

HOKKAIDO UNIVERSITY

Title	Elucidation of the biosynthetic pathway of cis-jasmone in Lasiodiplodia theobromae
Author(s)	Matsui, Ryo; Amano, Naruki; Takahashi, Kosaku; Taguchi, Yodai; Saburi, Wataru; Mori, Hideharu; Kondo, Norio; Matsuda, Kazuhiko; Matsuura, Hideyuki
Citation	Scientific reports, 7(1), 6688 https://doi.org/10.1038/s41598-017-05851-7
Issue Date	2017-07-27
Doc URL	http://hdl.handle.net/2115/67110
Rights(URL)	http://creativecommons.org/licenses/by/4.0/
Туре	article
Additional Information	There are other files related to this item in HUSCAP. Check the above URL.
File Information	41598_2017_5851_MOESM1_ESM.pdf (Supplementary Information)

Supplementary Information

Elucidation of the biosynthetic pathway of cis-jasmone in Lasiodiplodia theobromae

Ryo Matsui,[†] Naruki Amano,[†] Kosaku Takahashi,[†] Youdai Taguchi,[†] Wataru Saburi,[†] Hideharu Mori,[†] Norio Kondo,[†] Kazuhiko Matsuda[‡] and Hideyuki Matsuura^{*, †}

[†]Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan [‡]Graduate School of Agriculture, Faculty of Agriculture, Kinki University, Nakamachi, Nara 631-8505, Japan

List of Supplementary Information

Figure S1. Representative GC-MS chromatograms for measuring authentic CJ.

Figure S2. Experimental procedure for the feeding experiment.

Figure S3. Representative GC-MS chromatograms for measuring authentic MeJA.

Figure S4. Representative GC-MS chromatograms analyzing fungal-derived

JA and JA-d5 using LA-d5 as a substrate for the feeding experiment.

Figure S5. Representative GC-MS chromatograms analyzing fungal-derived

JA and JA-d5 using LA-d5 as a substrate for the feeding experiment.

- **Figure S6**. Representative GC-MS chromatograms analyzing fungal-derived JA and JA-d6 using OPC8-d6 as a substrate for the feeding experiment.
- **Figure S7**. Representative GC-MS chromatograms analyzing fungal-derived CJ and CJ-d6 using OPC8-d6 as a substrate for the feeding experiment.
- **Figure S8**. Representative GC-MS chromatograms analyzing fungal-derived CJ and CJ-d4 using *iso*-OPDA-d8 as a substrate for the feeding experiment.

Figure S9. Representative GC-MS chromatogram analyzing authentic CJ-d7.

Figure S10. Representative GC-MS chromatographs for measuring MeJA in feeding experiment using *iso*-MeOPDA-d8.

Figure S2. Experimental procedure for the feeding experiment.

Figure S3. Representative GC-MS chromatograms for measuring authentic MeJA. A: Representative GC-MS chromatogram for measuring authentic MeJA using selected ion monitoring at *m/z* 224. B: Fragmentation pattern of the MS peak having Rt. of 7.5 min in the chromatogram described in A.

Figure S4. Representative GC-MS chromatograms analyzing fungal-derived JA and JA-d5 using LA-d5 as a substrate for the feeding experiment. A: MS chromatogram for analyzing MeJA. B: MS chromatogram for analyzing MeJA-d5.

Α

Figure S5. Representative GC-MS chromatograms analyzing fungal-derived JA and JA-d5 using LA-d5 as a substrate for the feeding experiment. A: MS chromatograph for analyzing CJ; B: MS chromatogram for analyzing CJ-d5.

Figure S6. Representative GC-MS chromatograms analyzing fungal-derived JA and JA-d6 using OPC8-d6 as a substrate for the feeding experiment.

A: MS chromatogram for analyzing MeJA; B: MS chromatogram for analyzing MeJA-d6.

Figure S7. Representative GC-MS chromatogram analyzing fungal-derived CJ and CJ-d6 using OPC8-d6 as a substrate for the feeding experiment. A: MS chromatogram for analyzing CJ.

Figure S8. Representative GC-MS chromatograms analyzing fungal-derived CJ and CJ-d4 using *iso*-OPDA-d8 as a substrate for the feeding experiment.

A: MS chromatogram for analyzing CJ; B: MS chromatogram for analyzing CJ-d4.

Figure S9. Representative GC-MS chromatogram analyzing authentic CJ-d7.

Figure S10. Representative GC-MS chromatograms for measuring MeJA in feeding experiment using *iso*-MeOPDA-d8. A: Representative GC-MS chromatogram monitoring total ion. B: Representative GC-MS chromatogram for measuring fungal derived MeJA using selected ion monitoring at m/z 224. C: Representative GC-MS chromatogram for measuring fungal derived [5,5-²H₂, 4,4-²H₂, 2,2-²H₂]MeJA selected ion monitoring at m/z 230. MS chart of the peak indicated by arrow gives almost same feature with that of authentic MeJA given in Supplementary Figure S3.