Title	Synthesis and a-amylase inhibitory activity of glucose-deoxynojirimycin conjugates
Author(s)	Kato, Eisuke; Iwano, Naoya; Y amada, A kihiko; Kawabata, Jun
Citation	Tetrahedron, 67(40), 7692-7702 https://doi. org/10.1016/.tet.2011.08.012
Issue Date	2011-10-07
Doc URL	http:/hdl. .handle.net/2115/67095
Rights	© 2011, Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://reativecommons.org/icenses/by-nc-nd/4.0/
Rights(URL)	http://reativecommons.org/icenses/by-nc-nd/4.0/
Type	article (author version)
File Information	K ato_et al_Tetrahedron2011_67_7692-7702.pdf

Instructions for use

Author's post-print manuscript of the following article

Synthesis and alpha-amylase inhibitory activity of glucose-deoxynojirimycin conjugates Eisuke Kato, Naoya Iwano, Akihiko Yamada, Jun Kawabata*

Tetrahedron Volume 67, Issue 40, October 2011, Pages 7692-7702.
https://doi.org/10.1016/j.tet.2011.08.012

Graphical abstract

Synthesis and alpha-amylase inhibitory activity of glucose-deoxynojirimycin conjugates Eisuke Kato, Naoya Iwano, Akihiko Yamada, Jun Kawabata*

Laboratory of Food Biochemistry, Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo, Hokkaido 060-8589, Japan

* Corresponding Author;

Tel/Fax: +81 11706 2496; e-mail address: junk@chem.agr.hokudai.ac.jp (J. Kawabata)

Abstract

α-amylase inhibitor has attracted attentions from its prospective effect against diabetes mellitus. Although numerous studies have focused on exploring natural small molecule inhibitor, acarbose is the only compound found to have sufficient strength of inhibition and character to be used as chemical treatment. We have synthesized a conjugate of 1^{-} deoxynojirimycin, a strong glucosidase inhibitor, and glucose prospecting to raise an inhibitory activity against α-amylase. The synthetic conjugate showed increased inhibition against α-amylase then 1-deoxynojirimycin alone, giving us opportunity of developing efficient α-amylase inhibitor by modifying the existing glucosidase inhibitors.

Keywords

α-amylase inhibitor, 1-deoxynojirimycin, porcine pancreatic amylase, diabetes mellitus

1. Introduction

Glucosidases are contributing to variety of crucial steps in our body. One of those steps is the digestion of polysaccharides relating to our energy intake. Several different glucosidases participate in this event including salivary/pancreatic α-amylase and intestinal α-glucosidases (maltase-glucoamylase complex and sucrase-isomaltase complex). These enzymes hydrolyze polysaccharide to a monosaccharide which is then absorbed from the intestine and flows into a blood stream. In the status of type 2 diabetes mellitus (T2DM), patients exhibit hyperglycemia which raises the risk of cardiovascular disease, renal failure, blindness and neurological disorders. ${ }^{1}$ Inhibition of polysaccharide digestion prevents rapid glucose uptake from the intestine and relaxes the hyperglycemic status caused from food intake. Accordingly, many glycosidase inhibitors are developed or searched for the treatment of T2DM.

For intestinal α-glucosidases, several potent inhibitors are known including deoxynojirimycin (DNJ), ${ }^{2}$ salacinol, ${ }^{3}$ miglitol and voglibose. ${ }^{4}$ The last two compounds are currently used as a chemical treatment of T2DM. Moreover, numbers of natural compounds are reported as a α-glucosidase inhibitor. ${ }^{5}$ On the other hand, not much small
molecule inhibitors are reported for α-amylase. Acarbose, the chemical also used for the treatment of T2DM, is the only widely utilized small molecule inhibitor. ${ }^{6}$ Several proteinous inhibitors are known in addition, ${ }^{7}$ but instability against gastric condition prohibits their use as a medicine against T2DM. Development of a small molecule α^{-} amylase inhibitor will add an alternative choice for the treatment of T2DM. We here show our approach toward the design and synthesis of small molecule α-amylase inhibitor.
α-Amylase is an enzyme hydrolyzing polysaccharides like starch. Although they are one of a glucosidase family, their substrate recognition is more specific toward a polysaccharide. α-Amylase's binding-site is consisted of several partitions called "subsite" which individually recognize a sugar unit. ${ }^{8,9}$ Each sub-site has relatively low affinity toward the sugar unit, but by recognizing multiple sugar units with multiple sub-sites, α-amylase increases the affinity toward a polysaccharide to enable its specific binding and hydrolysis. ${ }^{9}$ This multiple sub-site system prevents a low molecular weight compound to be an efficient inhibitor. Most of glucosidase inhibitors work as an activesite inhibitor by mimicking glucose or its activated state. ${ }^{10} \alpha$-Amylase possesses similar active site with other glucosidase, ${ }^{9}$ but the small molecule inhibitors like DNJ only mimics a single glucose unit which gives low affinity toward α-amylase. The small
molecule α-amylase inhibitor acarbose also inhibits the active site of α-amylase by its core structure acarviosine, but it also increases its affinity toward α-amylase by additional sugar units. We think this addition of sugar unit to an active site inhibitor should be the key to develop small molecule α-amylase inhibitor. Accordingly, we designed and synthesized glucose-DNJ conjugate that has DNJ as an active site inhibitor with additional glucose connected through alkyl linker, and tested their inhibitory activity against α-amylase.

2. Results and discussion

2.1. Synthesis of glucose-DNJ conjugates

We chose two types of glucose-DNJ conjugates ($8 \mathbf{a}-\mathbf{c}, 13 \mathrm{a}-\mathrm{f}$) to test their α amylase inhibitory activity. Compounds $8 \mathbf{a}-\mathrm{c}$ have a glucose attached through nitrogen atom of DNJ and 13a-f have a glucose attached through 4-OH group of DNJ prospecting to place the glucose at different sub-site. Also, alkyl linker with various lengths was chosen to give enough flexibility and length to appropriately fit the glucose to a sub-site.

For the synthesis of $8 \mathrm{a}-\mathrm{c}$, benzyl protected DNJ (6) was prepared and coupled with glucose-linker conjugate (5). ${ }^{12}$ 1,2,3,6-tetra- O-benzyl- α-D-glucopyranose (2) was reacted with alkyl bromide (1) to give $4-O$-bromoalkylated glucose (3). After removal of THP group, resulting alcohol (4) was oxidized by Dess-Martin periodinane to an aldehyde
(5). Aldehyde (5) and 6 were then coupled by reductive amination method, and removal
of benzyl groups from the resulting conjugate (7) gave the product (8), that the DNJ and glucose are connected by the alkyl linker which has 6, 9 and 12 atom lengths (Scheme 1).

5a-c ($\mathrm{n}=6,9,12$)
7a-c ($\mathrm{n}=6,9,12$)

$8 \mathrm{a}-\mathrm{c}(\mathrm{n}=6,9,12)$

6

Scheme 1. Reagents and conditions: a) NaH, DMF; b) PPTS, EtOH, $55^{\circ} \mathrm{C}$; c) Dess-Martin periodinane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; d) $6, \mathrm{NaBH}_{3} \mathrm{CN}, \mathrm{AcOH}, \mathrm{MeOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2} ;$ e) $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}, 1 \mathrm{M} \mathrm{HCl}$ aq., EtOH

Conjugates $13 \mathrm{a}-\mathrm{c}$ were prepared in the following order. $2,3,4,6$-tetra $-O$-benzyl-D-glucopyranose (9) was subjected to alpha selective glycosylation with bromoalkyl alcohol to afford $10 .{ }^{13}$ This was then coupled with DNJ (11) under basic condition using NaH with DMF as a solvent which gave 12 in a mild yield. ${ }^{12}$ Removal of the protective groups from 12 afforded 13a-c (Scheme 2).

Scheme 2. Reagents and conditions: a) $\mathrm{CBr}_{4}, \mathrm{PPh}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ then TMU, TEAB, bromoalkyl
alcohol; b) 11, NaH, DMF; c) $\mathrm{Pd}(\mathrm{OH})_{2}, \mathrm{H}_{2}, 1 \mathrm{M} \mathrm{HCl}$ aq., THF, EtOH

Synthesis of 13d required modification of a reaction condition, as the same procedure using ω-bromopentadecyl glucoside and 11 with NaH as a base gave no product. To increase the reactivity, the leaving group was replaced from a bromide to an iodide, and as the solubility of 15 in DMF was relatively low compared to 10a-c, THF was used as a solvent. Using these fixed substrate and solvent, reaction of 15 and 11 was facilitated and gave 16 as a product, which was then applied to a hydrogenation step to remove the protective groups to give 13d (Scheme 3).

Scheme 3. Reagents and conditions: a) $\mathrm{CBr}_{4}, \mathrm{PPh}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ then TMU, TEAB, 15hydroxypentadecanol; b) NIS, PPh_{3}, imidazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; c) 11, NaH , THF; d) $\mathrm{Pd}(\mathrm{OH})_{2}, \mathrm{H}_{2}$, 1 M HCl aq., THF, EtOH

Synthesis of 13 e and 13 f also required modification of the reaction, as the reaction of following substrates, 2,3,4,6-tetra- O-benzyl-1- O (4-bromobutyl)- α - D^{-} glucopyranose or $2,3,4,6$-tetra- O-benzyl-1- O (5-bromopentyl)- α - D-glucopyranose, under basic condition, only resulted in the elimination of a bromide. There is a report that bromobutyl glycosides can be utilized as a glycosyl donor by assisting the formation of intramolecular furan ring, which is considered as an activated state. ${ }^{16}$ As pyrane ring can also formed stably, bromopentyl glycoside may act in the same manner. So, regarding this intramolecular ring formation as the reason of bromide elimination, we chose to
connect an alkyl linker with DNJ (11) before attaching glucose. Alkyl iodide (17) was first reacted with 11, and subsequent removal of PMB group gave 19. This was then used as a glycosyl acceptor in the alpha selective glycosylation reaction to give 20 as the product. Deprotection of 20 gave 13e,f (Scheme 4). Also, to ensure the effect of glucose in α^{-} amylase inhibition, compounds $23 \mathrm{a}-\mathrm{f}$ were synthesized either by deprotection of the intermediate product or by coupling alkyl halide with 11 (Scheme 5).

Scheme 4. Reagents and conditions: a) 11, NaH, DMF; b) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; c) 2,3,4,6-tetra-$O$-benzyl-D-glycosyl bromide, TMU, TEAB, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} ; \mathrm{d}\right) \mathrm{Pd}(\mathrm{OH})_{2}, \mathrm{H}_{2}, 1 \mathrm{M} \mathrm{HCl}$ aq., THF, EtOH

Scheme 5. Reagents and conditions: a) 11, NaH, THF/DMF, TBAI (for synthesis of 22ac); b) PPTS, MeOH then 1 M HCl aq., $\mathrm{Pd}(\mathrm{OH})_{2}, \mathrm{H}_{2} ;$ c) $\mathrm{Pd}(\mathrm{OH})_{2}, \mathrm{H}_{2}, 1 \mathrm{M} \mathrm{HCl}$ aq., MeOH ;

2.2. α-Amylase inhibitory activity of glucose-DNJ conjugates

Initially, 8a-c and $13 \mathrm{a}-\mathrm{c}$ were tested for their α-amylase inhibitory activity to see the effect of an additional glucose attached through different functional group of DNJ. Commercial porcine pancreatic α-amylase was used as an enzyme source and 2,4dinitrophenyl maltotriose was used as a model substrate for convenient assay procedure. ${ }^{14}$ Figure 1 depicts the inhibitory activity of tested compounds at 3 mM . It can be seen that DNJ has only scarce inhibitory activity towards α-amylase. The glucose moiety of the conjugate $\mathbf{8 a - c}$ seems to have no or quite small effect on inhibitory activity. On the other hand, glucose moiety of the conjugates $13 \mathrm{a}-\mathrm{c}$ seems to effectively increase
the inhibitory activity of DNJ depending on the length of alkyl linker.

Figure 1. α-Amylase inhibitory activity of $8 \mathbf{a}-\mathbf{c}$ and $13 \mathbf{a}-\mathbf{c}$ tested at 3 mM . Acarbose (20 $\mu \mathrm{M})$ was used as a positive control.

The nitrogen atom of DNJ plays a key role in the inhibition of α-glucosidase by giving positive charge at the position resembling the activated state of α-glucoside hydrolysis by α-glucosidase. The small inhibition of 8a-c may therefore be due to an interfering alkyl chain modifying the nitrogen atom. However, as the similar nitrogen modified compound miglitol retains α-glucosidase inhibitory activity, ${ }^{\text {a }}$ the reason of low inhibition compared to $13 a-\mathrm{c}$ is not likely due to this. From the study of α-amylase, the sub-site of the enzyme located at the non-reducing end side contributes more than the
reducing end side in the recognition of the substrate. ${ }^{15}$ The result of Figure 1 is matching this fact and indicates the usefulness to attach an additional moiety through 4-OH group of DNJ.

To investigate more about the effect of linker length on α-amylase inhibition, and also to clarify the efficacy of a glucose moiety, we then tested and compared 13a-f together with $23 a-\mathrm{f}$. The results are summarized in Table 1. Compound 13a,e,f and 23a,e,f had relatively low inhibitory activity and was unable to define IC_{50} value. Therefore these compounds were compared at 5 mM each. And for $13 \mathrm{~b}, \mathrm{c}, \mathrm{d}$ and $23 \mathrm{~b}, \mathrm{c}, \mathrm{IC}_{50}$ values were calculated. Unfortunately, 23d had low solubility in an assay condition and could not be tested. From the result, the length of linker has a primary effect on α^{-} amylase inhibition, and the inhibition gradually increased by adding an atom to the linker. The most potent was 13 c , and shorter or longer linker gave a compound less inhibitory activity, except the inhibition of 13d might be decreased due to reduced solubility. The effect of glucose moiety can be seen from the inhibition of 13 and 23 . Regardless of the linker length, addition of glucose moiety increases the inhibitory activity. However, the increase induced by an addition of glucose moiety was not much and far less effective than our primary thoughts and alkyl linker seems to give more effect on inhibition. From the structure of α-amylase, substrate binding site of the
enzyme is surrounded by a hydrophobic surface. ${ }^{17}$ The effect of alkyl linker is presumably resulting from a binding to these surface. Glucose moiety itself is hydrophilic but as the top and bottom of the pyranose ring is hydrophobic, it may be contributing somewhat to the affinity. However, the fact that addition of an extra moiety to the small molecule glucosidase inhibitor DNJ increased its inhibition against α-amylase gives us some opportunity to utilize small molecule glucosidase inhibitor against α-amylase by properly designed modification.

Table 1. α-Amylase inhibitory activity of synthetic glucose-DNJ conjugates

- : unable to define inhibition due to low solubility

3. Conclusion

In conclusion, we have synthesized glucose-DNJ conjugate connected by various length of alkyl linker. Addition of extra glucose through nitrogen atom of DNJ had scarce effect on α-amylase inhibition but addition through 4-OH group increased α-amylase
inhibitory activity. Among the synthesized compounds, the most effective was 13 c , which has dodecyl linker with glucose at the end of linker. The obtained results show an importance of hydrophobic interaction on α-amylase inhibition. Our next target is to utilize this hydrophobic interaction to develop more potent DNJ based α-amylase inhibitor.

4. Experimental Section

4.1. General methods

Porecine pancreatic amylase was purchased from Sigma-Aldrich Co. and 2,4dinitrophenyl α-maltotriose was synthesized according to the literature. ${ }^{14}$ All other commercially available chemicals were purchased from Wako Pure Chem. Ind. Ltd. and used without further purification. Structures of the synthetic compounds were determined by NMR and Mass spectrometry. Bruker AMX500 or Jeol JNM-EX 270 was used to obtain NMR spectrum and either tetramethylsilane (TMS), tertbutanol or residual solvent peak was used as an internal standard (${ }^{1} \mathrm{H}$ NMR: TMS $0.00 \mathrm{ppm}\left(\mathrm{CDCl}_{3}\right)$, $\mathrm{CD}_{3} \mathrm{OD} 3.30 \mathrm{ppm}$, tert-butanol $1.24 \mathrm{ppm}\left(\mathrm{D}_{2} \mathrm{O}\right) ;{ }^{13} \mathrm{C}$ NMR: $\mathrm{CDCl}_{3} 77.0 \mathrm{ppm}, \mathrm{CD}_{3} \mathrm{OD} 49.0$ ppm, tert butanol 30.3 ppm ($\left.\mathrm{D}_{2} \mathrm{O}\right)$). Jeol JMS SX-102A (FAB-MS) or Jeol JMS-T100GCV (FD-MS) or Thermo Scientific Exactive (ESI-MS) was used to obtain mass spectrum. Absorbance was measured by Synergy ${ }^{\text {TM }}$ MX (Bio-tech Instruments Inc.,) microplate
reader.
4.2. Synthesis of glucose-DNJ conjugate
4.2.2. General procedure for the synthesis of 3

1,2,3,6-tetra- O-benzyl- α-D-glucopyranose (2, 1 eq.) was dissolved in DMF and $60 \% \mathrm{NaH}$ (2 eq.) in oil was added at $0^{\circ} \mathrm{C}$. After stirring the mixture for 30 min . at room temperature (r.t.), 1 (1.2 eq.) dissolved in DMF was added and stirred for 24 hours. The reaction was quenched by adding MeOH and water was added to the resulting solution. The solution was extracted by EtOAc , dried over sodium sulfate and evaporated to dryness. The residue was purified by silica-gel column chromatography to give 3 .

