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We derive the equations to calculate the reduced-width amplitudes (RWAs) of unequal-sized
clusters and deformed clusters without any approximation. These equations, named the Laplace
expansion method, are applicable to nuclear models that use Gaussian wave packets. The advan-
tage of the method is demonstrated by numerical calculations of the 16O + α and 24Mg + α

RWAs in 20Ne and 28Si.
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1. Introduction

It is well known that various cluster states appear in the excited states of light stable nuclei, as
illustrated in Ikeda diagram [1]. They are composed of α, 12C, and 16O clusters that are tightly bound
and stable compared to the neighboring nuclei. In recent decades, the study of nuclear clustering has
extended to unstable nuclei, where novel types of clustering have been found. The molecular-orbit
and atomic-orbit states in Be isotopes [2–11] are representative of such novel types of clustering. In
contrast to the clustering of light stable nuclei, they are composed of 6He and 8He, which are weakly
bound and unstable. Since the definition of the cluster is extended from the ordinary one, we need a
good measure for such non-conventional clustering.

The reduced-width amplitude (RWA) is one such clustering measure. It is the cluster formation
probability at a given inter-cluster distance, and hence it is regarded as direct evidence of clustering.
By the R-matrix theory [12], the RWA is derived from the width of the cluster states, experimentally
determined by measurement of the cluster decay lifetime, the resonant scattering, and the transfer
reactions. Therefore, numerous experiments have been conducted to determine the RWA and to
identify various clusters. A variety of cluster states in light p-sd-shell nuclei, illustrated in the Ikeda
diagram, have been identified from their large decay widths and RWAs [13–17]. Several clusters in
heavier pf -nuclei were established in the 1990s, when measurement of the RWAs played an essential
role in identifying the α cluster states of 40Ca and 44Ti [18–28]. More recently, the α decay property
has been used in combination with the isoscalar monopole and dipole transitions to identify the
gas-like α cluster states [29–35] and various clusters in sd-shell nuclei [36–41]. The importance
of the RWA for the study of exotic clustering in neutron-rich nuclei must also be emphasized. It
was an important observable in identifying the molecular clustering in Be isotopes [7–10]. More
recently, the cluster states in 18O and 22Ne [42–53] and linear-chain states in 14,16C [54–67] have
been discussed from their α decays and RWAs. Thus, comparison of the measured RWA with the
theoretical value is indispensable to establish cluster formation.
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However, the calculation of RWA for general cluster systems in theoretical studies is not easy due
to the antisymmetrization of nucleons belonging to the different clusters. To simplify the treatment
of antisymmetrization, the ordinary methods for RWA calculation [68–73] often approximate the
cluster wave functions with the SU (3) shell model wave functions [74,75] with common oscillator
parameters (the same size as the clusters). Unfortunately, this approximation limits the applicability
of the methods. They are inaccurate when applied to unequal-sized clusters and clusters that cannot
be approximated by a single SU (3) shell model wave function. Typical examples of this may be
the 16O + α and 6He + α clusters, i.e., the sizes of these clusters are different and a halo nucleus
6He cannot be described by a single SU (3) shell model wave function. Furthermore, to calculate the
RWA of deformed clusters, the ordinary methods demand much computational time because of the
multiple angular momentum projections. Although an approximate method proposed by Kanada-
En’yo et al. [76] reduced the computational cost to some extent, the development of an alternative
method for RWA calculation is highly desirable.

For this purpose, we present a new method for the RWA calculation. We derive equations that
can calculate the RWA of unequal-sized clusters and deformed clusters without any approximation.
These equations, named the Laplace expansion method, are applicable to nuclear models that use
the Gaussian wave packets, such as antisymmetrized molecular dynamics (AMD) [77–79].

This paper is organized as follows. In the next section, we derive the equations of the Laplace
expansion method. We also discuss the advantages and disadvantages of the method compared to
the ordinary method. In Sect. 3, we show the numerical results for the 16O +α and 24Mg +α RWAs
as examples of unequal-sized and deformed clusters. In the final section, we summarize the present
work.

2. Laplace expansion method for RWA calculation

In this section, we outline a new method to calculate the RWA that utilizes the Laplace expansion
of the matrix determinant. We first introduce the AMD wave function. Then, by using the Laplace
expansion, we show that the AMD wave function of an A-body system can be decomposed into those
of subsystems with masses C1 and C2. With this expansion, we derive the equations to calculate the
RWA that we call the Laplace expansion method. We also compare the Laplace expansion method
with the ordinary one to discuss its advantages and disadvantages.

2.1. Wave function of antisymmetrized molecular dynamics

The wave function of AMD for an A-body system is a Slater determinant of the Gaussian wave
packets describing nucleons:

�AMD
A = 1√

A!

∣∣∣∣∣∣∣
〈r1|ψ1〉 . . . 〈r1|ψA〉

...
. . .

...
〈rA|ψ1〉 . . . 〈rA|ψA〉

∣∣∣∣∣∣∣ , (1)

〈r|ψi〉 =
( |2M |
π3

)1/4

exp
{−(r − Z i)

TM (r − Z i)
}
(αiχ↑ + βiχ↓)ηi, (2)

where the Gaussian centroids Z i are complex-valued three-dimensional vectors, and the spin direc-
tions are parameterized by the complex variables αi and βi. The isospin part ηi is fixed to either a
proton or neutron. Each nucleon wave packet has these independent variables. To discuss the general
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case, we assume the use of deformed Gaussian wave packets [73], and hence M denotes a symmetric
positive-definite 3 × 3 matrix.

If the width matrix M is common for all nucleon wave packets, the AMD wave function can be
straightforwardly decomposed into the internal wave function � int

A and the center-of-mass wave
function �cm

A :

�AMD
A = � int

A �
cm
A , (3)

�cm
A =

( |2AM |
π3

)1/4

exp
{−A(R − Z)TM (R − Z)

}
, (4)

R = 1

A

A∑
i=1

ri, Z = 1

A

A∑
i=1

Z i. (5)

This simple but important decomposition is repeatedly used in the Laplace expansion method.
Without loss of generality, we assume that the Z i satisfy the relation

∑A
i=1 Z i = 0.

The AMD wave function given by Eq. (1) is not an eigenstate of the parity and angular momentum.
Therefore, the parity and angular momentum projections are usually performed:

�Jπ
MKA = 1√

N Jπ
K

P̂J
MK P̂π� int

A , (6)

N Jπ
K =

〈
� int

A P̂J
KK P̂π � int

A

〉
, (7)

P̂J
MK =

∫
d	DJ∗

MK (	)R̂(	), P̂π = 1 + π P̂r

2
, π = ±, (8)

where P̂J
MK and P̂π are the angular momentum and parity projectors. DJ

MK (	) and R̂(	) are the
Wigner D function and rotation operator dependent on the Euler angles 	. P̂r is the parity operator.

