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Abstract

Supersymmetric lattice Ward-Takahashi identities are investigated perturbatively up
to two-loop corrections for super doubler approach of N = 2 lattice Wess-Zumino models
in 1- and 2-dimensions. In this approach notorious chiral fermion doublers are treated
as physical particles and momentum conservation is modified in such a way that lattice
Leibniz rule is satisfied. The two major difficulties to keep exact lattice supersymmetry
are overcome. This formulation defines, however, nonlocal field theory. Nevertheless we
confirm that exact supersymmetry on the lattice is realized for all supercharges at the
quantum level. Delicate issues of associativity are also discussed.
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1 Introduction

Supersymmetry is considered to be one of the most important guiding principles to find
a formulation beyond the standard model. There is, however, only indirect evidence of
realization of supersymmetry for a moment. Supersymmetry should be broken even if it is
realized in nature. It is thus important to find a mechanism for the supersymmetry breaking.
The origin of supersymmetry is mysterious[1]. There are some interesting examples that the
origin of twisted supersymmetry is fundamentally related to a quantization of topological
field theory[2, 3, 4, 5]

Supersymmetric field theories need a regularization for the constructive definition of the
formulation. It has been a long standing challenge to realize exactly supersymmetric reg-
ularization on the lattice[6]. This problem is notoriously difficult to solve completely and
can be compared with the possible practical solution of chiral fermion problem for lattice
QCD[7, 8, 9, 10].

We find it is important to reconsider the origin of difficulties of realizing exact lattice
supersymmetry. We hope to find an origin of breaking mechanism of supersymmetry from
regularization point of view. There are two major obstacles to realize exact supersymmetry
on the lattice:
(1) Breakdown of Leibniz rule for the difference operator.
(2) Chiral fermion species doubler problem.
In the supersymmetry algebra bilinear product of supercharges is equal to a differential
operator which could be replaced by difference operator on the lattice. The difference operator
breaks distributive law of Leibniz rule as an operator while supercharges satisfy the rule,
which causes immediate breakdown of the supersymmetry algebra. Secondly in the naive
chiral fermion formulation on the lattice, the chiral fermion species doublers appear as real
extra particles. The unbalance of the degrees of freedom between bosons and fermions would
cause another source of supersymmetry breaking.

The difficulty (1) was already recognized by the first pioneering work by Dondi and
Nikolai[6]. In order to overcome this difficulty they proposed a possible modification of
lattice supersymmetry formulation in such a way that the conserved momentum should be
the momentum representation of difference operator; 1

a sin apµ instead of lattice momentum
pµ itself. The coordinate representation of this formulation has been studied later[11, 12]. To
our knowledge this proposal has never been taken seriously and not been investigated further
afterwards. In this paper we pursue along this line of lattice supersymmetry formulation by
solving the second chiral fermion problem (2) at the same time.

Due to the above difficulties exact lattice supersymmetry was given up at the early stage of
investigations. In two dimensional non-gauge theory, however, a partial restoration of exact
supersymmetry was realized by Nicolai mapping[13, 14, 15]. A possibility of spontaneous
breaking of supersymmetry was pointed out and investigated[16, 17]. Later the connection
between lattice chiral symmetry breaking and lattice supersymmetry breaking was claimed to
recover simultaneously in the continuum limit by Curci and Veneziano[18]. Then perturbative
recovery of the supersymmetry in the continuum limit was investigated intensively especially
by the use of Ward-Takahashi identities (WT-id.) of supersymmetry[19, 20, 21, 22, 23, 24, 25].

The difficulties of the second problem (2) for lattice supersymmetry was already recog-
nized by WT-id. analyses. In order to avoid chiral fermion species doublers of the naive
lattice fermion formulation we may employ the Wilson lattice fermion formulation which
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gets rid of species doublers by sending their mass to the order of inverse lattice constant.
In order to satisfy perturbative WT-id. it was shown by Bartels and Kramer that bosonic
doublers were needed by introducing bosonic Wilson terms to compensate fermion doublers
as counter terms[26]. This analyses suggested that we need bosonic species doublers to com-
pensate fermionic counter parts. This point was rediscovered and stressed by Giedt et.al.[27]
Even with a lattice gravity level with Wilson fermions the necessity of bosonic counter terms
was recognized[28]. If we identify the fermionic species doublers as physical particles as su-
per partner we need to introduce bosonic species doublers as well, which is precisely the
formulation of our SUPER DOUBLER APPROACH[29, 30].

In solving the second problem (2) we may naively expect to use the lattice chiral fermion
solution of QCD; modifying the definition of perturbative chiral transformation on the lattice
and using Ginsparg-Wilson fermions. In this formulation fermions are treated differently on
the lattice from bosons, which may cause another problem for exact lattice SUSY.

Obviously the practical solution of lattice QCD of chiral fermion problem triggered new
investigations on lattice SUSY[31, 32, 33, 34]. An exactness of WT-id. along this line has
been investigated intensively and commented[35, 36, 37, 34]. Especially the renormalization
group method of Ginsparg-Wilson relation for lattice SUSY gave a new insight into the
criteria how to choose a derivative operator on the lattice[38, 39, 40]. Unique solution of the
SLAC derivative for Ginsparg-Wilson relation was stressed from exact lattice SUSY point of
view[40].

Since it took long time for finding a practical solution of the chiral fermion problem of
lattice QCD, it has been expected that the story may go similar or there may not be a good
solution of exact lattice SUSY. A partial solution for exact supersymmetry was proposed
by Kaplan et. al.[41, 42, 43, 44]. and intensively investigated[41, 42, 43, 45, 46, 47, 48, 49,
50, 51]. The nilpotent part of extended twisted supersymmetry algebra can be kept exactly
supersymmetric on the lattice. Link gauge version of nilpotent super charge formulation
was proposed by Sugino[52, 53, 54]. In two dimensions this supersymmetric nature is strong
enough to ensure the recovery of superymmety of other super charges in the continuum limit
due to the super renormalizable nature of two dimensional field theory[41, 42, 43]. On the
other hand this formulation cleverly avoids the fundamental problem since the nilpotent
part of supersymmetry algebra does not include the lattice derivative operator which causes
fundamental difficulties.

Although the incompatibility of Leibniz rule and lattice difference operator of (1) has been
widely recognized, it was shown explicitly by Kato, Sakamoto and So that it is in fact impossi-
ble within the framework of locality, associativity and lattice translational invariance[55, 56].
In order to pursue to finding exact lattice SUSY formulation we need to give up some of
the fundamental principles of lattice field theory. In solving lattice chiral fermion problem
the definition of perturbative lattice chiral transformation was modified and the notion of
exponentially damping locality was introduced. We may need to widen the meaning of exact
lattice SUSY as well. There was a trial in this direction as a proposal of exact lattice SUSY
with infinite flavors interpretation [57].

Super charge exact formulation of twisted supersymmetric Wess-Zumino model and su-
per Yang-Mills were intensively studied in continuum formulation. The close connection
between Dirac-Kaehler twisting procedure of supersymmetry algebra and quantization was
cleared up and formulated successfully[3, 4, 5]. There appeared twisted version of lattice
SUSY formulation[58, 59, 60]. Based on the above mentioned continuum formulations the
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link approach formulation of lattice SUSY were proposed, where exact lattice SUSY was
claimed[61, 62, 63]. It was, however, pointed out that there is an ordering ambiguity of
products of fields in the link approach formulation, which made the exact lattice SUSY state-
ment doubtful[64, 65]. It turned out that this ordering ambiguity can be treated correctly
by introducing link size noncommutative nature of fields with respect to the space time[29].
We thus have to give up the commutative nature of fields in this formulation contrary to
the standard field theory. Algebraic consistency of this formulation with noncommutativity
was confirmed in the framework of Hopf Algebra[66]. There remained a possible problem of
gauge invariance for the link approach of lattice super Yang-Mills. This link approach with
particular choice of parameter coincides with the nilpotent charge treatment of Kaplan et.
al. The relation between these two formulations was cleared up[67, 68, 69, 70].

Considering the experiences of link approach formulation, we reached to a notion of intro-
ducing intermediate lattice sites which are related to the species doublers of chiral fermion, to
be compatible with twisted supersymmetry algebra. We then formulated it in the momentum
space, which we call the SUPER DOUBLER APPROACH. It turned out that we modified
the momentum conservation similar as Dondi and Nicolai proposed. Then formulation turns
out to be nonlocal in the coordinate space. We claim that this formulation of Wess-Zumino
models in 1- and 2-dimensions has exact N=2 twisted lattice supersymmetry for all super
charges and does not have chiral fermion species doubler problem[29, 30].

If we formulate massless fermion on the lattice naively the appearance of the chiral fermion
species doublers is unavoidable[71, 72, 73]. Then we let them appear and identify them as
super partners or truncate them consistently by chiral conditions so that chiral fermion
problems disappear[29, 30]. The modified momentum conservation leads to define a new
nonlocal product in the coordinate space. It was shown that the Lebniz rule of difference
operator is satisfied exactly on this product. Although naive lattice translational invariance
is lost, it does not necessarily mean that Poincare invariance of the action is lost[74].

After it has been recognized that breakdown of Leibniz rule is unavoidable and a possible
solution of Ginsparg-Wilson relation for lattice SUSY is the SLAC derivative[40], it was
stressed by Bergner that a nonlocal derivative operator and a nonlocal interaction term are
unavoidable[75]. The questions were numerically investigated[76, 77]. It was then natural to
ask a question if the nonlocal nature of the definition of a derivative operator and a interaction
term or an introduction of momentum cut off generate any problems for the definition of local
supersymmetric field theory in the continuum limit. Careful analyses by Kadoh and Suzuki
showed that at least for non-gauge formulation of lattice SUSY in lower dimensions they do
not generate any problems for the constructive definition of lattice SUSY[78, 79]. A numerical
criteria how supersymmetry can be recovered in the continuum limit was proposed[80, 81].

In this paper we investigate if the supersymmetric WT-id’s. are exactly satisfied at the
quantum level by the the super doubler models of N=2 Wess-Zumino modles in 1- and 2-
dimensions. The super doubler models are claimed to have exact supersymmetry for all super
charges of N=2 algebra on the lattice. The models have nonlocal derivative and interaction
terms and thus interesting to ask if supersymmetry is kept at the quantum level with the
perspective of the above statements.

The paper is organized as follows: We first explain a simple derivation of WT-id. in
section 2. We then briefly present the super doubler formulation of 1-dimensional Wess-
Zumino model and the corresponding graphical representation of propagators and vertices
in section 3. The corresponding tree, one-loop and two-loop analyses of WT-id’s are given
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in section 4. The two dimensional model and the graphic representation of propagators and
verices are given in section 5 and the analyses of WT-id’s are given in section 6. In section
7 we discuss the breakdown of associativity of the super doubler approach of this paper. In
the final section 8 we briefly summarize the results.

2 Ward-Takahashi identity for quantum level check of exact
lattice supersymmetry

When a model possesses a symmetry, there exists a corresponding conservation of Noether
current classically. It is not obvious if this symmetry is exactly kept at the quantum level. In
order to see if the symmetry is kept at the quantum level we usually examine Ward-Takahashi
identity perturbatively or even nonperturbatively. To derive general form of Ward-Takahashi
identity, we start with functional formalism. The partition function and the expectation
value of an operator O can be defined as,

Z =

∫
D[Φ]eiS[Φ], (2.1)

⟨O⟩ = 1

Z

∫
D[Φ]O[Φ]eiS[Φ], (2.2)

where Φ denotes any fields in the model. We then consider a variation of fields Φ → Φ′ =
Φ + δΦ, and the operator changes as O[Φ] → O[Φ′] = O[Φ] + δO[Φ]. We also assumes that
the action receives the variation as S → S ′ = S + δS. The redefinition of the fields does not
change the value of the path integral and thus give the following Ward-Takahashi identity:

⟨O⟩ = 1

Z

∫
D[Φ]O[Φ]eiS[Φ] =

1

Z

∫
D[Φ′]O[Φ′]eiS[Φ

′]

=
1

Z

∫
D[Φ] (O[Φ] + δO[Φ]) eiS[Φ]+iδS

= ⟨O⟩+ ⟨δO[Φ]⟩+ ⟨O[Φ]δS[Φ]⟩+ · · · , (2.3)

where we assume functional measure is not anomalous under this symmetry. If the action
has a symmetry under this variation; δS[Φ] = 0, we obtain the following identity:

⟨δO[Φ]⟩ = 0. (2.4)

In this paper we investigate the validity of this identity at the quantum level by perturba-
tion. If the regularization of the field theoretical model is systematically defined the identity
should hold even if quantum corrections are included at the loop level. It plays a role of fun-
damental check if the symmetry is exactly preserved with the lattice regularization. In this
paper we examine the exactness of the supersymmetry at the quantum level with a lattice
regularization.

Since we consider supersymmetry transformation for δ we need to choose O as fermionic
operator to obtain bosonic composite fields. In this paper we investigate a case where O has
fermion and boson bi-linear form as O = ϕAψB where ϕA and ψB are bosonic and fermionic
fields, respectively. Then the Ward-Takahashi identity (2.4) for two point operator leads the
following form:

⟨δϕAψB⟩+ ⟨ϕAδψB⟩ = 0. (2.5)
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3 Super doubler approach for N = 2 Wess-Zumino model in
1-dimension

We introduce recently proposed lattice N=2 Wess-Zumino action of 1-dimension in the mo-
mentum space. In this formulation we postulate the lattice momentum p̂ = sin ap

2 (which we
often call sine momentum) as a conserved quantity instead of periodic lattice momentum p
itself. We then found that the following action has exact N=2 supersymmetry on the lattice
for all super charges[29].

S(n) =
4g

(0)
n an

n!

∫ 3π
a

−π
a

n∏
j=1

(
dpj
2π

)
G(p1, · · · , pn)(2π)δ

 n∑
j=1

sin
apj
2


× i

2n
Q1Q2 (Φ(p1)Φ(p2) · · ·Φ(pn))

=
4g

(0)
n an

n!

∫ n∏
j=1

(
dpj
2π

cos
apj
2

)
(2π)δ

 n∑
j=1

sin
apj
2


×

2 sin2 ap1
4

Φ(p1)
n∏

j=2

Φ(pj) +
n− 1

4
sin

a(p1 − p2)

4
Ψ(p1)Ψ(p2)

n∏
j=3

Φ(pj)

 . (3.1)

where G(p1, · · · , pn) is a function satisfying the following conditions to keep exact lattice
supersymmetry: it is symmetric under the permutation of pi, and periodic in 4π

a for all
momenta. In particular for interaction terms (n ≥ 3) we choose

G(p1, · · · , pn) =
n∏

i=1

cos
api
2
. (3.2)

This factor cancels the singularity at pi = ±π
a caused from the ”sine” momentum conser-

vation of the delta function. Here Φ(p) and Ψ(p) are bosonic and fermionic dimensionless
composite fields in the momentum space including species doublers as super partners ofN = 2
supersymmetry.

This action is invariant under the following N=2 supersymmetry transformation:

δ1Φ(p) = iα1 cos
ap

4
Ψ(p), δ1Ψ(p) = −4iα1 sin

ap

4
Φ(p),

δ2Φ(p) = α2 cos
ap

4
Ψ

(
2π

a
− p

)
, δ2Ψ

(
2π

a
− p

)
= 4α2 sin

ap

4
Φ(p), (3.3)

where α1 and α2 are super parameters.
Considering the lattice constant dependence with dimensionless nature of the action, we

define the component fields of N=2 super multiplets by

Φ(p) = a−
3
2ϕ(p), Φ

(
2π

a
− p

)
= −a

− 1
2

4
D(p),

Ψ(p) = a−1ψ1(p), Ψ

(
2π

a
− p

)
= ia−1ψ2(p), (3.4)
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where the species doubler of fermion ψ1 is identified as a second fermion ψ2 and the species
doubler of boson ϕ is identified as an auxiliary field D in the same supermultiplet of N=2
supersymmetry. We thus introduce the species doubler counterparts as super multiplets
equally for boson and fermion. It is a characteristic of our formulation that we identify the
species doublers of the original boson and fermion as super partners. Thus we naturally call
this formulation as SUPER DOUBLER APPROACH[29].