1,2,3,6-tetra-O-benzyl-4-O-[6-(tetrahydropyranyloxy)hexyl]- $\alpha-D$-glucopyranose (3a)

Oil, Yield $69 \% ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.23-7.39(20 \mathrm{H}, \mathrm{m}), 4.93(1 \mathrm{H}, \mathrm{d}, J=10.8 \mathrm{~Hz})$, $4.80(1 \mathrm{H}, \mathrm{d}, J=3.5 \mathrm{~Hz}), 4.76(1 \mathrm{H}, \mathrm{d}, J=10.8 \mathrm{~Hz}), 4.59-4.69(3 \mathrm{H}, \mathrm{m}), 4.46-4.54(4 \mathrm{H}, \mathrm{m})$, $3.90(1 \mathrm{H}, \mathrm{dd}, J=9.3 \mathrm{~Hz}, 9.3 \mathrm{~Hz}), 3.84(1 \mathrm{H}, \mathrm{m}), 3.63-3.76(4 \mathrm{H}, \mathrm{m}), 3.56(1 \mathrm{H}, \mathrm{dd}, J=1.9 \mathrm{~Hz}$, $10.6 \mathrm{~Hz}), 3.45-3.49(2 \mathrm{H}, \mathrm{m}), 3.36-3.41(2 \mathrm{H}, \mathrm{m}), 3.32(1 \mathrm{H}, \mathrm{dt}, J=6.7 \mathrm{~Hz}, 9.6 \mathrm{~Hz}), 1.17-1.83$ ($14 \mathrm{H}, \mathrm{m}$) , ppm; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 138.8,138.1,137.8,137.1,128.3,128.2$, $127.74,127.72,127.68,127.64,127.53,127.46,127.3,98.7,95.4,81.9,79.6,77.7,75.5$, $73.3,73.0,72.8,70.4,68.9,68.3,67.4,62.1,30.6,30.2,29.5,26.0,25.9,25.3,19.5 \mathrm{ppm}$; $[\alpha]_{\mathrm{D}}{ }^{25}+52.0^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right) ;$ HR-ESI-MS (positive) $[\mathrm{M}+\mathrm{Na}]+$ Found $m / z 747.3854$,
$\mathrm{C}_{45} \mathrm{H}_{56} \mathrm{O}_{8} \mathrm{Na}^{+}$requires $\mathrm{m} / \mathrm{z} 747.3867$.

1,2,3,6-tetra-O-benzyl-4-O-[9-(tetrahydropyranyloxy)nonyl]- $\alpha-D$-glucopyranose (3b)

Oil, Yield 89\%; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.23-7.39(20 \mathrm{H}, \mathrm{m}), 4.93(1 \mathrm{H}, \mathrm{d}, J=10.8 \mathrm{~Hz})$, $4.80(1 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}), 4.77(1 \mathrm{H}, \mathrm{d}, J=10.8 \mathrm{~Hz}), 4.47-4.69(7 \mathrm{H}, \mathrm{m}), 3.91(1 \mathrm{H}, \mathrm{dd}, J=9.3$, $9.3 \mathrm{~Hz}), 3.86(1 \mathrm{H}, \mathrm{m}), 3.69-3.77(3 \mathrm{H}, \mathrm{m}), 3.65(1 \mathrm{H}, \mathrm{dd}, J=3.7,10.6 \mathrm{~Hz}), 3.56(1 \mathrm{H}, \mathrm{dd}, J=$ $1.9,10.6 \mathrm{~Hz}), 3.46-3.50(2 \mathrm{H}, \mathrm{m}), 3.34-3.42(3 \mathrm{H}, \mathrm{m}), 1.14-1.85(20 \mathrm{H}, \mathrm{m}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ (67.5 MHz, CDCl_{3}): 138.8, 138.1, 137.8, 137.1, 128.2, 128.1, 127.72, 127.70, 127.63, $127.49,127.42,127.31,98.6,95.4,81.9,79.6,77.7,75.4,73.3,73.0,72.8,70.4,68.8,68.3$, $67.5,62.1,30.6,30.2,29.6,29.4,29.31,29.26,26.1,26.0,25.3,19.5 \mathrm{ppm} ;[\alpha]_{\mathrm{D}} 25+50.4^{0}(c$ $=1.00, \mathrm{CHCl}_{3}$); HR-ESI-MS (positive) $[\mathrm{M}+\mathrm{Na}]+$ Found $\mathrm{m} / \mathrm{z} 789.4326, \mathrm{C}_{48} \mathrm{H}_{62} \mathrm{O}_{8} \mathrm{Na}^{+}$ requires $m / z 789.4337$.

1,2,3,6-tetra-O-benzyl-4-O-[12-(tetrahydropyranyloxy)dodecyl]- α-D-glucopyranose (3c)

Oil, Yield 80\%; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.23-7.39(20 \mathrm{H}, \mathrm{m}), 4.93(1 \mathrm{H}, \mathrm{d}, J=10.8 \mathrm{~Hz})$, $4.80(1 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}), 4.77(1 \mathrm{H}, \mathrm{d}, J=10.8 \mathrm{~Hz}), 4.47-4.69(7 \mathrm{H}, \mathrm{m}), 3.91(1 \mathrm{H}, \mathrm{dd}, J=9.3$, $9.3 \mathrm{~Hz}), 3.85(1 \mathrm{H}, \mathrm{m}), 3.69-3.77(3 \mathrm{H}, \mathrm{m}), 3.65(1 \mathrm{H}, \mathrm{dd}, J=3.7,10.6 \mathrm{~Hz}), 3.56(1 \mathrm{H}, \mathrm{dd}, J=$ $1.9,10.6 \mathrm{~Hz}), 3.46-3.50(2 \mathrm{H}, \mathrm{m}), 3.34-3.42(3 \mathrm{H}, \mathrm{m}), 1.20-1.84(26 \mathrm{H}, \mathrm{m}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ (67.5 MHz, $\left.\mathrm{CDCl}_{3}\right): 138.8,138.1,137.9,137.1,128.3,128.2,128.1,127.74,127.66,127.53$, $127.45,127.33,127.31,98.6,95.4,81.9,79.6,77.7,75.4,73.3,73.0,72.8,70.4,68.8,68.3$,
$67.5,62.1,30.6,30.3,29.6,29.44,29.40,29.3,26.1,26.0,25.4,19.5 \mathrm{ppm} ;[\alpha]_{\mathrm{D}} 25+48.2^{\circ}(c$ $\left.=1.00, \mathrm{CHCl}_{3}\right) ;$ HR-ESI-MS (positive) $[\mathrm{M}+\mathrm{Na}]^{+}$Found $\mathrm{m} / \mathrm{z} 831.4790, \mathrm{C}_{51} \mathrm{H}_{68} \mathrm{O}_{8} \mathrm{Na}^{+}$ requires $m / z 831.4806$.

4.2.3. General procedure for the synthesis of 4

Compound 3 (1 eq.) was dissolved in EtOH and PPTS (10 mol\%) was added. The solution was stirred for 6 hours at $50^{\circ} \mathrm{C}$, poured in saturated NaHCO_{3} aq. and extracted by EtOAc. Organic layer was dried over sodium sulfate, evaporated and purified by silica-gel column chromatography to give 4.

1,2,3,6-tetra-O-benzyl-4-O-(6-hydroxyhexyl)- $\alpha-D$-glucopyranose (4a)

Oil, Yield 97\%; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.23-7.39(20 \mathrm{H}, \mathrm{m}), 4.94(1 \mathrm{H}, \mathrm{d}, J=10.9 \mathrm{~Hz})$, $4.80(1 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}), 4.76(1 \mathrm{H}, \mathrm{d}, J=10.9 \mathrm{~Hz}), 4.46-4.69(6 \mathrm{H}, \mathrm{m}), 3.91(1 \mathrm{H}, \mathrm{dd}, J=9.5$ $\mathrm{Hz}), 3.70-3.76(2 \mathrm{H}, \mathrm{m}), 3.64(1 \mathrm{H}, \mathrm{dd}, J=3.6,10.5 \mathrm{~Hz}), 3.56(1 \mathrm{H}, \mathrm{m}), 3.48(1 \mathrm{H}, \mathrm{dd}, J=3.6$, $9.5 \mathrm{~Hz}), 3.38-3.42(2 \mathrm{H}, \mathrm{m}), 1.22-1.54(8 \mathrm{H}, \mathrm{m}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 138.8$, $138.0,137.8,137.0,128.3,128.2,127.74,127.66,127.54,127.45,127.32,95.4,81.8,79.5$, $77.6,75.4,73.2,72.9,72.8,70.3,68.8,68.3,62.5,32.4,30.1,25.8,25.5 \mathrm{ppm} ;[\alpha]_{\mathrm{D}} 26+67.1^{\circ}$ $\left(c=1.00, \mathrm{CHCl}_{3}\right) ; \mathrm{HR}-\mathrm{ESI}-\mathrm{MS}$ (positive) $[\mathrm{M}+\mathrm{Na}]+$ Found $\mathrm{m} / z 663.3292, \mathrm{C}_{40} \mathrm{H}_{48} \mathrm{O}_{7} \mathrm{Na}^{+}$ requires $m / z 663.3292$.

1,2,3,6-tetra-O-benzyl-4-O-(9-hydroxynonyl)- α-D-glucopyranose (4b)

Oil, Yield quant.; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.23-7.39(20 \mathrm{H}, \mathrm{m}), 4.93(1 \mathrm{H}, \mathrm{d}, J=10.8$ $\mathrm{Hz}), 4.80(1 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}), 4.77(1 \mathrm{H}, \mathrm{d}, J=10.8 \mathrm{~Hz}), 4.47-4.69(6 \mathrm{H}, \mathrm{m}), 3.91(1 \mathrm{H}, \mathrm{dd}, J$ $=9.2,9.3 \mathrm{~Hz}), 3.70-3.76(2 \mathrm{H}, \mathrm{m}), 3.64(1 \mathrm{H}, \mathrm{dd}, J=3.8,10.6 \mathrm{~Hz}), 3.61(1 \mathrm{H}, \mathrm{m}), 3.56(1 \mathrm{H}$, $\mathrm{dd}, J=2.0,10.6 \mathrm{~Hz}), 3.48(1 \mathrm{H}, \mathrm{dd}, J=3.6,9.6 \mathrm{~Hz}), 3.37-3.42(2 \mathrm{H}, \mathrm{m}), 1.17-1.56(14 \mathrm{H}, \mathrm{m})$ ppm; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 138.7, 138.0, 137.8, 137.0, 128.2, 128.1, 127.69, 127.68, 127.60, 127.49, 127.40, 127.29, 95.3, 81.8, 79.5, 77.6, 75.4, 73.2, 73.0, 72.8, 70.3, 68.8, 68.3, 62.5, $32.5,30.2,29.32,29.24,29.17,25.9,25.5 \mathrm{ppm} ;[\alpha]_{\mathrm{D}}{ }^{26}+62.8^{\circ}(c=1.00$, CHCl_{3}); HR-ESI-MS (positive) $[\mathrm{M}+\mathrm{Na}]+$ Found $\mathrm{m} / \mathrm{z} 705.3760, \mathrm{C}_{43} \mathrm{H}_{54} \mathrm{O}_{7} \mathrm{Na}^{+}$requires m / z 705.3762.

1,2,3,6-tetra-O-benzyl-4-O-(12-hydroxydodecyl)- α-D-glucopyranose (4c)

Oil, Yield 91%; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.23-7.39(20 \mathrm{H}, \mathrm{m}), 4.93(1 \mathrm{H}, \mathrm{d}, J=10.8 \mathrm{~Hz}$), $4.80(1 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}), 4.77(1 \mathrm{H}, \mathrm{d}, J=10.8 \mathrm{~Hz}), 4.47-4.69(6 \mathrm{H}, \mathrm{m}), 3.91(1 \mathrm{H}, \mathrm{dd}, J=9.3$, $9.3 \mathrm{~Hz}), 3.70-3.77(2 \mathrm{H}, \mathrm{m}), 3.60-3.66(3 \mathrm{H}, \mathrm{m}), 3.56(1 \mathrm{H}, \mathrm{dd}, J=2.0,10.6 \mathrm{~Hz}), 3.48(1 \mathrm{H}$, dd, $J=3.6,9.6 \mathrm{~Hz}$), $3.37-3.42(2 \mathrm{H}, \mathrm{m}), 1.20-1.57(20 \mathrm{H}, \mathrm{m}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}(67.5 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 138.8,138.1,137.9,137.1,128.3,128.23,128.19,127.8,127.7,127.6,127.5,127.4$, $95.5,82.0,79.6,77.7,75.5,73.3,73.2,72.9,70.4,68.9,68.4,62.8,32.7,30.3,29.5,29.3$, 26.1, $25.7 \mathrm{ppm} ;[\alpha]_{\mathrm{D}} 26+58.2^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right) ; \mathrm{HR}-\mathrm{ESI}-\mathrm{MS}$ (positive) $[\mathrm{M}+\mathrm{Na}]^{+}$Found $m / z 747.4236, \mathrm{C}_{46} \mathrm{H}_{60} \mathrm{O}_{7} \mathrm{Na}^{+}$requires $\mathrm{m} / \mathrm{z} 747.4231$.

4.2.4. General procedure for the synthesis of 5

Compound 4 (1 eq.) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and Dess-Martin Periodinane (1.2 eq.) was added at $0^{\circ} \mathrm{C}$. After stirring for 90 min . at r.t., MeOH was added to quench the reaction. To this solution, $\mathrm{Et}_{2} \mathrm{O}$ was added and the precipitate was filtered off by passing through the celite pad. Filtrate was evaporated and the residue was purified by silica-gel column chromatography to give 5 .

1,2,3,6-tetra-O-benzyl-4-O-(6-oxohexyl)- α-D-glucopyranose (5a)

Oil, Yield $82 \% ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 9.68(1 \mathrm{H}, \mathrm{t}, J=1.8 \mathrm{~Hz}), 7.23-7.40(20 \mathrm{H}, \mathrm{m})$, $4.95(1 \mathrm{H}, \mathrm{d}, J=11.0 \mathrm{~Hz}), 4.81(1 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}), 4.74(1 \mathrm{H}, \mathrm{d}, J=11.0 \mathrm{~Hz}), 4.46-4.70(6 \mathrm{H}$, m), $3.90(1 \mathrm{H}, \mathrm{dd}, J=9.3,9.3 \mathrm{~Hz}), 3.72(2 \mathrm{H}, \mathrm{m}), 3.64(1 \mathrm{H}, \mathrm{dd}, J=3.7,10.5 \mathrm{~Hz}), 3.55(1 \mathrm{H}$, dd, $J=2.0,10.5 \mathrm{~Hz}), 3.48(1 \mathrm{H}, \mathrm{dd}, J=3.6,9.6 \mathrm{~Hz}), 3.35^{-3.41}(2 \mathrm{H}, \mathrm{m}), 2.31(2 \mathrm{H}, \mathrm{dt}, J=1.8$, $7.4 \mathrm{~Hz}), 1.52(2 \mathrm{H}, \mathrm{m}), 1.41(2 \mathrm{H}, \mathrm{m}), 1.14-1.28(2 \mathrm{H}, \mathrm{m}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $202.4,138.8,138.0,137.9,137.1,128.3,128.22,128.19,127.80,127.74,127.70,127.64$, $127.59,127.52,127.37,95.4,81.9,79.6,77.7,75.4,73.3,72.8,72.6,70.3,68.9,68.3,43.6$, 30.0, 25.6, $21.8 \mathrm{ppm} ;[\alpha]_{\mathrm{D}^{24}}+58.1^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right) ;$ HR-ESI-MS (positive) $[\mathrm{M}+\mathrm{Na}]^{+}$ Found $m / z 661.3148, \mathrm{C}_{40} \mathrm{H}_{46} \mathrm{O}_{7} \mathrm{Na}^{+}$requires $m / z 661.3136$.

1,2,3,6-tetra-O-benzyl-4-O-(9-oxononyl)- α - D-glucopyranose (5b)

Oil, Yield 88\%; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 9.73(1 \mathrm{H}, \mathrm{t}, J=1.8 \mathrm{~Hz}), 7.23-7.39(20 \mathrm{H}, \mathrm{m})$,
$4.93(1 \mathrm{H}, \mathrm{d}, J=10.9 \mathrm{~Hz}), 4.81(1 \mathrm{H}, \mathrm{d}, J=3.7 \mathrm{~Hz}), 4.76(1 \mathrm{H}, \mathrm{d}, J=10.9 \mathrm{~Hz}), 4.47-4.69(6 \mathrm{H}$, m), $3.91(1 \mathrm{H}, \mathrm{dd}, J=9.3 \mathrm{~Hz}), 3.73(2 \mathrm{H}, \mathrm{m}), 3.64(1 \mathrm{H}, \mathrm{dd}, J=3.6,10.6 \mathrm{~Hz}), 3.56(1 \mathrm{H}, \mathrm{dd}$, $J=2.0,10.6 \mathrm{~Hz}), 3.48(1 \mathrm{H}, \mathrm{dd}, J=3.7,9.6 \mathrm{~Hz}), 3.40(2 \mathrm{H}, \mathrm{m}), 2.38(2 \mathrm{H}, \mathrm{dt}, J=1.8,7.3$ $\mathrm{Hz})$, 1.54-1.61 $(2 \mathrm{H}, \mathrm{m}), 1.42(2 \mathrm{H}, \mathrm{m}), 1.16-1.27(8 \mathrm{H}, \mathrm{m}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $202.5,138.8,138.0,137.8,137.0,128.2,128.14,128.11,127.71,127.64,127.60,127.49$, 127.41, 127.29, 95.4, 81.9, 79.5, 77.6, 75.4, 73.2, 73.0, 72.8, 70.3, 68.8, 68.3, 43.6, 30.1, 29.09, 29.07, 28.9, 25.9, $21.8 \mathrm{ppm} ;[\alpha]_{\mathrm{D}}{ }^{25}+56.2^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right) ;$ HR-ESI-MS (positive) [M+Na]+ Found $m / z 703.3621, \mathrm{C}_{43} \mathrm{H}_{55} \mathrm{O}_{7} \mathrm{Na}^{+}$requires $\mathrm{m} / \mathrm{z} 703.3605$.