In nuclear structure studies, in addition to the projection, the parity and angular momentum pro-
jected AMD wave functions are superposed to take the effects of configuration mixing and shape
fluctuation into account (generator coordinate method; GCM):

�Jπ
MA =

smax∑
s=1

J∑
K=−J

csK
1√

N Jπ
K (s)

P̂J
MK P̂π� int

A (s) =
smax∑
s=1

J∑
K=−J

csK�
Jπ
MKA(s), (9)

�Jπ
MKA(s) = 1√

N Jπ
K (s)

P̂J
MK P̂π� int

A (s), (10)

N Jπ
K (s) =

〈
� int

A (s) P̂J
KK P̂π � int

A (s)
〉

, (11)

where s is the index for the internal wave functions and csK is the coefficient of the superposition.
Hereafter, we term the wave functions given by Eqs. (1), (6), and (9) the “AMD wave function,”
“projected AMD wave function,” and “GCM wave function,” respectively.

It must be noted that the following discussion and the Laplace expansion method are also applicable
to the Brink–Bloch wave function [80] and the SU (3) shell model wave function (harmonic oscillator
wave function without spin–orbit splitting), because the AMD wave function includes the Brink–
Bloch wave function and SU (3) shell model wave function as special cases: When the centroids of
the wave packets are common for the quartet of n ↑, n ↓, p ↑, and p ↓, the AMD wave function

3/20



PTEP 2017, 053D01 Y. Chiba and M. Kimura

is equal to the Brink–Bloch wave function for Nα systems. At the limit Z i → 0, the AMD wave
function is equal to the SU (3) shell model wave function.

2.2. Laplace expansion of the AMD wave function

The Laplace expansion of the determinant of an A × A matrix B is given as

|B| =
∑

1≤i1<···<iC1≤A

P(i1, . . . , iC1)|B(i1, . . . , iC1)||B(iC1+1, . . . , iA)|, (12)

where the summation runs over all possible combinations of indices i1, . . . , iC1 . The phase factor
P(i1, . . . , iC1) is defined as

P(i1, . . . , iC1) = (−)C1(C1+1)/2+∑C1
s=1 is . (13)

|B(i1, . . . , iC1)| is the determinant of the C1 × C1 matrix composed from the 1, . . . , C1th rows and
the i1, . . . , iC1 th columns of the matrix B,

|B(i1, . . . , iC1)| =

∣∣∣∣∣∣∣
B1i1 . . . B1iC1

...
. . .

...
BC1i1 . . . BC1iC1

∣∣∣∣∣∣∣ , (14)

and |B(iC1+1, . . . iA)| is the determinant of the C2 × C2 matrix (C1 + C2 = A) formed by removing
the 1, . . . , C1th rows and the i1, . . . , iC1 th columns from B,

|B(iC1+1, . . . , iA)| =

∣∣∣∣∣∣∣
BC1+1,iC1+1 . . . BC1+1,iA

...
. . .

...
BA,iC1+1 . . . BA,iA

∣∣∣∣∣∣∣ , (15)

where iC1+1, . . . , iA denote the column indices other than i1, . . . , iC1 and satisfy the relation 1 ≤
iC1+1 < · · · < iA ≤ A.

Applying the Laplace expansion to the A-body AMD wave function given by Eq. (1), we obtain
the decomposition of the AMD wave function:

�AMD
A =

√
C1!C2!

A!
∑

1≤i1<···<iC1≤A

P(i1, . . . , iC1)�
AMD
C1

(i1, . . . , iC1)�
AMD
C2

(iC1+1, . . . , iA). (16)

Here,�AMD
C1

(i1, . . . , iC1) and�AMD
C2

(iC1+1, . . . , iA) are the AMD wave functions for the subsystems
with masses C1 and C2, which are defined as

�AMD
C1

(i1, . . . , iC1) = 1√
C1!

∣∣∣∣∣∣∣
〈r1|ψi1〉 . . . 〈r1|ψiC1

〉
...

. . .
...

〈rC1 |ψi1〉 . . . 〈rC1 |ψiC1
〉

∣∣∣∣∣∣∣ , (17)

�AMD
C2

(iC1+1, , . . . , iA) = 1√
C2!

∣∣∣∣∣∣∣
〈rC1+1|ψiC1+1〉 . . . 〈rC1+1|ψiA〉

...
. . .

...
〈rA|ψiC1+1〉 . . . 〈rA|ψiA〉

∣∣∣∣∣∣∣ . (18)
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Since the internal and center-of-mass wave functions are analytically separable, as shown in Eq. (3),
the product of the AMD wave functions on the right-hand side of Eq. (16) is equal to the product of
the internal and center-of-mass wave functions of the subsystems,

�AMD
C1

�AMD
C2

= �cm
C1
�cm

C2
� int

C1
� int

C2
, (19)

�cm
C1

=
( |2C1M |

π3

)1/4

exp
{−C1(RC1 − ZC1)

TM (RC1 − ZC1)
}
, (20)

�cm
C2

=
( |2C2M |

π3

)1/4

exp
{−C2(RC2 − ZC2)

TM (RC2 − ZC2)
}
, (21)

RC1 = 1

C1

C1∑
i=1

ri, RC2 = 1

C2

A∑
i=C1+1

ri, (22)

ZC1 = 1

C1

∑
i∈{i1,...,iC1 }

Z i, ZC2 = 1

C2

∑
i∈{iC1+1,...,iA}

Z i, (23)

where we suppressed the indices i1, . . . , iA for simplicity. RC1 and RC2 denote the center-of-mass
coordinates of the subsystems. Then, we rewrite the product of the center-of-mass wave functions
of clusters to the product of the center-of-mass wave function of the A-body system �cm

A and the
relative wave function between the subsystems χ(r):

�cm
C1
�cm

C2
= �cm

A χ(r), (24)

χ(r) =
( |2
|
π3

)1/4

exp
{−(r − z)T
(r − z)

}
, (25)

r = RC1 − RC2 , z = ZC1 − ZC2 , 
 = C1C2

A
M . (26)

As a result, the product of the AMD wave functions is transformed as follows:

�AMD
C1

(i1, . . . , iC1)�
AMD
C2

(iC1+1, . . . , iA) = �cm
A χ(r; i1, . . . , iA)�

int
C1
(i1, . . . , iC1)�

int
C2
(iC1+1, . . . , iA).

(27)

Note that �cm
A is independent of the choice of i1, . . . , iC1 . Substituting Eq. (27) into Eq. (16), and

removing the center-of-mass wave function, we obtain a decomposition of the A-body internal wave
function into two subsystems with masses C1 and C2:

� int
A =

√
C1!C2!

A!
∑

1≤i1<···<iC1≤A

P(i1, . . . , iC1)χ(r; i1, . . . iA)� int
C1
(i1, . . . , iC1)�

int
C2
(iC1+1, . . . , iA).

(28)

It is noted that the Laplace expansion can be applied recursively, and hence the decomposition of an
A-body wave function into three and more subsystems is also straightforward.

2.3. Calculation of the RWA using Laplace expansion

Using Laplace expansion of the AMD wave function, we can calculate the RWA of the C1 + C2

cluster system without any approximation. First, we discuss the RWA of a single projected AMD
wave function; extension to the GCM wave function is discussed later.
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The RWA for a two-body cluster system is defined as the overlap amplitude between the A-body
wave function �Jπ

MA and the reference state composed of the clusters with masses C1 and C2,

yJπ
j1π1 j2π2 j12l(a) =

√
A!