The supersymmetry transformation by the component fields lead:

δ1ϕ(p) = iη1 cos
ap

4
ψ1(p), δ1ψ1(p) = −4i

a
η1 sin

ap

4
ϕ(p),

δ1D(p) =
4

a
η1 sin

ap

4
ψ2(p), δ1ψ2(p) = η1 cos

ap

4
D(p), (3.5)

and

δ2ϕ(p) = iη2 cos
ap

4
ψ2(p), δ2ψ1(p) = −η2 cos

ap

4
D(p),

δ2D(p) = −η2
4

a
sin

ap

4
ψ1(p), δ2ψ2(p) = −4i

a
η2 sin

ap

4
ϕ(p), (3.6)

where super parameters are parametrized as αi = a−
1
2 ηi (i = 1, 2).

One can check that the supersymmetry transformation of supercharges δ1 = η1Q1 and
δ2 = η2Q2 satisfy the momentum representation of the following algebra on the lattice:

Q2
1 = Q2

2 = 2 sin
ap

2
, {Q1, Q2} = 0. (3.7)

This is the lattice momentum version of D = 1, N = 2 supersymmetry algebra.
For n = 2 the action (3.1) admits a generalization containing a free parameter and

generates both kinetic and mass term. From (3.1) we have:

S(2) = 2a2
∫ 3π

a

−π
a

dp1
2π

dp2
2π

2πδ
(
sin

ap1
2

+ sin
ap2
2

)
G(p1, p2)

×
[
2 sin2

ap1
4

Φ(p1)Φ(p2) +
1

4
sin

a(p1 − p2)

4
Ψ(p1)Ψ(p2)

]
, (3.8)

where we have set g
(0)
2 = 1 and chosen G(p1, p2) of the form given in (3.2). For n = 2,

and only in that case, the argument of the delta function vanishes if one of the two linear
conditions p1 + p2 = 0 and p1 − p2 − 2π

a = 0 are satisfied modulo 4π
a . So in eq. (3.8) we can

replace the delta function according to:

a

2
δ
(
sin

ap1
2

+ sin
ap2
2

)
→ 1∣∣cos ap1

2

∣∣δ(p1 + p2) +
m0∣∣cos ap1

2

∣∣δ
(
p1 − p2 −

2π

a

)
, (3.9)

where we have introduced a dimensionless arbitrary mass parameter m0
∗. With this replace-

∗Notice that for m0 = 1 the r.h.s. and the l.h.s. of (3.9) coincide, for m0 ̸= 1 this replacement amounts to
a redefinition of the arbitrary function G(p1, p2)
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ment S(2) splits into the sum of a kinetic and a mass term given respectively by:

Sk =

∫ π
a

−π
a

dp

2π
cos

ap

2

[
4

a2

(
1− cos

ap

2

)
ϕ(−p)ϕ(p) + 1

4

(
1 + cos

ap

2

)
D(−p)D(p)

]
+

∫ π
a

−π
a

dp

2π
cos

ap

2

[
−1

a
sin

ap

2
ψ1(−p)ψ1(p)−

1

a
sin

ap

2
ψ2(−p)ψ2(p)

]
, (3.10)

Sm =2m

∫ π
a

−π
a

dp

2π
cos

ap

2
[−ϕ(−p)D(p)− iψ1(−p)ψ2(p)] , (3.11)

where a dimensional mass parameter m = m0
a has been introduced. The integration domain

is divided into p ∈
[
−π

a ,
π
a

]
and p ∈

[
π
a ,

3π
a

]
in (3.1) and the identifications of (3.4) are used.

Since we identify the lattice momentum p̂ as conserved quantity it is convenient to refor-
mulate by

p̂i ≡
2

a
sin

api
2
. (3.12)

Hereafter we often use the following notation for

C(p̂i) ≡
√

1− a2

4
p̂2i = cos

api
2
, (3.13)

in the momentum region pi ∈
[
−π

a ,
π
a

]
. Then the kinetic and mass terms of the action for

boson and fermion are given by

SB =
1

2

∫ 2
a

− 2
a

dp̂

2π

(
ϕ(−p) D(−p)

)
KB

(
ϕ(p)
D(p)

)
, (3.14)

SF =
1

2

∫ 2
a

− 2
a

dp̂

2π

(
ψ1(−p) ψ2(−p)

)
KF

(
ψ1(p)
ψ2(p)

)
, (3.15)

where

KB =

(
8
a2

(1− C(p̂)) −2m
−2m 1

2 (1 + C(p̂))

)
, (3.16)

KF =

(
−p̂ −2im
2im −p̂

)
. (3.17)

Then the propagators for the component fields are given as:

K−1
B =

1

p̂2 − 4m2

(
1
2 (1 + C(p̂)) 2m

2m 8
a2

(1− C(p̂))

)
, (3.18)

K−1
F =

1

p̂2 − 4m2

(
−p̂ 2im

−2im −p̂

)
. (3.19)

The interaction terms of action can be derived from S(n) in (3.1) for n = 3 and n = 4.
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Here we consider cubic Φ3 and quartic Φ4 interactions. The cubic interaction term is given

S(3) =
4g

(3)
0 a3

3!

∫ 3∏
j=1

(
dpj
2π

cos
apj
2

)
(2π)δ

 3∑
j=1

sin
apj
2


×
[
2 sin2

ap1
4

Φ(p1)Φ(p2)Φ(p3) +
1

2
sin

a(p1 − p2)

4
Ψ(p1)Ψ(p2)Φ(p3)

]
(3.20)

= S
(3)
B + S

(3)
F , (3.21)

where

S
(3)
B =

4g3a
2

3

∫
dp̂1
2π

dp̂2
2π

dp̂3
2π

2πδ(p̂1 + p̂2 + p̂3)

× [ϕ+(p1)ϕ+(p2)ϕ+(p3)− C(p̂1)ϕ−(p1)ϕ+(p2)ϕ+(p3)] , (3.22)

S
(3)
F =

2g3a

3

∫
dp̂1
2π

dp̂2
2π

dp̂3
2π

2πδ(p̂1 + p̂2 + p̂3)

×
[
sin

a

4
(p1 − p2)ψ1(p1)ψ1(p2)ϕ+(p3)

+ sin
a

4
(p1 − p2)ψ2(p1)ψ2(p2)ϕ+(p3)

+2i cos
a

4
(p1 + p2)ψ1(p1)ψ2(p2)ϕ+(p3)

]
, (3.23)

where we use the notation for C(p̂1) as given in (3.13) and

ϕ±(p) =
1

a
ϕ(p)± 1

4
D(p). (3.24)

This combination of fields appears from the following decomposition:∫ 3π
a

−π
a

dp cos
ap

2
Φ(p) =

∫ π
a

−π
a

dp cos
ap

2

(
Φ(p)− Φ(

2π

a
− p)

)
=

∫ π
a

−π
a

dp cos
ap

2

1√
a

(
1

a
ϕ(p) +

1

4
D(p)

)
. (3.25)

As we can see, the interaction terms have more compact form with respect to the component
fields ϕ±(p) than those of ϕ(p) and D(p). The corresponding propagators for these fields can
be given as

ϕ+(p) ϕ+(−p) =
1 + am

D(p̂)
, (3.26)

ϕ−(p) ϕ−(−p) =
1− am

D(p̂)
, (3.27)

ϕ+(p) ϕ−(−p) =
C(p̂)

D(p̂)
, (3.28)

where we introduce the following notation:

D(p̂) = a2p̂2 − 4a2m2. (3.29)
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The fermionic propagators are given as

ψ1,2(p) ψ1,2(−p) =
−a2p̂
D(p̂)

, (3.30)

ψ1(p) ψ2(−p) =
2ia2m

D(p̂)
. (3.31)

Feynman rules for three point vertices are assigned as,

ϕ+(p1)

ϕ+(p2)

ϕ+(p3)
=

4ig3a
2

3
,

ϕ−(p1)

ϕ+(p2)

ϕ+(p3)
= −4ig3a

3

3
C(p̂1),

ψ1,2(p1)

ψ1,2(p2)

ϕ+(p3)
=

2ig3a

3
sin

a

4
(p1 − p2),

ψ1(p1)

ψ2(p2)

ϕ+(p3)
= −4g3a

3
cos

a

4
(p1 + p2).

Similarly we obtain quartic interaction terms as:

S(4) =
4g

(4)
0 a4

4!

∫ 4∏
j=1

(
dpj
2π

cos
apj
2

)
(2π)δ

 4∑
j=1

sin
apj
2


×
[
2 sin2

ap1
4

Φ(p1)Φ(p2)Φ(p3)Φ(p4) +
3

4
sin

a(p1 − p2)

4
Ψ(p1)Ψ(p2)Φ(p3)Φ(p4)

]
(3.32)

= S
(4)
B + S

(4)
F , (3.33)

where

S
(4)
B =

4g
(4)
0 a4

4!

∫ 4∏
j=1

(
dpj
2π

cos
apj
2

)
(2π)δ

 4∑
j=1

sin
apj
2


= a−2 [ϕ+(p1)− C(p̂1)ϕ−(p1)]ϕ+(p2)ϕ+(p3)ϕ+(p4), (3.34)

S
(4)
F =

4g
(4)
0 a4

4!

∫ 4∏
j=1

(
dpj
2π

cos
apj
2

)
(2π)δ

 4∑
j=1

sin
apj
2


= a−3

(
sin

a

4
(p1 − p2)ψ1(p1)ψ1(p2) + sin

a

4
(p1 − p2)ψ2(p1)ψ2(p2)

+2i cos
a

4
(p1 + p2)ψ1(p1)ψ2(p2)

)
ϕ+(p3)ϕ+(p4). (3.35)
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Feynman rules for four point vertices are assigned as,

ϕ+(p1)

ϕ+(p2)

ϕ+(p3)

ϕ+(p4)

=
ig4a

3

3
,

ϕ−(p1)

ϕ+(p2)

ϕ+(p3)

ϕ+(p4)

= − ig4a
3

3
C(p̂1),

ψ1,2(p1)

ψ1,2(p2)

ϕ+(p3)

ϕ+(p4)

=
ig4a

2

4
sin

a(p1 − p2)

4
,

ψ1(p1)

ψ2(p2)

ϕ+(p3)

ϕ+(p4)

= −2g4a
2

4
cos

a(p1 + p2)

4
.

We have now prepared all the necessary tools for perturbative calculation of quantum
corrections for N = 2 supersymmetric Wess-Zumino model in 1-dimention.

4 Ward-Takahashi identity in 1-dimention

4.1 Tree level Ward-Takahashi identity

We first show that Ward-Takahashi identities for supersymmetry transformation for δ are
satisfied at the tree level. We consider all fermionic bilinear fields O = ϕAψB of 1-dimensional
N = 2 Wess-Zumino model of previous section,

ϕAψB = ϕψ1, ϕψ2, Dψ1, Dψ2. (4.1)

We can then obtain Ward-Takahashi identities of supersymmetry of two point operators for
δ = δ1, δ2 leading (2.4). For example considering ϕAψB = ϕψ1 for δ = δ1, we can show that
tree level Ward-Takahashi identity is satisfied as follows:

⟨δ1(ϕ(p)ψ1(−p))⟩tree = iη1

[
cos

ap

4
⟨ψ1(p)ψ1(−p)⟩tree +

4

a
sin

ap

4
⟨ϕ(p)ϕ(−p)⟩tree

]
=

iη1
D(p̂)

[
cos

ap

4

(
−4a sin

ap

4
cos

ap

4

)
+

4

a
sin

ap

4

(
a2(cos

ap

4
)2
)]

= 0,

(4.2)

where we have used the fact that the tree level two point functions of ϕ and ψ1 are propagators
of these fields given in (3.18) and (3.19). Here we have used the notation for inverse propagator
D(p̂) in (3.29). We have thus shown that the following Ward-Takahashi identity is satisfied
at the tree level:

cos
ap

4
⟨ψ1(p)ψ1(−p)⟩tree +

4

a
sin

ap

4
⟨ϕ(p)ϕ(−p)⟩tree = 0. (4.3)

Similarly we can show that the following tree level Ward-Takahashi identities for super-
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symmetry variation of δ1 are satisfied:

⟨δ1(ϕ(p)ψ2(−p))⟩tree = η1 cos
ap

4
[i ⟨ψ1(p)ψ2(−p)⟩tree + ⟨ϕ(p)D(−p̂)⟩tree] = 0,

⟨δ1(D(p)ψ1(−p))⟩tree =
4

a
η1 sin

ap

4
[⟨ψ2(p)ψ1(−p)⟩tree + i ⟨D(p)ϕ(−p)⟩tree] = 0,

⟨δ1(D(p)ψ2(−p))⟩tree = η1

[
4

a
sin

ap

4
⟨ψ2(p)ψ2(−p)⟩tree + cos

ap

4
⟨D(p)D(−p)⟩tree

]
= 0.

(4.4)

Similarly for supersymmetry variation δ2 we can show:

⟨δ2(ϕ(p)ψ1(−p))⟩tree = η2 cos
ap

4
[i ⟨ψ2(p)ψ1(−p)⟩tree − ⟨ϕ(p)D(−p)⟩tree] = 0,

⟨δ2(ϕ(p)ψ2(−p))⟩tree = iη2

[
cos

ap

4
⟨ψ2(p)ψ2(−p)⟩tree +

4

a
sin

ap

4
⟨ϕ(p)ϕ(−p)⟩tree

]
= 0,

⟨δ2(D(p̂)ψ1(−p̂))⟩tree = −η2
[
4

a
sin

ap

4
⟨ψ1(p)ψ1(−p)⟩tree + cos

ap

4
⟨D(p)D(−p)⟩tree

]
= 0,

⟨δ2(D(p)ψ2(−p))⟩tree = −η2
4

a
sin

ap

4
[⟨ψ1(p)ψ2(−p)⟩tree − i ⟨D(p)ϕ(−p)⟩tree] = 0. (4.5)

Among the above eight Ward-Takahashi identities we can find the following four indepen-
dent identity relations at the tree level:

cos
ap

4
⟨ψ1(p)ψ1(−p)⟩tree +

4

a
sin

ap

4
⟨ϕ(p)ϕ(−p)⟩tree = 0, (4.6)

i ⟨ψ1(p)ψ2(−p)⟩tree + ⟨ϕ(p)D(−p)⟩tree = 0, (4.7)

4

a
sin

ap

4
⟨ψ2(p)ψ2(−p)⟩tree + cos

ap

4
⟨D(p)D(−p)⟩tree = 0, (4.8)

⟨ϕ(p)ϕ(−p)⟩tree −
(a
4
cot

ap

4

)2
⟨D(p)D(−p)⟩tree = 0. (4.9)

In the following we investigate if these Ward-Takahashi identities are satisfied even at the
quantum level with loop corrections.
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4.2 1-loop corrections

4.2.1 1-loop corrections: cubic interaction Φ3

We consider the following loop diagrams for two point operators:

ϕ+(−p) ϕ+(p)= ϕ+ ϕ+ + ϕ+ ϕ+ + ϕ+ ϕ+

+ ϕ+ ϕ+ + ϕ+ ϕ+ + ϕ+ ϕ+

+ ϕ+ ϕ+ + ϕ+ ϕ+ + ϕ+ ϕ+

+ ϕ+ ϕ+ + ϕ+ ϕ+ ,

=ϕ+(−p)ϕ+(p)
∫
dk̂

2π

1

D(k̂)

1

D(p̂− k̂)
(1 +M)

