 90% of its activity before treatment when incubated for 20 min at temperatures up to $80^{\circ} \mathrm{C}$ (Fig 3b). The optimum temperature of RmMGP is higher than those of other MGPs, which are most active at $50^{\circ} \mathrm{C} .4,5$ The Pro residue content of RmMGP (8.3\%) is approximately twice as high as those of BfMGP (4.9\%) and RaMGP (3.6\%). Moreover, the Pro residue content of R. marinus CE is higher than those of other CEs with mild optimum temperatures. ${ }^{18)}$ Pro residues situated in loops connecting adjacent secondary structures might account for the high thermostability of Bacillus thermoglucosidasius KP1006 oligo-1,6glucosidase. ${ }^{30)}$ Compared with RaMGP and structure known BfMGP, ${ }^{29)}$ RmMGP apparently has more Pro residues on several loops (Fig. 4). Hence these Pro residues might contribute to the rigidity and thermostability of RmMGP as well.

Fig. 3
Fig. 4

Kinetic analysis of the phosphorolysis of Man-Glc
The initial velocities of phosphorolysis of Man-Glc at various concentrations of Pi and Man-Glc were determined (Fig. 5). The curves obtained by plotting $1 / v$ versus 1/[Man-Glc] at various Pi concentrations were linear, and intersected at the same point. These data indicate that RmMGP catalyzed the phosphorolysis of Man-Glc through a sequential bi-bi mechanism involving the formation of a ternary complex, as observed
for RaMGP and other inverting carbohydrate phosphorylases. ${ }^{5,6,31-37)}$ The calculated kinetic parameters are as follows: $k_{\text {cat }}=20.5 \pm 0.1 \mathrm{~s}^{-1}, K_{\mathrm{mA}}=0.994 \pm 0.051 \mathrm{mM}, K_{\mathrm{mB}}=$ $1.07 \pm 0.03 \mathrm{~mm}$, and $K_{\mathrm{iA}}=5.78 \pm 0.43 \mathrm{~mm}$ (A, Man-Glc; B, Pi).

Acceptor specificity of the synthetic reaction

The acceptor specificity of the synthetic reaction was determined by measuring initial reaction rates at a single concentration (10 mm) of Man1P and various substrates. D-Glucose, methyl β-D-glucoside, 1,5-anhydro-D-glucitol, 6-deoxy-D-glucose, and Dxylose served as acceptors. No synthetic activity was detected in the presence of Dallose, D-mannose, methyl α-D-glucoside, cellobiose, D-glucosamine, N-acetyl-Dglucosamine, or $\beta-1,4$-mannobiose. The apparent kinetic parameters for acceptors were determined from the reaction rates at various concentrations of acceptors and 10 mm Man1P (Table 1). The value of $k_{\text {cat(app) }} / K_{\mathrm{m}(\mathrm{app})}$ of RmMGP for 6-deoxy-D-glucose is similar to that of D-glucose, although for the synthetic reaction of RaMGP, monodeoxygenation at the $6-\mathrm{OH}$ position results in large decreases in $k_{\text {cat(app) }} / K_{\mathrm{m} \text { (app) }}$ caused by an increase in $K_{\mathrm{m}(\mathrm{app}) .}{ }^{5)}$ Because $k_{\text {cat(app) }} / K_{\mathrm{m}(\mathrm{app})}$ of RaMGP for D-xylose is 12% of that for 6-deoxy-D-glucose, ${ }^{5)}$ the methylene group of acceptor substrates is important for activity. However, for RmMGP, $k_{\text {cat(app) }} / K_{\mathrm{m}(\mathrm{app})}$ for D-xylose is 36% of that for 6-deoxy-D-glucose. This finding indicates that the 6-OH and C-6 methylene groups of acceptor substrates are less important for the recognition of acceptor substrate by RmMGP compared with RaMGP.