(1 + δC1C2)C1!C2!
〈
δ(r − a)

r2

[
Yl(r̂)

[
�

j1π1
C1
�

j2π2
C2

]
j12

]
JM

�Jπ
MA

〉
, (29)

where�j1π1
C1

and�j2π2
C2

are the wave functions of clusters C1 and C2. Their spins j1 and j2 are coupled
to j12, and j12 is coupled to the orbital angular momentum l of the inter-cluster motion to yield the
total spin-parity Jπ . Therefore, π1, π2, and l must satisfy the relation π = π1π2(−)l . We assume
that the wave functions �Jπ

MA, � j1π1
C1

, and � j2π2
C2

are antisymmetrized and normalized.
With this definition, by substituting Eq. (6) into Eq. (29), the RWA of a projected AMD wave

function reads

yJπ
j1π1 j2π2 j12l(a) =

√
A!

(1 + δC1C2)C1!C2!
〈
δ(r − a)

r2

[
Yl(r̂)

[
�

j1π1
C1
�

j2π2
C2

]
j12

]
JM

�Jπ
MKA

〉

= 1√
N Jπ

K

√
A!

(1 + δC1C2)C1!C2!
〈
δ(r − a)

r2 P̂J
KM

[
Yl(r̂)

[
�

j1π1
C1

�
j2π2
C2

]
j12

]
JM

� int
A

〉

= 1√
N Jπ

K

√
A!

(1 + δC1C2)C1!C2!
〈
δ(r − a)

r2

[
Yl(r̂)

[
�

j1π1
C1

�
j2π2
C2

]
j12

]
JK
� int

A

〉

= 1√
N Jπ

K

√
A!

(1 + δC1C2)C1!C2!
∑

m12mlm1m2

CJK
lmlj12m12

Cj12m12
j1m1j2m2

×
〈
δ(r − a)

r2 Ylml (r̂)�
j1π1
m1C1

�
j2π2
m2C2

� int
A

〉
, (30)

where we used the relation π = π1π2(−)l and the properties of the angular momentum projector
(P̂J

MK )
† = P̂J

KM and P̂Jπ
KM |JM 〉 = |JK〉. CJM

j1m1j2m2
denotes the Clebsch–Gordan coefficient. By using

the Laplace expansion of � int
A given by Eq. (28), the braket on the right-hand side of Eq. (30) is

written as〈
δ(r − a)

r2 Ylml (r̂)�
j1π1
m1C1

�
j2π2
m2C2

� int
A

〉
=
√

C1!C2!
A!

∑
1≤i1<···<iC1≤A

P(i1, . . . , iC1)

×
〈
δ(r − a)

r2 Ylml (r̂)�
j1π1
m1C1

�
j2π2
m2C2

χ(r; i1, . . . , iA)�
int
C1
(i1, . . . , iC1)�

int
C2
(iC1+1, . . . , iA)

〉
. (31)

Note that the braket in the last line has no antisymmetrizer with respect to the nucleons belonging to
different subsystems. Therefore, it is equal to the product of the overlaps between the relative wave
functions and between the subsystems:〈

δ(r − a)

r2 Ylml (r̂)�
j1π1
m1C1

�
j2π2
m2C2

χ(r; i1, . . . , iA)�
int
C1
(i1, . . . , iC1)�

int
C2
(iC1+1, . . . , iA)

〉
=
〈
δ(r − a)

r2 Ylml (r̂) χ(r; i1, . . . , iA)

〉
〈�j1π1

m1C1
|� int

C1
(i1, . . . , iC1)〉 〈�j2π2

m2C2
|� int

C2
(iC1+1, . . . , iA)〉 .

(32)
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Substituting Eqs. (31) and (32) into Eq. (30), we obtain the RWA of a projected AMD wave function:

yJπ
j1π1 j2π2 j12l(a) = 1√

N Jπ
K (1 + δC1C2)

∑
1≤i1<···<iA≤A

P(i1, . . . , iC1)

×
[
χl(a; i1, . . . , iA)

[
N j1π1(i1, . . . , iC1)N

j2π2(iC1+1, . . . iA)
]

j12

]
JK

, (33)

with the definitions of the overlaps:

χlml (a; i1, . . . , iA) =
〈
δ(r − a)

r2 Ylml (r̂) χ(r; i1, . . . , iA)

〉
, (34)

N j1π1
m1 (i1, . . . , iC1) = 〈�j1π1

m1C1
|� int

C1
(i1, . . . , iC1)〉 , (35)

N j2π2
m2 (iC1+1, . . . , iA) = 〈�j2π2

m2C2
|� int

C2
(iC1+1, . . . , iA)〉 . (36)

Thus, the RWA is obtained by calculating the overlaps defined by Eqs. (34), (35), and (36), which
are easily calculated as explained in Appendix A.

The extension of the method to the GCM wave function is straightforward. Substituting Eq. (9)
into Eq. (29), one easily obtains the RWA of the GCM wave function as follows:

yJπ
j1π1 j2π2 j12l(a) =

smax∑
s=1

J∑
K=−J

csK yJπ
j1π1 j2π2 j12l(a; sK), (37)

yJπ
j1π1 j2π2 j12l(a; sK) =

√
A!

C1!C2!
〈
δ(r − a)

r2

[
Yl(r̂)

[
�

j1π1
C1
�

j2π2
C2

]
j12

]
JM

�Jπ
MKA(s)

〉
. (38)

Thus, the RWA of the GCM wave function is the superposition of the RWAs of the projected AMD
wave functions defined by Eq. (38), which are calculated by using Eq. (33) for every �Jπ

MKA(s).
In the same way, when the reference wave function �j1π1

m1C1
is a GCM wave function, the overlap

N j1π1
m1 (i1, . . . , iC1) is a sum of the overlaps of the projected AMD wave functions.

2.4. Advantages of the Laplace expansion method

It may be worthwhile comparing the Laplace expansion method with an ordinary method [70–73]
that is often used in cluster models and AMD to see its advantages and disadvantages. The ordinary
method uses a set of projected Brink–Bloch-type wave functions defined as

�Jπ
j1π1j2π2j12l(Sp) = 2l + 1

2J + 1

∑
m12m1m2

CJm12
l0j12m12

P̂J
Mm12

Cj12m12
j1m1j2m2

�BB
j1π1m1j2π2m2

(Sp), (39)

�BB
j1π1m1j2π2m2

(Sp) =
√

C1!C2!
A! A

{
P̂j1

m1k1
P̂π1�C1

(
−C2

A
Sp

)
P̂j2

m2k2
P̂π2�C2

(
C1

A
Sp

)}
, (40)

Sp = (0, 0, Sp). (41)

�C1

(−C2/ASp
)

and�C2

(
C1/ASp

)
are the wave functions for clusters with masses C1 and C2 with

their center-of-mass wave functions, and placed with the inter-cluster distance Sp. The inter-cluster
distance Sp is discretized, for example, as

Sp = pS, p = 1, . . . , pmax. (42)
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The following three conditions are often required to reduce the computational cost:

◦ �C1 and �C2 are the SU (3) shell model wave functions without particle–hole excitations.
◦ The oscillator parameters of �C1 and �C2 are the same value, �ω = 2�

2ν/m.
◦ �C1 and �C2 are the eigenstates of the principal quantum number N̂ .