×
(
−16g23a

4

9

)(
8 + 6M − (3 +M)C(p̂)2 − 4C(k̂)2 −KP

)
,

(4.10a)

ϕ+(−p) ϕ−(p)= ϕ+ ϕ− + ϕ+ ϕ− ,

=ϕ+(−p)ϕ−(p)C(p̂)
∫
dk̂

2π

1

D(k̂)

1

D(p̂− k̂)
(1 +M)

×
(
16g23a

4

9

)(
8 + 6M − 2C(p̂)2 − 4C(k̂)2 −KP

)
, (4.10b)

ϕ−(−p) ϕ−(p)= ϕ− ϕ− ,

=ϕ−(−p)ϕ−(p)C(p̂)2
∫
dk̂

2π

1

D(k̂)

1

D(p̂− k̂)

(
−16g23a

4

9

)
(1 +M)2,

(4.10c)

ψ1(−p) ψ1(p)= ψ1 ψ1 + ψ1 ψ1 + ψ1 ψ1 ,

=ψ1(−p)ψ1(p)

(
4g23a

3

9

)∫
dk̂

2π

1

D(k̂)

1

D(p̂− k̂)
(1 +M)

×
[
(4 + 3M)P − PC(p̂)2 − 2PC(k̂)2 − 2(1− C(p̂)2)K

]
,

(4.10d)

ψ2(−p) ψ2(p)= ψ2 ψ2 + ψ2 ψ2 + ψ2 ψ2,

=ψ2(−p)ψ2(p)

(
4g23a

3

9

)∫
dk̂

2π

1

D(k̂)

1

D(p̂− k̂)
(1 +M)

×
[
(4 + 3M)P − PC(p̂)2 − 2PC(k̂)2 − 2(1− C(p̂)2)K

]
,

(4.10e)
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ψ1(−p) ψ2(p)= ψ1 ψ2 + ψ1 ψ2 + ψ1 ψ2

+ ψ1 ψ2 ,

=ψ1(−p)ψ2(p)

∫
dk̂

2π

1

D(k̂)

1

D(p̂− k̂)

(
−8ig23a

3

9

)
(1 +M)

×
[
8 + 6M − 4C(k̂)2 − 2(2 +M)C(p̂)2 −KP

]
. (4.10f)

In these derivations of two point operators with 1-loop corrections, we have used the
following non-trivial equalities:∫ 2

a

− 2
a

dk̂1
2π

dk̂2
2π

C2(k̂2)

D(k̂1)D(k̂2)
(2π)δ(k̂1 + k̂2 − p̂)

=

∫ 2
a

− 2
a

dk̂1
2π

dk̂2
2π

C2(k̂1)

D(k̂1)D(k̂2)
(2π)δ(k̂1 + k̂2 − p̂)

=
[
Θ(p̂)

∫ 2
a

p̂− 2
a

dk̂

2π
+Θ(−p̂)

∫ p̂+ 2
a

− 2
a

dk̂

2π

] C2(k̂)

D(k̂)D(p̂− k̂)

=
[
Θ(p̂)

∫ 2
a

p̂− 2
a

dk̂

2π
+Θ(−p̂)

∫ p̂+ 2
a

− 2
a

dk̂

2π

] C2(p̂− k̂)

D(k̂)D(p̂− k̂)
, (4.11)

where Θ(p̂) is a step function. The first equality in the above relations can be understood by
just exchanging the labels of integrated momenta; k̂1 ↔ k̂2. Then we can carry out the k̂2
integration where the integration range is limited:

−2

a
≤ k̂2 = p̂− k̂1 ≤

2

a
, (4.12)

which leads:

p̂− 2

a
≤ k̂1 ≤ p̂+

2

a
. (4.13)

Since k̂1 has also the same integration range − 2
a ≤ k̂1 ≤ 2

a the necessary changes of integration
range are needed in the second and the third equalities. Thus due to the conservation of the
lattice ”sine” momentum in this new approach we need to take care of the integration range
of the lattice momenta carefully. Explicit derivation of the equivalence of these relations are
given in Appendix A.1.

We can now explicitly evaluate the 1-loop contribution for two point functions. For
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example

⟨ϕ+(p)ϕ+(−p)⟩1-loop =

ϕ+(p)ϕ+(−p) ϕ+(p)ϕ+(−p)+ϕ+(p)ϕ+(−p) ϕ−(p)ϕ+(−p)

+ ϕ+(p)ϕ−(−p) ϕ−(p)ϕ+(−p)

=

(
−32g23a

4

9

)
1

D(p̂)2

∫
dk̂

2π

1

D(k̂)

1

D(p̂− k̂)
(1 +M)2

×
[
(1 +M)(8 + 6M)− (11 + 10M +M2)C(p̂)2 + 3C(p̂)4

−4C(k̂)2(1 +M − C(p̂)2)−KP (1 +M − C(p̂)2))
]
, (4.14)

where ϕ+(p)ϕ+(−p) represents Wick contraction and thus we need to take into account all

the possible combinations for 1-loop two point function of ϕ+.
Similarly we can evaluate one-loop contribution of other two point functions as,

⟨ϕ−(p)ϕ−(−p)⟩1-loop

=

(
−32g23a

4

9

)
1

D(p̂)2

∫
dk̂

2π

1

D(k̂)

1

D(p̂− k̂)
C(p̂)2(1 +M)

×
[
(M3 + 5M2 + 7M + 1)− (1 + 3M)C(p̂)2 − 4MC(k̂)2 −MKP

]
, (4.15a)

⟨ϕ+(p)ϕ−(−p)⟩1-loop

=

(
−16g23a

4

9

)
1

D(p̂)2

∫
dk̂

2π

1

D(k̂)

1

D(p̂− k̂)
C(p̂)(1 +M)

×
[
(1 +M)2(8 + 6M)− 2C(p̂)2(3M2 + 7M + 5) + 2C(p̂)4

−4C(k̂)2
(
(1 +M)2 − C(p̂)2

)
−KP

(
(1 +M)2 − C(p̂)2

)]
, (4.15b)

⟨ψ1(p)ψ1(−p)⟩1-loop = ⟨ψ2(p)ψ2(−p)⟩1-loop

=

(
16g23a

5

9

)
1

D(p̂)2

∫
dk̂

2π

1

D(k̂)

1

D(p̂− k̂)
(1 +M)P

×
[
−4C(k̂)2

(
(1 +M)2 − C(p̂)2

)
−KP

(
(1 +M)2 − C(p̂)2

)
+2C(p̂)4 − 2C(p̂)2(3M2 + 7M + 5) + 2(1 +M)2(4 + 3M)

]
, (4.15c)

⟨ψ1(p)ψ2(−p)⟩1-loop

=

(
−32ig23a

5

9

)
1

D(p̂)2

∫
dk̂

2π

1

D(k̂)

1

D(p̂− k̂)
(1 +M)

×
[
−4C(k̂)2

(
(1 +M)− (1 + 2M)C(p̂)2

)
−KP

(
(1 +M)2 − (1 + 2M)C(p̂)2

)
+2(2 + 3M)C(p̂)4 − 2C(p̂)2

(
M3 + 8M2 + 14M + 6

)
+ 2(1 +M)2(4 + 3M)

]
.
(4.15d)

To consider the 1-loop corrections for original two point functions, we need to consider
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linear combination of the above two point functions as follows:

4

a2
⟨ϕϕ⟩ = ⟨ϕ+ϕ+⟩+ ⟨ϕ−ϕ−⟩+ 2 ⟨ϕ+ϕ−⟩ , (4.16a)

1

4
⟨DD⟩ = ⟨ϕ+ϕ+⟩+ ⟨ϕ−ϕ−⟩ − 2 ⟨ϕ+ϕ−⟩ , (4.16b)

1

a
⟨Dϕ⟩ = 1

a
⟨ϕD⟩ = ⟨ϕ+ϕ+⟩ − ⟨ϕ−ϕ−⟩ . (4.16c)

We can then find the following non-trivial proportionality between 1-loop and tree level
two point functions, where only two overall multiplicative factors appear for the same field
and the different field two point functions:

⟨ϕ(p)ϕ(−p)⟩1-loop = ⟨ϕ(p)ϕ(−p)⟩tree F (p̂), (4.17a)

⟨D(p)D(−p)⟩1-loop = ⟨D(p)D(−p)⟩tree F (p̂), (4.17b)

⟨ψ1(p)ψ1(−p)⟩1-loop = ⟨ψ1(p)ψ1(−p)⟩tree F (p̂), (4.17c)

⟨ψ2(p)ψ2(−p)⟩1-loop = ⟨ψ2(p)ψ2(−p)⟩tree F (p̂), (4.17d)

⟨ϕ(p)D(−p)⟩1-loop = ⟨D(p)ϕ(−p)⟩1-loop = (ϕ(p)D(−p))treeG(p̂), (4.17e)

⟨ψ1(p)ψ2(−p)⟩1-loop = −⟨ψ2(p)ψ1(−p)⟩1-loop = ⟨ψ1(p)ψ2(−p)⟩treeG(p̂), (4.17f)

where

F (p̂) =
1

D(p̂)

∫
dk̂

2π

1

D(k̂)

1

D(p̂− k̂)

(
−16g23a

4

9

)
(1 +M)

×
(
−4C(k̂)2

(
(1 +M)2 − C(p̂)2

)
−KP

(
(1 +M)2 − C(p̂)2

)
+2C(p̂)4 − 2C(p̂)2(3M2 + 7M + 5) + 2(1 +M)2(4 + 3M)

)
, (4.18)

G(p̂) =
1

D(p̂)

∫
dk̂

2π

1

D(k̂)

1

D(p̂− k̂)

(
−16g23a

4

9

)
1 +M

M

×
(
−4C(k̂)2

(
(1 +M)2 − (1 + 2M)C(p̂)2

)
−KP

(
(1 +M)2 − (1 + 2M)C(p̂)2

)
+2C(p̂)4(2 + 3M)− 2C(p̂)2(M3 + 8M2 + 14M + 6) + 2(1 +M)2(4 + 3M)

)
.

(4.19)

We can now ask a question if the Ward-Takahashi identities of two point functions in
(4.6-4.9) are satisfied at one loop level or not. We can show that identities of (4.6-4.9) at the
1-loop level are proportional to the tree level Ward-Takahashi identity with the multiplicative
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factor F (p̂) or G(p̂) given in (4.18) and (4.19):

cos
ap

4
⟨ψ1(p)ψ1(−p)⟩1-loop +

4

a
sin

ap

4
⟨ϕ(p)ϕ(−p)⟩1-loop

=

[
cos

ap

4
⟨ψ1(p)ψ1(−p)⟩tree +

4

a
sin

ap

4
⟨ϕ(p)ϕ(−p)⟩tree

]
F (p̂) = 0, (4.20)

i ⟨ψ1(p)ψ2(−p)⟩1-loop + ⟨ϕ(p)D(−p)⟩1-loop
= [i ⟨ψ1(p)ψ2(−p)⟩tree + ⟨ϕ(p)D(−p)⟩tree]G(p̂) = 0, (4.21)

4

a
sin

ap

4
⟨ψ2(p)ψ2(−p)⟩1-loop + cos

ap

4
⟨D(p)D(−p)⟩1-loop

=

[
4

a
sin

ap

4
⟨ψ2(p)ψ2(−p)⟩tree + cos

ap

4
⟨D(p)D(−p)⟩tree

]
F (p̂) = 0, (4.22)

⟨ϕ(p)ϕ(−p)⟩1-loop −
(a
4
cot

ap

4

)2
⟨D(p)D(−p)⟩1-loop

=

[
⟨ϕ(p)ϕ(−p)⟩tree −

(a
4
cot

ap

4

)2
⟨D(p)D(−p)⟩tree

]
F (p̂) = 0. (4.23)

The proportionality of 1-loop level and tree level Ward-Takahashi identities ensures that 1-
loop level Ward-Takahashi identities are satisfied since the tree level counterparts are satisfied
as we have seen in (4.6-4.9).

4.2.2 1-loop corrections: quartic interaction Φ4

We next consider 1-loop contribution with quartic interactions for two point functions. Con-
tracting two fields in a interaction term, we obtain the following two point operators:

ϕ+(p) ϕ+(−p)= ϕ+(p) ϕ+(−p)+ ϕ+(p) ϕ+(−p)

+
ϕ+(p) ϕ+(−p)+ ϕ+(p) ϕ+(−p)

+
ϕ+(p) ϕ+(−p)

=ϕ+(p)ϕ+(−p)

[
−ig4a3(1 + am)

∫
dk̂

2π

1

D(k̂)

]
, (4.24a)

ϕ+(p) ϕ−(−p)= ϕ+(p) ϕ−(−p)

=ϕ+(p)ϕ−(−p)C(p̂)

[
ig4a

3(1 + am)

∫
dk̂

2π

1

D(k̂)

]
, (4.24b)

ϕ−(p) ϕ−(−p)=0, (4.24c)
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ψ1(p) ψ1(−p)= ψ1(p) ψ1(−p)

= sin
ap

2
ψ1(p)ψ1(−p)

[
− ig4

4
a2(1 + am)

∫
dk̂

2π

1

D(k̂)

]
, (4.24d)

ψ2(p) ψ2(−p)= sin
ap

2
ψ2(p)ψ2(−p)

[
− ig4

4
a2(1 + am)

∫
dk̂

2π

1

D(k̂)

]
, (4.24e)

ψ1(p) ψ2(−p)= ψ1(p) ψ2(−p)

=ψ1(p)ψ2(−p)

[
g4
2
a2(1 + am)

∫
dk̂

2π

1

D(k̂)

]
. (4.24f)

We then contract these two point operators with other two external fields to get 1-loop
corrections of two point functions as in (4.14). We then obtain two point functions with
one-loop quantum corrections,

⟨ϕ+(p)ϕ+(−p)⟩1-loop = −2ig4a
3 1

D(p̂)2
[
(1 + am)2 − (1 + am)C(p̂)2

]
K, (4.25a)

⟨ϕ−(p)ϕ−(−p)⟩1-loop = −2ig4a
3 1

D(p̂)2
[
C(p̂)2(am)

]
K, (4.25b)

⟨ϕ+(p)ϕ−(−p)⟩1-loop = −ig4a3
1

D(p̂)2
C(p̂)

[
(1 + am)2 − C(p̂)2

]
K, (4.25c)

⟨ψ1(p)ψ1(−p)⟩1-loop = ig4a
4 1

D(p̂)2
ap̂
[
(1 + am)2 − C(p̂)2

]
K, (4.25d)

⟨ψ2(p)ψ2(−p)⟩1-loop = ig4a
4 1

D(p̂)2
ap̂
[
(1 + am)2 − C(p̂)2

]
K, (4.25e)

⟨ψ1(p)ψ2(−p)⟩1-loop = 2g4a
4 1

D(p̂)2
[
(1 + am)2 − (1 + 2am)C(p̂)2

]
K, (4.25f)

where K is the following integral and can be evaluated explicitly as:

K =

∫ 2
a

− 2
a

dk̂

2π

1

D(k̂)
(1 + am) =

1 + am

4a2mπ
log

∣∣∣∣1− am

1 + am

∣∣∣∣ . (4.26)

Similar to the 1-loop contribution of two point functions for Φ3 in (4.17a-4.17f) we obtain
the similar proportionality relations between the loop level and tree level two point functions
for Φ4 theory:

⟨ϕ(p)ϕ(−p)⟩1-loop = ⟨ϕ(p)ϕ(−p)⟩tree F1(p̂), (4.27a)

⟨D(p)D(−p)⟩1-loop = ⟨D(p)D(−p)⟩tree F1(p̂), (4.27b)

⟨ψ1(p)ψ1(−p)⟩1-loop = ⟨ψ1(p)ψ1(−p)⟩tree F1(p̂), (4.27c)

⟨ψ2(p)ψ2(−p)⟩1-loop = ⟨ψ2(p)ψ2(−p)⟩tree F1(p̂), (4.27d)

⟨ϕ(p)D(−p)⟩1-loop = ⟨D(p)ϕ(−p)⟩1-loop = ⟨ϕ(p)D(−p)⟩treeG1(p̂), (4.27e)

⟨ψ1(p)ψ2(−p)⟩1-loop = −⟨ψ2(p)ψ1(−p)⟩1-loop = ⟨ψ1(p)ψ2(−p)⟩treeG1(p̂), (4.27f)
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(a) (b)

Figure 1: (a) Snowman-like diagram. (b) Sunset diagram

where

F1(p̂) = −ig4a3
1

D(p̂)

[
(1 + am)2 − C(p̂)2

]
K, (4.28)

G1(p̂) = − ig4a
4

am

1

D(p̂)

[
(1 + am)2 − (1 + 2am)C(p̂)2

]
K. (4.29)

Since the two point functions of the same fields at 1-loop level and those of different fields are
proportional to the tree level counterparts with the same corresponding multipicative factor,
respectively, the Ward-Takahashi identities of (4.6 -4.9) for Φ4 theory are exactly satisfied at
the 1-loop level as in the case of Φ3. In other words the relation between the 1-loop level
and tree level Ward-Takahashi identities of Φ4 case are exactly the same as (4.20-4.23) of
Φ3 case except for the replacement of the multiplicative factors F1(p̂) and G1(p̂) instead of
F (p̂) and G(p̂). In the previous paper [29] the Ward-Takahashi identities for the two point
function of Φ4 theory of (4.27a-4.27f) have already been investigated and shown to have the
structure that 1-loop propagators are proportional to tree level propagators. Here we have
confirmed that the Ward-Takahashi identities of two point functions for Φ3 theory have the
same structure in the previous subsection.