1,2,3,6-tetra-O-benzyl-4-O-(12-oxododecyl)- $\alpha-D-g l u c o p y r a n o s e(5 c) ~$

Oil, Yield 97%; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 9.74(1 \mathrm{H}, \mathrm{t}, J=1.8 \mathrm{~Hz}), 7.24-7.40(20 \mathrm{H}, \mathrm{m})$, $4.93(1 \mathrm{H}, \mathrm{d}, J=10.9 \mathrm{~Hz}), 4.81(1 \mathrm{H}, \mathrm{d}, J=3.7 \mathrm{~Hz}), 4.76(1 \mathrm{H}, \mathrm{d}, J=10.9 \mathrm{~Hz}), 4.47-4.70(6 \mathrm{H}$, m), $3.91(1 \mathrm{H}, \mathrm{dd}, J=9.3 \mathrm{~Hz}), 3.73(2 \mathrm{H}, \mathrm{m}), 3.65(1 \mathrm{H}, \mathrm{dd}, J=3.6,10.6 \mathrm{~Hz}), 3.57(1 \mathrm{H}, \mathrm{dd}$, $J=2.0,10.6 \mathrm{~Hz}), 3.48(1 \mathrm{H}, \mathrm{dd}, J=3.7,9.6 \mathrm{~Hz}), 3.40(2 \mathrm{H}, \mathrm{m}), 2.38(2 \mathrm{H}, \mathrm{dt}, J=1.8,7.4$ Hz), 1.20-1.64 ($18 \mathrm{H}, \mathrm{m}$) ppm; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 202.9,138.9,138.1,137.9$, $137.1,128.36,128.25,128.23,128.21,127.84,127.74,127.72,127.62,127.53,127.42,95.5$, 82.0, 79.6, 77.7, 75.6, 73.4, 73.2, 72.9, 70.4, 68.9, 68.4, 43.8, 30.3, 29.5, 29.4, 29.32, 29.26, 29.1, 26.1, $22.0 \mathrm{ppm} ;[\alpha]_{\mathrm{D}}{ }^{25}+56.9^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right) ; \mathrm{HR}$-ESI-MS (positive) $[\mathrm{M}+\mathrm{Na}]^{+}$ Found $m / z 745.4096, \mathrm{C}_{46} \mathrm{H}_{58} \mathrm{O}_{7} \mathrm{Na}^{+}$requires $m / z 745.4075$.
4.2.5. General procedure for the synthesis of 7

Compound 5 (1 eq.) and 6 (1.2 eq.) were immersed in $\mathrm{MeOH} / \mathrm{AcOH}(200 / 1)$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added until all the components dissolves. The solution was cooled to $0{ }^{\circ} \mathrm{C}, 90 \%$ $\mathrm{NaBH}_{3} \mathrm{CN}$ (2 eq.) was added and stirred for 12 hours at r.t. The reaction mixture was concentrated and purified by preparative TLC (PTLC) to give 7.

1,2,3,6-tetra-O-benzyl-4-O-[6-[(2R,3R,4R,5S)-3,4,5-tribenzyloxy-2-benzyloxymethylpiperidinolhexyl]- α-D-glucopyranose (7a)

Oil, Yield 95\%; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.15-7.44$ ($40 \mathrm{H}, \mathrm{m}$), 4.99 ($2 \mathrm{H}, \mathrm{dd}, J=4.0,10.9$ $\mathrm{Hz}), 4.81-4.91(5 \mathrm{H}, \mathrm{m}), 4.65-4.74(5 \mathrm{H}, \mathrm{m}), 4.43-4.59(6 \mathrm{H}, \mathrm{m}), 3.97(1 \mathrm{H}, \mathrm{dd}, J=9.2,9.3 \mathrm{~Hz})$, $3.77-3.82(2 \mathrm{H}, \mathrm{m}), 3.60-3.71(5 \mathrm{H}, \mathrm{m}), 3.41-3.55(5 \mathrm{H}, \mathrm{m}), 3.10(1 \mathrm{H}, \mathrm{dd}, J=4.8,11.3 \mathrm{~Hz})$, $2.54-2.69(2 \mathrm{H}, \mathrm{m}), 2.32(1 \mathrm{H}, \mathrm{bd}, J=9.4 \mathrm{~Hz}), 2.25(1 \mathrm{H}, \mathrm{dd}, J=10.7,10.8 \mathrm{~Hz}), 1.09-1.48$ ($8 \mathrm{H}, \mathrm{m}$) ppm; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 138.93,138.87,138.48,138.46,138.1,137.9$, $137.7,137.1,128.3,128.26,128.22,127.82,127.76,127.72,127.62,127.53,127.44,127.42$, $127.33,95.5,87.3,82.0,79.7,78.48,78.44,77.7,75.5,75.2,75.1,73.4,73.3,73.0,72.9$, $72.6,70.4,69.0,68.4,65.2,63.5,54.4,52.3,30.4,27.4,26.1,23.4 \mathrm{ppm} ;[\alpha]_{\mathrm{D}^{24}}+37.5^{\circ}(c=$ 0.85, CHCl_{3}); HR-ESI-MS (positive) $[\mathrm{M}+\mathrm{H}]+$ Found $m / z 1146.6078, \mathrm{C}_{74} \mathrm{H}_{84} \mathrm{O}_{10} \mathrm{~N}^{+}$requires $m / z 1146.6090$.

1,2,3,6-tetra-O-benzyl-4-O-[9-[(2R,3R,4R,5S)-3, 4,5-tribenzyloxy-2-

benzyloxymethylpiperidinolnonyl]- α-D-glucopyranose (7b)

Oil, Yield 88%; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: 7.12-7.41 ($40 \mathrm{H}, \mathrm{m}$), $4.95(2 \mathrm{H}, \mathrm{d}, J=10.9 \mathrm{~Hz}$), 4.77-4.88 (5H, m), 4.61-4.70 (5H, m), 4.40-4.56 (6H, m), $3.93(1 \mathrm{H}, \mathrm{dd}, J=9.3,9.3 \mathrm{~Hz})$, $3.72-3.79(2 \mathrm{H}, \mathrm{m}), 3.57-3.68(5 \mathrm{H}, \mathrm{m}), 3.53(1 \mathrm{H}, \mathrm{dd}, J=2.2,10.4 \mathrm{~Hz}), 3.50(1 \mathrm{H}, \mathrm{dd}, J=3.6$, $9.6 \mathrm{~Hz}), 3.45(1 \mathrm{H}, \mathrm{dd}, J=9.0,9.0 \mathrm{~Hz}), 3.39-3.44(2 \mathrm{H}, \mathrm{m}), 3.08(1 \mathrm{H}, \mathrm{dd}, J=4.8,11.3 \mathrm{~Hz})$, $2.52-2.68(2 \mathrm{H}, \mathrm{m}), 2.29(1 \mathrm{H}, \mathrm{dd}, J=2.2,9.5 \mathrm{~Hz}), 2.22(1 \mathrm{H}, \mathrm{dd}, J=10.7,10.8 \mathrm{~Hz}), 1.08-$ 1.46 ($14 \mathrm{H}, \mathrm{m}$) ppm; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 138.92,138.85,138.47,138.45,138.1$, 137.9, 137.7, 137.1, 128.3, 128.22, 128.18, 127.78, 127.72, 127.69, 127.58, 127.49, 127.38, 127.29, 95.5, 87.3, 82.0, 79.6, 78.48, 78.42, 77.7, 75.5, 75.2, 75.0, 73.3, 73.1, 73.0, 72.9, $72.6,70.4,68.9,68.4,65.2,63.6,54.4,52.3,30.3,29.5,29.4,27.4,26.1,23.4 \mathrm{ppm} ;[\alpha]_{D^{24}}$ $+32.1^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right) ;$ HR-ESI-MS (positive) $[\mathrm{M}+\mathrm{H}]+$ Found m / z 1188.6549, $\mathrm{C}_{77} \mathrm{H}_{90} \mathrm{O}_{10} \mathrm{~N}^{+}$requires $m / z 1188.6559$.

1,2,3,6-tetra-O-benzyl-4-O-I12-[(2R,3R,4R,5S)-3,4,5-tribenzyloxy-2-
benzyloxymethylpiperidinoldodecyl]- α-D-glucopyranose (7c)

Oil, Yield 61\%; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.15-7.43(40 \mathrm{H}, \mathrm{m}), 4.97(2 \mathrm{H}, \mathrm{d}, J=10.9 \mathrm{~Hz})$, 4.80-4.91 ($5 \mathrm{H}, \mathrm{m}$), 4.63-4.73 ($5 \mathrm{H}, \mathrm{m}$), 4.43-4.58 ($6 \mathrm{H}, \mathrm{m}$), 3.96 ($1 \mathrm{H}, \mathrm{dd}, J=9.3,9.3 \mathrm{~Hz}$), 3.75-3.82 ($2 \mathrm{H}, \mathrm{m}$), 3.59-3.70 ($5 \mathrm{H}, \mathrm{m}$), $3.56(1 \mathrm{H}, \mathrm{dd}, J=1.9,10.4 \mathrm{~Hz}$), 3.52 ($1 \mathrm{H}, \mathrm{dd}, J=3.6$, $9.6 \mathrm{~Hz}), 3.42-3.50(3 \mathrm{H}, \mathrm{m}), 3.12(1 \mathrm{H}, \mathrm{dd}, J=4.8,11.3 \mathrm{~Hz}), 2.56-2.72(2 \mathrm{H}, \mathrm{m}), 2.32(1 \mathrm{H}, \mathrm{dd}$,
$J=2.2,9.5 \mathrm{~Hz}), 2.25(1 \mathrm{H}, \mathrm{dd}, J=10.8,10.8 \mathrm{~Hz}), 1.11-1.49(20 \mathrm{H}, \mathrm{m}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}(67.5$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): 138.98,138.91,138.53,138.51,138.2,138.0,137.7,137.2,128.36,128.27$, $128.24,128.23,127.85,127.78,127.75,127.62,127.54,127.44,127.34,95.5,87.3,82.0$, $79.7,78.54,78.49,77.8,75.6,75.2,75.1,73.4,73.2,73.0,72.7,70.5,69.0,68.5,65.2,63.6$, $54.4,52.4,30.4,29.61,29.56,27.5,26.1,23.5 \mathrm{ppm} ;[\alpha]_{\mathrm{D}^{24}}+33.4^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right) ; \mathrm{HR}^{-}$ ESI-MS (positive) $[\mathrm{M}+\mathrm{H}]+$ Found $m / z 1230.7013, \mathrm{C}_{80} \mathrm{H}_{96} \mathrm{O}_{10} \mathrm{~N}^{+}$requires $m / z 1230.7029$. 4.2.6. General procedure for the synthesis of 8 Compound 7 was dissolved in EtOH and acidified by 1 M HCl aq. to pH 2 . To this solution, $10 \% \mathrm{Pd}$ on carbon was added and stirred 24 hours under hydrogen atmosphere. The reaction mixture was passed through celite pad, dried under vacuo and purified by LiChrolut ${ }^{\circledR}$ RP-18 (Merck Co.) to afford 8 as a mixture of anomers.

4-O-[6-[(2R,3R,4R,5S)-3,4,5-trihydroxy-2-hydroxymethylpiperidinolhexyl]-Dglucopyranose (8a)

Crystal, Yield 54\%; β anomer (major), ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): 4.48(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz})$, 3.58-3.79 (5H, m), 3.54 (1H, m), 3.38-3.44 ($2 \mathrm{H}, \mathrm{m}$), $3.32(1 \mathrm{H}, \mathrm{ddd}, J=1.9,5.2,9.8 \mathrm{~Hz})$, $3.25(1 \mathrm{H}, \mathrm{dd}, J=9.5,9.5 \mathrm{~Hz}), 3.09-3.17(3 \mathrm{H}, \mathrm{m}), 2.89(1 \mathrm{H}, \mathrm{dd}, J=4.9,11.3 \mathrm{~Hz}), 2.46-2.64$ $(2 \mathrm{H}, \mathrm{m}), 2.17(1 \mathrm{H}, \mathrm{dd}, J=11.3,11.3 \mathrm{~Hz}), 2.12(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=9.1 \mathrm{~Hz}), 1.17-1.47(8 \mathrm{H}, \mathrm{m})$, ppm; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): 98.7,81.2,80.7,78.4,77.9,77.0,76.0,72.9,71.7,67.8$,
$63.3,60.4,58.0,54.8,31.9,29.3,27.9,25.5 \mathrm{ppm} ;[\alpha]_{\mathrm{D}^{27}}+26.7^{\circ}(c=1.00, \mathrm{MeOH}) ;$ HR-FABMS (positive): $[\mathrm{M}+\mathrm{H}]+$ Found $m / z 426.2343, \mathrm{C}_{18} \mathrm{H}_{36} \mathrm{NO}_{10^{+}}$requires $m / z 426.2339$.

4-O-[9-[(2R,3R,4R,5S)-3,4,5-trihydroxy-2-hydroxymethylpiperidinolnonyl]-Dglucopyranose (8b)

Crystal, Yield 37\%; β anomer (major), ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): 4.51(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}$), $3.61-3.82(5 \mathrm{H}, \mathrm{m}), 3.55(1 \mathrm{H}, \mathrm{m}), 3.41-3.46(2 \mathrm{H}, \mathrm{m}), 3.34(1 \mathrm{H}, \mathrm{ddd}, J=2.1,5.4,9.8 \mathrm{~Hz})$, $3.27(1 \mathrm{H}, \mathrm{dd}, J=9.5,9.5 \mathrm{~Hz}), 3.11-3.20(3 \mathrm{H}, \mathrm{m}), 2.92(1 \mathrm{H}, \mathrm{dd}, J=4.9,11.4 \mathrm{~Hz}), 2.48-2.66$ $(2 \mathrm{H}, \mathrm{m}), 2.20(1 \mathrm{H}, \mathrm{dd}, J=11.0,11.2 \mathrm{~Hz}), 2.15(1 \mathrm{H}, \mathrm{dd}, J=2.3,9.7 \mathrm{~Hz}), 1.16-1.48(14 \mathrm{H}$, m) ppm; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): 98.7,81.2,80.7,78.4,77.9,77.0,76.1,73.0,71.7,67.8$, $63.3,60.5,58.1,54.9,32.0,31.3,31.3,31.2,29.5,27.9,25.5 \mathrm{ppm} ;[\alpha]_{\mathrm{D}}{ }^{27}+27.0^{\circ}(c=2.00$, MeOH); HR-FAB-MS (positive): $[\mathrm{M}+\mathrm{H}]+$ Found $m / z 468.2818, \mathrm{C}_{21} \mathrm{H}_{42} \mathrm{NO}_{10^{+}}$requires m / z 468.2809

4-O-โ12-[(2R,3R, 4R,5S)-3,4,5-trihydroxy-2-hydroxymethylpiperidinoldodecyl]-Dglucopyranose (8c)

Crystal, Yield 50\%; β anomer (major), ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): 4.51(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz})$, 3.49-3.79 ($6 \mathrm{H}, \mathrm{m}$), $3.41-3.48(2 \mathrm{H}, \mathrm{m}), 3.34(1 \mathrm{H}, \mathrm{m}), 3.31(1 \mathrm{H}, \mathrm{dd}, J=9.4,9.4 \mathrm{~Hz}), 3.12^{-}$ $3.16(3 \mathrm{H}, \mathrm{m}), 2.90(1 \mathrm{H}, \mathrm{dd}, J=4.3,11.0 \mathrm{~Hz}), 2.52-2.67(2 \mathrm{H}, \mathrm{m}), 2.19(1 \mathrm{H}, \mathrm{dd}, J=11.0$, $11.0 \mathrm{~Hz}), 2.11(1 \mathrm{H}, \mathrm{bd}, J=2.3,9.8 \mathrm{~Hz}), 1.15-1.50(20 \mathrm{H}, \mathrm{m}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}$,
$\left.\mathrm{D}_{2} \mathrm{O}\right): 98.7,81.3,80.8,78.7,78.1,77.2,76.1,72.8,71.7,67.9,63.5,60.3,58.6,55.1,32.6$, $32.3,32.2,32.2,32.2,32.1,32.0,29.5,28.5,25.8 \mathrm{ppm} ;[\alpha]_{\mathrm{D}} 27+24.6^{\circ}(c=1.00, \mathrm{MeOH}) ; \mathrm{HR}-$ FAB-MS (positive): $[\mathrm{M}+\mathrm{H}]+$ Found $m / z 510.3271, \mathrm{C}_{24} \mathrm{H}_{48} \mathrm{NO}_{10^{+}}$requires $m / z 510.3278$.

4.2.7. General procedure for the synthesis of 10

Compound 9 (1 eq.) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{Ph}_{3} \mathrm{P}$ (4.5 eq.), CBr_{4} (4.5 eq.) was added. After stirring for 4 hours, TMU (6.8 eq.), bromoalkyl alcohol (3 eq.) and TEAB (1.2 eq.) was added and further stirred for 12 hours. The reaction mixture was diluted with CHCl_{3}, washed with sat. NaHCO_{3} aq. and brine. The organic layer was dried over sodium sulfate, evaporated and purified by silica-gel column chromatography to give 10 .

2,3,4,6-tetra-O-benzyl-1-O-(6-bromohexyl)- $\alpha-D$-glucopyranose (10a)

Oil, Yield quant.; ${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}, r.t.): 7.36-7.24 (18H, m), 7.16-7.12 (2H, m), $4.99(1 \mathrm{H}, \mathrm{d}, J=10.8 \mathrm{~Hz}), 4.83(1 \mathrm{H}, \mathrm{d}, J=10.6 \mathrm{~Hz}), 4.82(1 \mathrm{H}, \mathrm{d}, J=10.8 \mathrm{~Hz}), 4.77(1 \mathrm{H}, \mathrm{d}$, $J=12.1 \mathrm{~Hz}), 4.75(1 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}), 4.64(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}), 4.59(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz})$, $4.470(1 \mathrm{H}, \mathrm{d}, J=10.6 \mathrm{~Hz}), 4.468(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}), 3.98(1 \mathrm{H}, \mathrm{dd}, J=9.0,9.6 \mathrm{~Hz}), 3.77$ ($1 \mathrm{H}, \mathrm{ddd}, J=1.9,3.6,10.0 \mathrm{~Hz}$), $3.71(1 \mathrm{H}, \mathrm{dd}, J=3.6,10.6 \mathrm{~Hz}), 3.65-3.60(3 \mathrm{H}, \mathrm{m}), 3.56$ ($1 \mathrm{H}, \mathrm{dd}, J=3.6,9.6 \mathrm{~Hz}), 3.41(1 \mathrm{H}, \mathrm{dt}, J=9.5,6.5 \mathrm{~Hz}), 3.36(2 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}), 1.83(2 \mathrm{H}$, $\mathrm{tt}, J=6.9,7.3 \mathrm{~Hz}), 1.68-1.58(2 \mathrm{H}, \mathrm{m}), 1.44(2 \mathrm{H}, \mathrm{tt}, J=7.3,7.3 \mathrm{~Hz}), 1.38(2 \mathrm{H}, \mathrm{tt}, J=7.2$, 7.3 Hz) ppm; ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}, r.t.): $138.9,138.3,138.2,137.9,128.33,128.29$
(3C), 127.9, 127.86, 127.82, 127.80, 127.74, 127.60, 127.59, 127.45, 96.9, 82.0, 80.1, 77.7, $75.6,75.0,73.4,73.1,70.1,68.5,67.9,33.7,32.6,29.1,27.9,25.3 \mathrm{ppm} ;[\alpha]_{\mathrm{D}}{ }^{27}+39.0^{\circ}(c=$ 1.00, CHCl_{3}); HR-FD-MS (positive): fragment ion $[\mathrm{M}-\mathrm{H}]+$ Found m / z 701.2499, $\mathrm{C}_{40} \mathrm{H}_{46} \mathrm{BrO}_{6}{ }^{+}$requires $m / z 701.2478$.