With these conditions satisfied, the RWA is given as follows:

yJπ
j1π1j2π2j12l(a) = 1√

1 + δC1C2

∑
N

μNleN RNl(a), (43)

μNl =
〈
RNl(r)

[
Yl(r̂)

[
�

j1π1
C1
�

j2π2
C2

]
j12

]
J

A
{

RNl(r)

[
Yl(r̂)

[
�

j1π1
C1
�

j2π2
C2

]
j12

]
J

}〉
, (44)

eNl = (−)(N−l)/2

√
(2l + 1)

(N − l)!!(N + l + 1)!!
∑
pq

(νS2
p )

N/2

√
N ! e−νS2

p/2B−1
pq 〈�Jπ

j1π1j2π2j12l(Sq)|�Jπ
MA〉 ,

(45)

Bpq = 〈�Jπ
j1π1j2π2j12l(Sp)|�Jπ

j1π1j2π2j12l(Sq)〉 . (46)

Here, RNl(a) is the radial wave function of harmonic oscillator (HO). The derivation of these equations
is explained in Appendix B and Refs. [70–73]. From these equations, we can see several advantages
of the Laplace expansion method:

◦ The sizes of the Gaussian wave packets describing clusters C1 and C2 in the reference state can
be different in the Laplace expansion method. This is an advantage when we calculate the RWA
of unequal-sized clusters such as 16O + α and 40Ca + α [81].
On the other hand, in the ordinary method, they must be equal to analytically separate center-
of-mass and relative wave functions, as explained in Appendix B.

◦ Deformed Gaussian wave packets can be used to describe the clusters C1 and C2 in the reference
state. Therefore, the Laplace expansion method can easily calculate the RWA of deformed
clusters such as 10Be + α and 24Mg + α without any approximation.
On the other hand, for the analytical separation of the center-of-mass and relative wave functions,
the ordinary method uses a spherical Gaussian. For example, in Refs. [64,67], the 10Be wave
function was approximated by a spherical Gaussian to estimate the 10Be + α RWA.

◦ The angular momentum projection of the cluster wave functions can be done with much reduced
computational cost. This is another advantage when we calculate the RWA of deformed clusters.
When the intrinsic wave functions of clusters�C1 and�C2 are not the eigenstate of the angular
momentum, we need to perform the angular momentum projection of each cluster. In the
ordinary method, we need to calculate Eqs. (45) and (46), which contain three and five angular
momentum projectors and demand huge computational cost. Therefore, the approximation is
often applied [64,67]. However, in the case of the Laplace expansion method, we only need to
calculate Eqs. (35) and (36), which contain only one angular momentum projector.

◦ The GCM wave function can be used as the cluster wave functions. Therefore, the Laplace
expansion method can treat various clusters which cannot be described by a single AMD wave
function. A typical example is the 6He cluster, which has a neutron halo. In the ordinary method,
the 6He cluster is often approximated by the (0s)4(0p3/2)

2 configuration of the HO wave function
[67,72].
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◦ The Laplace expansion method does not use the eigenvalue of the norm kernel defined by
Eq. (44), which represents the antisymmetrization effect between clusters. In general, the cal-
culation of this quantity is not easy when the clusters are not described by the SU (3) shell model
wave functions. Therefore, several approximations have been suggested and applied [72,76].
The Laplace expansion method is free from such approximations.

The disadvantage of the Laplace expansion method should also be mentioned. It is clear from Eq. (33)
that the computational cost greatly increases when the mass of the system A is large and the masses
of clusters are equal (C1 = C2), because the number of possible combinations of i1, . . . , iA becomes
huge.A typical example is the 16O+16O cluster in 32S. In this case, there are (16!/(8!8!))2 � 1.6×108

combinations of i1, . . . , iA. On the other hand, since 16O is a spherical and SU (3) scalar cluster, the
ordinary method can be straightforwardly applied and quickly calculated [82].

3. Numerical examples

In this section, we present the numerical results for the RWAs of the 16O+α and 24Mg+α clustering
in 20Ne and 28Si, which are composed of unequal-sized and deformed clusters. The wave functions
of 20Ne and 28Si are calculated by antisymmetrized molecular dynamics and are the same as obtained
in our previous studies [41,73,83,84]. The Hamiltonian is common to both nuclei and is given as

Ĥ =
A∑

i=1

t̂i − t̂cm +
A∑

i<j

v̂NN +
A∑

i<j

v̂Coul, (47)

where t̂i and t̂cm denote the nucleon and the center-of-mass kinetic energies. v̂NN and v̂Coul denote the
Gogny D1S effective nucleon–nucleon interaction [85] and the Coulomb interaction, respectively.
The detailed setup of the calculations is explained below.

3.1. RWA of the 16O + α clustering in 20Ne

The 16O + α clustering of 20Ne is very famous and well-identified experimentally [16]. There are
three rotational bands with a 16O + α cluster structure, which are built on the 0+

1 , 1−
1 (5.8 MeV),

and 0+
4 (8.7 MeV) states, respectively. Here we discuss the RWAs of the 0+

1 , 1−
1 , and 0+

4 states as an
example of unequal-sized clusters.

TheAMD wave functions of 20Ne for GCM calculation are prepared by energy variation with a con-
straint on the nuclear quadrupole deformation parameter β. The value of parameter β is constrained
from 0.0 to 0.85 with an interval of 0.05. In addition to this, we also included Brink–Bloch-type wave
functions with the inter-cluster distance Sp ranging from 1.0 fm to 8.0 fm with an interval of 1.0 fm.
Here, the 16O cluster is described by a single AMD wave function obtained by the energy variation,
while α cluster is assumed to have a (0s)4 configuration. To analytically remove the center-of-mass
motion from the GCM wave function, both clusters are assumed to have the same spherical oscillator
parameter ν = 0.16 fm−2. In short, we superposed 18 AMD wave functions and 8 Brink–Bloch-type
wave functions together, and solved the GCM. The level scheme obtained is shown in Fig. 1, together
with the observed levels. Detailed discussions of these states are found in the Refs. [41,73].

We prepared two different sets of cluster wave functions as the reference states [�j1π1
m1C1

and�j2π2
m2C2

in Eqs. (35) and (36)] to evaluate the RWA. In the first set, the 16O and α clusters have the common
oscillator lengths νO = να = 0.16 fm−2. In other words, they are the same as the above-mentioned
Brink–Bloch-type wave functions. In the second set, the oscillator lengths are different. For the
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Fig. 1. The calculated and observed partial level scheme of 20Ne corresponding to the 16O + α cluster states.
The dashed horizontal lines indicate experimental and theoretical 16O + α cluster threshold energies.