It is interesting to recognize that it is a universal nature that Ward-Takahashi identities
of two point functions with loop corrections are proportional to the tree level two point
functions with the same multiplicative factor. In the following we investigate if this feature
of the Ward-Takahashi identities is universal for the cases of higher loop corrections and
2-dimensional Wess-Zumino model.

4.3 2-loop corrections

We expect that the proportionality nature of the 2-loop contributions and tree level contri-
butions for two point functions is universal like in the case of 1-loop corrections. Here we
examine the simplest case of 2-loop contributions for quartic interaction shown in Fig. 1.
To consider 2-loop corrections of the type of the diagram in Fig. 1(a), we can utilize the
results of 1-loop correction given in the previous subsection 4.2.2. In the evaluation of 2-loop
contributions for the type of diagram in Fig. 1(b), we need to be careful for the integration
range of lattice ”sine” momenta similar to the case of 1-loop correction with cubic interaction
which is discussed in Appendices A.1 and A.2. Here we do not treat 2-loop corrections with
cubic interactions in this 1-dimensional example while we calculate them in 2-dimensional
Wess-Zumiono model in the later section. We notice that 2-loop contributions of cubic inter-
actions are higher order in the coupling constant compared with the corresponding counter
parts of quartic interaction case.
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4.3.1 Snowman diagrams: quartic interaction Φ4

Since the diagram in Fig. 1(a) includes 1-loop correction as a subdiagram, we can utilize the
results in subsection 4.2.2. Contracting the fields of two point operators of 1-loop corrections
with two fields from quartic interaction with another vertex yields the following two point
operators with 2-loop corrections:

ϕ+(q1) ϕ+(q2) = ϕ+(q1)ϕ+(q2)
[
−2g24a

6Π1Π2

]
, (4.30a)

ϕ+(q1) ϕ−(q2) = ϕ−(q1)ϕ+(q2)C(q̂1)
[
2g24a

6Π1Π2

]
, (4.30b)

ψ1(q1) ψ1(q2) = ψ1(q1)ψ1(q2)Sin(q̂1, q̂2)

[
−g

2
4a

5

2
Π1Π2

]
, (4.30c)

ψ2(q1) ψ2(q2) = ψ2(q1)ψ2(q2)Sin(q̂1, q̂2)

[
−g

2
4a

5

2
Π1Π2

]
, (4.30d)

ψ1(q1) ψ2(q2) = ψ1(q1)ψ2(q2)Cos(q̂1, q̂2)
[
−ig24a5Π1Π2

]
. (4.30e)

where

Π1 =

∫ 2
a

− 2
a

dk̂

2π

1 + am

D(k̂)
=

1 + am

4ma2π
log

∣∣∣∣1− am

1 + am

∣∣∣∣ , (4.31)

Π2 =

∫ 2
a

− 2
a

dk̂′

2π

1

D(k̂′)2

[
(1 + am)2 − (1 + am)C(k̂′)2

]
=

(3am− 1)(1 + am)

64πm2a3
log

∣∣∣∣1− am

1 + am

∣∣∣∣− 1

16πma2
1 + am

1− am
, (4.32)

and

Sin(k̂1, k̂2) = sin
a

4
(k1 − k2)

= sin
ak1
4

cos
ak2
4

− cos
ak1
4

sin
ak2
4

=

√
1

4
(1− C(k̂1))(1 + C(k̂2))(Θ(k̂1)−Θ(−k̂1))

−
√

1

4
(1 + C(k̂1))(1− C(k̂2))(Θ(k̂2)−Θ(−k̂2)), (4.33)

Cos(k̂1, k̂2) = cos
a

4
(k1 + k2)

= cos
ak1
4

cos
ak2
4

− sin
ak1
4

sin
ak2
4

=

√
1

4
(1 + C(k̂1))(1 + C(k̂2))

−
√

1

4
(1− C(k̂1))(1− C(k̂2))(Θ(k̂1)−Θ(−k̂1))(Θ(k̂2)−Θ(−k̂2)). (4.34)
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Here Θ(k̂) is a step function. We then eventually obtain the following two point functions
which are again proportional to the tree propagators:

⟨ϕ(p)ϕ(−p)⟩2-loop = ⟨ϕ(p)ϕ(−p)⟩treeA(p̂), (4.35a)

⟨D(p)D(−p)⟩2-loop = ⟨D(p)D(−p)⟩treeA(p̂), (4.35b)

⟨ψ1(p)ψ1(−p)⟩2-loop = ⟨ψ1(p)ψ1(−p)⟩treeA(p̂), (4.35c)

⟨ψ2(p)ψ2(−p)⟩2-loop = ⟨ψ2(p)ψ2(−p)⟩treeA(p̂), (4.35d)

⟨ϕ(p)D(−p)⟩2-loop = ⟨ϕ(p)D(−p)⟩treeB(p̂), (4.35e)

⟨ψ1(p)ψ2(−p)⟩2-loop = ⟨ψ1(p)ψ2(−p)⟩treeB(p̂), (4.35f)

where

A(p̂) = 2g24a
6 1

D(p̂)

(
(1 + am)2 − C(p̂)2

)
Π1Π2, (4.36)

B(p̂) =
2g24a

6

am

1

D(p̂)

(
(1 + am)2 − (1 + 2am)C(p̂)2

)
Π1Π2. (4.37)

As we expected that the 2-loop two point functions are proportional to the corresponding
tree level 2-point functions with the common multiplicative factors for the same fields and
the different fields of two point functions. They have exactly the same structure as the 1-
loop contributions in (4.27a-4.27f) except for the replacements of the multiplicataive factors:
F1(p̂) → A(p̂) and G1(p̂) → B(p̂). Thus we can prove Ward-Takahashi identity with 2-loop
tadpoles just like the previous examples.
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4.3.2 Sunset diagrams: quartic interaction Φ4

We evaluate the type of 2-loop diagram of Fig. 1(b) in this subsection. The following diagrams
contribute to two point operators with 2-loop corrections for quartic interaction:

ϕ+(−p) ϕ+(p)= ϕ+ ϕ+ + ϕ+ ϕ+ + ϕ+ ϕ+

+ ϕ+ ϕ+ + ϕ+ ϕ+ + ϕ+ ϕ+

+ ϕ+ ϕ+ + ϕ+ ϕ+ + ϕ+ ϕ+

+ ϕ+ ϕ+ + ϕ+ ϕ+

= ϕ+(−p)ϕ+(p)
(
g24a

6

3

)∫
dk̂1
2π

dk̂2
2π

(1 +M)2

D(k̂1)D(k̂2)D(p̂− k̂1 − k̂2)

×
[
(3 +M)C2

p + 4(C2
1 + C2

2 )− 4(2M + 3) + (P (K1 +K2)−K1K2)
]
,

(4.38a)

ϕ+(−p) ϕ−(p)= ϕ+ ϕ− + ϕ+ ϕ−

= ϕ+(−p)ϕ−(p)C(p̂)
(
−g

2
4a

6

3

)∫
dk̂1
2π

dk̂2
2π

(1 +M)2

D(k̂1)D(k̂2)D(p̂− k̂1 − k̂2)

×
[
2C2

p + 4(C2
1 + C2

2 )− 4(2M + 3) + (P (K1 +K2)−K1K2)
]
,

(4.38b)

ϕ−(−p) ϕ−(p)= ϕ− ϕ−

= ϕ−(−p)ϕ−(p)C(p̂)2
(
−g

2
4a

6

3

)∫
dk̂1
2π

dk̂2
2π

(1 +M)3

D(k̂1)D(k̂2)D(p̂− k̂1 − k̂2)
,

(4.38c)
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ψ1(−p) ψ1(p)= ψ1 ψ1 + ψ1 ψ1 + ψ1 ψ1

= ψ1(−p)ψ1(p)

∫
dk̂1
2π

dk̂2
2π

(1 +M)2

D(k̂1)D(k̂2)D(p̂− k̂1 − k̂2)

(
g24a

5

12

)
P

×
[
2(3 + 2M)− C2

p − 2(C2
1 + C2

2 )−
1

2
(P (K1 +K2)−K1K2)

]
,

(4.38d)

ψ2(−p) ψ2(p)= ψ2 ψ2 + ψ2 ψ2 + ψ2 ψ2

= ψ2(−p)ψ2(p)

∫
dk̂1
2π

dk̂2
2π

(1 +M)2

D(k̂1)D(k̂2)D(p̂− k̂1 − k̂2)

(
g24a

5

12

)
P

×
[
2(3 + 2M)− C2

p − 2(C2
1 + C2

2 )−
1

2
(P (K1 +K2)−K1K2)

]
,

(4.38e)

ψ1(−p) ψ2(p)= ψ1 ψ2 + ψ1 ψ2 + ψ1 ψ2

+ ψ1 ψ2

= ψ1(−p)ψ2(p)

∫
dk̂1
2π

dk̂2
2π

(1 +M)2

D(k̂1)D(k̂2)D(p̂− k̂1 − k̂2)

(
− ig

2
4a

5

6

)
×
[
4(3 + 2M)− 2(2 +M)C2

p − 4(C2
1 + C2

2 )− (P (K1 +K2)−K1K2)
]
,

(4.38f)

where Cp and Ci denote C(p̂) and C(k̂i) respectively. In the integrand of fermionic two point
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functions we have utilized the following relations:∫ 3∏
i=1

dk̂i
2π

C2(k̂1)

D(k̂1)D(k̂2)D(k̂3)
(2π)δ(k̂1 + k̂2 + k̂3 − p̂)

=

∫ 3∏
i=1

dk̂i
2π

C2(k̂2)

D(k̂1)D(k̂2)D(k̂3)
(2π)δ(k̂1 + k̂2 + k̂3 − p̂)

=

∫ 3∏
i=1

dk̂i
2π

C2(k̂3)

D(k̂1)D(k̂2)D(k̂3)
(2π)δ(k̂1 + k̂2 + k̂3 − p̂)

=

[∫ p̂

− 2
a

dk̂1
2π

∫ 2
a

p̂−k̂1− 2
a

dk̂2
2π

+

∫ 2
a

p̂

dk̂1
2π

∫ p̂−k̂1+
2
a

− 2
a

dk̂2
2π

]
C2(k̂1)

D(k̂1)D(k̂2)D(p̂− k̂1 − k̂2)
,

=

[∫ p̂

− 2
a

dk̂1
2π

∫ 2
a

p̂−k̂1− 2
a

dk̂2
2π

+

∫ 2
a

p̂

dk̂1
2π

∫ p̂−k̂1+
2
a

− 2
a

dk̂2
2π

]
C2(k̂2)

D(k̂1)D(k̂2)D(p̂− k̂1 − k̂2)
,

=

[∫ p̂

− 2
a

dk̂1
2π

∫ 2
a

p̂−k̂1− 2
a

dk̂2
2π

+

∫ 2
a

p̂

dk̂1
2π

∫ p̂−k̂1+
2
a

− 2
a

dk̂2
2π

]
C2(p̂− k̂1 − k̂2)

D(k̂1)D(k̂2)D(p̂− k̂1 − k̂2)
, (4.39)

where the equivalence of the first three relations can be understood by the relabeling of the
integration variables k̂i. The next three relations can be obtained by integrating k̂3 which
has the following limited integration range:

−2

a
≤ k̂3 = p̂− k̂1 − k̂2 ≤

2

a
, (4.40)

and thus

p̂− 2

a
− k̂1 ≤ k̂2 ≤ p̂+

2

a
− k̂1. (4.41)

The details of the equivalence of these relations are explained in Appendix A.2. Due to the
lattice ”sine” momentum conservation, we must treat the multiple integration range carefully.

Carrying out the similar Wick contraction as (4.14), we can obtain 2-loop contributions
which are again proportional to the tree level propagators with common multiplicative factors
for the same fields and different fields of two point functions:

⟨ϕ(−p)ϕ(p)⟩2-loop = ⟨ϕ(−p)ϕ(p)⟩tree I(p̂), (4.42a)

⟨D(−p)D(p)⟩2-loop = ⟨D(−p)D(p)⟩tree I(p̂), (4.42b)

⟨ψ1(−p)ψ1(p)⟩2-loop = ⟨ψ1(−p)ψ1(p)⟩tree I(p̂), (4.42c)

⟨ψ2(−p)ψ2(p)⟩2-loop = ⟨ψ2(−p)ψ2(p)⟩tree I(p̂), (4.42d)

⟨ϕ(−p)D(p)⟩2-loop = ⟨ϕ(−p)D(p)⟩tree J(p̂), (4.42e)

⟨ψ1(−p)ψ2(p)⟩2-loop = ⟨ψ1(−p)ψ2(p)⟩tree J(p̂), (4.42f)
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where,

I(p̂) =
1

D(p̂)

∫
dk̂1
2π

dk̂2
2π

1

D(k̂1)D(k̂2)D(p̂− k̂1 − k̂2)

(
g24a

6

3

)
(1 +M)2

×
[
−2C4

p + 2C2
p(3M

2 + 8M + 7)− 4(1 +M)2(2M + 3)

+
(
4(C2

1 + C2
2 ) + P (K1 +K2)−K1K2

) (
(1 +M)2 − C2

p

)]
, (4.43)

J(p̂) =
1

D(p̂)

∫
dk̂1
2π

dk̂2
2π

1

D(k̂1)D(k̂2)D(p̂− k̂1 − k̂2)

(
g24a

6

3

)
(1 +M)2

M

×
[
−2(2 + 3M)C4

p + 2C2
p(M

3 + 10M2 + 19M + 8)− 4(1 +M)2(2M + 3)

+
(
4(C2

1 + C2
2 ) + P (K1 +K2)−K1K2

) (
(1 +M)2 − (1 + 2M)C2

p

)]
. (4.44)

Here we again find the same structure of the proportionality of 2-loop level and the tree level
2-point functions with common multiplicative factors similar as 1-loop contributions (4.17a-
4.17f ). Since one can find a diagrammatic similarity of loop diagrams between the 1-loop
contributions of Φ3 theory and 2-loop contributions of Φ4 theory, this fact can be expected.
It is also natural to expect that 2-loop contributions of loop diagrams in Fig.1(a) have the
similar structure with the same reason. Indeed we have found the same structures in (4.35a-
4.35f) with different multiplicative factors. The 2-loop Ward-Takahashi identities are thus
satisfied just like 1-loop case. In these derivation of the common multiplicative factors we
have to take into account the integration range of the multiple integrations carefully so that
non trivial equalities appear due to the limited range of the ”sine” momentum conservation.
In addition, to properly extract out free propagators, it is also necessary to take into account
all the possible equivalent relabeling of integrated loop momenta.

