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INVESTIGATION
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ABSTRACT Joint quantification of genetic and epigenetic effects on gene expression is important for
understanding the establishment of complex gene regulation systems in living organisms. In particular,
genomic imprinting and maternal effects play important roles in the developmental process of mammals
and flowering plants. However, the influence of these effects on gene expression are difficult to quantify
because they act simultaneously with cis-regulatory mutations. Here we propose a simple method to de-
compose cis-regulatory (i.e., allelic genotype), genomic imprinting [i.e., parent-of-origin (PO)], and maternal
[i.e., maternal genotype (MG)] effects on allele-specific gene expression using RNA-seq data obtained from
reciprocal crosses. We evaluated the efficiency of method using a simulated dataset and applied the
method to whole-body Drosophila and mouse trophoblast stem cell (TSC) and liver RNA-seq data. Con-
sistent with previous studies, we found little evidence of PO and MG effects in adult Drosophila samples. In
contrast, we identified dozens and hundreds of mouse genes with significant PO and MG effects, respec-
tively. Interestingly, a similar number of genes with significant PO effect were detect in mouse TSCs and
livers, whereas more genes with significant MG effect were observed in livers. Further application of this
method will clarify how these three effects influence gene expression levels in different tissues and de-
velopmental stages, and provide novel insight into the evolution of gene expression regulation.
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Epigenetics, which refers to phenotypic modifications in the absence of
changes to information encoded in DNA molecules, has become a
central topic in biological research in order to understand the develop-
ment of multicellular organisms and maintenance of highly differenti-
ated cells and tissues (Waddington 1942). Although epigenetic effects
can contribute to a wide array of phenotypes, most studies of epigenetic
effects in the era of molecular biology have concerned gene expression,

which is much more easily quantified than other phenotypes on a
genome-wide scale. Epigenetic effects on gene expression can be clas-
sified as either cis- or trans-epigenetic effects (Bonasio et al. 2010). In
diploid organisms, cis-epigenetics refers to chromosome-specific mod-
ification of gene expression. For example, histone protein modification
and cytosine methylation could affect the expression of genes located
on the same chromosome. In contrast, trans-epigenetics refers to epi-
genetic modifications of gene expression that have equal effects on both
chromosomes of diploid organisms. In a broad sense, trans-epigenetics
would therefore include all gene expression changes caused by intrinsic
and extrinsic environmental changes, such as those observed in cell
differentiation and reaction to environmental change.

Genomic imprinting is awell-knownphenomenon inmammals and
flowering plants and refers to the process bywhich genes inherited from
a particular sex are downregulated or completely silenced (Köhler et al.
2012; Barlow and Bartolomei 2014). By the above definition, genomic
imprinting is caused by cis-epigenetic mechanisms. Among mammals,
genomic imprinting has been most extensively studied in laboratory
mice (Mus musculus), and �150 loci, including both protein-coding
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genes and noncoding RNAs, have been experimentally identified as
imprinted (Blake et al. 2010). In contrast, it remains unclear whether
genomic imprinting can be detected in nonmammalian animals. In
particular, there have been conflicting results whether fruit flies
(Drosophilamelanogaster), which lackDNAmethyltransferases [except
for theDnmt2 (MT2) product], are subject to genome-wide imprinting
effect (Menon and Meller 2010; Coolon et al. 2012; McEachern et al.
2014; Takayama et al. 2014). Although the underlyingmechanisms and
causes of imprinting are not entirely clear, genomic imprinting is nec-
essary to our understanding of the complex relationships between ge-
notypes and phenotypes (Ferguson-Smith 2011). Therefore, the effects
of genomic imprinting in different organisms should be determined
using standardized methods.