Fig. 2. The 16O + α cluster RWAs of (a) the 0+
1 state, (b) the 0+

4 state, and (c) the 1−
1 state. The solid lines

show the RWAs obtained by using the reference states with common oscillator lengths νO = να = 0.16 fm−2,
while the dashed lines show those obtained by using the different oscillator parameters νO = 0.157 fm−2 and
να = 0.25 fm−2.

α cluster, we used να = 0.25 fm−2, while we used νO = 0.157 fm−2 for the 16O cluster, which
minimizes the intrinsic energy of 16O. In the following, we term the calculations with the first and
second sets of cluster wave functions “common-size calculation” and “unequal-size calculation,”
respectively. In both cases, the RWAs were calculated by the Laplace expansion method. The calcu-
lated RWAs for the 0+

1 , 0+
2 , and 1−

1 states are shown in Fig. 2, and the α spectroscopic factor Sα and
dimensionless decay width θ2 are listed in Table 1; these are defined as follows:

Sα =
∫ ∞

0
da
∣∣∣ayJπ

j1π1j2π2j12l(a)
∣∣∣2 , (48)

θ2
α = a

3

∣∣∣ayJπ
j1π1j2π2j12l(a)

∣∣∣2 . (49)

From larger amplitudes of the RWAs Sα and θα , it is evident that the 0+
4 and 1−

1 states have more
developed cluster structures than the ground state. When we compare the RWAs obtained by the
common-size and unequal-size calculations, we find the following differences, although they show
similar behavior:

◦ The nodal points of the RWA moves inward in the unequal-size calculation.
◦ The amplitudes of RWAs tend to be smaller in the unequal-size calculation.
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Table 1. The α spectroscopic factor Sα and the dimensionless decay width θ 2
α calculated at the channel radii

a = 6 and 7 fm.

νO = να = 0.16 fm−2 νO = 0.157 fm−2, να = 0.25 fm−2

Sα θ 2
α (a = 6 fm) θ 2

α (a = 7 fm) Sα θ 2
α (a = 6 fm) θ 2

α (a = 7 fm)

0+
1 0.24 0.06 0.01 0.26 0.05 0.01

0+
4 0.62 0.44 0.43 0.53 0.37 0.35

1−
1 0.71 0.49 0.28 0.63 0.41 0.22

The first point is due to the weaker antisymmetrization effect. The unequal-size calculation uses a
much smaller size of the α cluster than the common-size calculation. Therefore, the α cluster is much
less affected by the antisymmetrization effect. Since the oscillation of the RWAs in the internal region
originates in the antisymmetrization effect, the nodal positions of the RWAs should move inward in
the unequal calculation.

For the second point, there may be two explanations. In the inner region, the α clusters should
be strongly distorted due to the strong effect of antisymmetrization and the mean-field potential. In
such cases, the size of the α cluster should differ from that of a free α particle and may be enlarged
to gain the attraction from the mean-field potential. Therefore, the common-size clusters may be
favored in the inner region. In the outer region, the difference originates in the defect of the present
GCM calculation. To analytically remove the center-of-mass wave function, the wave packet size
of the AMD wave function is common to all nucleons. As a result, even at a large inter-cluster
distance, the oscillator parameters for 16O and α clusters are common in the GCM wave function,
while they should be unequal to describe the correct asymptotics. It is evident that the common
oscillator parameters of the GCM wave function reduces the RWA in the outer region in the unequal-
size calculation. From these differences, compared to the common-size calculation, the unequal size
calculation tends to yield smaller values of Sα and θα by approximately 10% to 20%, except for the
ground state.

Related to the inaccurate asymptotics of the GCM wave functions, we comment on how to choose
the channel radius a to evaluate the decay widths. In general, if the GCM wave function has the
correct asymptotics, any choice of the channel radius should give the correct decay widths for the
narrow resonances to which the R-matrix theory can be safely applied. However, because the bound-
state approximation is often applied as mentioned above, the GCM wave function has inaccurate
asymptotics, which causes the channel radius dependence and uncertainty of the evaluated widths.
For example, in the present calculation, one can observe this uncertainty as the strong dependence
of the dimensionless decay widths θ2

α(a) on the channel radius a. To ease this problem, several
prescriptions have been suggested. For example, in Ref. [86], two different methods are discussed:
the separation energy method (SEM) [87] and the Green’s function method (GFM) [88,89]. In the
SEM, which is often used because of its simplicity, the channel radius a is chosen so that the calculated
RWA and the Coulomb wave function are smoothly connected at a channel radius outside the final
peak of the calculated RWA. The GFM connects the calculated RWA to the correct asymptotics using
the Green’s function with auxiliary potential. Hence, it is more a sophisticated method and applied
for more accurate width estimation of broader resoannces. In the present calculation, when we apply
SEM, the channel radius a = 6 fm is preferable for the 1−

1 state, while the choice of a = 7 fm is
better for the 0+

4 state, although the use of the R-matrix for the 0+
4 state with a very broad width can

be dangerous.
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3.2. RWA of the 24Mg + α clustering in 28Si

A variety of cluster states, such as 24Mg + α, 20Ne + 2α, and 16O + 12C clustering, are expected to
exist in 28Si. Many of them are related to the nuclear reactions in astrophysical processes, and hence
have been intensively studied for many years [83,84,90–100], although their properties are not fully
understood yet.

In our recent study [84], we performed the AMD calculation to identify these cluster states. We
performed energy variation with constraints on the quadrupole deformation parametersβ and γ [101]
to generate the AMD wave functions for the GCM calculation. In addition to this, we also performed
energy variation with a constraint on the inter-cluster distance [102] to generate various cluster
configurations. These two kinds of basis wave functions are superposed and the GCM calculation
was performed. As a result, we suggested various cluster bands: two groups of 24Mg +α bands, and
the 20Ne + 2α and 16O + 12C bands. From these, we discuss here the RWAs of a group of 24Mg +α
bands named the “24Mg + α (T) bands” as examples of deformed clusters.

Figure 3(a) shows the 24Mg + α (T) bands. Three rotational bands with pronounced 24Mg + α

clustering are built on the 1−
1 and 0+

6 states, and on a group of 1− states (1−
8 , 1−

9 , and 1−
10). Note that

the 24Mg + α configuration is strongly mixed with other cluster configurations such as 16O + 12C.
As a result, it does not appear as a single state in the band built on the 1−

8,9,10 states. Therefore, in
Fig. 3(a) we show the averaged energy for the 3−, 5−, 7−, and 9− states by the dotted lines. These
three bands have large overlaps with the basis wave function shown in Fig. 3(c), in which the longest
axis of the deformed 24Mg cluster is perpendicular to the inter-cluster coordinate between the 24Mg
and α clusters. The ground band is dominated by the mean-field configuration shown in Fig. 3(b),
but it also has a non-negligible overlap with the cluster configuration shown in Fig. 3(c). Therefore,
the ground band was also assigned as a member of the 24Mg+α (T) bands. Because the 24Mg cluster
is considerably deformed, we expect that the rotational excitation of 24Mg is coupled to the angular
momentum of the inter-cluster motion in the RWAs. Experimentally, the corresponding cluster bands
are not clearly identified, except for the ground band. In Fig. 3 we show several candidates for the
24Mg + α cluster states observed by the α transfer reaction on 24Mg [93,97].