In this section we have focused on N = 2 Wess-Zumino model in 1-dimension. We
have shown that two point functions with quantum loop corrections are proportional to the
corresponding tree level two point functions, and thus Ward-Takahashi identities of two point
functions with loop corrections are also proportional to the tree level two point functions.
We have thus shown explicitly that Ward-Takahashi identities of lattice supersymmetry with
quantum loop corrections are satisfied exactly up to the 2-loop levels for lattice 1-dimentional
Wess-Zumino model.

5 Super doubler approach for N = 2 Wess-Zumino model in
2-dimensions

5.1 N = 2, D = 2 supertransformation

2-dimensional N = 2 Euclidean algebra is given by,

{Qαi, Qβj} = 2δijγ
µ
αβi∂µ, (5.1)

where γµ = (σ3, σ1) and (i, j) = (1, 2). This algebra can be rearranged as

{Q(i)
± , Q

(j)
± } = 2δiji∂±, {Q(i)

± , Q
(j)
∓ } = 0, (5.2)

by taking linear combinations of supercharges and derivatives,

Q
(j)
± =

1

2
(Q1j ± iQ2j), ∂± =

1

2
(∂1 ± i∂2). (5.3)
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Q
(+)
+ Q

(−)
+ Q

(+)
− Q

(−)
−

Φ(p) iΨ1(p) 0 iΨ2(p) 0

Ψ1(p) 0 −2i sin ap+
2 Φ(p) −F(p) 0

Ψ2(p) F(p) 0 0 −2i sin ap−
2 Φ(p)

F(p) 0 2 sin ap+
2 Ψ2(p) 0 −2 sin ap−

2 Ψ1(p)

Table 1: Chiral D = N = 2 supersymmetry transformation

Q
(+)
+ Q

(−)
+ Q

(+)
− Q

(−)
−

Φ̄(p) 0 iΨ̄1(p) 0 iΨ̄2(p)

Ψ̄1(p) −2i sin ap+
2 Φ̄(p) 0 0 −F̄(p)

Ψ̄2(p) 0 F̄(p) −2i sin ap−
2 Φ̄(p) 0

F̄(p) 2 sin ap+
2 Ψ̄2(p) 0 −2 sin ap−

2 Ψ̄1(p) 0

Table 2: Anti-chiral D = N = 2 supersymmetry transformation

As we can see from the algebra, 2-dimensional N = 2 superalgebra is decomposed into the
direct sum of two one-dimensional N = 2 algebra. Thus we can use the one-dimensional
formulation to each light-cone direction to construct a two-dimensional model. We now
consider the half-lattice structure in each light-cone direction. To make each coordinate to
be real (x± = x1 ± x2), we have to go from Euclidean space to Minkowski space.

We can equivalently express the above algebra in the following chiral form:

{Q(+)
+ , Q

(−)
+ } = i∂+, {Q(+)

− , Q
(−)
− } = i∂−, {others} = 0, (5.4)

where

Q
(+)
± =

Q
(1)
± + iQ

(2)
±

2
, Q

(−)
± =

Q
(1)
± − iQ

(2)
±

2
. (5.5)

Replacing the derivative operators into symmetric difference operator of single lattice
distance, we can rewrite momentum representation of the algebra as:{

Q
(+)
± , Q

(−)
±

}
= 2 sin

ap±
2
, {others} = 0, (5.6)

with all other anticommutators vanishing. The supersymmetry transformations for chiral and
anti-chiral superfields are then given respectively in Table 1 and 2. In Table 2 the components
of the anti-chiral superfield are denoted with over line to distinguish them from the chiral
counterparts.

We then construct 2-dimensional N = 2 Wess-Zumino action. Kinetic term is obtained
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by Q-exact form of all supercharges on bi-linear product of anti-chiral and chiral field:

Sk =
a4

42

∫ 3π
a

−π
a

d2p̂

(2π)2
d2q̂

(2π)2
(2π)2δ2

(
sin

aq

2
+ sin

ap

2

)
Q

(−)
+ Q

(−)
− Q

(+)
+ Q

(+)
−
[
Φ(q)Φ(p)

]
=
a4

42

∫ 3π
a

−π
a

d2p̂

(2π)2
d2q̂

(2π)2
(2π)2δ2

(
sin

aq

2
+ sin

ap

2

)
×
[
−4Φ(q) sin

ap+
2

sin
ap−
2

Φ(p)− F(q)F(p)

+2Ψ1(q) sin
aq−
2

Ψ1(p) + 2Ψ2(q) sin
aq+
2

Ψ2(p)
]
, (5.7)

where d2p̂ = dp̂+dp̂− and δ2
(
sin aq

2 + sin ap
2

)
=
∏

i=± δ
(
sin aqi

2 + sin api
2

)
. The supersymme-

try invariance is manifest due to Q-exact form and ”sine” momentum conservation. Here we
impose that anti-chiral fields are hermitian conjugate of the chiral ones:

Φ†
A(p) = ΦA(−p). (5.8)

Chiral and anti-chiral fields are both symmetric or both anti-symmetric under interchange of
p± → 2π

a − p± and have the periodicity with the period 4π
a .

When only two momenta are involved in ”sine” momentum conservation, the equation,
sin ap

2 + sin aq
2 = 0, generally has two solutions and then it can be reduced to the following

standard local form:

δ2
(
sin

aq

2
+ sin

ap

2

)
=

(
2

a

)2 ∏
i=±

 1∣∣cos aqi
2

∣∣
qi=−pi

δ(qi + pi) +
1∣∣cos aqi

2

∣∣
qi=pi+

2π
a

δ

(
qi − pi −

2π

a

) .
(5.9)

For the kinetic bi-linear terms these two solutions of ”sine” conservation lead to the same
terms since the chiral/anti-chiral super fields have antisymmetric properties under the inter-
change of momentum p→ 2π

a −p and 4π
a periodicity. The dimensionless fields Φ(p),F(p) and

Ψi(p) can be rescaled into dimensional component fields in terms of lattice constant a:

Φ(p) → a−2φ(p), Ψi(p) → a−
3
2ψi(p), F(p) → a−1f(p). (5.10)

Here it should be noted that there is a difference of the treatment for species doublers be-
tween the 1-dimensional and the 2-dimensional super doubler approaches. In 1-dimensional
approach Φ(p) is a composite field to include both scalar and auxiliary fields: ϕ(p) and D(p).
On the other hand in 2-dimensional approach each of fields Φ(p) and F(p) has 4 species dou-
blers which can be truncated by chiral conditions. See the details in [29, 30]. Even though
the species doublers are truncated by chiral conditions, we still call this 2-dimensional lattice
supersymmetry formulation as SUPER DOUBLER APPROACH[30].

The kinetic term in momentum representation can be written as

Sk =

∫ π
a

−π
a

d2p̂

(2π)2
[
−φ(−p)p̂+p̂−φ(p)− f(−p)f(p) + ψ1(−p)p̂−ψ1(p) + ψ2(−p)p̂+ψ2(p)

]
,

(5.11)
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where p̂± = 2
a sin

ap±
2 .

Interaction terms can also be obtained by Q-exact form of supercharges on the products
of chiral (anti-chiral) fields Φ (Φ),

Sn
int = g0na

2n

∫ π
a

−π
a

n∏
i=1

[
d2pi
(2π)2

cos
api+
2

cos
api−
2

]
(2π)2δ2

(
n∑

i=1

sin
api
2

)

× 1

n

[
Q

(+)
+ Q

(+)
− (Φ(p1)Φ(p2) · · ·Φ(pn)) + h.c.

]
, (5.12)

where g0n is dimensionless coupling and h.c. denotes hermitian conjugate of chiral combina-
tions. Integration range is already reduced using p → 2π

a − p symmetry. The interaction
term has manifest supersymmetry invariance since it has Q-exact form. Choosing n = 2 the
interaction term yields a mass term:

Sm = g02a
4

∫
d2p̂1
(2π)2

d2p̂2
(2π)2

(2π)2δ2
(
sin

ap1
2

+ sin
ap2
2

)
× [iF(p1)Φ(p2) +Ψ2(p1)Ψ1(p2) + h.c.] . (5.13)

After rescaling they lead:

Sm = m

∫
d2p̂

(2π)2
[
if(p)φ(p) + ψ2(−p)ψ1(p)− iφ(−p)f(p) + ψ1(−p)ψ2(p)

]
, (5.14)

where we have defined m ≡ 4g02
a . Similarly we can expand n ≥ 3 interaction terms by rescaled

component fields as:

Sn
int = gn

∫ π
a

−π
a

n∏
i=1

[
d2pi
(2π)2

cos
api+
2

cos
api−
2

]
(2π)2δ2

(
2

a

n∑
i=1

sin
api
2

)
× [if(p1)φ(p2) · · ·φ(pn) + (n− 1)ψ2(p1)ψ1(p2) · · ·φ(pn) + h.c.] , (5.15)

where gn ≡ 22ng0n
a . We focus on the cubic and quartic interactions for perturbative loop

calculations in the following sections.
Explicitly we use the following cubic and quartic interactions:

Sn=3
int = g3

∫ 3∏
i=1

[
d2pi
(2π)2

cos
api+
2

cos
api−
2

]
(2π)2δ2

(
3∑

i=1

p̂i

)
×
[
if(p1)φ(p2)φ(p3)− if(p1)φ(p2)φ(p3)

+2ψ2(p1)ψ1(p2)φ(p3)− 2ψ2(p1)ψ1(p2)φ(p3)
]
, (5.16)

Sn=4
int = g4

∫ 4∏
i=1

[
d2pi
(2π)2

cos
api+
2

cos
api−
2

]
(2π)2δ2

(
4∑

i=1

p̂i

)
×
[
if(p1)φ(p2)φ(p3)φ(p4)− if(p1)φ(p2)φ(p3)φ(p4)

+3ψ2(p1)ψ1(p2)φ(p3)φ(p4)− 3ψ2(p1)ψ1(p2)φ(p3)φ(p4)
]
. (5.17)

Supertransformation of component fields are shown in Table 3 and Table 4. It is also

necessary to rescale supercharges to recover correct canonical dimension: Q
(j)
i → a

1
2Q

(j)
i .
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Q
(+)
+ Q

(−)
+ Q

(+)
− Q

(−)
−

φ(p) iψ1(p) 0 iψ2(p) 0

ψ1(p) 0 −ip̂+φ(p) −f(p) 0

ψ2(p) f(p) 0 0 −ip̂−φ(p)
f(p) 0 p̂+ψ2(p) 0 −p̂−ψ1(p)

Table 3: Supertransformation for chiral fields.

Q
(+)
+ Q

(−)
+ Q

(+)
− Q

(−)
−

φ(p) 0 iψ1(p) 0 iψ2(p)

ψ1(p) −ip̂+φ(p) 0 0 −f(p)
ψ2(p) 0 f(p) −ip̂−φ(p) 0

f(p) p̂+ψ2 0 −p̂−ψ1(p) 0

Table 4: Supertransformation for anti-chiral fields.

5.2 Propagators

We can rewrite the kinetic term of the action as follows:

Sfree =

∫ π
a

−π
a

d2p̂

(2π)2
[
−φ(−p)p̂+p̂−φ(p)− f(−p)f(p) + imf(p)φ(p)− imφ(−p)f(p)

+ψ1(−p)p̂−ψ1(p) + ψ2(−p)p̂+ψ2(p) +mψ2(−p)ψ1(p) +mψ1(−p)ψ2(p)
]
,

=
1

2

∫ π
a

−π
a

d2p̂

(2π)2

[
Φ†
B(p)MBΦB(p) + Ψ†

F (p)MFΨF (p)
]
, (5.18)

where

ΦB(p) =


φ(p)
f(p)
φ(−p)
f(−p)

 , Φ†
B(p) =

(
φ(−p) f(−p) φ(p) f(p)

)
, (5.19)

ΨF (p) =


ψ1(p)
ψ2(p)

ψ1(−p)
ψ2(−p)

 , Ψ†
F (p) =

(
ψ1(−p) ψ2(−p) ψ1(p) ψ2(p)

)
, (5.20)

and

MB =


−p̂+p̂− 0 0 −im

0 −1 −im 0
0 im −p̂+p̂− 0
im 0 0 −1

 , MF =


p̂− 0 0 m
0 p̂+ −m 0
0 −m p̂− 0
m 0 0 p̂+

 . (5.21)
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Inverse matrix of MB and MF are given as,

M−1
B =

1

p̂+p̂− −m2


−1 0 0 im
0 −p̂+p̂− im 0
0 −im −1 0

−im 0 0 −p̂+p̂−

 , M−1
F =

1

p̂+p̂− −m2


p̂+ 0 0 −m
0 p̂− m 0
0 m p̂+ 0

−m 0 0 p̂−

 .

(5.22)

We can thus obtain the following propagators:

φ(p) φ(−p) = −1

D(p̂)
, f(p) f(−p) = −p̂2

D(p̂)
,

φ(p) f(−p) = im

D(p̂)
, φ(p) f(−p) = −im

D(p̂)
,

ψ1(p) ψ1(−p) =
p̂+
D(p̂)

, ψ2(p) ψ2(−p) =
p̂−
D(p̂)

,

ψ1(p) ψ2(−p) =
−m
D(p̂)

, ψ1(p) ψ2(−p) =
m

D(p̂)
, (5.23)

where

1

D(p̂)
=

1

p̂+p̂− −m2
. (5.24)

Here we do not distinguish lines associated with chiral and anti-chiral fields. Then, Feynman
rules for cubic and quartic interaction vertices are assigned as,

f(p1)

φ(p2)

φ(p3)
= −g3,

f(p1)

φ(p2)

φ(p3)
= g3,

ψ1(p1)

ψ2(p2)

φ(p3)
= 2ig3,

ψ1(p1)

ψ2(p2)

φ(p3)
= −2ig3, (5.25)

and

f(p1)

φ(p2)

φ(p3)

φ(p4)

= −g4,

f(p1)

φ(p2)

φ(p3)

φ(p4)

= g4,

ψ2(p1)

ψ1(p2)

φ(p3)

φ(p4)

= 3ig4,

ψ2(p1)

ψ1(p2)

φ(p3)

φ(p4)

= −3ig4. (5.26)

30



6 Ward-Takahashi identity in 2-dimensions

6.1 Tree level Ward-Takahashi identities

To find nontrivial relations between two point functions, we examine all possible fermionic bi-

linear operators as δO in (2.4) such as
⟨
Q

(+)
+ (φ(p)ψ2(−p))

⟩
,
⟨
Q

(+)
− (φ(p)ψ2(−p))

⟩
, · · · . As for

the fermionic bi-linear operators we consider O = (φψi), (φψi), (f, ψi), (f, ψi), (φ,ψi), (φ,ψi),
(f, ψi), (f, ψi). Then we find the following 6 independent Ward-Takahasu identities:⟨

ψ1(p)ψ1(−p)
⟩
+ p̂+ ⟨φ(p)φ(−p)⟩ = 0, (6.1a)⟨

ψ2(p)ψ2(−p)
⟩
+ p̂− ⟨φ(p)φ(−p)⟩ = 0, (6.1b)

p̂−
⟨
ψ1(p)ψ1(−p)

⟩
+
⟨
f(p)f(−p)

⟩
= 0, (6.1c)

p̂+
⟨
ψ2(p)ψ2(−p)

⟩
+
⟨
f(p)f(−p)

⟩
= 0, (6.1d)

i ⟨ψ2(p)ψ1(−p)⟩ − ⟨φ(p)f(−p)⟩ = 0, (6.1e)

i
⟨
ψ2(p)ψ1(−p)

⟩
−
⟨
φ(p)f(−p)

⟩
= 0. (6.1f)

Identifying tree level two point function with propagators in (5.23), we find all the Ward-
Takahashi identities are satisfied at the tree level which confirms the supersymmetry invari-
ance of the formulation for all super charges.