Recent advances in sequencing technology have enabled the eval-
uation of a genome-wide imprinting pattern. RNA-seq transcriptome
sequencing has allowed the measurement of chromosome-specific (or
allele-specific) gene expression levels for paternally and maternally
inherited genes that harbor genetic markers, such as single nucleotide
variations (SNVs) (Wittkopp 2005). The comparison of patterns in
allele-specific gene expression between reciprocal crosses is informative
because of potential differences in gene expression levels as a conse-
quence of cis-regulatorymutations (Wittkopp 2005); i.e., observation of
parent-of-origin (PO)–dependent allelic imbalance in both reciprocally
crossed individuals suggests genomic imprinting rather than a cis-
regulatory effect. Accordingly, such comparisons are widely used to
discern cis-genetic and cis-epigenetic effects; i.e., if allelic imbalance
depending on PO is observed in both reciprocally crossed individuals,
the imbalance is likely due to genomic imprinting rather than the cis-
regulatory effect. Several studies have implemented these strategies to
identify genes subject to genomic imprinting on a genome-wide scale
(Babak et al. 2008; Gregg et al. 2010; Coolon et al. 2012; Calabrese et al.
2015). However, this method tends to be conservative if the cis-regulatory
effect is prevalent, because it may reduce the power of statistical tests to
detect imprinting effects.

In addition, comparisons of reciprocal crosses are complicated by
additional confounding factors because reciprocally crossed individuals
havedifferentmaternal environments.Thisfindingwasfirst describedas
the maternal effect in a classical experiment byWalton and Hammond
(1938). Although classical family studies and embryo transplantation
studies have shown that the environmental effect on offspring pheno-
type is generally larger than the genetic effect (Gluckman and Hanson
2004), genetic effects may contribute to the maternal effect to some
extent. One example would be the genotype effect in oocyte cytoplasm,
as these cells inherit mRNA and mitochondrial DNA from the mother
in a process that meets the definition of a trans-regulatory effect, which
is a genetic effect equally affecting both chromosomes in a diffusible
way (Emerson and Li 2010). In addition, prenatal and postnatal envi-
ronments determined by maternal genotype (MG) will contribute to
offspring phenotypes. Here we use the term MG effect, assuming ap-
propriate control of nongenetic environmental factors. Although the
MG effect may be subtle, it might contribute to gene expression pattern
in a transmanner. The PO andMG effects are hardly distinguished in a
conventional genetic analysis, because the phenotypes of offspring are
defined by the sum of the maternally and paternally inherited alleles,
and the maternal and paternal contributions are indistinguishable at
the phenotype level (Hager et al. 2008). However, by directlymeasuring
gene expression level of maternally and paternally inherited alleles,
there is an opportunity to separately evaluate the PO and MG effects.
A previous study proposed a method to jointly estimate the genetic cis-
regulatory, or allelic genotype (AG) and PO effects, but the MG effect
was not examined (Zou et al. 2014).

Here, we have proposed a simple statistical framework for simulta-
neously and separately estimating the AG, PO, andMG effects on gene
expression in reciprocally crossed individuals when the allele specific
gene expression level is provided, and have demonstrated the effective-
ness of this method using a simulated dataset. We used a generalized
linear model (GLM) to quantify each effect, assuming a lack of in-
teraction. The previous genome-wide study of the PO effect, which was
designed without replication, suggested the importance of biological
replicates (Coolon et al. 2012). GLMs efficiently deal with the contri-
bution of each factor and fluctuations among biological replicates. We
applied this method to two different organisms, Drosophila and mice.
For the former, we obtained a new adult female whole-body gene
expression dataset using two pairs of reciprocal crosses: F1 hybrids of
the Drosophila Genetic Reference Panel (DGRP) strains for which
genomic sequences were made publicly available (Mackay et al.
2012). For mice, we reanalyzed recently published datasets of tropho-
blast stem cells (TSCs) and livers from reciprocal crosses between
CAST/EiJ and C57BL/6NJ (Cast/B6) animals (Goncalves et al. 2012;
Calabrese et al. 2015). Although we identified statistically significant
AG effect for a considerable number of genes in both organisms, we
identified a very small number of genes with significant PO and MG
effects in Drosophila, consistent with an earlier report by Coolon et al.
(2012). In contrast, we found that dozens of genes in mouse TSCs and
livers were subject to significant PO effect. In addition, considerably
higher number of genes in mouse livers exhibited a significant MG
effect compared to genes in mouse TSCs, indicating that the MG effect
tends to be specific to tissues or developmental stages.