In the complex of BfMGP and Man-Glc, hydrophobic interactions with the C-6 methylene group of the reducing-end D-glucose residue are provided by Phe214 and Ile215. ${ }^{29}$ The positions of these residues in RmMGP and RaMGP correspond to those of BfMGP (Fig. 4). Hence, the difference in synthetic activity towards the 6-OH derivatives of D-glucose between RmMGP and RaMGP can be attributed to differences in indirect interactions with the acceptors. In contrast to RaMGP, RmMGP exhibited synthetic activity towards 1-OH glucose derivatives 1,5-anhydro-D-glucitol and methyl
β-D-glucoside. In view of the fact that the absence of the $1-\mathrm{OH}$ group did not result in a complete loss of synthetic activity, in contrast to RaMGP, the 1-OH group of the acceptor substrate is less important for the synthetic activity of RmMGP than for RaMGP. In the BfMGP structure, Arg94 forms a hydrogen bond with the 1-OH group of the β-D-glucose residue of Man-Glc, ${ }^{29)}$ but this Arg is conserved in RaMGP and RmMGP (Fig. 4). The synthetic activity of RmMGP towards methyl β-D-glucoside suggests that the orientation of Arg101, corresponding to BfMGP Arg94, differs from that of BfMGP, because the space in the acceptor binding site accommodates a β-linked methyl group.

In summary, we report here the first enzymatic characterization of an MGP of the aerobic bacterium R. marinus. The presence of MGP in an aerobic bacterium suggests that the degradation of mannan mediated by CE and MGP is not limited to anaerobes such as B. fragilis NCTC9343 and R. albus NE1. The acceptor specificity of RmMBP differs from that of RaMGP. Insight into their structural differences will be provided by determining the three-dimensional structures of these MGPs.

Acknowledgments

We thank Tomohiro Hirose of the Instrumental Analysis Division, Equipment Management Center, Creative Research Institute, Hokkaido University, and the staff of the DNA Sequencing Facility of the Research Faculty of Agriculture, Hokkaido University for amino acid and DNA sequence analyses, respectively.