6.2 1-loop corrections

6.2.1 1-loop corrections: quartic interaction Φ4

We now consider one-loop correction with quartic interaction in this subsection. We treat the
case of Φ4 interaction first since the loop corrections of this case is relatively simpler than the
Φ3 case. First of all it is interesting to note that loop corrections for the two point functions
of the same chirality vanish since the action possesses properties that kinetic term mixes
chiral and anti-chiral fields or different fields with the same chirality while mass term and
interaction terms do not change their chirality. For example the following loop corrections
vanish:

φ(p) f(q) = φ(p) f(q) = 0, (6.2a)

ψ1(p) ψ2(q) = ψ1(p) ψ2(q)= 0. (6.2b)

The following loop corrections having mixing fields in the loop also vanish because there is a
cancellation between loop corrections:

φ(p) φ(q) = φ(p) φ(q) + φ(p) φ(q)

= (−g4)3φ(p)φ(q)
∫

d2p̂

(2π)2
im

D(p̂)
+ (3ig4)φ(p)φ(q)

∫
d2p̂

(2π)2
m

D(p̂)

= 0, (6.3a)

φ(p) φ(q) = φ(p) φ(q) + φ(p) φ(q) = 0. (6.3b)
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The result of (6.3b) immediately follows from that of (6.3a), since the anti-chiral fields are
hermitian conjugate of corresponding chiral fields. Therefore loop contributions to two point
operators must also be hermitian conjugate to each other. Consequently we have no 1-loop
correction on any two point functions with quartic interaction.

6.2.2 1-loop correction: cubic interaction Φ3

Next we focus on 1-loop corrections with cubic interaction. Similar to the Φ4 case in the
previous subsection the two point operators of the same chirality vanish with the same reasons:
the kinetic term mixes chiral and anti-chiral fields or different fields with the same chirality
while mass term and interaction terms do not change their chirality.

f(p) f(q) = f(p) f(q) = 0, (6.4a)

φ(p) f(q) = φ(p) f(q) = 0, (6.4b)

ψ1(p) ψ1(q) = ψ1(p) ψ1(q)= 0, (6.4c)

ψ2(p) ψ2(q) = ψ2(p) ψ2(q)= 0, (6.4d)

There are the following combination of loop corrections with mixing fields in the loop but
they vanish due to the cancellation:

φ(p) φ(q)

= φ(p) φ(q) + φ(p) φ(q)

= −2g23m
2φ(p)φ(q)

∫
d2k̂

(2π)2
1

D(k̂)D(q̂ − k̂)
+ 2g23m

2φ(p)φ(q)

∫
d2k̂

(2π)2
1

D(k̂)D(q̂ − k̂)

= 0, (6.5a)

φ(p) φ(q)

= φ(p) φ(q) + φ(p) φ(q) = 0 (6.5b)
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On the other hand the two point operators of different chirality lead to the following nontrivial
contributions:

φ(p) φ(q) = φ(p) φ(q) + φ(p) φ(q)

= −2g23φ(p)φ(q)

∫
d2k̂

(2π)2
1

D(k̂)D(q̂ − k̂)
q̂+q̂−, (6.6a)

f(p) f(q) = f(p) f(q)

= −2g23f(p)f(q)

∫
d2k̂

(2π)2
1

D(k̂)D(q̂ − k̂)
, (6.6b)

ψ1(p) ψ1(q) = ψ1(p) ψ1(q)

= 2g23ψ1(p)ψ1(q)

∫
d2k̂

(2π)2
1

D(k̂)D(q̂ − k̂)
q̂−, (6.6c)

ψ2(p) ψ2(q) = ψ2(p) ψ2(q)

= 2g23ψ2(p)ψ2(q)

∫
d2k̂

(2π)2
1

D(k̂)D(q̂ − k̂)
q̂+, (6.6d)

where we have renamed loop momenta k̂i → q̂i − k̂i in the intermediate stage, so that we can
extract out the external momentum dependence by using momentum conservation.

Using these relations, we can evaluate two point functions of various pairs of fields. After
carrying out Wick contraction for possible combinations of two point operators as (4.14) in
1-dimensional case, we obtain 1-loop corrections to the two point functions as follows:

⟨φ(p)φ(−p)⟩1-loop = ⟨φ(p)φ(−p)⟩treeX(p̂), ⟨φ(p)f(−p)⟩1-loop = ⟨φ(p)f(−p)⟩tree Y (p̂),⟨
f(p)f(−p)

⟩
1-loop

=
⟨
f(p̂)f(−p)

⟩
tree

X(p̂),
⟨
φ(p)f(−p)

⟩
1-loop

=
⟨
φ(p)f(−p)

⟩
tree

Y (p̂),⟨
ψ1(p)ψ1(−p)

⟩
1-loop

=
⟨
ψ1(p)ψ1(−p)

⟩
tree

X(p̂), ⟨ψ1(p)ψ2(−p)⟩1-loop = ⟨ψ1(p)ψ2(−p)⟩tree Y (p̂),⟨
ψ2(p)ψ2(−p)

⟩
1-loop

=
⟨
ψ2(p)ψ2(−p)

⟩
tree

X(p̂),
⟨
ψ1(p)ψ2(−p)

⟩
1-loop

=
⟨
ψ1(p)ψ2(−p)

⟩
tree

Y (p̂),

where X(p̂) and Y (p̂) are given in the following table:

Loop diagram X(p̂) Y (p̂)

1 1

0 0

−2g23
p̂+p̂− +m2

D(p̂)
I1 4g23

p̂+p̂−
D(p̂)

I1

where

I1 =

∫
d2k̂

(2π)2
1

D(k̂)D(p̂− k̂)
. (6.7)

33



Here we have summarized the cases for both Φ4 and Φ3 with null contribution for Φ4 case.
The 2-dimensional integral I1 should be evaluated with the care of the integration range

since each of the lattice ”sine” momenta p̂ and k̂ has limited integration range in this model. In
each direction of the light cone ”sine” momentum integration the integration range should be
treated as it has been shown in (A.10) of one dimensional model. The current 2-dimensional
formulation can be formulated essentially by the direct product of two one-dimensional mod-
els.

The proportionality relations between the 1-loop and tree two point functions have the
similar structure as in the 1-dimensional case. We can then show that the 1-loopWT identities
are proportional to tree level WT identities with multiplicative factors given in the table. For
example we obtain⟨

ψ1(p)ψ1(−p)
⟩
1-loop

+ p̂+ ⟨φ(p)φ(−p)⟩1-loop
=
[⟨
ψ1(p)ψ1(−p)

⟩
tree

+ p̂+ ⟨φ(p)φ(−p)⟩tree
]
X(p̂) = 0, (6.8a)

i ⟨ψ2(p)ψ1(−p)⟩1-loop − ⟨φ(p)f(−p)⟩1-loop
= [i ⟨ψ2(p)ψ1(−p)⟩tree − ⟨φ(p)f(−p)⟩tree]Y (p̂) = 0. (6.8b)

The rest of WT identies in (6.1) satisfy the similar proportionality and thus are satisfied in
the 1-loop level.

6.3 2-loop corrections

Next we investigate 2-loop corrections explicitly with either quartic or cubic interactions.

6.3.1 2-loop corrections: quartic interaction Φ4

We first treat 2-loop diagrams with quartic interaction. There are two types of 2-loop dia-
grams; tadpole (snow man) diagram in Fig.1-a and overlapping (sunset) diagram in Fig.1-b.
The former one includes one-loop tadpole as a subdiagram, therefore it apparently vanishes
with the same reasonings as 1-loop arguments of Φ4 interaction in subsection 6.2.1. We thus
focus only on overlapping diagram here.

Similar to 1-loop diagrams, most of two point operators vanish due to vanishing internal
propagators. We only have the following non-trivial loop corrections:

φ(p) φ(q) = φ(p) φ(q)+ φ(p) φ(q)

= 6g24φ(p)φ(q)

∫
d2k̂1
(2π)2

d2k̂2
(2π)2

1

D(k̂1)

1

D(k̂2)

1

D(q̂ − k̂1 − k̂2)
q̂+q̂− (6.9a)

f(p) f(q) = ϕ(p) φ(q)

= 6g24f(p)f(q)

∫
dk̂21
(2π)2

dk̂22
(2π)2

1

D(k̂1)

1

D(k̂2)

1

D(q̂ − k̂1 − k̂2)
, (6.9b)
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ψ1(p) ψ1(q) = ψ2(p) ψ2(q)

= −6g24ψ1(p)ψ1(q)

∫
d2k̂1
(2π)2

d2k̂2
(2π)2

1

D(k̂1)

1

D(k̂2)

1

D(q̂ − k̂1 − k̂2)
q̂−,

(6.9c)

ψ2(p) ψ2(q) = ψ1(p) ψ1(q)

= −6g24ψ2(p)ψ2(q)

∫
d2k̂1
(2π)2

d2k̂2
(2π)2

1

D(k̂1)

1

D(k̂2)

1

D(q̂ − k̂1 − k̂2)
q̂+.

(6.9d)

where we have arranged to rename the integrated loop momenta and the ”sine” momentum
conservation should be understood: q̂ = k̂1 + k̂2 + k̂3.

In the evaluation of 2-loop integral we need to take care about the integration range of
the ”sine” momentum again as we have discussed in the 2-loop correction of 1-dimensional
model in (4.39). Here in the current 2-loop expression there is no terms depending on the
internal momenta in the numerator so that we simply take care the integration range of two
internal loop momenta:∫

d2k̂1
(2π)2

d2k̂2
(2π)2

1

D(k̂1)

1

D(k̂2)

1

D(q̂ − k̂1 − k̂2)

=

[∫ q̂

− 2
a

dk̂1
2π

∫ 2
a

q̂−k̂1− 2
a

dk̂2
2π

+

∫ 2
a

q̂

dk̂1
2π

∫ q̂−k̂1+
2
a

− 2
a

dk̂2
2π

]
1

D(k̂1)D(k̂2)D(q̂ − k̂1 − k̂2)
. (6.10)

The details of the treatment of integration range for three internal momenta are given in
Appendix A.2.

We eventually have the following two point functions with 2-loop corrections:

⟨φ(p)φ(−p)⟩2-loop = ⟨φ(p)φ(−p)⟩treeA(p), (6.11a)⟨
f(p)f(−p)

⟩
2-loop

=
⟨
f(p)f(−p)

⟩
tree

A(p), (6.11b)⟨
ψ1(p)ψ1(−p)

⟩
2-loop

=
⟨
ψ1(p)ψ1(−p)

⟩
tree

A(p), (6.11c)⟨
ψ2(p)ψ2(−p)

⟩
2-loop

=
⟨
ψ2(p)ψ2(−p)

⟩
tree

A(p), (6.11d)

⟨φ(p)f(−p)⟩2-loop = ⟨φ(p)f(−p)⟩treeB(p), (6.11e)⟨
φ(p)f(−p)

⟩
2-loop

=
⟨
φ(p)f(−p)

⟩
tree

B(p), (6.11f)

⟨ψ1(p)ψ2(−p)⟩2-loop = ⟨ψ1(p)ψ2(−p)⟩treeB(p), (6.11g)⟨
ψ1(p)ψ2(−p)

⟩
2-loop

=
⟨
ψ1(p)ψ2(−p)

⟩
tree

B(p). (6.11h)

where

A(p) =

[
−6g24

p̂+p̂− +m2

D(p)

∫
dk̂21
(2π)2

dk̂22
(2π)2

1

D(k̂1)D(k̂2)D(p̂− k̂1 − k̂2)

]
, (6.12a)

B(p) =

[
−12g24

p̂+p̂−
D(p̂)

∫
dk̂21
(2π)2

dk̂22
(2π)2

1

D(k̂1)D(k̂2)D(p̂− k̂1 − k̂2)

]
. (6.12b)
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(1)

A B
(2)

A B
Figure 2: Two points operators with 2-loop corrections

Again the 2-loop corrections of two point functions are proportional to the tree level expres-
sions with multiplicative factors. Since the structure of the proportionality is the same as
1-loop corrections in (6.7), Ward-Takahashi identities are satisfied at the two loop level as
well.

6.3.2 2-loop correction: cubic interaction Φ3: (a)

We next consider 2-loop corrections with cubic interaction. Possible non-trivial diagrams
are shown in Figure 2. The other diagrams including 1-loop tadpoles as subdiagram trivially
vanish since a tadpole contribution itself vanishes. We show explicitly that one point operators
of 1-loop and 2-loop tadpole contributions for Φ3 model all vanish in Appendix B.

We first focus on the diagram (a) in Figure 2. The following diagrams can be considered
as possible 2-loop contribution:

φ(p) φ(q) = φ(p) φ(q)+ φ(p) φ(q)

+ φ(p) φ(q)+ φ(p) φ(q)

+ φ(p) φ(q)

=0, (6.13a)

φ(p) φ(q) = φ(p) φ(q)+ φ(p) φ(q)

+ φ(p) φ(q)+ φ(p) φ(q)

+ φ(p) φ(q)

=0, (6.13b)
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φ(p) φ(q) = φ(p) φ(q)+ φ(p) φ(q)

+ φ(p) φ(q)+ φ(p) φ(q)

+ φ(p) φ(q)+ φ(p) φ(q)

+ φ(p) φ(q)+ φ(p) φ(q)

+ φ(p) φ(q)

=− 8m2g43φ(p)φ(q)

∫
δ4D−5

[
p̂2 + q̂2

]
, (6.13c)

φ(p) f(q) = φ(p) f(q)+ φ(p) f(q)

=− 8img43φ(p)f(q)

∫
δ4D−5

[
p̂2
]
, (6.13d)

φ(p) f(q) = φ(p) f(q)+ φ(p) f(q)

=8img43φ(p)f(q)

∫
δ4D−5

[
p̂2
]
, (6.13e)

f(p) f(q) = f(p) f(q)

=− 16m2g43f(p)f(q)

∫
δ4D−5. (6.13f)
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Next fermionic two point operators receives the following 2-loop contributions:

ψ1(p) ψ1(q) = ψ1(p) ψ1(q) + ψ1(p) ψ1(q)

+ ψ1(p) ψ1(q)

=8m2g43ψ1(p)ψ1(q)

∫
δ4D−5 [−p̂− + q̂−] , (6.13g)

ψ2(p) ψ2(q) = ψ2(p) ψ2(q) + ψ2(p) ψ2(q)

+ ψ2(p) ψ2(q)

=8m2g43ψ2(p)ψ2(q)

∫
δ4D−5 [−p̂− + q̂−] , (6.13h)

ψ1(p) ψ2(q) = ψ1(p) ψ2(q) + ψ1(p) ψ2(q)

=− 8mg43ψ1(p)ψ2(q)

∫
δ4D−5 [p̂−q̂+] , (6.13i)

ψ1(p) ψ2(q) = ψ1(p) ψ2(q) + ψ1(p) ψ2(q)

=− 8mg43ψ1(p)ψ2(q)

∫
δ4D−5 [p̂−q̂+] , (6.13j)

where we symbolically denotes the following propagators and delta functions with phase space
factors as:∫

δ4D−5 =

∫ 5∏
i=1

[
d2k̂i
(2π)2

1

D(k̂i)

]
(2π)8δ2(p̂+ k̂1 + k̂2)

× δ2(−k̂1 + k̂3 + k̂4)δ
2(−k̂2 − k̂3 + k̂5)δ

2(−k̂4 − k̂5 + q̂). (6.14)

The first two operators, (6.13a) and (6.13b), in bosonic operators however vanish after
the calculation shown as follows:

φ(p) φ(q) = −16m2g43φ(p)φ(q)

∫
δ4D−5

[
k̂22 +

1

2
k̂23 + k̂2−k̂3+ + k̂2+k̂3− − k̂2−k̂5+

]
= −8m2g43φ(p)φ(q)

∫
δ4D−5

(
k̂2+ + k̂3+ − k̂5+

)(
k̂2− + k̂3− − k̂5−

)
= 0.