MATERIALS AND METHODS

GLM design
Suppose that there are two different isogenic strains, A andB. Following
the general rule, A · B would denote F1 hybrids generated by a cross
between females of strain A and males of strain B. When strains A and
B exhibit sufficient genetic differences, we could measure allele-specific
gene expression levels using RNA-seq for each reciprocal cross, A · B
and B · A, with biological replications. The allele-specific expression
value E would then be defined using the following linear regression
model expression:

E5mþ AGþ POþMGþ e; (1)

where m and e represent average expression level and biological/
statistical noise, respectively. Here, we assumed each effect was a fixed
effect and assigned binary codes to the effects. For AG, we assigned
values of 0 and 1 toA and B, respectively. For PO, we assigned a value of
0 if the chromosome was inherited from the mother, and 1 if the
chromosome was inherited from the father. For MG, we assigned a
value of 0 to sample A · B (MGA) and 1 to sample B · A (MG B). The
error termwas estimated using biological replicates of samples. A sche-
matic representation of this design is shown in Figure 1.

We propose two GLM models to utilize allele-specific gene expres-
sion level toestimate theAG,PO,andMGeffects.Thefirstmodel is a log-
normal GLM. In a typical RNA-seq data analytical pipeline, gene
expression levels are normalized by gene length and total read count
and represented as FPKM values, which can be assumed to exhibit a
log-normal distribution (Bengtsson et al. 2005). Therefore, by log-
transforming allele-specific FPKM values, we could apply a Gaussian
distribution to the distribution of response variable in the GLM. The
second model is a negative binomial GLM. Since an actual RNA-seq
dataset is count data represented by the number of reads mapped on
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the transcript sequences, a negative binomial model has been widely
adopted in many statistical packages for analyzing RNA-seq data, such
as EdgeR (McCarthy et al. 2012) and DESeq (Anders and Huber 2010).
The log-normal and negative binomial GLM analyses were performed
using the glm function and EdgeR libraries in the R statistical package
(R core team 2016). The R script and expression data files used for the
GLMs are provided as Supplemental Material, File S1.

Computer simulations
In computer simulations, we only considered the log-normal GLM.We
assumed normally distributed allele-specific gene expression levels with
the fixed additive effects of AG, PO, and MG. Following the design
shown in Figure 1, we considered eight different cases for the presence
and absence of fixed effects: no effect, AG, PO, MG, AG + PO, AG +
MG, PO +MG, and AG + PO +MG. As the statistical detection power
for each fixed effect was determined by themagnitude of the fixed effect
size relative to biological, environmental, and/or statistical fluctuations,
we evaluated the power using the ratio of the fixed effect to the SD of
experimental noise, which was equivalent to Cohen’s d statistic. A
larger d indicated more power for effect detection.

For each simulated gene, we arbitrarily assigned a basal gene
expression level andaddedrandomnoisedrawn fromastandardnormal
distribution N(0, 1). After adding errors, a fixed effect was added to the
expression value. For example, when d = 5, we added 5 to the expres-
sion value when the binary code of samples (Figure 1) was 1 for each
fixed effect. For each condition, 1250 genes were simulated (in total,
10,000 genes for one replicate) with two or five replications, and the
simulated dataset was analyzed using the log-normal GLM method.
The significance of each gene test was evaluated using the criterion of
false discovery rate (FDR) = 0.05 (Benjamini and Hochberg 1995).

Figure 2 Evaluation of method using a simulated dataset. For each
panel, the rows represent effects given in the simulations and the
columns represent effects estimated using the generalized linear model
(GLM). Numbers in cells denote the fractions of correctly estimated
effect among 1250 simulated genes. (A) d = 5 with two replicates; (B)
d = 3 with five replicates; and (C) d = 5 for allelic genotype (AG) and
maternal genotype (MG), and d = 2 for parent-of-origin (PO) effects.