2,3,4,6-tetra-O-benzyl-1-O-(9-bromononyl)- α-D-glucopyranose (10b)

Oil, Yield quant.; ${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}, r.t.): 7.36-7.24 (18H, m), 7.14-7.12 (2H, m), $4.99(1 \mathrm{H}, \mathrm{d}, J=10.8 \mathrm{~Hz}), 4.83(1 \mathrm{H}, \mathrm{d}, J=10.6 \mathrm{~Hz}), 4.81(1 \mathrm{H}, \mathrm{d}, J=10.8 \mathrm{~Hz}), 4.77(1 \mathrm{H}, \mathrm{d}$, $J=12.2 \mathrm{~Hz}), 4.76(1 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}), 4.64(1 \mathrm{H}, \mathrm{d}, J=12.2 \mathrm{~Hz}), 4.60(1 \mathrm{H}, \mathrm{d}, J=12.3 \mathrm{~Hz})$, $4.470(1 \mathrm{H}, \mathrm{d}, J=10.6 \mathrm{~Hz}), 4.469(1 \mathrm{H}, \mathrm{d}, J=12.3 \mathrm{~Hz}), 3.99(1 \mathrm{H}, \mathrm{dd}, J=9.3,9.5 \mathrm{~Hz}), 3.78$ $(1 \mathrm{H}, \mathrm{ddd}, J=1.9,3.7,10.0 \mathrm{~Hz}), 3.72(1 \mathrm{H}, \mathrm{dd}, J=3.7,10.5 \mathrm{~Hz}), 3.65-3.60(3 \mathrm{H}, \mathrm{m}), 3.56$ ($1 \mathrm{H}, \mathrm{dd}, J=3.6,9.5 \mathrm{~Hz}), 3.41(1 \mathrm{H}, \mathrm{dt}, J=9.8,6.6 \mathrm{~Hz}), 3.37(2 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}), 1.83(2 \mathrm{H}$, $\mathrm{tt}, J=6.9,7.4 \mathrm{~Hz}), 1.65-1.59(2 \mathrm{H}, \mathrm{m}), 1.43-1.27(10 \mathrm{H}, \mathrm{m}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.): $138.9,138.3,138.2,137.9,128.32,128.29$ (2C), $128.27,127.92,127.87,127.83$, $127.80,127.72,127.60,127.58,127.45,96.8,82.1,80.1,77.7,75.6,75.0,73.4,73.0,70.1$, $68.5,68.1,33.9,32.7,29.32,29.26,29.23,28.6,28.1,26.1 \mathrm{ppm} ;[\alpha]_{\mathrm{D}^{27}}+36.1^{\circ}(c=1.00$, CHCl_{3}); $\mathrm{HR}-\mathrm{FD}-\mathrm{MS}$ (positive): fragment ion $[\mathrm{M}-\mathrm{H}]+$ Found $m / z 743.2980, \mathrm{C}_{43} \mathrm{H}_{52} \mathrm{BrO}_{6}{ }^{+}$ requires $m / z 743.2947$.

2,3,4,6-tetra-O-benzyl-1-O-(12-bromododecyl)- α-D-glucopyranose (10c)

Oil, Yield 94\%; ${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}, r.t.): 7.36-7.23 ($18 \mathrm{H}, \mathrm{m}$), 7.17-7.12 (2H, m), $4.99(1 \mathrm{H}, \mathrm{d}, J=10.6 \mathrm{~Hz}), 4.83(1 \mathrm{H}, \mathrm{d}, J=10.7 \mathrm{~Hz}), 4.81(1 \mathrm{H}, \mathrm{d}, J=10.6 \mathrm{~Hz}), 4.77(1 \mathrm{H}, \mathrm{d}$, $J=12.0 \mathrm{~Hz}), 4.76(1 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}), 4.64(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}), 4.60(1 \mathrm{H}, \mathrm{d}, J=12.2 \mathrm{~Hz})$, $4.47(1 \mathrm{H}, \mathrm{d}, J=10.7 \mathrm{~Hz}), 4.46(1 \mathrm{H}, \mathrm{d}, J=12.2 \mathrm{~Hz}), 3.99(1 \mathrm{H}, \mathrm{dd}, J=9.3,9.6 \mathrm{~Hz}), 3.78$ $(1 \mathrm{H}, \mathrm{ddd}, J=2.1,3.6,10.0 \mathrm{~Hz}), 3.72(1 \mathrm{H}, \mathrm{dd}, J=3.6,10.6 \mathrm{~Hz}), 3.65-3.60(3 \mathrm{H}, \mathrm{m}), 3.56$ $(1 \mathrm{H}, \mathrm{dd}, J=3.6,9.6 \mathrm{~Hz}), 3.42(1 \mathrm{H}, \mathrm{dt}, J=9.7,6.6 \mathrm{~Hz}), 3.37(2 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}), 1.82(2 \mathrm{H}$, $\mathrm{tt}, J=6.9,7.2 \mathrm{~Hz}), 1.65-1.59(2 \mathrm{H}, \mathrm{m}), 1.43-1.24(16 \mathrm{H}, \mathrm{m}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.): $138.9,138.3,138.2,137.9,128.28,128.25$ (2C), $128.24,127.9,127.81$ (2C), 127.77, $127.68,127.56,127.54,127.41,96.8,82.0,80.1,77.7,75.6,75.0,73.4,73.0,70.0,68.5$, $68.1,33.9,32.7,29.5,29.44,29.43,29.33,29.32(2 \mathrm{C}), 28.7,28.1,26.1 \mathrm{ppm} ;[\alpha]_{\mathrm{D}} 27+28.1^{\circ}$ ($c=1.00, \mathrm{CHCl}_{3}$); HR-FD-MS (positive): fragment ion $[\mathrm{M}-\mathrm{H}]+$ Found $m / z 785.3448$, $\mathrm{C}_{46} \mathrm{H}_{58} \mathrm{BrO}_{6}{ }^{+}$requires $m / z 785.3417$.
4.2.8. General procedure for the synthesis of 12

Compound 10 (1.2 eq.) and 11 (1 eq.) was dissolved in dry DMF. The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and NaH (1.5 eq.) was added and stirred under nitrogen atmosphere. After 15 hours, water was added and the solution was extracted by EtOAc. Organic layer was washed with brine, dried over sodium sulfate and evaporated. The residue was purified by PTLC to give 12.
> (2R,3R,4R,5S)-4,5-dibenzyloxy-1-benzyloxycarbonyl-2-benzyloxymethyl-3-[6-(2,3, 4,6-tetra-O-benzyl- α-D-glucopyranosyloxy)hexyloxy] piperidine (12a)

Oil, Yield 61%; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.): 7.35-7.23 (38H, m), 7.14-7.12 ($2 \mathrm{H}, \mathrm{m}$), $5.12(1 \mathrm{H}, \mathrm{d}, J=12.4 \mathrm{~Hz}), 5.09(1 \mathrm{H}, \mathrm{d}, J=12.4 \mathrm{~Hz}), 4.98(1 \mathrm{H}, \mathrm{d}, J=10.9 \mathrm{~Hz}), 4.83(1 \mathrm{H}, \mathrm{d}$, $J=10.4 \mathrm{~Hz}), 4.81(1 \mathrm{H}, \mathrm{d}, J=10.9 \mathrm{~Hz}), 4.76(1 \mathrm{H}, \mathrm{d}, J=12.3 \mathrm{~Hz}), 4.75(1 \mathrm{H}, \mathrm{d}, J=3.7 \mathrm{~Hz})$, $4.67(1 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz}), 4.65(1 \mathrm{H}, \mathrm{d}, J=11.9 \mathrm{~Hz}), 4.64(1 \mathrm{H}, \mathrm{d}, J=12.3 \mathrm{~Hz}), 4.63(1 \mathrm{H}, \mathrm{d}$, $J=11.5 \mathrm{~Hz}), 4.59(1 \mathrm{H}, \mathrm{d}, J=12.2 \mathrm{~Hz}), 4.51(1 \mathrm{H}, \mathrm{d}, J=11.9 \mathrm{~Hz}), 4.47(1 \mathrm{H}, \mathrm{d}, J=10.8 \mathrm{~Hz})$, $4.45(1 \mathrm{H}, \mathrm{d}, J=12.2 \mathrm{~Hz}), 4.44(1 \mathrm{H}, \mathrm{d}, J=11.9 \mathrm{~Hz}), 4.42(1 \mathrm{H}, \mathrm{d}, J=11.9 \mathrm{~Hz}), 4.10-4.05$ $(2 \mathrm{H}, \mathrm{m}), 3.98(1 \mathrm{H}, \mathrm{dd}, J=9.0,9.6 \mathrm{~Hz}), 3.78-3.58(11 \mathrm{H}, \mathrm{m}), 3.55(1 \mathrm{H}, \mathrm{dd}, J=3.7,9.6 \mathrm{~Hz})$, $3.42-3.37(2 \mathrm{H}, \mathrm{m}), 3.34(1 \mathrm{H}, \mathrm{dd}, J=3.0,14.2 \mathrm{~Hz}), 1.58(2 \mathrm{H}, \mathrm{tt}, J=7.0,7.0 \mathrm{~Hz}), 1.49(2 \mathrm{H}$, $\mathrm{tt}, J=6.5,6.5 \mathrm{~Hz}$), 1.34-1.23 (4H, m) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.): 155.7, 138.9, $138.32,138.30,138.25,138.1,137.9,136.6,128.37,128.36,128.34,128.28,127.93,127.90$, $127.85,127.82,127.79,127.74,127.70,127.64,127.59,127.56,127.50,127.46,96.8,82.2$, 82.1, 80.1, 78.6, 77.7, 75.6, 75.04, 75.01, 73.4, 73.0 (2C), 72.9, 71.6, 70.6, 70.1, 68.5 (2C), 68.1, $67.1,56.0,41.5,30.0,29.3,26.02,25.95 \mathrm{ppm} ;[\alpha]^{27}+25.7^{\circ}\left(c=0.60, \mathrm{CHCl}_{3}\right) ; \mathrm{HR}-$ FD-MS (positive): fragment ion [M-H]+ Found m / z 1188.5818, $\mathrm{C}_{75} \mathrm{H}_{82} \mathrm{NO}_{12}{ }^{+}$requires m / z 1188.5837
(2R,3R, 4R,5S)-4,5-dibenzyloxy-1-benzyloxycarbonyl-2-benzyloxymethyl-3-[9-(2, 3, 4,6-
tetra-O-benzyl- α-D-glucopyranosyloxy)nonyloxy] piperidine (12b)

Oil, Yield $34 \% ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.): 7.36-7.22 ($38 \mathrm{H}, \mathrm{m}$), 7.17-7.11 ($2 \mathrm{H}, \mathrm{m}$), 5.12 ($1 \mathrm{H}, \mathrm{d}, J=12.4 \mathrm{~Hz}$), $5.08(1 \mathrm{H}, \mathrm{d}, J=12.4 \mathrm{~Hz}$), $4.99(1 \mathrm{H}, \mathrm{d}, J=10.9 \mathrm{~Hz}), 4.83(1 \mathrm{H}, \mathrm{d}$, $J=10.9 \mathrm{~Hz}), 4.81(1 \mathrm{H}, \mathrm{d}, J=10.9 \mathrm{~Hz}), 4.77(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}), 4.76(1 \mathrm{H}, \mathrm{d}, J=3.5$ $\mathrm{Hz}), 4.68(1 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz}), 4.66(1 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz}), 4.64(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}), 4.63$ $(1 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz}), 4.60(1 \mathrm{H}, \mathrm{d}, J=12.2 \mathrm{~Hz}), 4.51 \quad(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}), 4.47(1 \mathrm{H}, \mathrm{d}, J$ $=10.9 \mathrm{~Hz}), 4.46(1 \mathrm{H}, \mathrm{d}, J=12.2 \mathrm{~Hz}), 4.44(1 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz}), 4.43(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz})$, 4.10-4.05 (2H, m), $3.99(1 \mathrm{H}, \mathrm{dd}, J=9.2,9.4 \mathrm{~Hz}), 3.80-3.59(11 \mathrm{H}, \mathrm{m}), 3.56(1 \mathrm{H}, \mathrm{dd}, J=3.5$, $9.4 \mathrm{~Hz}), 3.45-3.39(2 \mathrm{H}, \mathrm{m}), 3.34(1 \mathrm{H}, \mathrm{dd}, J=2.4,14.6 \mathrm{~Hz}), 1.61(2 \mathrm{H}, \mathrm{tt}, J=7.2,7.2 \mathrm{~Hz})$, $1.51-1.47(2 \mathrm{H}, \mathrm{m}), 1.34-1.20(10 \mathrm{H}, \mathrm{m}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.): 155.7, 138.9 , 138.31, 138.30, 138.2, 138.1, 137.9, 136.6, 128.34, 128.32, 128.28, 128.25, 127.9, 127.84, $127.80,127.76,127.72,127.69,127.58,127.53,127.48,127.46,96.8,82.3,82.1,80.1,78.6$, $77.8,75.6,75.0,73.4,73.0,72.9,71.7,70.6,70.0,68.5,68.2,67.1,56.0,41.5,30.0,29.48$, 29.45, 29.40, 29.38, 26.12, 26.06 ppm ; $[\alpha]_{D^{27}}+23.6^{\circ}\left(c=0.52\right.$, CHCl $\left._{3}\right)$; HR-FD-MS (positive): fragment ion $[\mathrm{M}-\mathrm{H}]^{+}$Found m / z 1230.6293, $\mathrm{C}_{78} \mathrm{H}_{88} \mathrm{NO}_{12}{ }^{+}$requires m / z 1230.6307
(2R,3R,4R,5S)-4,5-dibenzyloxy-1-benzyloxycarbonyl-2-benzyloxymethyl-3-[12-(2,3,4,6-tetra-O-benzyl- α-D-glucopyranosyloxy)dodecyloxy] piperidine (12c)

Oil, Yield $31 \% ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.): 7.36-7.24 (38H, m), 7.14-7.12 (2H, m), $5.12(1 \mathrm{H}, \mathrm{d}, J=12.4 \mathrm{~Hz}), 5.09(1 \mathrm{H}, \mathrm{d}, J=12.4 \mathrm{~Hz}), 4.99(1 \mathrm{H}, \mathrm{d}, J=10.9 \mathrm{~Hz}), 4.83(1 \mathrm{H}, \mathrm{d}$, $J=10.8 \mathrm{~Hz}), 4.81(1 \mathrm{H}, \mathrm{d}, J=10.9 \mathrm{~Hz}), 4.77(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}), 4.76(1 \mathrm{H}, \mathrm{d}, J=3.5 \mathrm{~Hz})$, $4.68(1 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz}), 4.65(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}), 4.64(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}), 4.63(1 \mathrm{H}, \mathrm{d}$, $J=11.5 \mathrm{~Hz}), 4.60(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}), 4.51(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}), 4.47(1 \mathrm{H}, \mathrm{d}, J=10.8 \mathrm{~Hz})$, $4.46(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}), 4.44(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}), 4.43(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}), 4.10-4.05$ $(2 \mathrm{H}, \mathrm{m}), 3.99(1 \mathrm{H}, \mathrm{dd}, J=9.3,9.6 \mathrm{~Hz}), 3.80-3.59(11 \mathrm{H}, \mathrm{m}), 3.55(1 \mathrm{H}, \mathrm{dd}, J=3.5,9.6 \mathrm{~Hz})$, $3.44-3.39(2 \mathrm{H}, \mathrm{m}), 3.34(1 \mathrm{H}, \mathrm{dd}, J=3.5,14.2 \mathrm{~Hz}), 1.62(2 \mathrm{H}, \mathrm{tt}, J=7.2,7.2 \mathrm{~Hz}), 1.51-1.46$ (2H, m), 1.37-1.20 (16H, m) ppm; ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}, r.t.): 155.7, 138.9, 138.34, $138.32,138.26,138.1,137.9,136.6,128.36,128.33,128.29,128.27,127.9,127.846,127.81$, $127.77,127.72,127.71,127.61,127.58,127.54,127.49,127.47,96.8,82.3,82.1,80.1,78.6$, $77.8,75.6,75.0,73.4,73.0,72.9,71.7,70.6,70.1,68.5,68.2,67.1,56.0,41.5,30.0,29.6$, $29.58,29.56,29.49,29.44,29.38,26.14,26.08 \mathrm{ppm} ;[\alpha]_{\mathrm{D}^{27}}+23.4^{\circ}\left(c=0.48, \mathrm{CHCl}_{3}\right) ; \mathrm{HR}^{-}$ FD-MS (positive): fragment ion $[\mathrm{M}-\mathrm{H}]+$ Found $m / z 1272.6795, \mathrm{C}_{81} \mathrm{H}_{94} \mathrm{NO}_{12^{+}}$requires m / z 1272.6776

4.2.9. General procedure for the synthesis of 13

Compound 12 was dissolved in $\mathrm{EtOH} / \mathrm{THF}(2 / 1)$ and acidified by 1 M HCl aq. to pH 2 . To this solution $\mathrm{Pd}(\mathrm{OH})_{2}$ was added and stirred under hydrogen atmosphere. After 15 hours,
the reaction mixture was passed through celite pad, evaporated and purified by LiCholut RP-18 (Merck Co.) to give 13.
(2R,3R,4R,5S)-4,5-dihydroxy-2-hydroxymethyl-3-[6-($\alpha-D$ -
glucopyranosyloxy)hexyloxylpiperidine hydrochloride (13a)