(6.15)

In the first line of (6.15) a factor 1
2 is inserted because the diagram is symmetric under

the exchange of external momentum p̂ ↔ q̂. In the second line we use symmetry of the mo-
menta in the delta functions; the product of delta functions is symmetric under the exchange,
(p̂, k̂1, k̂2) ↔ (q̂,−k̂4,−k̂5). Imposing momentum conservation, we can show that loop con-
tributions vanish. In the similar way the operator with anti-chiral fields vanishes, which is
obvious from hermiticity.
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The other operators lead non-trivial contributions. One of concrete calculations goes in
the following way:

φ(p) φ(q)

= −16m2g43

∫
δ4D−5

[
k̂22 + k̂23 + k̂2−k̂3+ + k̂2+k̂3− + k̂24

+k̂3−k̂4+ + k̂3+k̂4− + k̂2−k̂4+ + k̂2+k̂4−

]
= −8m2g43

∫
δ4D−5

[
k̂21 + k̂22 + k̂24 + k̂25 − 2k̂23 + k̂2−k̂4+ + k̂2+k̂4− + k̂1−k̂5+ + k̂1+k̂5−

]
= −8m2g43

∫
δ4D−5

[
p̂2 + q̂2

]
. (6.16)

In most of these calculations we carry out renaming of integrated loop momenta in such a
way that the external momentum is extracted out in the numerator. The following ”sine”
momentum conservations are used repeatedly: p̂+ k̂1+ k̂2 = −k̂1+ k̂3+ k̂4 = −k̂2− k̂3+ k̂5 =
−k̂4 − k̂5 + q̂ = 0. We can also employ the following symmetry of renaming of momenta in
the delta functions: (k̂1, k̂4, k̂3) ↔ (k̂2, k̂5,−k̂3).

Collecting all these 2-loop contributions for two point functions, we obtain again the
proportionality of two point functions of the 2-loop contribution and tree level contribution
with multiplicative factors similar as 1-loop case:

⟨φ(p)φ(−p)⟩2-loop = ⟨φ(p)φ(−p)⟩tree I(p̂), (6.17a)⟨
f(p)f(−p)

⟩
2-loop

=
⟨
f(p)f(−p)

⟩
tree

I(p̂), (6.17b)⟨
ψ1(p)ψ1(−p)

⟩
2-loop

=
⟨
ψ1(p)ψ1(−p)

⟩
tree

I(p̂), (6.17c)⟨
ψ2(p)ψ2(−p)

⟩
2-loop

=
⟨
ψ2(p)ψ2(−p)

⟩
tree

I(p̂), (6.17d)

⟨φ(p)f(−p)⟩2-loop = ⟨φ(p)f(−p)⟩tree J(p̂), (6.17e)⟨
φ(p)f(−p)

⟩
2-loop

=
⟨
φ(p)f(−p)

⟩
tree

J(p̂), (6.17f)

⟨ψ1(p)ψ2(−p)⟩2-loop = ⟨ψ1(p)ψ2(−p)⟩tree J(p̂), (6.17g)⟨
ψ1(p)ψ2(−p)

⟩
2-loop

=
⟨
ψ1(p)ψ2(−p)

⟩
tree

J(p̂), (6.17h)

where

I(p̂) = 16m2g43
2p̂+p̂− +m2

D(p̂)

∫
dk̂21
(2π)2

dk̂22
(2π)2

1

D(k̂1)D(k̂2)D(k̂1 + p̂)D(k̂2 + p̂)D(k̂1 − k̂2)
,

(6.18)

J(p̂) = 8g43
p̂+p̂− + 5m2

D(p̂)
p̂+p̂−

∫
dk̂21
(2π)2

dk̂22
(2π)2

1

D(k̂1)D(k̂2)D(k̂1 + p̂)D(k̂2 + p̂)D(k̂1 − k̂2)
.

(6.19)

Similar to the previous cases all the two point functions with 2-loop corrections are propor-
tional to tree ones with two multiplicative common factors, we can prove that supersymmetric
WT identity is exactly satisfied at 2-loop quantum corrections for Φ3 model. Integration range
of the integrated ”sine” momenta should be treated similarly as in the case of (6.10). In the
expression of (6.14), all the ”sine” momentum conservation with delta functions should be
understood with limited integration range as well.
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6.3.3 2-loop corrections: cubic interaction Φ3 (b)

We finally focus on the second diagram in Figure 2(b). This diagram also includes 1-loop
as a subdiagram, thus we can utilize the result in subsection 6.2.2. Analogous to previous
evaluation we can first extract diagrams with trivial null contribution and then we find the
following nontrivial diagrams:

φ(p) φ(q) =
φ(p) φ(q)

+
φ(p) φ(q)

+
φ(p) φ(q)

+
φ(p) φ(q)

=0, (6.20a)

φ(p) φ(q) =
φ(p) φ(q)

+
φ(p) φ(q)

+
φ(p) φ(q)

+
φ(p) φ(q)

=0, (6.20b)

φ(p) φ(q) =
φ(p) φ(q)

+
φ(p) φ(q)

+
φ(p) φ(q)

+
φ(p) φ(q)

+
φ(p) φ(q)

+
φ(p) φ(q)

+
φ(p) φ(q)

+
φ(p) φ(q)

=φ(p)φ(q)

[
−4g43(p̂

2 + q̂2)

∫
d2k̂1d

2k̂2
(2π)2(2π)2

k̂21 +m2

D(k̂1)2D(k̂2)

∫
d2k̂

(2π)2
1

D(k̂)D(k̂1 − k̂)

]
,

(6.20c)
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f(p) f(q) = f(p) f(q)
+ f(p) f(q)

=f(p)f(q)

[
−8g43

∫
d2k̂1d

2k̂2
(2π)2(2π)2

k̂21 +m2

D(k̂1)2D(k̂2)

∫
d2k̂

(2π)2
1

D(k̂)D(k̂1 − k̂)

]
,

(6.20d)

ψ1(p) ψ1(q) = ψ1(p) ψ1(q)
+ ψ1(p) ψ1(q)

+ ψ1(p) ψ1(q)
+ ψ1(p) ψ1(q)

=ψ1(p)ψ1(q)

[
4g43(q̂− − p̂−)

∫
d2k̂1d

2k̂2
(2π)2(2π)2

k̂21 +m2

D(k̂1)2D(k̂2)

∫
d2k̂

(2π)2
1

D(k̂)D(k̂1 − k̂)

]
,

(6.20e)

ψ2(p) ψ2(q) = ψ2(p) ψ2(q)
+ ψ2(p) ψ2(q)

+ ψ2(p) ψ2(q)
+ ψ2(p) ψ2(q)

= = ψ2(p)ψ2(q)

[
4g43(q̂+ − p̂+)

∫
d2k̂1d

2k̂2
(2π)2(2π)2

k̂21 +m2

D(k̂1)2D(k̂2)

∫
d2k̂

(2π)2
1

D(k̂)D(k̂1 − k̂)

]
.

(6.20f)

where ( ) denotes one-loop correction calculated in subsection 6.2.2. As in the previ-
ous analysis, the first two diagrams vanish and the rest of two point operators give nontrivial
results.

Contracting with all possible external combination we eventually obtain the following
quantum 2-loop corrections of the type (b) diagrams in Figure2:

⟨φ(p)φ(−p)⟩2-loop = ⟨φ(p)φ(−p)⟩treeX(p̂), (6.21a)

⟨f(p)f(−p)⟩2-loop = ⟨f(p)f(−p)⟩treeX(p̂), (6.21b)⟨
ψ1(p)ψ1(−p)

⟩
2-loop

=
⟨
ψ1(p)ψ1(−p)

⟩
tree

X(p̂), (6.21c)⟨
ψ2(p)ψ2(−p)

⟩
2-loop

=
⟨
ψ2(p)ψ2(−p)

⟩
tree

X(p̂), (6.21d)

⟨φ(p)f(−p)⟩2-loop = ⟨φ(p)f(−p)⟩tree Y (p̂), (6.21e)⟨
φ(p)f(−p)

⟩
2-loop

=
⟨
φ(p)f(−p)

⟩
tree

Y (p̂), (6.21f)

⟨ψ1(p)ψ2(−p)⟩2-loop = ⟨ψ1(p)ψ2(−p)⟩tree Y (p̂), (6.21g)⟨
ψ1(p)ψ2(−p)

⟩
2-loop

=
⟨
ψ1(p)ψ2(−p)

⟩
tree

Y (p̂), (6.21h)
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where

X(p̂) = 8g43
p̂+p̂− +m2

D(p̂)

∫
d2k̂1d

2k̂2
(2π)2(2π)2

k̂21 +m2

D(k̂1)2D(k̂2)

∫
d2k̂

(2π)2
1

D(k̂)D(k̂1 − k̂)
, (6.22)

Y (p̂) = 16g43
p̂+p̂−
D(p̂)

∫
d2k̂1d

2k̂2
(2π)2(2π)2

k̂21 +m2

D(k̂1)2D(k̂2)

∫
d2k̂

(2π)2
1

D(k̂)D(k̂1 − k̂)
. (6.23)

The integration range is again constrained to satisfy all ”sine” momentum conservations of
given diagrams. Since the 2-loop corrections of the two point functions are proportional to
tree ones, supersymmetric WT identity is satisfied in a similar way.

In conclusion, we have shown that supersymmetric WT identities are satisfied up to 2-
loop orders of quantum corrections. The two point functions with loop corrections are always
proportional to tree counter parts with a multiplicative factor. Two-loop contributions are
summarized in the followings:

⟨φ(p)φ(−p)⟩2-loop = ⟨φ(p)φ(−p)⟩treeX(p̂), ⟨φ(p)f(−p)⟩2-loop = ⟨φ(p)f(−p)⟩tree Y (p̂),⟨
f(p)f(−p)

⟩
2-loop

=
⟨
f(p̂)f(−p)

⟩
tree

X(p̂),
⟨
φ(p)f(−p)

⟩
2-loop

=
⟨
φ(p)f(−p)

⟩
tree

Y (p̂),⟨
ψ1(p)ψ1(−p)

⟩
2-loop

=
⟨
ψ1(p)ψ1(−p)

⟩
tree

X(p̂), ⟨ψ1(p)ψ2(−p)⟩2-loop = ⟨ψ1(p)ψ2(−p)⟩tree Y (p̂),⟨
ψ2(p)ψ2(−p)

⟩
2-loop

=
⟨
ψ2(p)ψ2(−p)

⟩
tree

X(p̂),
⟨
ψ1(p)ψ2(−p)

⟩
2-loop

=
⟨
ψ1(p)ψ2(−p)

⟩
tree

Y (p̂),

Loop diagram X(p̂) Y (p̂)

1 1

0 0

−6g24
p̂+p̂− +m2

D(p)
I2 −12g24

p̂+p̂−
D(p̂)

I2

16m2g43
2p̂+p̂− +m2

D(p̂)
I3 8g43 p̂+p̂−

p̂+p̂− + 5m2

D(p̂)
I3

8g43
p̂+p̂− +m2

D(p̂)
I4 16g43

p̂+p̂−
D(p̂)

I4

where

I2 =

∫
dk̂21
(2π)2

dk̂22
(2π)2

1

D(k̂1)D(k̂2)D(p̂− k̂1 − k̂2)
, (6.24)

I3 =

∫
dk̂21
(2π)2

dk̂22
(2π)2

1

D(k̂1)D(k̂2)D(k̂1 + p̂)D(k̂2 + p̂)D(k̂1 − k̂2)
, (6.25)

I4 =

∫
d2k̂1d

2k̂2
(2π)2(2π)2

k̂21 +m2

D(k̂1)2D(k̂2)

∫
d2k̂

(2π)2
1

D(k̂)D(k̂1 − k̂)
. (6.26)

7 Breakdown of associativity for the super doubler approach

As we have shown in the previous sections that Ward-Takahashi identities of Wess-Zumino
models of D=1,2 and N=2 are exactly satisfied even at the quantum level. In the super
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doubler approach we impose an ansatz that the lattice ”sine” momenta are the conserved
quantity. Due to the change of this interpretation there appear unusual properties for the
formulation.

Let us now reconsider the product of fields Φ1 and Φ2 in the super doubler approach:

(Φ1 ⋆ Φ2)(p12) =

∫ 4π
a

0
dp1dp2Φ1(p1)Φ2(p2)δ(p̂12 − p̂1 − p̂2). (7.1)

When p̂i = pi the above definition of the product of Φ1 and Φ2 leads to the standard con-
volution and thus normal product (Φ1 · Φ2) in the momentum space. When p̂i = 2

a sin
ap
2

is chosen as the lattice momentum as in (3.12) the product is changed into ⋆-product. The
coordinate lattice representation of the product has the following non-local form:

(Φ1 ⋆ Φ2)(
na

2
) =

∑
n1,n2

K(n, n1, n2)Φ1(
n1a

2
)Φ2(

n2a

2
), (7.2)

where

K(n, n1, n2) =

∫ ∞

−∞
J(λ,

na

2
)J(λ,

n1a

2
)J(λ,

n2a

2
) (7.3)

and J is the Bessel function:

J(λ,
na

2
) =

a

2

∫ 4π
a

0

dp

2π
e−i(nap

2
−λnp̂

2 ). (7.4)

Obviously the product is commutative:

(Φ1 ⋆ Φ2)(p12) = (Φ2 ⋆ Φ1)(p21) (7.5)

where
p̂12 = p̂21 = p̂1 + p̂2. (7.6)

We can show that Leibniz rule is satisfied for the difference operator on the ⋆-product:

∂̂(Φ1 ⋆ Φ2) = (∂̂Φ1) ⋆ Φ2 +Φ1 ⋆ (∂̂Φ2), (7.7)

where

∂̂Φ
(na

2

)
= Φ

(
(n+ 1)a

2

)
− Φ

(
(n− 1)a

2

)
. (7.8)

The ⋆-product is, however, non-associative:

(Φ1 ⋆ (Φ2 ⋆ Φ3))(p123)

=

∫
dp23

∫
dp1

∫
dp2

∫
dp3Φ̃1(p1)Φ̃2(p2)Φ̃3(p3)δ(p̂23 − p̂2 − p̂3)δ(p̂123 − p̂1 − p̂23)

̸=
∫
dp12

∫
dp1

∫
dp2

∫
dp3Φ̃1(p1)Φ̃2(p2)Φ̃3(p3)δ(p̂12 − p̂1 − p̂2)δ(p̂123 − p̂3 − p̂12)

= ((Φ1 ⋆ Φ2) ⋆ Φ3)(p123). (7.9)

This is because the phase space of covering region on the left-hand side and right-hand side
are different:

dp1dp2dp3δ(p̂23−p̂2−p̂3)δ(p̂123−p̂1−p̂23) ̸= dp1dp2dp3δ(p̂12−p̂1−p̂2)δ(p̂123−p̂3−p̂12), (7.10)
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2
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Figure 3: Non-associative phase space region: four solid pentagons framed by thin solid lines
with shaded square bottom located outside of the polygon framed by fat solid lines.

which originates from the limited momentum region of lattice momentum:

−2

a
≤ p̂i ≤

2

a
, |p̂i + p̂j | ≤

2

a
. (7.11)

We show the phase space region where the associativity of (7.9) is not satisfied, in fig. 3.
The breakdown of the associativity for the ⋆-product makes it difficult to extend this

formulation into gauge theory since associativity is crucial for the gauge invariance proof as
we can see in the following :

Φ†(x) ⋆ Φ(x) → (Φ†(x) ⋆ e−iα(x)) ⋆ (eiα(x) ⋆ Φ(x))

̸= Φ†(x) ⋆ (e−iα(x) ⋆ eiα(x)) ⋆ Φ(x) = Φ†(x) ⋆ Φ(x), (7.12)

where all the product are understood as ⋆-product.
One may wonder how this breakdown of the associativity influences to the exact lattice

supersymmetry. There is no ambiguity of defining a product of several fields by ⋆-product.