Figure 1 Schematic representation of the generalized linear model
(GLM) design. A hypothetical reciprocal cross between fly strains A
and B is assumed. Black and white chromosomes represent the A and
B genotype, respectively, and binary code specifies the allelic geno-
type (AG) effect (A: 0, B: 1). The parent-of-origin (PO) effect is set to
0 when the chromosome is inherited from the mother (left side of
diploid chromosomes) and 1 when the chromosome is inherited from
the father (right side of diploid chromosomes). The maternal genotype
(MG) effect is specified by the maternal genotype (A: 0, B: 1).
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RNA-seq dataset
In this study, we obtained new gene expression data of two pairs of
reciprocal crosses of D. melanogaster from the DGRP (Mackay et al.
2012;Massouras et al. 2012), representing crosses betweenRAL324 and
RAL852 and between RAL799 and RAL820. These strains were arbi-
trarily chosen from a list of DGRP strains. The flies were grown at 25�
with a 12-hr light/dark cycle and were fed standard cornmeal fly me-
dium. F1 virgin females were collected within 8 hr of eclosion and
maintained separately on the regular food media. After 4–7 d of iso-
lation, 20 flies per sample were flash frozen in liquid nitrogen and
stored at 280�. The whole-body total RNA was extracted using the
TRIzol Plus RNA Purification Kit (Thermo Fisher Scientific, Waltham,
MA). The concentration of extracted total RNA was measured using a
Nanodrop 2000c (Thermo Fisher Scientific) and quality was evaluated
using a TapeStation (Agilent Technologies, Foster City, CA). For RNA-
seq, 250 ng total RNAwas used for library constructionwith the TruSeq
Stranded mRNA Library Prep Kit (Illumina, San Diego, CA). Samples
were barcode-indexed and pooled for each sequencing lane. Raw read
data were deposited into the DDBJ SRA database under the Bioproject
ID PRJDB5381. The accession number and index type of each library
are provided in Table S1. Mouse TSC expression data were retrieved
from the GEOdatabase (https://www.ncbi.nlm.nih.gov/geo/) under the
accession number GSE63968, and mouse liver data were downloaded
from ArrayExpress (https://www.ebi.ac.uk/arrayexpress/) using the ac-
cession number E-MTAB-1091.

Estimation of allele-specific expression data
We obtained genomic sequences of focal strains to estimate allele-
specific gene expression levels. For Drosophila, we used the version
dm3 reference genome sequence, and obtained a VCF file (freeze 2.0
call) containing the information about the SNVs in DGRP strains from
the DGRP website (http://dgrp2.gnets.ncsu.edu/). Genome sequences
of RAL324, RAL799, RAL820, and RAL852 were reconstructed using
the FastaAlternateReferenceMaker command in GATK software
(McKenna et al. 2010). Amouse reference genome sequence (GRCm38)
and VCF files of CAST/EiJ and C57BL/6NJ strains were retrieved
from the ENSEMBL database (http://ensembl.org/) and the Sanger
Mouse Genomes Project website (http://www.sanger.ac.uk/science/
data/mouse-genomes-project), respectively. The genome sequences
of CAST/EiJ and C57BL/6NJ were reconstructed using the same pro-
cedure described for Drosophila data.

WeusedASE-TIGERsoftware,which isbasedonBayesian inference,
to estimate the allele-specific FPKM and number of allele-specific
mapped reads (Nariai et al. 2016). Briefly, RNA-seq reads weremapped
on transcriptome sequences reconstructed from two parental genomes.
Strain-specificDrosophila andmice transcriptome sequences were gen-
erated from the reconstructed genome sequences using the annotation
file for the build 5 D. melanogaster genome (downloaded from NCBI:
https://www.ncbi.nlm.nih.gov/) and Mus_musculus.GRCm38.84.gtf
formice (downloaded from ENSEMBL), respectively. We used bowtie2
software to map RNA-seq reads, using the option of “–very sensitive”
(Langmead and Salzberg 2012). Because we could not accurately esti-
mate the allele-specific expression levels of genes with small numbers of
SNVswithin genes, we filtered out transcripts with less than three SNVs
in the exons. Because ASE-TIGER reported FPKM and the number of
mapped reads for each transcript, those values were summed across
isoforms to estimate the value at the gene level. For the log-normal
model, weakly expressed genes (average FPKM, 0.1) were filtered out.
Before log-transformation, we replaced FPKM values ,0.01 with 0.01
to avoid legalism associatedwith very small or 0 values. For the negative
binomial GLM, genes with less than one count per million mapped
reads in less than half of the chromosomes were filtered out.

Gene ontology enrichment analysis
We utilized the DAVID 6.7 webserver to identify significantly enriched
geneontology terms froma list of geneswith significant effects (Jiao et al.
2012). Lists of background genes were extracted from all analyzed genes
in each dataset. For each gene ontology term, terms with p , 0.05,
determined using a modified Fisher’s exact test after correcting for
multiple testing, were selected as significantly overrepresented func-
tional categories (Hosack et al. 2003).