References

1) Moreira LRS and Filho EXF, Appl. Microbiol. Biotechnol., 79, 165-178 (2008).
2) Shallom D and Shoham Y, Curr. Opin. Microbiol., 6, 219-228 (2003).
3) Chauhan PS, Puri N, Sharma P, and Gupta N, Appl. Microbiol. Biotechnol., 93, 1817-1830 (2012).
4) Senoura T, Ito S, Taguchi H, Higa M, Hamada S, Matsui H, Ozawa T, Jin S, Watanabe J, Wasaki J, and Ito S, Biochem. Biophys. Res. Commun., 408, 710-706 (2011).
5) Kawahara R, Saburi W, Odaka R, Taguchi H, Ito S, Mori H, and Matsui H, J. Biol. Chem., 287, 42389-42399 (2012).
6) Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, and Henrissat B, Nucleic Acids Res., 37, D233-D238 (2009).
7) Nihira T, Suzuki E, Kitaoka M, Nishimoto M, Ohtsubo K, and Nakai H, J. Biol. Chem., 288, 27366-27374 (2013).
8) Ladevèze S, Tarquis L, Cecchini DA, Bercovici J, Andrè I, Topham CM, Morel S, Laville E, Monsan PF, Lombard V, Henrrisat B, and Potocki-Véronèse G, J. Biol. Chem., 288, 32370-32383 (2013).
9) Alfredsson GA, Kristjánsson JK, Hjörleifsdottir S, and Stetter KO, J. Gen. Microbiol., 134, 299-306 (1988).
10) Dahlberg L, Holst O, and Kristjánsson JK, Appl. Microbiol. Biotechnol., 40, 63-68 (1993).
11) Manelius \AA, Dahlberg L, and Holst O, Appl. Biochem. Biotechnol., 44, 39-48 (1994).
12) Hreggvidsson GO, Kaiste E, Holst O, Eggertsson G, Palsdottir A, and Kristjánsson JK, Appl. Environ. Microbiol., 62, 3047-3049 (1996).
13) Spilliaert R, Hreggvidsson GO, Kristjánsson JK, Eggertsson G, and Palsdottir A, Eur. J. Biochem., 224, 923-930 (1994).
14) Hobel CFV, Hreggvidsson GO, Marteinsson VT, Bahrani-Mougeot F, Einarsson JM, Kristjánsson JK, Extremophiles, 9, 53-64 (2005).
15) Politz O, Krah M, Thomsen KK, and Borriss R, Appl. Microbiol. Biotechnol., 53, 715-721 (2000).
16) Jorge CD, Sampaio MM, Hreggvidsson GÓ, Kristjánsson JK, and Santos H, Extremophiles, 11, 115-122 (2007).
17) Gomes I, Gomes J, and Steiner W, Bioresour. Technol., 90, 207-214 (2003).
18) Ojima T, Saburi W, Sato H, Yamamoto T, Mori H, and Matsui H, Biosci. Biotechol. Biochem., 75, 2162-2168 (2011).
19) Watanabe J, Nishimukai M, Taguchi H, Senoura T, Hamada S, Matsui H, Yamamoto T, Wasaki J, Hara H, and Ito S, J. Dairy Sci., 91, 4518-4526 (2008).
20) Sato H, Saburi W, Ojima T, Taguchi H, Mori H, and Matsui H, Biosci. Biotechol. Biochem., 76, 1584-1587 (2012).
21) Nolan M, Tindall BJ, Pomrenke H, Lapidus A, Copeland A, Glavina Del Rio T, Lucas S, Chen F, Tice H, Cheng JF, Saunders E, Han C, Bruce D, Goodwin L, Chain P, Pitluck S, Ovchinikova G, Pati A, Ivanova N, Mavromatis K, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Brettin T, Göker M, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP, and Detter JC, Stand. Genomic Sci., 1, 283-290 (2009).
22) Bradford MM, Anal. Biochem., 72, 248-254 (1976).
23) Dayhoff MO, Perlmann GE, and MacInnes DA, J. Am. Chem. Soc., 74, 2515-2517 (1952).
24) Moore S and Stein WH, J. Biol. Chem., 176, 367-388 (1948).
25) Somogyi M, J. Biol. Chem., 195, 19-23 (1951).
26) Cleland WW, Biochim. Biophys. Acta, 67, 104-137 (1963).
27) Lowry OH and Lopez JA, J. Biol. Chem., 162, 421-428 (1946).
28) Nishimoto M and Kitaoka M, Appl. Environ. Microbiol., 73, 6444-6449 (2007).
29) Nakae S, Ito S, Higa M, Senoura T, Wasaki J, Hijikata A, Shionyu M, Ito S, and Shirai T, J. Mol. Biol., in press.
30) Watanabe K, Chishiro K, Kitamura K, and Suzuki Y, J. Biol. Chem., 266, 2428724294 (1991).
31) Hamura K, Saburi W, Abe S, Morimoto N, Taguchi H, Mori H, and Matsui H, Biosci. Biotechnol. Biochem., 76, 812-818 (2012).
32) Sawano T, Saburi W, Hamura K, Matsui H, and Mori H, FEBS J., in press.
33) Nihira T, Nakai H, Chiku K, and Kitaoka M, Appl. Microbiol. Biotechnol., 93, 1513-1522 (2012).
34) Kitaoka M, Sasaki T, and Taniguchi H, Biosci. Biotechnol. Biochem., 56, 652-655 (1992).
35)Honda Y, Kitaoka M, and Hayashi K, Biochem. J., 377, 225-232 (2004).
35) Kitaoka M, Matsuoka Y, Mori K, Nishimoto M, and Hayashi K, Biosci. Biotechnol. Biochem., 76, 343-348 (2012).
36) Derensy-Dron D, Krzewinski F, Brassart C, and Bouquelet S, Biotechnol. Appl. Biochem., 29, 3-10 (1999).

Figure legends

Fig. 1. Growth Curve of R. marinus ATCC43812 and Production of Mannan-Degrading Enzymes.

Growth in the presence (black circles) and absence (white circles) of glucomannan as a carbon source, respectively. a, Growth curve; b, extracellular β-mannanase activity; c, MGP activity; d, CE activity.