To calculate the RWAs of the 0+
1 , 0+

6 , 1−
1 , and 1−

8,9,10 states, the cluster wave functions in the
reference state are prepared as follows. The α cluster is assumed to have a (0s)4 configuration and

Fig. 3. (a) The calculated and observed partial level scheme of 28Si corresponding to the 24Mg + α cluster
states. The dashed horizontal lines indicate experimental and theoretical 24Mg + α threshold energies. (b) and
(c) Intrinsic density distributions of the AMD wave functions which have the maximum overlap with the 0+

1

and 0+
6 states, respectively.
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Fig. 4. The RWAs of the 0+
1 , 0+

6 , 1−
8 , 1−

9 , and 1−
10 states of 28Si for 24Mg+α cluster channels j2 ⊗ l up to j2 = 4

and l = 5.

Table 2. The calculatedα spectroscopic factors Sα and the dimensionless decay widths θ 2
α of 24Mg+α clustering

in 0+ states. The dimensionless decay widths are given in units of 10−2 and calculated with a channel radius
of a = 5 and 9 fm for the 0+

1 and 0+
6 states, respectively.

Sα θ 2
α

jπ ⊗ l(−)l 0+ ⊗ 0+ 2+ ⊗ 2+ 4+ ⊗ 4+ 0+ ⊗ 0+ 2+ ⊗ 2+ 4+ ⊗ 4+

0+
1 0.05 0.05 0.03 1.1 1.0 0.3

0+
6 0.11 0.07 0.01 1.1 1.0 0.2

its spherical oscillator parameter is set to να = 0.25 fm−2. The AMD wave function for the 24Mg
cluster is calculated by energy variation, and it is projected to the 0+, 2+, and 4+ states. The oscillator
parameter is determined to minimize the energy of the 0+ state. Because of the triaxial deformation
of the 24Mg, the optimum oscillator parameter is anisotropic and has different values for the x, y,
and z directions: νMg = (0.12, 0.167, 0.169) fm−2. Using these cluster wave functions, the RWA
is calculated for various combinations of the angular momenta. Denoting the parity and angular
momentum of 24Mg by jπ and those of the inter-cluster motion by l(−)l , the RWAs of the 0+ states
are calculated for the combinations jπ ⊗ l(−)l = 0+ ⊗ 0+, 2+ ⊗ 2+, and 4+ ⊗ 4+, and the RWAs of
the 1− states are calculated for jπ ⊗ l(−)l = 0+ ⊗ 1−, 2+ ⊗ 1−, 2+ ⊗ 3−, 4+ ⊗ 3−, and 4+ ⊗ 5−.

The results are presented in Fig. 4 and Tables 2 and 3. Although detailed discussions on RWAs
and their relationship to the clustering in 28Si will be made in our next work, we briefly comment
here on the characteristics of the calculated RWAs.

The RWAs of the 0+
1 and 1− states show similar natures. These states are dominated by the mean-

field configurations, and are under the strong influence of the spin–orbit interaction. Therefore, the
clusters are considerably distorted and Sα is rather small. Nevertheless, we recognize a non-negligible
cluster formation probability around the surface region of the nucleus (a � 4 fm), which indicates
the duality of the shell and cluster, as discussed in Ref. [84]. In terms of the SU (3) shell model, the 0+

1
and 1−

1 states correspond to the 0�ω and 1�ω configurations, and hence the nodal quantum number n
of RWAs should be equal to n = (N − l)/2, where N is 8 and 9 for the 0+

1 and 1− states, respectively.
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Table 3. The calculated spectroscopic factors Sα and the dimensionless decay widths θ 2
α of 24Mg+α clustering

in 1− states. The dimensionless decay widths are given in units of 10−2 and calculated with a channel radius
of a = 6 and 9 fm for the 1−

1 and 1−
8,9,10 states, respectively.

Sα

jπ ⊗ l(−)l 0+ ⊗ 1− 2+ ⊗ 1− 2+ ⊗ 3− 4+ ⊗ 3− 4+ ⊗ 5−

1−
1 0.06 0.02 0.02 0.03 0.01

1−
8 0.06 0.02 0.04 0.01 0.01

1−
9 0.09 0.04 0.02 0.01 0.01

1−
10 0.12 0.03 0.04 0.01 0.01

θ 2
α

jπ ⊗ l(−)l 0+ ⊗ 1− 2+ ⊗ 1− 2+ ⊗ 3− 4+ ⊗ 3− 4+ ⊗ 5−

1−
1 0.8 0.3 0.3 0.2 ×10−1 0.5 ×10−1

1−
8 1.9 0.6 0.8 0.2 0.2

1−
9 3.0 1.1 1.3 0.3 0.3

1−
10 5.0 1.5 0.2 0.6 0.5

We clearly see that the calculated RWAs follow this relationship. For example, the 0+ ⊗ 0+ RWA
has four nodes, while the 2+ ⊗ 2+ RWA has three.

Compared to the 0+
1 and 1−

1 states, the 0+
6 and 1−

8,9,10 states have developed cluster structures.
It is confirmed from their larger Sα and RWAs stretch outwards. Differently from the 0+

1 and 1−
1

states, their RWAs do not follow the relationship of n = (N − l)/2. This is due to mixing with other
cluster and non-cluster configurations, which disturbs the behavior of RWAs. Indeed, we see that the
RWAs, in particular those of the 1−

8,9,10 states, show irregular behavior in the inner and outer regions.
This is consistent with the fact that the 24Mg + α configuration is strongly mixed with non-cluster
configurations and does not appear as a single state but appears as the 1−

8,9,10 states in this energy

region. It is also noted that the RWAs in the jπ ⊗ l(−)l = 2+ ⊗ l(−)l and 4+ ⊗ l(−)l channels are
as large as those of the 0+ ⊗ l(−)l channels, which reveals that the rotational excitation of 24Mg is
coupled to the inter-cluster motion, because of the large deformation of 24Mg.

It must be emphasized that the RWAs shown in Fig. 4 are hardly ever obtained by the ordinary
method because of the large computational cost required. Thus, the Laplace expansion method
realizes accurate and detailed analysis of the clustering based on the RWAs, which is indispensable
in discussing the clustering in heavier-mass and unstable nuclei.

4. Summary

In summary, we have presented a new method for RWA calculation named the Laplace expansion
method. This method is based on the Laplace expansion and the analytical separation of the center-
of-mass wave function, and is applicable to the Brink–Bloch and AMD wave functions. The method
enables the calculation of RWA for unequal-sized and deformed clusters without any approximations.
Furthermore, it allows the use of the GCM wave function for the cluster wave functions, which enables
the calculation of the RWA of non-conventional clusters such as 6He. Despite these advantages, the
method does not require large computational cost, except for heavy-mass clusters.