Data availability
The authors state that all data necessary for confirming the conclusions
presented in the article are represented fully within the article.

RESULTS

Design of the GLM
We conducted a GLM analysis in order to jointly estimate the effects of
AG, PO, and MG. Two different GLMs, the log-normal and negative
binomialGLM,were applied.A full descriptionof theGLMs is presented

Figure 3 Comparison of effect sizes of mouse trophoblast stem cells (TSCs) and livers in the negative binomial generalized linear model (GLM).
The estimated effect size of each gene is indicated by a colored circle. The effect sizes of the TSCs and livers are shown on the x- and y-axes,
respectively. Red circles represent genes with significant effects in both tissues and blue circles represent genes with significant effects in either
tissue. Genes indicated by black circles did not exert significant effects. The allelic genotype (AG), parent-of-origin (PO), and maternal genotype
(MG) effects are shown in (A–C), respectively.
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in theMaterials and Methods section. Briefly, in the log-normal GLM,
we estimated the allele-specific gene expression level as FPKM for each
gene and transformed these values to a log2 scale. The log2-transformed
expression values were used as response variables in the GLM, assum-
ing a Gaussian distribution. In the negative binomial GLM, the esti-
mated number of reads mapped on the transcriptome sequences from
each chromosomewere used as count data. Three fixed effects (AG, PO,
and MG) were set as the explanatory variables in the model and binary
codes were assigned to the values. A schematic representation of the
model is shown in Figure 1.

Computer simulations
Before analyzing real data, we performed computer simulations to
confirmwhether the GLM could successfully decompose three different
effects (AG,PO,andMG).Weonlyconsidered the log-normalmodel for
the simulations because both log-normal and negative binomial models
assume additive effects of the three factors and their underlying as-
sumptions are essentially the same. We evaluated a range of Cohen’s
d (1# d# 5), a ratio of the fixed effect to the SD of statistical noise, for
datasets replicated two and five times. In the GLM with Gaussian
distribution, p values monotonically decrease with |d| and we expected
that statistical power would increase with higher d values and more
replicates.

Our simulation using a duplicated dataset showed that we could
accurately estimate each effect at d = 5 (Figure 2A), where the true
positive rate of the effect was �0.95 with an FDR of 0.05. As expected,
the statistical power of the test increased remarkably with more repli-
cates (Figure S1and Figure S2). We attained very high statistical power
(true positive rate �0.95) with five replicates when d = 3 (Figure 2B).
We also tested whether any unbalanced effects could result in a biased
estimation of each effect. Figure 2C shows results from five replicates
wherein the d values were 5 for AG and MG and 2 for PO. Despite the
somewhat biased effect, we could accurately detect each significant
effect.

Analysis of Drosophila whole bodies
We first analyzed two adult female D. melanogaster datasets, using a
duplicated experimental design. In the log-normal GLM, after the ini-
tial filtering (see Materials and Methods), 6716 genes in the RAL799/
RAL820 cross and 6971 genes in the RAL852/RAL324 cross were an-
alyzed. We identified 776 and 1570 genes exhibiting signatures of the
AG effect (FDR = 0.05) in the RAL799/RAL820 and RAL852/RAL324
crosses, respectively (Table 1). In the negative binomial GLM, 6536 genes
in the RAL799/RAL820 cross and 6797 genes in the RAL852/RAL324
cross were analyzed. We identified 922 and 1732 genes exhibiting sig-
natures of the AG effect (FDR = 0.05) in the RAL799/RAL820 and
RAL852/RAL324 crosses, respectively (Table 2). Although none of the
genes showed significant PO and MG effects with the log-normal GLM,
4 to 11 genes showed significant PO and MG effects with the negative
binomial GLM.

Both methods agreed that 10–25% of genes in the DGRP strains
have a significant cis-regulatory effect. Among them, 221 and 400 genes
showed significant AG effect in both reciprocal crosses in the log-
normal and negative binomial GLM, respectively. On the other hand,
none of the genes with significant PO and MG effects overlapped be-
tween the reciprocal crosses. Detailed results are provided in File S2,
File S3, File S4, and File S5.