Fig. 2. SDS-PAGE Analysis of Purified RmMGP.
Lane M, size marker; lane S, purified RmMGP ($1 \mu \mathrm{~g}$). The molecular masses of standard proteins are indicated on the left. The proteins were visualized using Coomassie Brilliant Blue.

Fig. 3. Effects of Temperature and pH on Enzyme Activity and Stability.
MGP activity was measured at various pH values (a, closed circles) and temperature (b, closed circles) to determine optimal conditions. Activity was measured after pH (a, open circles) and heat treatment (b, open circles) to evaluate stability. The enzyme solution was incubated at various pH values at $4^{\circ} \mathrm{C}$ for 24 h and at various temperatures at pH 6.5 for 20 min .

Fig. 4. Multiple Alignment of Amino Acid Sequences of RmMGP, RaMGP, and BfMGP.

Multiple alignment was constructed using Clustal W program (http://clustalw.ddbj.nig.ac.jp/). Secondary structures of BfMGP are shown above sequence alignment using ESPript 2.2 program (http://espript.ibcp.fr/ESPript/ESPript/). α and β indicate α-helix and β-strand, respectively. Conserved amino acid residues are shown by black shade. Inverted black triangles indicate non-conserved Pro residues of RmMGP, situated on the loops connecting adjacent secondary structures. Black circles indicate amino acid residues forming the acceptor binding site.

2 Fig. 5. Double-Reciprocal Plot of the Phosphorolysis of Man-Glc by RmMGP.
The initial velocities for the phosphorolysis of Man-Glc of various concentrations of Man-Glc and Pi were determined. The concentrations of Pi were 1 (open circles), 2.5 (filled circles), 5 (open triangles), and 10 mm (filled triangles). Data represent mean \pm standard deviation (error bars) for three independent experiments.

Jaito et al., Fig. 1

Jaito et al, Fig. 2

Jaito et al, Fig. 3

BfMGP AHGVRNCAAGLRYVLYMYMTSDDDPIRLIASPAGYEMAPVGEERIGDVSNVLFSNGWTADDDGKVEIYYA

Jaito, et al., Fig. 4

Jaito et al, Fig. 5

Table 1. Comparison of Apparent Kinetic Parameters for Synthetic Reactions between RmMGP and RaMGP

Substrate	RmMGP			RaMGP ${ }^{\text {5 }}$		
	$k_{\text {cat(app) }}$ $\left(\mathrm{s}^{-1}\right)$	$K_{\mathrm{m}(\mathrm{app})}$ (mm)	$\begin{gathered} k_{\text {cat(app) })} / K_{\mathrm{m}(\text { app })} \\ \left(\mathrm{s}^{-1} \mathrm{mM}^{-1}\right) \end{gathered}$	$k_{\text {cat(app) }}$ (s^{-1})	$K_{\mathrm{m}(\mathrm{app})}$ (mM)	$\begin{gathered} k_{\text {cat(app) })} / K_{\mathrm{m}(\text { app })} \\ \left(\mathrm{s}^{-1} \mathrm{mM}^{-1}\right) \\ \hline \end{gathered}$
1,5-Anhydro-D-glucitol	1.62 ± 0.18	47.5 ± 7.6	0.0341	N.D.	N.D.	N.D.
6-Deoxy-D-glucose	42.3 ± 3.7	65.7 ± 9.0	0.644	177 ± 21	119 ± 18	1.49
D-Glucose	29.6 ± 0.7	42.1 ± 1.1	0.703	126 ± 1	25.9 ± 0.1	4.86
Methyl β-D-glucoside	2.02 ± 0.26	58.0 ± 8.9	0.0348	N.D.	N.D.	N.D.
D-Xylose	N.D.	N.D.	0.229*	N.D.	N.D.	0.180

Apparent kinetic parameters were determined from reaction rates at $1.25-40 \mathrm{~mm}$ an acceptor and 10 mm Man $1 P$ Values are mean \pm SD for three independent experiments. N.D., not determined. *Determined from the slope of s-v