Crystal, Yield $89 \% ;{ }^{1} \mathrm{H}$ NMR (500 MHz , CD_{3} OD, r.t.): 4.76 ($1 \mathrm{H}, \mathrm{d}, ~ J=3.6 \mathrm{~Hz}$), $3.95-3.90$
$(1 \mathrm{H}, \mathrm{m}), 3.88(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=11.4 \mathrm{~Hz}), 3.83(1 \mathrm{H}, \mathrm{dd}, J=3.7,11.4 \mathrm{~Hz}), 3.79(1 \mathrm{H}, \mathrm{dd}, J=2.0$,
11.8 Hz), 3.75-3.70 ($1 \mathrm{H}, \mathrm{m}$), 3.69-3.59 ($4 \mathrm{H}, \mathrm{m}$), $3.55(1 \mathrm{H}, \mathrm{ddd}, J=2.0,5.5,9.5 \mathrm{~Hz}$), 3.48-
3.42 ($2 \mathrm{H}, \mathrm{m}$), 3.38 ($1 \mathrm{H}, \mathrm{dd}, J=3.6,9.5 \mathrm{~Hz}$), 3.35 ($1 \mathrm{H}, \mathrm{dd}, ~ J=9.2,9.2 \mathrm{~Hz}$), $3.35-3.29$ (1 H , m), $3.28(1 \mathrm{H}, \mathrm{dd}, J=9.5,9.5 \mathrm{~Hz}$), $3.13-3.08(1 \mathrm{H}, \mathrm{m}), 2.86(1 \mathrm{H}, \mathrm{dd}, J=11.7,11.7 \mathrm{~Hz}), 1.68-$
$1.56(4 \mathrm{H}, \mathrm{m}), 1.46-1.36(4 \mathrm{H}, \mathrm{m}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, r.t.): 100.1, $81.4,80.8$,
75.1, 73.9, 73.7, 73.6, 73.1, 71.9, 69.0, 62.75, 62.67, 62.4, 51.0, 31.3, 30.6, 27.2, 27.0 ppm ;
$[\alpha]^{26}+59.6^{\circ}(c=0.49, \mathrm{MeOH})$; HR-FAB-MS (negative): [M-H] Found $m / z 424.2186$, $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{NO}_{10^{-}}$requires $\mathrm{m} / \mathrm{z} 424.2183$.
(2R,3R,4R,5S)-4,5-dihydroxy-2-hydroxymethyl-3-99-(α-D-
glucopyranosyloxy)nonyloxy]piperidine hydrochloride (13b)

Crystal, Yield 77%; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, r.t.): 4.76 ($1 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}$), 3.92 (1 H , $\mathrm{dt}, J=8.9,6.7 \mathrm{~Hz}), 3.86(1 \mathrm{H}, \mathrm{dd}, J=3.1,11.7 \mathrm{~Hz}), 3.82(1 \mathrm{H}, \mathrm{dd}, J=4.7,11.7 \mathrm{~Hz}), 3.78$ ($1 \mathrm{H}, \mathrm{dd}, J=2.4,11.9 \mathrm{~Hz}$), $3.72(1 \mathrm{H}, \mathrm{dt}, J=9.6,6.8 \mathrm{~Hz}$), $3.69-3.64(2 \mathrm{H}, \mathrm{m}), 3.63(1 \mathrm{H}, \mathrm{dd}$,
$J=9.1,9.6 \mathrm{~Hz}), 3.60(1 \mathrm{H}, \mathrm{dt}, J=8.9,6.7 \mathrm{~Hz}), 3.56(1 \mathrm{H}, \mathrm{ddd}, J=2.4,5.5,9.9 \mathrm{~Hz}), 3.46$ $(1 \mathrm{H}, \mathrm{dd}, J=9.0,9.0 \mathrm{~Hz}), 3.43(1 \mathrm{H}, \mathrm{dt}, J=9.6,6.5 \mathrm{~Hz}), 3.38(1 \mathrm{H}, \mathrm{dd}, J=3.6,9.6 \mathrm{~Hz}), 3.34$ $(1 \mathrm{H}, \mathrm{dd}, J=9.0,10.2 \mathrm{~Hz}), 3.31(1 \mathrm{H}, \mathrm{dt}, J=4.8,11.9 \mathrm{~Hz}), 3.28(1 \mathrm{H}, \mathrm{dd}, J=9.1,9.9 \mathrm{~Hz})$, $3.09(1 \mathrm{H}, \mathrm{ddd}, J=3.1,4.7,10.2 \mathrm{~Hz}), 2.84(1 \mathrm{H}, \mathrm{dd}, J=11.9,11.9 \mathrm{~Hz}), 1.68-1.54(4 \mathrm{H}, \mathrm{m})$, 1.42-1.30 (10H, m) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, r.t.): 100.1, 78.4, 77.3, 75.1, 74.5, $73.62,73.57,71.8,69.1,68.8,62.7,61.1,58.7,47.4,31.2,30.6,30.5,27.3,27.1 \mathrm{ppm} ;[\alpha]_{\mathrm{D}} 26$ $+61.4^{\circ}(c=0.33, \mathrm{MeOH}) ;$ HR-FAB-MS (negative): [M-H] Found m/z 466.2641, $\mathrm{C}_{21} \mathrm{H}_{40} \mathrm{NO}_{10}{ }^{\circ}$ requires $m / z 466.2652$. (2R,3R,4R,5S)-4,5-dihydroxy-2-hydroxymethyl-3- $12-\left(\alpha-D^{-}\right.$ glucopyranosyloxy)dodecyloxy]piperidine hydrochloride (13c) Crystal, Yield 78\%; ¹H NMR (500 MHz, $\mathrm{CD}_{3} \mathrm{OD}$, r.t.): 4.76 ($1 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}$), $3.92(1 \mathrm{H}$, $\mathrm{dt}, J=9.0,6.4 \mathrm{~Hz}), 3.86(1 \mathrm{H}, \mathrm{dd}, J=2.4,12.0 \mathrm{~Hz}), 3.82(1 \mathrm{H}, \mathrm{dd}, J=4.2,12.0 \mathrm{~Hz}), 3.78$ ($1 \mathrm{H}, \mathrm{dd}, J=2.3,11.8 \mathrm{~Hz}), 3.71(1 \mathrm{H}, \mathrm{dt}, J=9.5,6.9 \mathrm{~Hz}), 3.70-3.64(2 \mathrm{H}, \mathrm{m}), 3.63(1 \mathrm{H}, \mathrm{dd}$, $J=9.6,9.7 \mathrm{~Hz}), 3.62-3.58(1 \mathrm{H}, \mathrm{m}), 3.56(1 \mathrm{H}, \mathrm{ddd}, J=2.4,5.5,9.6 \mathrm{~Hz}), 3.46(1 \mathrm{H}, \mathrm{dd}, J=$ $9.2,9.2 \mathrm{~Hz}), 3.43(1 \mathrm{H}, \mathrm{dt}, J=9.7,6.4 \mathrm{~Hz}), 3.38(1 \mathrm{H}, \mathrm{dd}, J=3.6,9.7 \mathrm{~Hz}), 3.34(1 \mathrm{H}, \mathrm{dd}, J=$ $9.2,10.0 \mathrm{~Hz}), 3.31(1 \mathrm{H}, \mathrm{dt}, J=4.8,11.8 \mathrm{~Hz}), 3.28(1 \mathrm{H}, \mathrm{dd}, J=9.6,9.6 \mathrm{~Hz}), 3.11-3.07(1 \mathrm{H}$, m), $2.84(1 \mathrm{H}, \mathrm{dd}, J=11.8,11.8 \mathrm{~Hz}), 1.66-1.53(4 \mathrm{H}, \mathrm{m}), 1.42-1.26(16 \mathrm{H}, \mathrm{m}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\mathrm{CD}_{3} \mathrm{OD}$, r.t.): 100.1, 78.4, 77.3, 75.1, 74.6, 73.60, 73.57, 71.8, 69.1, 68.8, 62.7,
61.1, 58.7, 47.4, 31.2, 30.7, 30.61, 30.56, 27.3, $27.1 \mathrm{ppm} ;[\alpha]_{\mathrm{D}}{ }^{27}+67.1^{\circ}(c=0.17, \mathrm{MeOH})$; HR-FAB-MS (negative): [M-H] Found m / z 508.3136, $\mathrm{C}_{24} \mathrm{H}_{46} \mathrm{NO}_{10^{\circ}}$ requires $m / z 508.3122$.
4.2.10. Synthesis of 2,3,4,6-tetra-O-benzyl-1-O-(15-hydroxypentadecyl) - $\alpha-D^{-}$ glucopyranose (14)

Compound 9 ($204.9 \mathrm{mg}, 0.379 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ and $\mathrm{Ph}_{3} \mathrm{P}$ (294.9 $\mathrm{mg}, 1.12 \mathrm{mmol}), \mathrm{CBr}_{4}(374.3 \mathrm{mg}, 1.13 \mathrm{mmol})$ was added. After stirring for 4 hours, THF (4 mL) solution of TMU ($272 \mu \mathrm{~L}, 2.27 \mathrm{mmol}$), 15 -hydroxypentadecanol ($180.6 \mathrm{mg}, 0.74$ $\mathrm{mmol})$ and TEAB ($95.7 \mathrm{mg}, 0.455 \mathrm{mmol}$) was added and further stirred for 12 hours. The reaction mixture was diluted with 1 M HCl aq. and extracted by EtOAc. The organic layer was washed with sat. NaHCO_{3} aq. and brine, dried over sodium sulfate, evaporated and purified by silica-gel column chromatography (Hexane/EtOAc $=9 / 1$ to $3 / 1$) to give 14 ($123.6 \mathrm{mg}, 43 \%$) as an oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.): 7.36-7.22 ($18 \mathrm{H}, \mathrm{m}$), 7.15-7.12 ($2 \mathrm{H}, \mathrm{m}$), 4.99 ($1 \mathrm{H}, \mathrm{d}, J=$ $10.8 \mathrm{~Hz}), 4.83(1 \mathrm{H}, \mathrm{d}, J=10.8 \mathrm{~Hz}), 4.81(1 \mathrm{H}, \mathrm{d}, J=10.8 \mathrm{~Hz}), 4.76(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz})$, $4.76(1 \mathrm{H}, \mathrm{d}, J=3.7 \mathrm{~Hz}), 4.64(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}), 4.59(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}), 4.47(1 \mathrm{H}, \mathrm{d}$, $J=10.8 \mathrm{~Hz}), 4.45(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}), 4.00(1 \mathrm{H}, \mathrm{dd}, J=9.2,9.2 \mathrm{~Hz}), 3.79(1 \mathrm{H}, \mathrm{ddd}, J=$ $1.9,3.6,9.9 \mathrm{~Hz}), 3.72(1 \mathrm{H}, \mathrm{dd}, J=3.6,10.7 \mathrm{~Hz}), 3.66-3.60(3 \mathrm{H}, \mathrm{m}), 3.56(1 \mathrm{H}, \mathrm{dd}, J=3.7$, $9.2 \mathrm{~Hz}), 3.55(2 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}), 3.42(1 \mathrm{H}, \mathrm{dt}, J=9.8,6.7 \mathrm{~Hz}), 1.63(2 \mathrm{H}, \mathrm{tt}, J=6.7,7.0$
$\mathrm{Hz}), 1.51(2 \mathrm{H}, \mathrm{tt}, J=6.7,6.7 \mathrm{~Hz}), 1.38-1.24(22 \mathrm{H}, \mathrm{m}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.): $138.8,138.2,138.1,137.8,128.2,128.1,127.8,127.72,127.69,127.6,127.5,127.3$, 96.7, 81.9, 80.0, 77.7, 75.5, 74.9, 73.3, 72.9, 69.9, 68.4, 68.1, 62.6, 32.6, 29.48, 29.45, 29.43, 29.40, 29.27, 29.23, 26.0, $25.9 \mathrm{ppm} ;[\alpha]_{\mathrm{D}}{ }^{27}+31.1^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right) ;$ HR-FD-MS (positive): fragment ion $[\mathrm{M}-\mathrm{H}]+$ Found $m / z 765.4725, \mathrm{C}_{49} \mathrm{H}_{65} \mathrm{O}_{7}{ }^{+}$requires $m / z 765.4730$.
4.2.11. Synthesis of 2,3,4,6-tetra-O-benzyl-1-O-(15-iodopentadecyl)- α-D-glucopyranose (15)

Compound 14 ($123.6 \mathrm{mg}, 0.161 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ and $\mathrm{Ph}_{3} \mathrm{P}$ (52.6 $\mathrm{mg}, 0.201 \mathrm{mmol}$), imidazole ($16.6 \mathrm{mg}, 0.244 \mathrm{mmol}$), N-iodosuccinimide ($60.7 \mathrm{mg}, 0.270$ $\mathrm{mmol})$ was added. After stirring for an hour, the reaction mixture was evaporated and the residue was purified by silica-gel column chromatography (Hexane/EtOAc $=9 / 1$ to $4 / 1)$ to give 15 ($86.2 \mathrm{mg}, 61 \%$) as an oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.): 7.36-7.24 ($18 \mathrm{H}, \mathrm{m}$), 7.16-7.12 ($2 \mathrm{H}, \mathrm{m}$), $4.99(1 \mathrm{H}, \mathrm{d}, J=$ $10.7 \mathrm{~Hz}), 4.83(1 \mathrm{H}, \mathrm{d}, J=10.7 \mathrm{~Hz}), 4.81(1 \mathrm{H}, \mathrm{d}, J=10.7 \mathrm{~Hz}), 4.77(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz})$, $4.76(1 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}), 4.65(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}), 4.60(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}), 4.47(1 \mathrm{H}, \mathrm{d}$, $J=10.7 \mathrm{~Hz}), 4.46(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}), 3.99(1 \mathrm{H}, \mathrm{dd}, J=9.3,9.5 \mathrm{~Hz}), 3.78(1 \mathrm{H}, \mathrm{ddd}, J=$ $2.0,3.6,10.0 \mathrm{~Hz}), 3.72(1 \mathrm{H}, \mathrm{dd}, J=3.6,10.5 \mathrm{~Hz}), 3.65-3.60(3 \mathrm{H}, \mathrm{m}), 3.55(1 \mathrm{H}, \mathrm{dd}, J=3.6$, $9.5 \mathrm{~Hz}), 3.42(1 \mathrm{H}, \mathrm{dt}, J=9.7,6.8 \mathrm{~Hz}), 3.16(2 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}), 1.80(2 \mathrm{H}, \mathrm{tt}, J=7.1,7.1$
$\mathrm{Hz}), 1.62(2 \mathrm{H}, \mathrm{tt}, J=6.8,6.8 \mathrm{~Hz}), 1.39-1.24(22 \mathrm{H}, \mathrm{m}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.): $138.9,138.3,138.2,137.9,128.30,128.26,127.92,127.83,127.78,127.69,127.56$, $127.55,127.42,96.8,82.1,80.1,77.8,75.6,75.0,73.4,73.0,70.0,68.5,68.2,33.5,30.4$, $29.58,29.56,29.54,29.49,29.47,29.37,29.34,28.5,26.1,7.2 \mathrm{ppm} ;[\alpha]_{D^{27}}+25.3^{\circ}(c=1.00$, CHCl_{3}); HR-FD-MS (positive): fragment ion [M-H]+ Found m/z 875.3770, $\mathrm{C}_{49} \mathrm{H}_{64} \mathrm{IO}_{6}{ }^{+}$ requires $m / Z 875.3748$.
4.2.12. Synthesis of (2R,3R,4R,5S)-4,5-dibenzyloxy-1-benzyloxycarbonyl-2-benzyloxymethyl-3-[15-(2,3,4,6-tetra-O-benzyl- α-D-glucopyranosyloxy)pentadecyloxy] piperidine (16)

Compound 15 ($441.8 \mathrm{mg}, 0.503 \mathrm{mmol}$) and $11(224.1 \mathrm{mg}, 0.395 \mathrm{mmol})$ was dissolved in dry THF. The solution was cooled to $0^{\circ} \mathrm{C}$ and $\mathrm{NaH}(21.4 \mathrm{mg}, 0.892 \mathrm{mmol})$ was added and stirred under argon atmosphere. After 17 hours, water was added and the solution was extracted by EtOAc. Organic layer was washed with brine, dried over sodium sulfate and evaporated. The residue was purified by silica-gel column chromatography $($ Hexane $/ \mathrm{EtOAc}=4 / 1)$ to give $16(62.8 \mathrm{mg}, 12 \%)$ as an oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.) : 7.36-7.24 (38H, m), 7.14-7.12 ($2 \mathrm{H}, \mathrm{m}$), $5.12(1 \mathrm{H}, \mathrm{d}, J=$ $12.4 \mathrm{~Hz}), 5.09(1 \mathrm{H}, \mathrm{d}, J=12.4 \mathrm{~Hz}), 4.99(1 \mathrm{H}, \mathrm{d}, J=10.8 \mathrm{~Hz}), 4.83(1 \mathrm{H}, \mathrm{d}, J=10.7 \mathrm{~Hz})$, $4.81(1 \mathrm{H}, \mathrm{d}, J=10.8 \mathrm{~Hz}), 4.77(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}), 4.76(1 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}), 4.68(1 \mathrm{H}, \mathrm{d}$,
$J=11.6 \mathrm{~Hz}), 4.65(1 \mathrm{H}, \mathrm{d}, J=11.7 \mathrm{~Hz}), 4.64(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}), 4.63(1 \mathrm{H}, \mathrm{d}, J=11.6 \mathrm{~Hz})$, $4.60(1 \mathrm{H}, \mathrm{d}, J=12.2 \mathrm{~Hz}), 4.51(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}), 4.47(1 \mathrm{H}, \mathrm{d}, J=10.7 \mathrm{~Hz}), 4.46(1 \mathrm{H}, \mathrm{d}$, $J=12.2 \mathrm{~Hz}), 4.44(1 \mathrm{H}, \mathrm{d}, J=11.7 \mathrm{~Hz}), 4.43(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}), 4.11-4.05(2 \mathrm{H}, \mathrm{m}), 3.99$ ($1 \mathrm{H}, \mathrm{dd}, J=9.3,9.6 \mathrm{~Hz}$), $3.80-3.59(11 \mathrm{H}, \mathrm{m}), 3.56(1 \mathrm{H}, \mathrm{dd}, J=3.6,9.6 \mathrm{~Hz}), 3.44-3.39(2 \mathrm{H}$, m), $3.34(1 \mathrm{H}, \mathrm{dd}, J=3.2,14.3 \mathrm{~Hz}), 1.66-1.59(2 \mathrm{H}, \mathrm{m}), 1.53-1.46(2 \mathrm{H}, \mathrm{m}), 1.40-1.20(22 \mathrm{H}$, m) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.): $172.4,155.7,138.9,138.31,138.29,138.23$, 138.1, 137.9, 136.6, 128.35, 128.32, 128.29, 128.26, 128.0, 127.85, 127.81, 127.77, 127.73, 127.71, 127.65, 127.6, 127.53, 127.48, 127.46, 96.8, 82.3, 82.1, 80.1, 78.6, 77.7, 75.6, 75.00, 74.97, 73.4, 73.0, 72.9, 71.7, 70.6, 70.0, 68.5, 68.2, 67.1, 56.0, 41.4, 30.0, 29.65, 29.62, 29.58, 29.55, 29.47, 29.41, 29.35, 26.12, $26.06 \mathrm{ppm} ;[\alpha]_{\mathrm{D}} 27+21.3^{\circ}\left(c=0.75, \mathrm{CHCl}_{3}\right) ; \mathrm{HR}^{-}$ FD-MS (positive): fragment ion [M-H]+ Found m / z 1314.7247, $\mathrm{C}_{84} \mathrm{H}_{100} \mathrm{NO}_{12}{ }^{+}$requires m / z 1314.7246
4.2.13. Synthesis of (2R,3R,4R,5S)-4,5-dihydroxy-2-hydroxymethyl-3-[15-($\alpha-D^{-}$ glucopyranosyloxy)pentadecyloxy]piperidine hydrochloride (13d)