Analysis of mouse TSCs
The second dataset was obtained in TSCs from mouse reciprocal cross
Cast/B6 as reported by Calabrese et al. (2012), and composed of three
biological replicates. However, because one of the replicates had been
obtained in a previous study, we only used the dataset with duplicates in
our analysis. Using the log-normal GLM, we identified 1493, 273, and
four genes with significant AG, PO, and MG effects, respectively
(FDR , 0.05), among 13,343 genes in this dataset.

Although the sexesof analyzedTSCsamples areunknown,we expect
thatgeneson theXchromosomeshouldshowsignificantPOeffectwhen
the samples are males because a male inherits the X chromosome only
from themother. Indeed, most genes with significant PO effect (251 out
of273)were locatedonthemouseXchromosome,which implies that the
samples included male TSCs. When we examined the pattern of gene
expression on the Y chromosome and the expression level of the Xist
gene on the X chromosome, one of the TSC samples (GSM1561520)
showed similar gene expression pattern to the male liver samples, fur-
ther demonstrating that the TSC sample was from a male (data not
shown). Therefore, we excluded the genes on the X chromosome from
further analysis. After the filtering, the number of genes with significant
AG, PO, and MG effects became 1456, 22, and four, respectively, in the
log-normal GLM (Table 1).

Similar to the results ofDrosophila, we observed slightly more genes
with significant AG and PO effects using the negative binomial GLM;
after filtering out X chromosomal genes, in total, 2102 genes showed
significantAG effect and 64 genes showed significant PO effect (Table 2).
However, the negative binomial GLM identified 393 genes with signif-
icant MG effect, considerably higher than those identified by the log-
normal GLM. Detailed results are provided in File S6 and File S7.

Analysis of mouse livers
The third dataset comprised mouse liver expression data with six
replicates, as performed by Goncalves et al. (2012) using the same
Cast/B6 reciprocal cross combination. Using the log-normal GLM,
we identified 1608, 249, and 312 genes with significant AG, PO, and
MG effects, respectively, among the 12,293 genes in the liver dataset.
Because the samples were derived from male livers, most of the PO
genes were on the X chromosome. After filtering out the genes on the
X chromosome, the numbers of genes with significant AG, PO, andMG
effects were 1584, 16, and 304, respectively (File S4 and Table 1). Like-
wise, among 11,169 autosomal genes, the negative binomial GLM iden-
tified 2014, 35, and 1355 geneswith significant AG, PO, andMG effects,

n Table 1 Summary of the log-normal generalized linear model (GLM) analysis of Drosophila and mice

Drosophila melanogaster (Female Whole Body) Mus musculus (Cast/B6)

Samples RAL799/RAL820 RAL324/RAL852 TSC Liver

No. of analyzed genes 6176 6971 12,963 11,995
AG (FDR = 0.05) 776 1570 1456 1584
PO (FDR = 0.05) 0 0 22 16
MG (FDR = 0.05) 0 0 4 304

TSC, trophoblast stem cells; AG, allelic genotype effect; FDR, false discovery rate; PO, parent-of-origin effect; MG, maternal genotype effect.
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respectively (Table 2). Detailed results are provided in File S8 and
File S9.

Evaluation of the log-normal and negative
binomial GLMs
In both Drosophila and mice, the negative binomial model identified
more genes with significant effects, which indicates that the negative
binomial GLM has a lower rate of type II error and/or a higher rate of
type I error. Although the difference is small for the AG and PO effects,
the number of genes with significant MG effect considerably differs
between the log-normal and negative binomial GLMs. Despite of some
discrepancy, FDR-corrected p values were highly correlated between
the two models and the log-normal GLM gives more conservative
estimate of p values. Although the two methods have both advantages
and disadvantages, we primarily show the results of negative binomial
GLM in the following analyses.

Comparison between mouse TSCs and livers
Because the mouse TSC and liver data were obtained from the same
reciprocal crosses, we contrasted the difference between the two tissues.
In Figure 3, we present plots of the estimated effect sizes (fixed effect to
the expression level in log2 scale) using the negative binomial GLM, for
each gene in the TSCs and livers. We observed relatively small overlap
(24%) of genes with significant AG effect between TSCs and livers, and
many genes showed opposite AG effect in the two tissues (Figure 3A).
In contrast, although the significance level for the PO effect was differ-
ent between the TSCs and livers, probably attributable to different
sample size and noise level, the sign and size of PO effect were highly
consistent between the two tissues (Figure 3B). As for the MG effect, a
very small number of significant genes (29 genes) were overlapped
between the TSCs and livers, suggesting that the MG effect is highly
tissue specific (Figure 3C).