Using the Laplace expansion method, we calculated the RWAs of the 16O + α clustering as
an example of unequal-sized clusters. It was found that the 16O + α RWA calculated by using
unequal-sized clusters tends to be smaller than the common-size case, and the difference amounts
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to 10%–20%. We also presented the RWAs of the 24Mg + α clustering as an example of deformed
clusters. It was shown that the RWAs are considerably distorted, because of mixing with the cluster
and non-cluster configurations. The RWAs also showed that the rotational excitation of 24Mg is
coupled to the inter-cluster motion, because of the large deformation of 24Mg. Thus, the Laplace
expansion method enables the calculation of RWA for various cluster systems, and we expect that it
will be very helpful for the study of clustering in heavier-mass and unstable nuclei.
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Appendix A. Calculation of the overlaps needed in the Laplace expansion method

Here, we explain the calculation of the overlaps defined by Eqs. (34), (35), and (36). For an arbitrary
matrix 
, Eq. (34) is calculated by numerical integration:

χlml (a; i1, . . . , iA) =
( |2
|
π3

)1/4 ∫
dâY ∗

lml
(â) exp

{−(a − z)T
(a − z)
}
. (A.1)

However, when χ(r; i1, . . . , iA) is a spherical Gaussian, i.e., when the matrix 
 is proportional to the
identity matrix I as 
 = γ I , Eq. (A.1) has a simple analytical form:

χlml (a; i1, . . . , iA) = 4π il(2γ az)e−γ (a2+z2)
zlY ∗

lml
(ẑ)

zl
, (A.2)

where il(2γ az) denotes the regular modified spherical Bessel function. The complex variable z is
defined as z = √

z · z, and zlY ∗
lml
(ẑ) should be calculated in its Cartesian representation.

The overlap N j1π1
m1 (i1, . . . , iC1) defined by Eq. (35) is calculated as follows. For simplicity, we first

assume that the wave function �j1π1
m1C1

in the reference state is also represented by a single projected
AMD wave function,

�AMD
C1

= �cm
C1
�int

C1
= 1√

C1!

∣∣∣∣∣∣∣
〈r1|φi1〉 . . . 〈r1|φiC1

〉
...

. . .
...

〈rC1 |φi1〉 . . . 〈rC1 |φiC1
〉

∣∣∣∣∣∣∣ , (A.3)

�cm
C1

=
( |2C1m|

π3

)1/4

exp
{−C1RT

C1
mRC1

}
, (A.4)

�
j1π1
m1C1

= 1√
nj1π1

k1

P̂j1
m1k1

P̂π1�int
C1

, nj1π1
k1

= 〈�int
C1

|P̂j1π1
k1k1

|�int
C1

〉 . (A.5)

Then, the overlap is given as

N j1π1
m1 (i1, . . . , iC1) = 2j1 + 1

8π2
√

nj1π1
k1

∫
d	Dj1∗

k1m1
(	) 〈�int

C1
|P̂π1R̂(	)|� int

C1
(i1, . . . , iC1)〉 , (A.6)
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where the integration over Euler angles is numerically calculated. To calculate the integrand in
Eq. (A.6), we introduce an AMD wave function �̃AMD

C1
,

�̃AMD
C1

(i1, . . . , iC1) = �̃cm
C1
� int

C1
(i1, . . . , iC1) = 1√

C1!

∣∣∣∣∣∣∣
〈r1|ψ̃i1〉 . . . 〈r1|ψ̃iC1

〉
...

. . .
...

〈rC1 |ψ̃i1〉 . . . 〈rC1 |ψ̃iC1
〉

∣∣∣∣∣∣∣ , (A.7)

〈r|ψ̃i〉 =
( |2M |
π3

)1/4

exp
{−(r − Z ′

i)
TM (r − Z ′

i)
}
(αiχ↑ + βiχ↓)ηi, (A.8)

�̃cm
C1

=
( |2C1M |

π3

)1/4

exp
{−C1RT

C1
MRC1

}
, (A.9)

Z ′
i = Z i − 1

C1

∑
j∈i1,...,iC1

Z j, i ∈ {i1, . . . , iC1}, (A.10)

where the Gaussian centroids are shifted from �AMD
C1

(i1, ..., iC1) so that the center-of-mass wave
function is located at the origin of the coordinate system. Note that this shift does not change the
internal wave function. Therefore, the internal wave function of �̃AMD

C1
is the same as the ket state

of the integrand in Eq. (A.6). Using Eqs. (A.3) and (A.7), the overlap of AMD wave functions is
calculated as

〈�AMD
C1

|P̂π R̂(	)|�̃AMD
C1

〉 = 〈�int
C1

|P̂π R̂(	)|� int
C1

〉 〈�cm
C1

|P̂π R̂(	)|�̃cm
C1

〉 . (A.11)

Here, the calculation of the left-hand side of Eq. (A.11) is straightforward, and the overlap of the
center-of-mass wave functions is analytically calculated as

〈�cm
C1

|P̂π R̂(	)|�̃cm
C1

〉 =
( |2m||2M |

|M ′ + m|2
)1/4

, (A.12)

M ′ = RT(	)MR(	), (A.13)

where R(	) is a 3 × 3 rotation matrix which satisfies R̂(	)R = R(	)R. Therefore, the integrand is
proportional to the overlap of AMD wave functions:

〈�int
C1

|P̂π R̂(	)|� int
C1

〉 =
( |M ′ + m|2

|2m||2M |
)1/4

〈�AMD
C1

|P̂π R̂(	)|�̃AMD
C1

〉 . (A.14)

It is clear that when � j1π1
C1

and/or � j1π1
C1

are not a single AMD wave function but a GCM wave
function, the integrand is a superposition of Eq. (A.14).

Appendix B. An ordinary method for RWA calculation

To keep this paper self-contained, we explain an ordinary method for RWA calculation [70–73] that
is often used in cluster models and AMD, and derive Eqs. (43), (44), (45), and (46). We start from
the set of Brink–Bloch-type wave functions given in Eq. (40):

�BB
j1π1m1j2π2m2

(Sp) = n0A
{

P̂j1
m1k1

P̂π1�C1

(
−C2

A
Sp

)
P̂j2

m2k2
P̂π2�C2

(
C1

A
Sp

)}
, (B.1)

n0 =
√

C1!C2!
A! , Sp = (0, 0, Sp), (B.2)
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where�C1

(−C2/ASp
)

and�C2

(
C1/ASp

)
are the wave functions for clusters with masses C1 and C2,

placed with an inter-cluster distance Sp. They are respectively projected to jπ1 and jπ2 . By assuming
that �C1 and �C2 are the SU (3) shell model wave functions without any particle–hole excitations
and have the common oscillator parameter �ω = 2�

2ν/m, their internal and center-of-mass wave
functions can be analytically separated:

�C1

(
−C2

A
Sp

)
= �int

C1
�cm

C1
, �cm

C1
=
(

2C1ν

π

)3/4

exp
{
−C1ν(RC1 + C2

A
Sp)

2
}

, (B.3)

�C2

(
C1

A
Sp

)
= �int

C2
�cm

C2
, �cm

C2
=
(

2C2ν

π

)3/4

exp
{
−C2ν(RC2 − C1

A
Sp)

2
}

, (B.4)

where RC1 and RC2 are the center-of-mass coordinates of the clusters defined by Eq. (22). In a similar
way to Eq. (24), we rewrite the product of the center-of-mass wave functions as follows:

�cm
C1
�cm

C2
= �cm

A χ(r), (B.5)

�cm
A =

(
2Aν

π

)3/4

exp
{−AνR2}, (B.6)

χ(r) =
(

2γ

π

)3/4

exp
{−γ (r − Sp)

2}, γ = C1C2

A
ν. (B.7)

Here, R and r are the center-of-mass coordinate of the A-body system and the inter-cluster coordinate
defined by Eqs. (5) and (26), respectively. Note that the oscillator parameters of the clusters should
be the same, otherwise the decomposition to the center-of-mass and relative coordinates is not
straightforward. Since the relative wave function Eq. (B.7) is the coherent state of HO except for a
phase factor, it is represented by a superposition of the HO wave functions [71],

χ(r) =
∑
Nl

aNl(Sp)RNl(r)Yl0(r̂), (B.8)

aNl(Sp) = (−)(N−l)/2

√
(2l + 1)N !