Protective groups of 16 ($51.7 \mathrm{mg}, 0.0393 \mathrm{mmol}$) was removed by the method written in §4.2.9 to give 13 d ($19.4 \mathrm{mg}, 74 \%$) as a crystal.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, r.t.): $4.76(1 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}), 3.92(1 \mathrm{H}, \mathrm{dt}, J=8.9,6.6 \mathrm{~Hz})$, $3.85(1 \mathrm{H}, \mathrm{dd}, J=3.1,11.8 \mathrm{~Hz}), 3.81(1 \mathrm{H}, \mathrm{dd}, J=4.6,11.8 \mathrm{~Hz}), 3.78(1 \mathrm{H}, \mathrm{dd}, J=2.1,12.0$
$\mathrm{Hz}), 3.72(1 \mathrm{H}, \mathrm{dt}, J=9.6,7.0 \mathrm{~Hz}), 3.68-3.59(4 \mathrm{H}, \mathrm{m}), 3.56(1 \mathrm{H}, \mathrm{ddd}, J=2.1,5.5,9.6 \mathrm{~Hz})$, $3.45(1 \mathrm{H}, \mathrm{dd}, J=9.0,9.0 \mathrm{~Hz}), 3.45-3.40(1 \mathrm{H}, \mathrm{m}), 3.38(1 \mathrm{H}, \mathrm{dd}, J=3.6,9.6 \mathrm{~Hz}), 3.33(1 \mathrm{H}$, dd, $J=9.0,10.2 \mathrm{~Hz}), 3.33-3.28(1 \mathrm{H}, \mathrm{m}), 3.28(1 \mathrm{H}, \mathrm{dd}, J=9.6,9.6 \mathrm{~Hz}), 3.08(1 \mathrm{H}, \mathrm{ddd}, J=$ $3.1,4.6,10.2 \mathrm{~Hz}), 2.84(1 \mathrm{H}, \mathrm{dd}, J=12.0,12.0 \mathrm{~Hz}), 1.67-1.53(4 \mathrm{H}, \mathrm{m}), 1.42-1.26(22 \mathrm{H}, \mathrm{m})$ ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, r.t.): $100.1,78.4,77.3,75.1,74.6,73.6,73.5,71.8,69.1$, $68.8,62.7,61.0,58.7,47.3,31.2,30.71,30.68,30.61,30.58,27.3,27.1 \mathrm{ppm} ;[\alpha]_{D^{26}}+49.9^{\circ}$ ($c=0.63, \mathrm{MeOH}$); HR-FAB-MS (negative): $[\mathrm{M}-\mathrm{H}]$ Found $m / z 550.3555, \mathrm{C}_{27} \mathrm{H}_{52} \mathrm{NO}_{10}{ }^{-}$ requires $m / z 550.3591$.
4.2.14. General procedure for the synthesis of 18

Compound 17 (1.5 eq.) and 11 (1 eq.) were dissolved in DMF and NaH (4 eq.) was added. The mixture was stirred for 15 hours under argon atmosphere and then sat. $\mathrm{NH}_{4} \mathrm{Cl}$ aq. was added and extracted by EtOAc. Organic layer was washed with brine, dried over sodium sulfate and evaporated. The residue was purified by silica-gel column chromatography to give 18.
(2R,3R,4R,5S)-4,5-dibenzyloxy-1-benzyloxycarbonyl-2-benzyloxymethyl-3-[4-(pmethoxybenzyloxy)butyloxylpiperidine (18e)

Oil, Yield $30 \% ;{ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.): 7.34-7.25 ($22 \mathrm{H}, \mathrm{m}$), 6.86 ($2 \mathrm{H}, \mathrm{d}, J=8.6$ $\mathrm{Hz}), 5.13(1 \mathrm{H}, \mathrm{d}, J=12.4 \mathrm{~Hz}), 5.07(1 \mathrm{H}, \mathrm{d}, J=12.4 \mathrm{~Hz}), 4.66(1 \mathrm{H}, \mathrm{d}, J=11.6 \mathrm{~Hz}), 4.64$
($1 \mathrm{H}, \mathrm{d}, J=11.6 \mathrm{~Hz}$), $4.61(1 \mathrm{H}, \mathrm{d}, J=11.6 \mathrm{~Hz}), 4.50(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}), 4.43(1 \mathrm{H}, \mathrm{d}, J=$ $11.6 \mathrm{~Hz}), 4.41(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}), 4.38(2 \mathrm{H}, \mathrm{s}), 4.10-4.04(2 \mathrm{H}, \mathrm{m}), 3.78(3 \mathrm{H}, \mathrm{s}), 3.76-3.62$ ($6 \mathrm{H}, \mathrm{m}$), $3.46-3.29(4 \mathrm{H}, \mathrm{m}), 1.63-1.54(4 \mathrm{H}, \mathrm{m}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, r.t.): 159.0, 155.7, 138.3, 138.0, 136.6, 130.7, 129.2, 128.4, 128.3, 127.86, 127.82, 127.76, 127.64, 127.60, 127.54, 127.51, 113.7, 82.1, 78.6, 75.0, 73.0, 72.9, 72.5, 71.4, 70.6, 69.8, $68.5,67.2,56.0,55.2,41.4,26.8,26.4 \mathrm{ppm} ;[\alpha]_{\mathrm{D}}{ }^{27}+13.6^{\circ}\left(c=2.00, \mathrm{CHCl}_{3}\right) ;$ HR-FD-MS (positive): [M] ${ }^{+}$Found $m / z 759.3785, \mathrm{C}_{47} \mathrm{H}_{53} \mathrm{NO}_{8}{ }^{+}$requires $m / z 759.3771$.
(2R,3R,4R,5S)-4,5-dibenzyloxy-1-benzyloxycarbonyl-2-benzyloxymethyl-3-[5-(pmethoxybenzyloxy)pentyloxyl piperidine (18f)

Oil, Yield 46%; ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.): 7.33-7.21 ($22 \mathrm{H}, \mathrm{m}$), 6.85 ($2 \mathrm{H}, \mathrm{d}, J=8.6$ $\mathrm{Hz}), 5.13(1 \mathrm{H}, \mathrm{d}, J=12.5 \mathrm{~Hz}), 5.08(1 \mathrm{H}, \mathrm{d}, J=12.5 \mathrm{~Hz}), 4.67(1 \mathrm{H}, \mathrm{d}, J=11.6 \mathrm{~Hz}), 4.64$ ($1 \mathrm{H}, \mathrm{d}, J=11.7 \mathrm{~Hz}$), $4.62(1 \mathrm{H}, \mathrm{d}, J=11.6 \mathrm{~Hz}), 4.50(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}), 4.43(1 \mathrm{H}, \mathrm{d}, J=$ $11.7 \mathrm{~Hz}), 4.42(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}), 4.40(2 \mathrm{H}, \mathrm{s}), 4.12-4.05(2 \mathrm{H}, \mathrm{m}), 3.76(3 \mathrm{H}, \mathrm{s}), 3.76-3.63$ $(6 \mathrm{H}, \mathrm{m}), 3.46-3.29(4 \mathrm{H}, \mathrm{m}), 1.61-1.45(4 \mathrm{H}, \mathrm{m}), 1.38-1.29(2 \mathrm{H}, \mathrm{m}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (67.5 $\mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.): $159.0,155.7,138.24,138.21,138.0,136.6,130.7,129.1,128.3,128.2$, $127.80,127.76,127.69,127.62,127.58,127.53,127.48,127.47,113.7,82.1,78.5,74.9$, $73.0,72.9,72.4,71.5,70.5,69.9,68.5,67.1,55.9,55.2,41.4,29.8,29.5,22.7 \mathrm{ppm} ;[\alpha]_{\mathrm{D}^{27}}$ $+11.9^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right.$); HR-FD-MS (positive): [M] ${ }^{+}$Found $m / z 773.3922, \mathrm{C}_{48} \mathrm{H}_{55} \mathrm{NO}_{8}{ }^{+}$
requires $m / z 773.3928$
4.2.15. General procedure for the synthesis of 19

Compound 18 was dissolved in $10 \% \mathrm{TFA} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and stirred for 2 hours. The reaction mixture was evaporated and the residue was purified by PTLC to give 19.
(2R,3R,4R,5S)-4,5-dibenzyloxy-1-benzyloxycarbonyl-2-benzyloxymethyl-3-(4hydroxybutyloxy)piperidine (19e)

Oil, Yield 66%; ${ }^{1} \mathrm{H}$ NMR (270 MHz, CDCl_{3}, r.t.): $7.34-7.23(20 \mathrm{H}, \mathrm{m}), 5.15(1 \mathrm{H}, \mathrm{d}, ~ J=12.4$ $\mathrm{Hz}), 5.09(1 \mathrm{H}, \mathrm{d}, J=12.4 \mathrm{~Hz}), 4.63(1 \mathrm{H}, \mathrm{d}, J=11.9 \mathrm{~Hz}), 4.64(1 \mathrm{H}, \mathrm{d}, J=11.8 \mathrm{~Hz}), 4.58$ $(1 \mathrm{H}, \mathrm{d}, J=11.9 \mathrm{~Hz}), 4.52(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}), 4.42(1 \mathrm{H}, \mathrm{d}, J=11.8 \mathrm{~Hz}), 4.42(1 \mathrm{H}, \mathrm{d}, J=$ $12.0 \mathrm{~Hz}), 4.24(1 \mathrm{H}, \mathrm{dd}, J=4.7,9.0 \mathrm{~Hz}), 4.14(1 \mathrm{H}, \mathrm{br} \mathrm{d}, ~ J=14.4 \mathrm{~Hz}), 3.74-3.59(6 \mathrm{H}, \mathrm{m})$, $3.55-3.44(3 H, m), 3.28(1 H, d d, J=3.0,14.4 \mathrm{~Hz}), 1.61-1.50(4 \mathrm{H}, \mathrm{m}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $(67.5$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.): $155.8,138.1,138.0,137.9,136.6,128.33,128.28,128.25,128.23,127.80$, $127.78,127.73,127.59,127.52,127.50,80.5,76.95,74.7,72.9,72.7,71.1,70.4,68.1,67.1$, $62.2,55.1,40.4,29.7,26.4 \mathrm{ppm} ;[\alpha]_{\mathrm{D}}{ }^{27}+10.3^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right) ;$ HR-FD-MS (positive): [M]+ Found $m / z 639.3193, \mathrm{C}_{39} \mathrm{H}_{45} \mathrm{NO}_{7}{ }^{+}$requires $m / z 639.3196$.
(2R,3R,4R,5S)-4,5-dibenzyloxy-1-benzyloxycarbonyl-2-benzyloxymethyl-3-(5hydroxypentyloxy)piperidine (19f)

Oil, Yield quant.; ${ }^{1} \mathrm{H}$ NMR (270 $\mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.): $7.40-7.23(20 \mathrm{H}, \mathrm{m}), 5.11(2 \mathrm{H}, \mathrm{s}), 4.66$
$(1 \mathrm{H}, \mathrm{d}, J=11.8 \mathrm{~Hz}), 4.64(1 \mathrm{H}, \mathrm{d}, J=11.8 \mathrm{~Hz}), 4.62(1 \mathrm{H}, \mathrm{d}, J=11.8 \mathrm{~Hz}), 4.52(1 \mathrm{H}, \mathrm{d}, J=$ $12.0 \mathrm{~Hz}), 4.44(1 \mathrm{H}, \mathrm{d}, J=11.8 \mathrm{~Hz}), 4.43(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}), 4.17-4.04(2 \mathrm{H}, \mathrm{m}), 3.76-3.61$ ($6 \mathrm{H}, \mathrm{m}$), 3.55 ($2 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}$), 3.43 ($1 \mathrm{H}, \mathrm{td}, ~ J=6.5,9.0 \mathrm{~Hz}$), 3.33 ($1 \mathrm{H}, \mathrm{dd}, J=2.8,14.5$ $\mathrm{Hz}), 1.62-1.45(4 \mathrm{H}, \mathrm{m}), 1.38-1.25(2 \mathrm{H}, \mathrm{m}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, r.t.): 155.8 , 138.2, 138.0, 136.6, 128.4, 128.3, 127.9, 127.8, 127.7, 127.6, 127.5, 81.6, 78.1, 74.9, 73.0, $72.8,71.3,70.6,68.4,67.2,62.7,55.7,41.2,32.4,29.6,22.3 \mathrm{ppm} ;[\alpha]_{D^{27}}+7.2^{\circ}(c=0.27$, CHCl_{3}); HR-FD-MS (positive): [M]+ Found m / z 653.3339, $\mathrm{C}_{40} \mathrm{H}_{47} \mathrm{NO}_{7^{+}}$requires m / z 653.3353.
4.2.16. General procedure for the synthesis of 20

Compound 9 (1 eq) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{Ph}_{3} \mathrm{P}$ (1.1 eq.), CBr_{4} (1.2 eq) was added. After stirring for 14 hours at r.t., $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of 19 (0.68 eq.), TMU (1.6 eq.) and TEAB (1 eq.) was added and further stirred for 20 hours at $40^{\circ} \mathrm{C}$. The reaction mixture was diluted with water and extracted by CHCl_{3}. The organic layer was dried over sodium sulfate, evaporated and purified by silica-gel column chromatography to give 20.
(2R,3R, 4R,5S)-4,5-dibenzyloxy-1-benzyloxycarbonyl-2-benzyloxymethyl-3-[4-(2,3,4,6-tetra-O-benzyl- α-D-glucopyranosyloxy)butyloxy] piperidine (20e)

Oil, Yield $46 \% ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.): 7.35-7.22 ($38 \mathrm{H}, \mathrm{m}$), 7.14-7.12 ($2 \mathrm{H}, \mathrm{m}$), 5.12 ($1 \mathrm{H}, \mathrm{d}, J=12.5 \mathrm{~Hz}$), 5.08 ($1 \mathrm{H}, \mathrm{d}, ~ J=12.5 \mathrm{~Hz}$), 4.96 ($1 \mathrm{H}, \mathrm{d}, ~ J=10.8 \mathrm{~Hz}$), 4.82 ($1 \mathrm{H}, \mathrm{d}$,
$J=10.8 \mathrm{~Hz}), 4.79(1 \mathrm{H}, \mathrm{d}, J=10.8 \mathrm{~Hz}), 4.74(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}), 4.73(1 \mathrm{H}, \mathrm{d}, J=3.5 \mathrm{~Hz})$, $4.65(1 \mathrm{H}, \mathrm{d}, J=11.6 \mathrm{~Hz}), 4.63(1 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz}), 4.62(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}), 4.61(1 \mathrm{H}, \mathrm{d}$, $J=11.6 \mathrm{~Hz}), 4.59(1 \mathrm{H}, \mathrm{d}, J=12.2 \mathrm{~Hz}), 4.49(1 \mathrm{H}, \mathrm{d}, J=12.4 \mathrm{~Hz}), 4.46(1 \mathrm{H}, \mathrm{d}, J=10.8 \mathrm{~Hz})$, $4.44(1 \mathrm{H}, \mathrm{d}, ~ J=12.2 \mathrm{~Hz}), 4.43(1 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz}), 4.42(1 \mathrm{H}, \mathrm{d}, J=12.4 \mathrm{~Hz}), 4.10-4.05$ $(2 \mathrm{H}, \mathrm{m}), 3.96(1 \mathrm{H}, \mathrm{dd}, J=9.0,9.6 \mathrm{~Hz}), 3.75-3.57(11 \mathrm{H}, \mathrm{m}), 3.54(1 \mathrm{H}, \mathrm{dd}, J=3.5,9.6 \mathrm{~Hz})$, $3.45-3.39(1 \mathrm{H}, \mathrm{m}), 3.37-3.32(1 \mathrm{H}, \mathrm{m}), 3.33(1 \mathrm{H}, \mathrm{dd}, J=3.0,14.4 \mathrm{~Hz}), 1.64-1.52(4 \mathrm{H}, \mathrm{m})$ ppm; ${ }^{13} \mathrm{C}$ NMR (67.5 $\mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.): 155.7, 138.8, 138.27, 138.22, 138.0, 137.9, 136.6, $128.36,128.35,128.30,127.95,127.87,127.85,127.80,127.76,127.73,127.61,127.52$, $127.49,127.47,96.9,82.10,82.06,80.0,78.5,77.6,75.6,75.0,73.4,73.0,72.9,71.3,70.5$, $70.1,68.5,68.4,67.9,67.1,55.9,41.3,26.8,26.2 \mathrm{ppm} ;[\alpha]_{\mathrm{D}}{ }^{27}+16.5^{\circ}\left(c=0.19, \mathrm{CHCl}_{3}\right) ; \mathrm{HR}^{-}$ FD-MS (positive): [M]+ Found $m / z 1161.5569, \mathrm{C}_{73} \mathrm{H}_{79} \mathrm{NO}_{12}{ }^{+}$requires $m / z 1161.5602$. (2R,3R,4R,5S)-4,5-dibenzyloxy-1-benzyloxycarbonyl-2-benzyloxymethyl-3-[5-(2, 3, 4, 6-tetra-O-benzyl- α-D-glucopyranosyloxy)pentyloxy] piperidine (20f)

Oil, Yield $59 \% ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.): 7.36-7.22 ($38 \mathrm{H}, \mathrm{m}$), 7.16-7.11 (2H, m), $5.12(1 \mathrm{H}, \mathrm{d}, J=12.3 \mathrm{~Hz}), 5.08(1 \mathrm{H}, \mathrm{d}, J=12.3 \mathrm{~Hz}), 4.97(1 \mathrm{H}, \mathrm{d}, J=10.9 \mathrm{~Hz}), 4.82(1 \mathrm{H}, \mathrm{d}$, $J=10.8 \mathrm{~Hz}), 4.79(1 \mathrm{H}, \mathrm{d}, J=10.9 \mathrm{~Hz}), 4.76(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}), 4.73(1 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz})$, $4.66(1 \mathrm{H}, \mathrm{d}, J=11.7 \mathrm{~Hz}), 4.64(1 \mathrm{H}, \mathrm{d}, J=11.7 \mathrm{~Hz}), 4.63(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}), 4.62(1 \mathrm{H}, \mathrm{d}$, $J=11.7 \mathrm{~Hz}), 4.59(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}), 4.50(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}), 4.46(1 \mathrm{H}, \mathrm{d}, J=10.8 \mathrm{~Hz})$,
$4.45(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}), 4.44(1 \mathrm{H}, \mathrm{d}, J=11.7 \mathrm{~Hz}), 4.42(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}), 4.10-4.04$ ($2 \mathrm{H}, \mathrm{m}$), $3.97(1 \mathrm{H}, \mathrm{dd}, J=9.3,9.3 \mathrm{~Hz}$), $3.76-3.56(11 \mathrm{H}, \mathrm{m}), 3.54(1 \mathrm{H}, \mathrm{dd}, J=3.6,9.6 \mathrm{~Hz})$, $3.44-3.33(2 \mathrm{H}, \mathrm{m}), 3.33(1 \mathrm{H}, \mathrm{dd}, J=2.7,14.5 \mathrm{~Hz}), 1.62-1.46(4 \mathrm{H}, \mathrm{m}), 1.37-1.24(2 \mathrm{H}, \mathrm{m})$ $\mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.): $155.7,138.9,138.8,138.32,138.29,138.25,138.1$, 137.9, 136.6, 128.4, 128.3, 128.0, 127.93, 127.90, 127.84, 127.76, 127.6, 127.5, 96.9, 82.2, 82.1, 80.0, 78.6, 77.7, 75.7, 75.1, 75.0, 73.5, 73.10, 73.07, 72.96, 71.5, 70.6, 70.1, 68.51, 68.46, 68.1, $67.2,56.0,41.5,29.9,29.3,22.6 \mathrm{ppm} ;[\alpha]_{\mathrm{D}}{ }^{27}+24.6^{\circ}\left(c=0.54, \mathrm{CHCl}_{3}\right) ;$ HR-FDMS (positive): [M]+ Found $m / z 1175.5759, \mathrm{C}_{74} \mathrm{H}_{81} \mathrm{NO}_{12^{+}}$requires $m / z 1175.5759$.