Functional analysis of genes with significant effects
We investigated whether there was significant enrichment of gene
ontology terms among the genes with significant AG, PO, and MG
effects. In Drosophila, none of the gene ontology terms were overrep-
resented after controlling for FDR = 0.05. In the mouse TSCs, only the
genes with significant MG effect showed the enrichment of annotated
gene functions; gene ontology terms neuron differentiation (GO:0030182)
and neuron development (GO:404866) were slightly overrepresented
in the genes with significant MG effect. In the liver, 30 gene ontology
terms were significantly enriched among genes with the AG effect
(FDR = 0.05); the most highly overrepresented gene category was
oxidation reduction process (GO: 0055114). Enriched terms for the
AG effect in the liver were mostly related to oxygen metabolism pro-
cess, protein binding activity, and membrane components (Table S2).
Genes with significant PO effect in the liver did not exhibit any
statistically significant enrichment. In contrast, genes with significant
MG effect exhibited statistically significant enrichment gene annota-

tion for 21 gene ontology terms, mostly related to ribosomal and
mitochondrial components (Table S3).

DISCUSSION
Here, we proposed a novel approach to decompose the three confound-
ing effects affecting gene expression levels in reciprocally crossed F1
hybrids. Although we applied the two different GLMs, log-normal and
negative binomial GLMs, we first focused on the log-normal GLM and
performed computer simulations because the relationship between the
effect size and error distribution in the log-normalmodel is muchmore
intuitively understandable. Our simulation study showed the efficiency
of thismethodwhen in the presence of sufficiently strong effects relative
to statistical noises. In our duplicated Drosophila dataset, the average
SDs of log2-transformed error were 0.255 for the RAL799/RAL820
reciprocal cross and 0.185 for the RAL852/RAL324 reciprocal cross.
The higher error variance observed in the RAL799/RAL820 cross was
likely due to the higher number of genes with significant AG effect in
that line (Table 1 and Table 2). In mouse samples, the average SDs of
log2-transformed error were 0.310 and 0.656 for TSCs and livers, re-
spectively. As described above, we only focused on the log-normal
model in the simulations, but we should note that the assumptions
for the distribution of biological and technical noises are different be-
tween the models, leading to the difference in statistical power.

Our analysis of two different reciprocal crosses of Drosophila is
largely corroborated by the Coolon et al. (2012) study that demon-
strated an absence of genomic imprinting in Drosophila. In addition,
we did not find strong evidence of the MG effect in the adult female
flies. However, the negative binomial GLM identified a small number of
genes with significant PO and MG effects. There was no overlap of
those candidate genes between two different reciprocal crosses, and we
were not able to conclude whether those candidate genes were true or
false positive genes. We also should note that studies to date have used
only adult files. Therefore, further experiments based on samples from
early developmental stages withmore replicates are required to conclude
the status of genomic imprinting and maternal effects in Drosophila.

In contrast to Drosophila, mouse datasets yielded dozens to hun-
dreds of genes with significant PO and MG effects. Although the two
datasets were conducted by different research groups, our comparison
between TSCs and livers provided a good opportunity to investigate
differences in each effect in the tissues and at developmental stages.
Although many genes are imprinted in a tissue-specific manner [e.g.,
DeChiara et al. (1991)], our results showed a generally consistent ge-
nome-wide pattern of the PO effect across tissues and developmental
stages (Figure 3). In contrast, small (24%) overlap between tissues was
observed among genes with significant AG effect, although a similar
number of genes were identified in both tissues. These results imply that
a majority of cis-regulatory mutations are tissue specific. This pattern
corroborates themodularity of gene regulation, whereinmanymutations
in cis-regulatory regions, such as enhancers, exhibit tissue-specific effects
(Wray 2007). Moreover, the number of genes with significant MG effect

n Table 2 Summary of the negative binomial generalized linear model (GLM) analysis of Drosophila and mice