(N − l)!!(N + l + 1)!!
(γ S2

p )
N/2

√
N ! e−γ S2

p/2, (B.9)

where RNl(r) is the radial wave function of HO and N denotes the principal quantum number. With
these equations, the Brink–Bloch-type wave function is rewritten as follows:

�BB
j1π1m1j2π2m2

(Sp) = �cm
A

∑
Nl

aNl(Sp)n0A
{

RNl(r)Yl0(r̂)�
j1
C1m1

�
j2
C2m2

}
. (B.10)

Then, by using the property of the angular momentum projector PJ
MK |JK〉 = |JM 〉 and the coupling

of angular momenta, we introduce the wave function

�Jπ
j1π1j2π2j12l(Sp) = 2l + 1

2J + 1

∑
m12m1m2

CJm12
l0m12

P̂J
Mm12

Cj12m12
j1m1j2m2

�BB
j1π1m1j2π2m2

(Sp)

=
∑

N

aNl(Sp)n0A
{

RNl(r)

[
Yl(r̂)

[
�

j1π1
C1
�

j2π2
C2

]
j12

]
JM

}
, (B.11)

in which the angular momenta of the clusters are coupled to j12, and j12 is coupled with the orbital
angular momentum of the relative motion l yielding the total angular momentum J .�j1π1

C1
and�j2π2

C2
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denote the projected internal wave functions, �j1π1
C1

= P̂j1
m1k1

�int
C1

and �j2π2
C2

= P̂j2
m2k2

�int
C2

. When
the inter-cluster distance Sp, p = 1, . . . , pmax, is dense discretized, and the maximum (minimum)
distance is chosen to be large (small) enough, a set of wave functions given by Eq. (B.11) should
span the complete set for the C1 + C2 cluster states with the above-mentioned angular momentum
coupling, i.e., ∑

pq

|�Jπ
j1π1j2π2j12l(Sp)〉 B−1

pq 〈�Jπ
j1π1j2π2j12l(Sq)| � 1, (B.12)

Bpq = 〈�Jπ
j1π1j2π2j12l(Sp)|�Jπ

j1π1j2π2j12l(Sq)〉 . (B.13)

Inserting Eq. (B.12) into the definition of the RWA, we get

yJπ
j1π1 j2π2 j12l(a) =

√
A!

(1 + δC1C2)C1!C2!

×
∑
pq

〈
δ(r − a)

r2

[
Yl(r̂)

[
�

j1π1
C1
�

j2π2
C2

]
j12

]
JM

�Jπ
j1π1j2π2j12l(Sp)

〉
× B−1

pq 〈�Jπ
j1π1j2π2j12l(Sq)|�Jπ

MA〉 . (B.14)

Using the completeness of the HO wave function
∑

N RNl(r)RNl(a) = δ(r − a)/r2 and Eq. (B.11),
the braket in the second line reads〈

δ(r − a)

r2

[
Yl(r̂)

[
�

j1π1
C1
�

j2π2
C2

]
j12

]
JM

�Jπ
j1π1j2π2j12l(Sp)

〉
= n0

∑
NN ′

aN ′l(Sp)RNl(a)

×
〈
RNl(r)

[
Yl(r̂)

[
�

j1π1
C1
�

j2π2
C2

]
j12

]
JM

A
{

RN ′l(r)

[
Yl(r̂)

[
�

j1π1
C1
�

j2π2
C2

]
j12

]
JM

}〉
= n0

∑
N

aNl(Sp)μNlRNl(a). (B.15)

In the last line, we assumed that � j1
C1

and � j2
C2

are eigenstates of the principal quantum number N̂ .
In this case, the braket in the second line is non-zero only when N = N ′, and we denote it μN δNN ′ .
From Eqs. (B.14) and (B.15), we get

yJπ
j1π1 j2π2 j12l(a) = 1√

1 + δC1C2

∑
N

μNl

⎛⎝∑
pq

aNl(Sp)B
−1
pq 〈�Jπ

j1π1j2π2j12l(Sq)|�Jπ
MA〉
⎞⎠RNl(a). (B.16)

Simplifying this equation, we obtain Eqs. (43), (44), (45), and (46).

References
[1] K. Ikeda, N. Takigawa, and H. Horiuchi, Prog. Theor. Phys. Suppl. E 68, 464 (1968).
[2] M. Seya, M. Kohno, and S. Nagata, Prog. Theor. Phys. 65, 204 (1981).
[3] W. von Oertzen, Z. Phys. A Hadron. Nucl. 354, 37 (1996).
[4] Y. Kanada-En’yo, H. Horiuchi, and A. Doté, Phys. Rev. C 60, 064304 (1999).
[5] N. Itagaki and S. Okabe, Phys. Rev. C 61, 044306 (2000).
[6] P. Descouvemont, Nucl. Phys. A 699, 463 (2002).
[7] M. Freer et al., Phys. Rev. Lett. 82, 1383 (1999).
[8] M. Freer et al., Phys. Rev. C 63, 034301 (2001).
[9] N. Curtis et al., Phys. Rev. C 70, 014305 (2004).

18/20

http://dx.doi.org/10.1143/PTPS.E68.464
http://dx.doi.org/10.1143/PTP.65.204
http://dx.doi.org/10.1007/s002180050010
http://dx.doi.org/10.1103/PhysRevC.60.064304
http://dx.doi.org/10.1103/PhysRevC.61.044306
http://dx.doi.org/10.1016/S0375-9474(01)01286-6
http://dx.doi.org/10.1103/PhysRevLett.82.1383
http://dx.doi.org/10.1103/PhysRevC.63.034301
http://dx.doi.org/10.1103/PhysRevC.70.014305


PTEP 2017, 053D01 Y. Chiba and M. Kimura

[10] M. Milin et al., Nucl. Phys. A 753, 263 (2005).
[11] H. G. Bohlen, T. Dorsch, Tz. Kokalova, W. von Oertzen, Ch. Schulz, and C. Wheldon, Phys. Rev. C

75, 054604 (2007).
[12] P Descouvemont and D Baye, Rep. Prog. Phys. 73, 036301 (2010).
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