4.2.17. Synthesis of $13 e, f$

Protective groups of 20 was removed by the method written in $\S 4.2 .9$ to give 13 e or 13 f . (2R,3R,4R,5S)-4,5-dihydroxy-2-hydroxymethyl-3-44-(α - D^{-} glucopyranosyloxy)butyloxy]piperidine hydrochloride (13e)

Crystal, Yield 81\%; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, r.t.): 4.77 ($1 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}$), 4.00-3.90 $(1 \mathrm{H}, \mathrm{m}), 3.86(1 \mathrm{H}, \mathrm{br}$ d, $J=11.6 \mathrm{~Hz}), 3.83(1 \mathrm{H}$, br d, $J=11.6 \mathrm{~Hz}), 3.79(1 \mathrm{H}, \mathrm{dd}, J=2.0$, $11.8 \mathrm{~Hz}), 3.78-3.74(1 \mathrm{H}, \mathrm{m}), 3.69-3.63(3 \mathrm{H}, \mathrm{m}), 3.62(1 \mathrm{H}, \mathrm{dd}, J=9.3,9.6 \mathrm{~Hz}), 3.56(1 \mathrm{H}$, ddd, $J=2.0,5.5,9.5 \mathrm{~Hz}), 3.49-3.43(2 \mathrm{H}, \mathrm{m}), 3.38(1 \mathrm{H}, \mathrm{dd}, J=3.6,9.6 \mathrm{~Hz}), 3.37-3.34(1 \mathrm{H}$, m), $3.33-3.28(1 \mathrm{H}, \mathrm{m}), 3.27(1 \mathrm{H}, \mathrm{dd}, J=9.3,9.5 \mathrm{~Hz}), 3.12-3.07(1 \mathrm{H}, \mathrm{m}), 2.84(1 \mathrm{H}, \mathrm{dd}, J=$ $11.8,11.8 \mathrm{~Hz}$), 1.74-1.68 ($4 \mathrm{H}, \mathrm{m}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, r.t.): 100.1, 78.4, 77.2,
$75.1,74.2,73.7,73.5,71.9,68.84,68.78,62.8,61.0,58.7,47.4,28.0,27.2 \mathrm{ppm} ;[\alpha]_{\mathrm{D}}{ }^{26}$ $+59.4^{\circ}(c=0.14, \mathrm{MeOH}) ;$ HR-FAB-MS (positive): $[\mathrm{M}+\mathrm{H}]+$ Found m / z 398.2005, $\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{NO}_{10^{+}}$requires $\mathrm{m} / \mathrm{z} 398.2026$
(2R,3R,4R,5S)-4,5-dihydroxy-2-hydroxymethyl-3-55-(α-Dglucopyranosyloxy)pentyloxy]piperidine hydrochloride (13f)

Crystal, Yield $85 \% ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, r.t.): 4.76 ($1 \mathrm{H}, \mathrm{d}, J=3.8 \mathrm{~Hz}$), $3.94(1 \mathrm{H}$, $\mathrm{td}, J=6.3,9.0 \mathrm{~Hz}), 3.85(1 \mathrm{H}, \mathrm{dd}, J=3.2,11.7 \mathrm{~Hz}), 3.82(1 \mathrm{H}, \mathrm{dd}, J=4.6,11.7 \mathrm{~Hz}), 3.79$ $(1 \mathrm{H}, \mathrm{dd}, J=2.2,11.8 \mathrm{~Hz}), 3.74(1 \mathrm{H}, \mathrm{td}, J=6.6,9.5 \mathrm{~Hz}), 3.68-3.60(4 \mathrm{H}, \mathrm{m}), 3.57(1 \mathrm{H}, \mathrm{ddd}$, $J=2.2,5.7,9.8 \mathrm{~Hz}), 3.46(1 \mathrm{H}, \mathrm{dd}, J=9.0,9.0 \mathrm{~Hz}), 3.45(1 \mathrm{H}, \mathrm{td}, J=6.2,9.5 \mathrm{~Hz}), 3.38(1 \mathrm{H}$, dd, $J=3.8,9.8 \mathrm{~Hz}), 3.28(1 \mathrm{H}, \mathrm{dd}, J=9.0,10.3 \mathrm{~Hz}), 3.32-3.28(1 \mathrm{H}, \mathrm{m}), 3.27(1 \mathrm{H}, \mathrm{dd}, J=$ $8.9,9.8 \mathrm{~Hz}), 3.09(1 \mathrm{H}, \mathrm{ddd}, J=3.2,4.6,10.3 \mathrm{~Hz}), 2.84(1 \mathrm{H}, \mathrm{dd}, J=11.9,11.9 \mathrm{~Hz}), 1.72^{-}$ $1.58(4 \mathrm{H}, \mathrm{m}), 1.57-1.41(2 \mathrm{H}, \mathrm{m}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, r.t.): $100.0,78.4,77.3$, $75.1,74.4,73.7,73.6,71.9,68.89,68.84,62.8,61.0,58.8,47.3,30.9,30.3,23.9 \mathrm{ppm} ;[\alpha]_{D^{26}}$ $+65.4^{\circ}(c=0.25, \mathrm{MeOH}) ;$ HR-FAB-MS (negative): $[\mathrm{M}-\mathrm{H}]$ Found m / z 410.2005, $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{NO}_{10}{ }^{\circ}$ requires $\mathrm{m} / \mathrm{z} 410.2026$.

4.2.18. General procedure for the synthesis of 22a-c

Compound 21 (2 eq.) and 11 (1eq.) was dissolved in THF/DMF (1/1) and TBAI (1 eq.), NaH (4 eq.) was added. After stirring for 12 hours, sat. $\mathrm{NH}_{4} \mathrm{Cl}$ aq. was added and
extracted by EtOAc. The organic layer was washed with brine, dried over sodium sulfate and evaporated. The residue was purified by silica-gel column chromatography to give $22 \mathrm{a}-\mathrm{c}$.
(2R,3R,4R,5S)-4,5-dibenzyloxy-1-benzyloxycarbonyl-2-benzyloxymethyl-3-[6-(tetrahydropyran-2-yloxy)hexyloxy] piperidine (22a)

Oil, Yield 64%; ${ }^{1 H} \mathrm{NMR}\left(270 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right.$, r.t.): 7.35-7.23 ($20 \mathrm{H}, \mathrm{m}$), 5.13 ($1 \mathrm{H}, \mathrm{d}, J=12.5$ $\mathrm{Hz}), 5.08(1 \mathrm{H}, \mathrm{d}, J=12.5 \mathrm{~Hz}), 4.68(1 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz}), 4.64(1 \mathrm{H}, \mathrm{d}, J=11.8 \mathrm{~Hz}), 4.62$ ($1 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz}$), $4.55(1 \mathrm{H}, \mathrm{dd}, J=2.8,4.2 \mathrm{~Hz}), 4.52(1 \mathrm{H}, \mathrm{d}, J=11.9 \mathrm{~Hz}), 4.44(1 \mathrm{H}, \mathrm{d}$, $J=11.8 \mathrm{~Hz}), 4.42(1 \mathrm{H}, \mathrm{d}, J=11.9 \mathrm{~Hz}), 4.12-4.05(2 \mathrm{H}, \mathrm{m}), 3.85(1 \mathrm{H}, \mathrm{ddd}, J=3.9,7.0,11.0$ $\mathrm{Hz}), 3.77-3.61(7 \mathrm{H}, \mathrm{m}), 3.52-3.30(4 \mathrm{H}, \mathrm{m}), 1.87-1.42(10 \mathrm{H}, \mathrm{m}), 1.42-1.21(6 \mathrm{H}, \mathrm{m}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (67.5 MHz, CD ${ }_{3}$ OD, r.t.): $155.6,138.22,138.18,138.0,136.6,128.3,128.2,127.76$, $127.72,127.65,127.54,127.49,127.43,126.50,98.7,82.1,78.5,74.9,73.0,72.9,71.6,70.5$, 68.4, 67.4, 67.1, 62.2, 55.9, 41.4, 30.7, 29.9, 29.6, 26.0, 25.9, 25.4, $19.6 \mathrm{ppm} ;[\alpha]_{\mathrm{D}^{27}}+6.7^{\circ}$ ($c=0.51, \mathrm{CHCl}_{3}$); HR-FD-MS (positive): [M] ${ }^{+}$Found $m / z 751.4073, \mathrm{C}_{4} 6 \mathrm{H}_{57} \mathrm{NO}_{8}{ }^{+}$requires m/z 751.4084 .
(2R,3R,4R,5S)-4,5-dibenzyloxy-1-benzyloxycarbonyl-2-benzyloxymethyl-3-[9-(tetrahydropyran-2-yloxy)nonyloxy] piperidine (22b)

Oil, Yield 29%; ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, r.t.): 7.35-7.23 ($20 \mathrm{H}, \mathrm{m}$), 5.13 ($1 \mathrm{H}, \mathrm{d}, J=12.4$

Hz), $5.08(1 \mathrm{H}, \mathrm{d}, J=12.4 \mathrm{~Hz}), 4.68(1 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz}), 4.64(1 \mathrm{H}, \mathrm{d}, J=11.8 \mathrm{~Hz}), 4.63$ ($1 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz}$), $4.57(1 \mathrm{H}, \mathrm{dd}, J=2.8,4.3 \mathrm{~Hz}), 4.52(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}), 4.44(1 \mathrm{H}, \mathrm{d}$, $J=11.8 \mathrm{~Hz}), 4.43(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}), 4.16-4.04(2 \mathrm{H}, \mathrm{m}), 3.87(1 \mathrm{H}, \mathrm{ddd}, J=3.7,7.0,10.9$ Hz), 3.78-3.61 ($7 \mathrm{H}, \mathrm{m}$), 3.54-3.30 ($4 \mathrm{H}, \mathrm{m}$), 1.88-1.41 ($10 \mathrm{H}, \mathrm{m}$), 1.41-1.20 ($10 \mathrm{H}, \mathrm{m}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($67.5 \mathrm{MHz}, \mathrm{CD}_{3}$ OD, r.t.): 155.7, 138.3, 138.2, 138.0, 136.6, 128.4, 128.3, 127.82, 127.79, 127.7, 127.61, 127.55, 127.50, 127.47, 98.8, 82.3, 78.7, 74.9, 73.02, 72.96, 71.8, $70.6,68.5,67.6,67.1,62.3,56.0,41.5,30.7,30.0,29.7,29.5,29.4,26.2,26.0,25.4,19.6$ $\mathrm{ppm} ;[\alpha]_{\mathrm{D}}{ }^{27}+5.6^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right) ;$ HR-FD-MS (positive): $[\mathrm{M}]+$ Found $m / z 793.4580$, $\mathrm{C}_{49} \mathrm{H}_{63} \mathrm{NO}_{8}{ }^{+}$requires $\mathrm{m} / \mathrm{z} 793.4554$.
(2R,3R,4R,5S)-4,5-dibenzyloxy-1-benzyloxycarbonyl-2-benzyloxymethyl-3-[12-(tetrahydropyran-2-yloxy)dodecyloxy] piperidine (22c)

Oil, Yield 25%; ${ }^{1 H}$ NMR ($270 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, r.t.): 7.35-7.23 (20H, m), 5.13 ($1 \mathrm{H}, \mathrm{d}, J=12.4$ $\mathrm{Hz}), 5.08(1 \mathrm{H}, \mathrm{d}, J=12.4 \mathrm{~Hz}), 4.69(1 \mathrm{H}, \mathrm{d}, J=11.6 \mathrm{~Hz}), 4.64(1 \mathrm{H}, \mathrm{d}, J=11.8 \mathrm{~Hz}), 4.63$ ($1 \mathrm{H}, \mathrm{d}, J=11.6 \mathrm{~Hz}$), $4.57(1 \mathrm{H}, \mathrm{dd}, J=2.8,4.1 \mathrm{~Hz}$), $4.52(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}), 4.44(1 \mathrm{H}, \mathrm{d}$, $J=11.8 \mathrm{~Hz}), 4.43(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}), 4.12-4.03(2 \mathrm{H}, \mathrm{m}), 3.87(1 \mathrm{H}, \mathrm{ddd}, J=3.9,7.0,11.0$ Hz), 3.78-3.60 ($7 \mathrm{H}, \mathrm{m}$), 3.54-3.30 ($4 \mathrm{H}, \mathrm{m}$), 1.88-1.43 ($10 \mathrm{H}, \mathrm{m}$), 1.43-1.18 ($16 \mathrm{H}, \mathrm{m}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($67.5 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, r.t.): 155.7, 138.33, 138.28, 138.1, 136.6, 128.4, 128.3, $127.86,127.83,127.76,127.65,127.58,127.54,127.50,98.8,82.4,78.7,75.0,73.1,73.0$,
$71.8,70.6,68.6,67.7,67.2,62.3,56.1,41.6,30.8,30.1,29.8,29.6,29.5,26.2,26.1,25.5$, $19.7 \mathrm{ppm} ;[\alpha]_{\mathrm{D}} 27+10.2^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right) ;$ HR-FD-MS (positive): $[\mathrm{M}]^{+}$Found $m / z 835.5048$, $\mathrm{C}_{52} \mathrm{H}_{69} \mathrm{NO}_{8}{ }^{+}$requires $\mathrm{m} / z 835.5023$.
4.2.19. Synthesis of (2R,3R,4R,5S)-4,5-dibenzyloxy-1-benzyloxycarbonyl-2-benzyloxymethyl-3-[15-(tetrahydropyran-2-yloxy)pentadecyloxy] piperidine (22d) Compound 21d ($249.3 \mathrm{mg}, 0.569 \mathrm{mmol}$) and $11(136.1 \mathrm{mg}, 0.24 \mathrm{mmol})$ was dissolved in THF/DMF ($3 \mathrm{~mL}, 1 / 1$) and $\mathrm{NaH}(23.2 \mathrm{mg}, 0.967 \mathrm{mmol}$) was added. After stirring for 6 hours, sat. $\mathrm{NH}_{4} \mathrm{Cl}$ aq. was added and extracted by EtOAc. The organic layer was washed with brine, dried over sodium sulfate and evaporated. The residue was purified by silicagel column chromatography (Hexane $/ \mathrm{EtOAc}=4 / 1$) to give $22 \mathrm{~d}(80.9 \mathrm{mg}, 38 \%)$ as an oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(270 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right.$, r.t.) $7.33-7.24(20 \mathrm{H}, \mathrm{m}), 5.13(1 \mathrm{H}, \mathrm{d}, J=12.4 \mathrm{~Hz}), 5.08(1 \mathrm{H}$, $\mathrm{d}, J=12.4 \mathrm{~Hz}), 4.69(1 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz}), 4.64(1 \mathrm{H}, \mathrm{d}, J=11.8 \mathrm{~Hz}), 4.63(1 \mathrm{H}, \mathrm{d}, J=11.5$ $\mathrm{Hz}), 4.57(1 \mathrm{H}, \mathrm{dd}, J=3.0,4.1 \mathrm{~Hz}), 4.52(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}), 4.44(1 \mathrm{H}, \mathrm{d}, J=11.8 \mathrm{~Hz})$, $4.43(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}), 4.13-4.04(2 \mathrm{H}, \mathrm{m}), 3.87(1 \mathrm{H}, \mathrm{ddd}, J=3.8,7.1,11.0 \mathrm{~Hz}), 3.78-$ $3.62(7 \mathrm{H}, \mathrm{m}), 3.53-3.30(4 \mathrm{H}, \mathrm{m}), 1.88-1.43(10 \mathrm{H}, \mathrm{m}), 1.43-1.21(22 \mathrm{H}, \mathrm{m}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (67.5 MHz, $\mathrm{CD}_{3} \mathrm{OD}$, r.t.): $155.7,138.3,138.2,138.0,136.6,128.3,128.2,127.78,127.75$, $127.68,127.58,127.51,127.46,127.44,98.7,82.3,78.6,74.9,73.0,72.9,71.7,70.5,68.5$, $67.6,67.1,62.2,56.0,41.5,30.7,30.0,29.7,29.6,29.5,29.4,26.2,26.0,25.4,19.6 \mathrm{ppm}$;
$[\alpha]_{D}{ }^{27}+7.7^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right) ;$ HR-FD-MS (positive): $[\mathrm{M}]+$ Found m / z 877.5487, $\mathrm{C}_{55} \mathrm{H}_{75} \mathrm{NO}_{8}{ }^{+}$requires m / z 877.5493.
4.2.19. General procedure for the synthesis of 23a-d