Drosophila melanogaster (Female Whole Body) Mus musculus (Cast/B6)

Samples RAL799/RAL820 RAL324/RAL852 TSC Liver

No. of analyzed genes 6536 6797 12,219 11,169
AG (FDR = 0.05) 922 1732 2102 2104
PO (FDR = 0.05) 5 15 64 35
MG (FDR = 0.05) 6 12 393 1355

TSC, trophoblast stem cells; AG, allelic genotype effect; FDR, false discovery rate; PO, parent-of-origin effect; MG, maternal genotype effect.
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differed strikingly between TSCs and livers both in the log-normal and
negative binomial GLMs. As we identified similar numbers of genes with
significant AG and PO effects in both tissues, this differencemight reflect
important tissue-specific biological features. Although we cannot con-
vincingly explain weaker MG effect in the TSC dataset, we suspect that
TSCs, which are derived from embryos before implantation, spend less
time in maternal–fetal crosstalk compared with other fetal and adult
tissues.

WeexaminedwhetherourPOcandidategenes inmiceagreewith the
150 known imprinted genes (Blake et al. 2010). In TSCs, 26 out of
64 candidate genes were known as imprinted genes. Ano1 and Gab1
genes, which are not included in the list of 150 known imprinted genes
but are actually imprinted specifically in the placenta (Okae et al. 2012),
were identified as PO-biased genes in the negative binomial GLM.
Notably, the PO bias in Ano1 was not detected by Calabrese et al.
(2015) who shared a part of their dataset with our study. Likewise, in
livers, 10 out of 35 candidate genes were known as imprinted genes.
Among the 10 known imprinted genes, paternally biased Peg13 and
maternally biased Rian were not identified as imprinted genes in the
study using the same dataset (Goncalves et al. 2012). In addition to the
known imprinted genes, we identified 60 candidate genes with the PO
effect in TSCs and livers. Among them,Gm11407 and Snhg14 showed a
signature of PO bias both in TSCs and livers. Although Gm11407 is a
pseudogene, Snhg14 is a long-noncoding RNA located within an
imprinted locus. Because human SNHG14 is known to be imprinted
(Babak et al. 2008), mice Shng14 is also likely imprinted. The list of
imprinted genes identified in this study is shown in Table S4. Some
known mouse imprinted genes did not achieve statistical significance,
probably because of our statistical method. For example, paternally
imprinted H19 genes did not meet our criteria for a significant PO
effect. We examined expression data for this gene in TSCs and found
that the imprinting status was not highly consistent among replicates.
In addition, this gene was not expressed in livers. Therefore, our
method requires sufficient replicates with good experimental condi-
tions. In general, our method identified relatively fewer genes with
PO effect than previous studies using RNA-seq data (Gregg et al.
2010; Wang et al. 2011; DeVeale et al. 2012; Goncalves et al. 2012).

One of our most important methodologic achievements was the
ability to evaluate the maternal effect (MG effect) without nuclear or
embryo transplantation. Interestingly, the functional categories of genes
with significant MG effect were largely different between the TSCs and
livers. In particular, genes with significantMG effect in livers contained
many ribosomal andmitochondrial genes.Although it is reasonable that
the mitochondrial genotype plays an important role in the maternal
effect, it is unlikely that thematernal cytosolic effect is still active in adult
liver tissues. Therefore, the enrichment of ribosomal components in the
genes with significant MG effect in livers should be a consequence of
maternal effect during development. We note, however, that the ma-
ternal effect sizes were generally much smaller than those of the other
two effects; even though statistical significance was detected, effect sizes
ofMGhardly exceeded 2, suggesting that thematernal effect is prevalent
but has relatively minor effects on gene expression pattern (Figure 3C)
compared with the AG and PO effects.

Conclusions
Wehave reported a novel method to decompose the three confounding
effects on allele-specific gene expression level in reciprocal crosses, and
havedemonstratedtheeffectivenessof thismethodusingsimulateddata.
Although available data are currently limited, thismethod yieldedmany
biologically important observations in fruit flies andmice. This method
will contribute greatly to our understanding of how genetic and epige-

netic signals regulate patterns of gene expression and induce phenotypic
diversity among tissues and individuals.
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