Compound 22 (1 eq.) was dissolved in $\mathrm{MeOH} / \mathrm{THF}$ (4/1), PPTS (0.5 eq.) was added and stirred for 15 hours at $50^{\circ} \mathrm{C}$. The reaction mixture was acidified by 1 M HCl aq. to pH 2 , $\mathrm{Pd}(\mathrm{OH})_{2}$ was added and stirred for 20 hours under hydrogen atmosphere. The mixture was passed through celite pad, evaporated and purified by LiChrolut® RP-18 (Merck Co.) to give 23.
(2R,3R,4R,5S)-4,5-dihydroxy-2-hydroxymethyl-3-(6-hydroxyhexyloxy)piperidine

hydrochloride (23a)

Crystal, Yield 85%; ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, r.t.): $3.92(1 \mathrm{H}, \mathrm{td}, J=6.3,9.0 \mathrm{~Hz}$), 3.86 $(1 \mathrm{H}, \mathrm{dd}, J=3.3,11.7 \mathrm{~Hz}), 3.80(1 \mathrm{H}, \mathrm{dd}, J=4.4,11.7 \mathrm{~Hz}), 3.65(1 \mathrm{H}, \mathrm{ddd}, J=5.1,9.0,11.2$ $\mathrm{Hz}), 3.61(1 \mathrm{H}, \mathrm{td}, J=6.9,9.0 \mathrm{~Hz}), 3.54(2 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}), 3.45(1 \mathrm{H}, \mathrm{dd}, J=9.0,9.0 \mathrm{~Hz})$, $3.33(1 \mathrm{H}, \mathrm{dd}, J=9.0,10.0 \mathrm{~Hz}), 3.31(1 \mathrm{H}, \mathrm{dd}, J=5.1,12.4 \mathrm{~Hz}), 3.08(1 \mathrm{H}, \mathrm{ddd}, J=3.3,4.4$, $10.0 \mathrm{~Hz}), 2.84(1 \mathrm{H}, \mathrm{dd}, J=11.2,12.4 \mathrm{~Hz}), 1.65-1.48(4 \mathrm{H}, \mathrm{m}), 1.44-1.34(4 \mathrm{H}, \mathrm{m}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (67.5 MHz, $\mathrm{CD}_{3} \mathrm{OD}$, r.t.): 78.4, 77.3, 74.4, 68.8, 62.9, 61.0, 58.7, 47.4, 33.5, 31.2, 27.0, 26.7 ppm; $[\alpha]_{\mathrm{D}}{ }^{27}+25.3^{\circ}(c=1.20, \mathrm{MeOH}) ;$ HR-FAB-MS (positive): $[\mathrm{M}+\mathrm{H}]^{+}$Found $m / z 264.1829, \mathrm{C}_{12} \mathrm{H}_{26} \mathrm{NO}_{5}^{+}$requires m / z 264.1811.
(2R,3R,4R,5S)-4,5-dihydroxy-2-hydroxymethyl-3-(9-hydroxynonyloxy)piperidine

hydrochloride (23b)

Crystal, Yield 75%; ${ }^{1} \mathrm{H}$ NMR (270 MHz , $\mathrm{CD}_{3} \mathrm{OD}$, r.t.): 3.92 ($1 \mathrm{H}, \mathrm{td}, ~ J=6.3,8.9 \mathrm{~Hz}$), 3.86 ($1 \mathrm{H}, \mathrm{dd}, J=3.3,11.7 \mathrm{~Hz}$), $3.81(1 \mathrm{H}, \mathrm{dd}, J=4.4,11.7 \mathrm{~Hz}$), $3.66(1 \mathrm{H}, \mathrm{ddd}, J=5.1,8.9,11.3$ $\mathrm{Hz}), 3.60(1 \mathrm{H}, \mathrm{td}, J=6.6,9.0 \mathrm{~Hz}), 3.53(2 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}), 3.45(1 \mathrm{H}, \mathrm{dd}, J=8.9,8.9 \mathrm{~Hz})$, 3.33 ($1 \mathrm{H}, \mathrm{dd}, J=8.9,10.0 \mathrm{~Hz}$), $3.30(1 \mathrm{H}, \mathrm{dd}, J=5.1,12.4 \mathrm{~Hz}$), 3.08 ($1 \mathrm{H}, \mathrm{ddd}, J=3.3,4.4$, $10.0 \mathrm{~Hz}), 2.84(1 \mathrm{H}, \mathrm{dd}, J=11.3,12.4 \mathrm{~Hz}), 1.64-1.46(4 \mathrm{H}, \mathrm{m}), 1.42-1.28(10 \mathrm{H}, \mathrm{m}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($67.5 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, r.t.): 78.5, 77.3, 74.6, 68.8, 63.0, 61.0, 58.7, 47.4, 33.6, 31.3, $30.7,30.5,27.2,26.9 \mathrm{ppm} ;[\alpha]_{\mathrm{D}}{ }^{27}+19.7^{\circ}(c=0.60, \mathrm{MeOH}) ;$ HR-FAB-MS (positive): $[\mathrm{M}+\mathrm{H}]^{+}$ Found $m / z 306.2252, \mathrm{C}_{15} \mathrm{H}_{32} \mathrm{NO}_{5}{ }^{+}$requires $m / z 306.2280$.
(2R,3R,4R,5S)-4,5-dihydroxy-2-hydroxymethyl-3-(12-hydroxydodecyloxy)piperidine

hydrochloride (23c)

Crystal, Yield $81 \% ;{ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, r.t.): 3.92 ($1 \mathrm{H}, \mathrm{td}, J=6.5,8.9 \mathrm{~Hz}$), 3.85 (1H, dd, $J=3.3,11.7 \mathrm{~Hz}$), 3.80 ($1 \mathrm{H}, \mathrm{dd}, J=4.3,11.7 \mathrm{~Hz}$), 3.65 ($1 \mathrm{H}, \mathrm{ddd}, J=5.0,8.9,11.3$ $\mathrm{Hz}), 3.60(1 \mathrm{H}, \mathrm{td}, J=6.6,8.9 \mathrm{~Hz}), 3.53(2 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}), 3.45(1 \mathrm{H}, \mathrm{dd}, J=8.9,8.9 \mathrm{~Hz})$, 3.33 ($1 \mathrm{H}, \mathrm{dd}, J=8.9,10.2 \mathrm{~Hz}$), 3.30 ($1 \mathrm{H}, \mathrm{dd}, J=5.0,12.4 \mathrm{~Hz}$), 3.08 ($1 \mathrm{H}, \mathrm{ddd}, J=3.3,4.3$, $10.2 \mathrm{~Hz}), 2.84(1 \mathrm{H}, \mathrm{dd}, J=11.3,12.4 \mathrm{~Hz}), 1.62-1.46(4 \mathrm{H}, \mathrm{m}), 1.42-1.28(16 \mathrm{H}, \mathrm{m}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (67.5 MHz, CD 3 OD, r.t.): 78.5, 77.3, 74.6, 68.8, 63.0, 61.0, 58.7, 47.3, 33.7, 31.3,
30.7, 30.6, 27.2, $26.9 \mathrm{ppm} ;[\alpha]_{\mathrm{D}}{ }^{27}+20.4^{\circ}(c=0.39, \mathrm{MeOH}) ;$ HR-FAB-MS (positive): $[\mathrm{M}+\mathrm{H}]^{+}$ Found m / z 348.2726, $\mathrm{C}_{18} \mathrm{H}_{38} \mathrm{NO}_{5}{ }^{+}$requires $m / z 348.2750$.
(2R,3R,4R,5S)-4,5-dihydroxy-2-hydroxymethyl-3-(15-hydroxypentadecyloxy)piperidine hydrochloride (23d)

Crystal, Yield 48\%; ${ }^{1} \mathrm{H}$ NMR (270 MHz, $\mathrm{CD}_{3} \mathrm{OD}$, r.t.): 3.92 ($1 \mathrm{H}, \mathrm{td}, J=6.4,8.9 \mathrm{~Hz}$), 3.85 $(1 \mathrm{H}, \mathrm{dd}, J=3.3,11.7 \mathrm{~Hz}), 3.80(1 \mathrm{H}, \mathrm{dd}, J=4.2,11.7 \mathrm{~Hz}), 3.63(1 \mathrm{H}, \mathrm{ddd}, J=5.1,8.9,11.3$ $\mathrm{Hz}), 3.59(1 \mathrm{H}, \mathrm{td}, J=6.5,9.0 \mathrm{~Hz}), 3.52(2 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}), 3.44(1 \mathrm{H}, \mathrm{dd}, J=8.9,8.9 \mathrm{~Hz})$, $3.32(1 \mathrm{H}, \mathrm{dd}, J=8.9,10.2 \mathrm{~Hz}), 3.30(1 \mathrm{H}, \mathrm{dd}, J=5.1,12.2 \mathrm{~Hz}), 3.07(1 \mathrm{H}, \mathrm{ddd}, J=3.3,4.4$, $10.2 \mathrm{~Hz}), 2.83(1 \mathrm{H}, \mathrm{dd}, J=11.3,12.2 \mathrm{~Hz}), 1.63-1.46(4 \mathrm{H}, \mathrm{m}), 1.40-1.27(22 \mathrm{H}, \mathrm{m}) \mathrm{ppm},{ }^{13} \mathrm{C}$ NMR (67.5 MHz, $\mathrm{CD}_{3} \mathrm{OD}$, r.t.): 78.5, 77.3, 74.6, 68.8, 63.0, 61.0, 58.7, 47.3, 33.6, 31.3, $30.8,30.8,30.7,30.61,30.59,27.2,26.9 \mathrm{ppm} ;[\alpha]_{\mathrm{D}^{27}}+22.6^{\circ}(c=0.67, \mathrm{MeOH}) ;$ HR-FABMS (positive): $[\mathrm{M}+\mathrm{H}]^{+}$Found $m / z 390.3199, \mathrm{C}_{21} \mathrm{H}_{44} \mathrm{NO}_{5}{ }^{+}$requires $m / z 390.3219$.

4.2.20. Synthesis of 23e,f

Protective groups of 19 e and 19 f were removed by the method written in $\S 4.2 .9$ to give 23e,f.
(2R,3R,4R,5S)-4,5-dihydroxy-2-hydroxymethyl-3-(4-hydroxybutyloxy)piperidine hydrochloride (23e)

Crystal, Yield 93\%; ${ }^{1} \mathrm{H}$ NMR (270 MHz, CD 3 OD, r.t.): 3.98-3.91 (1H, m), 3.83 ($2 \mathrm{H}, \mathrm{d}, J=$
$3.9 \mathrm{~Hz}), 3.69-3.60(2 \mathrm{H}, \mathrm{m}), 3.57(1 \mathrm{H}, \mathrm{t}, J=6.1 \mathrm{~Hz}), 3.46(1 \mathrm{H}, \mathrm{dd}, J=8.9,8.9 \mathrm{~Hz}), 3.34$ ($1 \mathrm{H}, \mathrm{dd}, J=8.9,10.2 \mathrm{~Hz}$), $3.30(1 \mathrm{H}, \mathrm{dd}, J=4.9,12.2 \mathrm{~Hz}), 3.08(1 \mathrm{H}, \mathrm{dt}, J=10.2,3.9 \mathrm{~Hz})$, $2.84(1 \mathrm{H}, \mathrm{dd}, J=11.4,12.2 \mathrm{~Hz}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR ($67.5 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, r.t.): 78.5, $77.3,74.3$, $68.8,62.7,61.0,58.7,47.3,30.2,27.7 \mathrm{ppm} ;[\alpha]_{\mathrm{D}}{ }^{27}+28.1^{\circ}(c=0.25, \mathrm{MeOH}) ; \mathrm{HR}-\mathrm{FAB}-\mathrm{MS}$ (positive): $[\mathrm{M}+\mathrm{H}]^{+}$Found $\mathrm{m} / \mathrm{z} 236.1515, \mathrm{C}_{10} \mathrm{H}_{22} \mathrm{NO}_{5}{ }^{+}$requires $\mathrm{m} / \mathrm{z} 236.1498$
(2R,3R,4R,5S)-4,5-dihydroxy-2-hydroxymethyl-3-(5-hydroxypentyloxy)piperidine

hydrochloride (23f)

Crystal, Yield 93%; ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, r.t.): 3.93 ($1 \mathrm{H}, \mathrm{td}, J=6.4,9.0 \mathrm{~Hz}$), 3.87 ($1 \mathrm{H}, \mathrm{dd}, J=3.0,12.0 \mathrm{~Hz}$), $3.82(1 \mathrm{H}, \mathrm{dd}, J=4.2,12.0 \mathrm{~Hz}$), $3.66(1 \mathrm{H}, \mathrm{ddd}, J=5.1,8.9,11.1$ Hz), $3.65-3.58(1 \mathrm{H}, \mathrm{m}), 3.55(2 \mathrm{H}, \mathrm{t}, J=6.3 \mathrm{~Hz}), 3.46(1 \mathrm{H}, \mathrm{dd}, J=8.9,8.9 \mathrm{~Hz}), 3.34(1 \mathrm{H}$, dd, $J=8.9,10.1 \mathrm{~Hz}), 3.30(1 \mathrm{H}, \mathrm{dd}, J=5.1,12.4 \mathrm{~Hz}), 3.09(1 \mathrm{H}, \mathrm{ddd}, J=3.0,4.2,10.1 \mathrm{~Hz})$, $2.84(1 \mathrm{H}, \mathrm{dd}, J=11.1,12.4 \mathrm{~Hz}), 1.67-1.39(6 \mathrm{H}, \mathrm{m}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($67.5 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, r.t.): $78.4,77.3,74.4,68.8,62.8,61.0,58.7,47.3,33.4,31.0,23.5 \mathrm{ppm} ;[\alpha]_{D^{27}}+26.0^{\circ}(c=$ 0.58, MeOH); HR-FD-MS (positive): [M] + Found m / z 249.1594, $\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{NO}_{5}{ }^{+}$requires m / z 249.1576.
4.3. Assay procedure of α-amylase inhibitory activity

Samples dissolved in 20% DMSO aq. ($10 \mu \mathrm{~L}$), porcine pancreatic α-amylase ($1 \mathrm{unit} / \mathrm{mL}$, $10 \mu \mathrm{~L}$) and buffer solution (100 mM Sodium phosphate, 50 mM sodium chloride, pH 6.9 ,
$30 \mu \mathrm{~L}$) were mixed and pre-incubated at $37{ }^{\circ} \mathrm{C}$ for 5 min . To this mixture, $2,4^{-}$ dinitrophenyl maltotriose ($2 \mathrm{mM}, 50 \mu \mathrm{~L}$) dissolved in the buffer solution was added to start the enzyme reaction. Absorbance at 405 nm was monitored temporally to determine the rate of enzyme reaction. Inhibition rate was determined by comparing the rate of hydrolysis between control reaction (without sample) and sample reaction. Each experiment was repeated at least 3 times to determine IC_{50} value or inhibition\%.

Acknowledgements

This research was supported by the Grant-in-Aid for Scientific Research (KAKENHI). We would like to give our appreciation to Mr. Kenji Watanabe, Dr. Eri Fukushi and Mr. Yusuke Takata of the GC-MS \& NMR Laboratory, Graduate School of Agriculture, Hokkaido University for measuring mass spectra.

References and notes

1. World Health Organization (WHO). Fact sheet No. 312 'Diabetes', http://www.who.int/mediacentre/factsheets/fs312/en/ (accessed May 2011).
2. Asano, N.; Oseki, K.; Kizu, H.; Matsui, K., J. Med. Chem. 1994, 37, 3701-3706.
3. Yoshikawa, M.; Murakami, T.; Shimada, H.; Matsuda, H.; Yamahara, J.; Tanabe, G.; Muraoka, O., Tetrahedron Lett. 1997, 38, 8367-8370.
4. a) Scott, L.J.; Spencer, C.M., Drugs 2000, 59, 521-549. b) Chen X.; Zheng Y.; Shen Y.,

Curr. Med. Chem. 2006, 13, 109-116.
5. a) Zajácz, Á.; Gyémánt, G.; Vittori, N.; Kandra, L., Carbohydrate Res. 2007, 342, 717723. b) Ali, H.; Houghton, P.J.; Soumyanath, A., Journal of Ethnopharmacology 2006, 107, 449-455.
6. Wilcox, E. R.; Whitaker, J. R., Biochemistry 1984, 23, 1783-1791.
7. a) Murao, S.; Goto, A.; Matsui, Y.; Ohyama, K., Agric. Biol. Chem. 1980, 44, 16791681. b) Vèrtesy, L.; Oeding, V.; Bender, R.; Zepf, K.; Nesemann, G., Eur. J. Biochem. 1984, 141, 505-512.
8. Qian, M.; Haser, R.; Buisson, G.; Due, E.; Payan, F., Biochemistry 1994, 33, 62846294.
9. Brayer, G.D.; Sidhu, G.; Maurus, R.; Rydberg, E.H.; Braun, C.; Wang, Y.; Nguyen, N.T.; Overall, C.M.; Withers, S.G., Biochemistry 2000, 39, 4778-4791 .
10. Heightman, T.D.; Vasella, A. T., Angew. Chem. Int. Ed. 1999, 38, 750 - 770.
11. Arai, M.; Sumida, M.; Fukuhara, K.; Kainosho, M.; Murao, S., Agric. Biol. Chem. 1986, 50, 639-644.
12. Wennekes, T.; van den Berg, R. J. B. H. N.; Donker, W.; van der Marel, G.A.; Strijland, A.; Aerts, J. M. F. G.; Overkleeft, H. S., J. Org. Chem. 2007, 72, 1088-1097.
13. Shingu, Y.; Nishida, Y.; Dohi, H.; Kobayashi, K., Org. Biomol. Chem. 2003, 1, 2518^{-}
2521.
14. Damager, I.; Numao, S.; Chen, H.; Brayer, G.D.; Withers, S.G., Carbohydr. Res. 2004, 339, 1727-1737.
15. Robyt, J. F.; French, D., J. Biol. Chem. 1970, 245, 3917-3927.
16. Davis, B. G.; Wood, S. D.; Maughan, M. A. T., Can. J. Chem. 2002, 80, 555-558.
17. RCSB Protein data bank, http://www.rcsb.org/pdb/home/home.do, PDB ID: 1OSE.