44



Once product is well defined for each term of action, supersymmetry transformation for the
action can be examined without any problem. The exact supersymmetry invariance of the
action on the lattice with ⋆-product is assured since supersymmetry transformation is linear
for each field for Wess-Zumino models. Algebraic consistency of supersymmetry algebra is
assured since Leibniz rule is satisfied for difference operator on the ⋆-product. As far as
gauge symmetry is not introduced in the formulation, lattice SUSY can be exactly kept in
the formulation.

In order to generalize this super doubler approach of lattice supersymmetry into super
Yang-Mills we have to find out a formulation where associativity is recovered. As we saw in
the above the origin of the breakdown of the supersymmetry is due to the finite range of the
lattice momentum p̂. In order to find out an alternative of lattice momentum p̂, we need to
find a lattice momentum expression ˆ̂p(p) satisfying; (1) ˆ̂p(−p) = − ˆ̂p(p), −∞ < ˆ̂p(p) <∞,
(2) ˆ̂p(p) → p (a→ 0),
(3) ˆ̂p(2πa − p) = ˆ̂p(p). The last item (3) is also important to take into account the species
doubler nature of super doubler approach. We found interesting solution which satisfies all
these criteria:

ˆ̂p(p) =
1

a
log

1 + sin ap
2

1− sin ap
2

. (7.13)

With the use of this expression as conserved momentum we can yet define another ⋆-product
which satisfies associativity. A new type of difference operator can be defined and satisfies
Leibniz rule on the ⋆-product. The details of this formulation will be soon given elsewhere[74].

8 Conclusion and Discussions

In this paper we have explicitly shown in details that the lattice version of supersymmetric
Ward-Takahashi identities are exactly satisfied at the quantum level up to two loops of
quantum corrections for super doubler approach of D=1,2 and N=2Wess-Zumino models with
interactions of Φ3 and Φ4. This means that the supersymmetry on the lattice for these models
is kept exactly even at the quantum level. In the proof of the Ward-Takahashi identities at
the 1- and 2-loop level of two point functions, we found universal structure that loop level
WT identities are proportional to the corresponding tree level WT identities with common
multiplicative factors. A brief summary of the results of this paper were reported in [82].
This result remind us of the statement of non-renormalization theorem on supersymmetric
field theory models: loop level amplitudes are not renormalized and thus proportional to tree
level amplitudes[83, 84, 85, 86].

It should be pointed out at this stage that a proper choice of overall function G(p1, · · · , pn)
as in (3.2) makes the formulation similar to the cut off theory where the lattice ”sine” mo-
mentum p̂ = 2

a sin
ap
2 can be identified as momentum having cut-off of |p̂| ≤ 2

a . It is also
possible to see that identifying the lattice ”sine” momentum as periodic lattice momentum
the formulation is similar to SLAC derivative formulation of lattice theory. WT identities of
Wess-Zumino models by cut-off theory have been intensively investigated in [75, 78, 79] and
gave similar relations between loop level and tree level WT identities.

The super doubler approach imposes an ansatz that lattice ”sine” momentum is the con-
served quantity. Due to this change of the formulation there appears unusual characteristics
to the formulation, especially in the coordinate terminology:
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1. Difference operator satisfies Leibniz rule on the ⋆-product,

2. Product of fields is non-local ⋆-product,

3. Discrete lattice translational invariance is broken,

4. Associativity for the ⋆-product is broken.

In particular the item 4 breaks gauge invariance and thus the super doubler approach cannot
be used for lattice super Yang-Mills formulation if we want to keep exact super symmetry
and gauge invariance at the same time. In the previous section we have proposed a new type
of lattice momentum function (7.13) which cures the breakdown of the associativity of super
doubler approach. Details of this formulation will be given elsewhere[74].
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Appendix

A Integration domain

In this Appendix we discuss subtleties of integration range originated from lattice ”sine”
momentum conservation δ (

∑
i p̂i). In our formulation p̂ is not linear with respect to the

periodic momentum p, thus we cannot re-parametrize it freely by shifting the momentum
unless we take care of the integration range carefully. In particular we need to treat the
integration range carefully for the type of diagrams as given in subsections 4.2.1 and 4.3.2 for
1-dimension and 6.2.2 and 6.3.1 for 2-dimensions. In deriving multiplicative factors of WT
identities we have used several nontrivial equalities which look not obvious but turn out to
be equivalent if we take care integration range carefully. In the following we consider some
examples to show the structure by investigating 1-dimensional cases.

A.1 Cubic interaction Φ3

We begin with cubic interaction Φ3. A possible problem arises when we encounter the fol-
lowing integration in loop calculation:∫ 2

a

− 2
a

dk̂1
2π

dk̂2
2π

F (k̂1, k̂2)

D(k̂1)D(k̂2)
(2π)2δ(k̂1 + k̂2 − p̂)δ(q̂ − k̂1 − k̂2), (A.1)

where F (k̂1; k̂2) is any arbitrary function of k̂1 and k̂2. If F (k̂1, k̂2) has the following form as
an example:

F (k̂1, k̂2) ≡ C2(k̂2), (A.2)
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it is natural to expect∫ 2
a

− 2
a

dk̂1
2π

dk̂2
2π

C2(k̂1)

D(k̂1)D(k̂2)
(2π)2δ(k̂1 + k̂2 − p̂)δ(q̂ − k̂1 − k̂2)

=

∫ 2
a

− 2
a

dk̂1
2π

dk̂2
2π

C2(k̂2)

D(k̂1)D(k̂2)
(2π)2δ(k̂1 + k̂2 − p̂)δ(q̂ − k̂1 − k̂2), (A.3)

since the second expression is simply the label change of k̂1 ↔ k̂2 of the first expression.
When we naively perform integration over either k̂1 or k̂2 we obtain,∫ 2

a

− 2
a

dk̂

2π

C2(k̂)

D(k̂)D(p̂− k̂)
(2π)δ(p̂− q̂), (A.4)

=

∫ 2
a

− 2
a

dk̂

2π

C2(p̂− k̂)

D(k̂)D(p̂− k̂)
(2π)δ(p̂− q̂). (A.5)

In the continuum formulation these two results are shown to be equivalent by shifting mo-
mentum variables while now these two expression don’t look to give the same result. This is
because the momentum p̂ is bounded in the range [− 2

a ,
2
a ].

The resolution to this puzzle is obtained by correctly taking into account the finite range
of the integrated ”sine” momenta. First of all each momentum is bounded by |k̂i|, |p̂| ≤ 2

a .
Then the following inequality should be satisfied:

−2

a
≤ k̂2 = p̂− k̂1 ≤

2

a
. (A.6)

The allowed integration range satisfying these constraints is shown in Figure 4(a). The above
integration range of k̂2 in (A.6) in turn gives another range constraint of k̂1 as

p̂− 2

a
≤ k̂1 ≤ p̂+

2

a
. (A.7)

Since the integration range of k̂1 is − 2
a ≤ k̂1 ≤ 2

a either of the expressions of limits in (A.7)

is exceeding the range of k̂1. For example if 0 ≤ p̂ then 2
a ≤ p̂ + 2

a , the k̂1 integration range
is limited as

p̂− 2

a
≤ k̂1 ≤

2

a
. (A.8)

On the other hand if p̂ ≤ 0 then p̂− 2
a ≤ − 2

a the k̂1 integration range is changed into

−2

a
≤ k̂1 ≤ p̂+

2

a
. (A.9)

See Figure 4(b). We can now show explicitly the equality of the following relation:[
Θ(p̂)

∫ 2
a

p̂− 2
a

dk̂

2π
+Θ(−p̂)

∫ p̂+ 2
a

− 2
a

dk̂

2π

] C2(k̂)

D(k̂)D(p̂− k̂)
(2π)δ(p̂− q̂)

=
[
Θ(p̂)

∫ 2
a

p̂− 2
a

dk̂

2π
+Θ(−p̂)

∫ p̂+ 2
a

− 2
a

dk̂

2π

] C2(p̂− k̂)

D(k̂)D(p̂− k̂)
(2π)δ(p̂− q̂), (A.10)

where Θ(p̂) is a step function. Therefore the integrations (A.4) and (A.5) should be under-
stood as the integration of the limited range in (A.10).
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k̂1
k̂2 2a� 2a

� 2a 2a k̂1
k̂2 2a� 2a

� 2a 2a
k̂1 + k̂2 = p̂p̂� 2a

Figure 4: (a) The region bounded by the conditions: |k̂i| < 2
a and |k̂1 + k̂2| < 2

a . (b) The line

represents the condition k̂1 + k̂2 = p̂ (for p̂ > 0).

A.2 Quartic interaction Φ4

Similar to the 1-loop diagram of Φ3 model in the previous Appendix A.1, we encounter a
similar type of integration in the evaluation of 2-loop diagrams of Φ4 model. We again need
to consider the integration range carefully for the following expression:∫ 3∏

i=1

dk̂i
2π

F (k̂1, k̂2, k̂3)

D(k̂1)D(k̂2)D(k̂3)
(2π)2δ(k̂1 + k̂2 + k̂3 − p̂)δ(q̂ − k̂1 − k̂2 − k̂3), (A.11)

where F (k̂1, k̂2, k̂3) can in principle be arbitrary function of k̂1 and k̂2.
We extend the previous treatment in Appendix A.1 to three dimensional lattice momen-

tum space. The Figure 5(a) shows the allowed momentum region bounded by |k̂i| ≤ 2
a and the

condition |k̂1 + k̂2 + k̂3| ≤ 2
a . The shaded region represents a surface satisfying the condition

k̂1 + k̂2 + k̂3 = p̂ for arbitrary positive p̂.
To see relations between the constraints and the integration range we consider the allowed

range of momentum k̂3 which is bounded for a given external momentum p̂ as:

−2

a
≤ k̂3 = p̂− k̂1 − k̂2 ≤

2

a
, (A.12)

and thus

p̂− 2

a
− k̂1 ≤ k̂2 ≤ p̂+

2

a
− k̂1. (A.13)

After integrating out one of the momenta, for example k̂3, we obtain an allowed region
projected on (k̂1, k̂2) plane which is shown in Figure 5(b). We thus have to consider the
following integration regions:[∫ p̂

− 2
a

dk̂1
2π

∫ 2
a

p̂−k̂1− 2
a

dk̂2
2π

+

∫ 2
a

p̂

dk̂1
2π

∫ p̂−k̂1+
2
a

− 2
a

dk̂2
2π

]
F (k̂1, k̂2, p̂− k̂1 − k̂2)

D(k̂1)D(k̂2)D(p̂− k̂1 − k̂2)
(2π)δ(p̂− q̂).

(A.14)
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k̂3
k̂2k̂1 k̂2 = p̂� k̂1 � 2a

k̂2 = p̂� k̂1 + 2ak̂1
k̂22a 2a� 2a
� 2a

p̂
Figure 5: [a] The shaded plane represents k̂1 + k̂2 + k̂3 = p̂ for some p̂ > 0. [b] Projected
region after the integration over k̂3. Upper-right and lower-right lines satisfy the condition
k̂2 = p̂− k̂1 +

2
a and k̂2 = p̂− k̂1 − 2

a respectively.

For p̂ < 0, we have the same representation with replacement p̂ = −|p̂|. Since the resulting
region is symmetric under k̂1 ↔ k̂2 as shown in Figure 5, thus we can change the above
integration as.[∫ p̂

− 2
a

dk̂2
2π

∫ 2
a

p̂−k̂2− 2
a

dk̂1
2π

+

∫ 2
a

p̂

dk̂2
2π

∫ p̂−k̂2+
2
a

− 2
a

dk̂1
2π

]
F (k̂1, k̂2, p̂− k̂1 − k̂2)

D(k̂1)D(k̂2)D(p̂− k̂1 − k̂2)
(2π)δ(p̂− q̂).

(A.15)

In realistic examples the arbitrary function F (k̂1, k̂2, k̂3) in (A.11) falles into one of cases of
the following:

(1) F is totally symmetric function of k̂1 and k̂2.

(2) F depends only on single momentum.

The second case needs some care to show the equivalence of different looking expressions.
For example when we take F = C2(k̂2) we can show the following equivalence if we take care
about the proper integrationn range:[∫ p̂

− 2
a

dk̂1
2π

∫ 2
a

p̂−k̂1− 2
a

dk̂2
2π

+

∫ 2
a

p̂

dk̂1
2π

∫ p̂−k̂1+
2
a

− 2
a

dk̂2
2π

]
C2(k̂2)

D(k̂1)D(k̂2)D(p̂− k̂1 − k̂2)
, (A.16)

=

[∫ p̂

− 2
a

dk̂2
2π

∫ 2
a

p̂−k̂2− 2
a

dk̂1
2π

+

∫ 2
a

p̂

dk̂2
2π

∫ p̂−k̂2+
2
a

− 2
a

dk̂1
2π

]
C2(k̂1)

D(k̂1)D(k̂2)D(p̂− k̂1 − k̂2)
, (A.17)

=

[∫ p̂

− 2
a

dk̂1
2π

∫ 2
a

p̂−k̂1− 2
a

dk̂2
2π

+

∫ 2
a

p̂

dk̂1
2π

∫ p̂−k̂1+
2
a

− 2
a

dk̂2
2π

]
C2(p̂− k̂1 − k̂2)

D(k̂1)D(k̂2)D(p̂− k̂1 − k̂2)
. (A.18)

The equivalence between the first and the second integrants can be shown by interchanging
the integrated momenta k̂1 ↔ k̂2. And the equivalence of the first and the third can be shown
by a redefinition of the momentum k̂′2 ≡ p̂− k̂1 − k̂2.
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B Tadpole corrections

B.1 Cubic interaction Φ3 in 2-dimensions: tadpole diagram with 1 loop
correction

Here we consider 1-loop tadpole corrections. The following 1-loop tadpole corrections vanish
trivially since there are no surviving vertex and propagator:

f(p) = f(p) = 0, (B.1a)

The remaining diagrams also vanish by the cancellation between loop contributions:

φ(p) = φ(p) + φ(p)

= 2(−g3)φ(p)
∫

d2k̂

(2π)2
im

D(k̂)
+ (2ig3)φ(p)

∫
d2k̂

(2π)2
m

D(k̂)
= 0, (B.2a)

φ(p) = φ(p) + φ(p)

= (g3)2φ(p)

∫
d2k̂

(2π)2
−im
D(k̂)

+ (−2ig3)φ(p)

∫
d2k̂

(2π)2
−m
D(k̂)

= 0. (B.2b)

Fermionic tadpole contributions vanish with an obvious reason. Thus all the 1-loop tadpole
contribution to the propagators vanish. Similar to 1-loop corrections for quartic interaction,
the result is a consequence of the supersymmetry.

B.2 Cubic interaction Φ3: 2 point operators with two loop tadpole

Next we consider 2-loop contributions on propagators. Since 2-loop tadpole diagram includes
1-loop diagram as a subdiagram, we can utilize the results in subsection 6.2.2. We thus
consider the following diagrams:

φ(p) = φ(p) + φ(p)

+ φ(p) + φ(p)
,

(B.3a)

φ(p) = φ(p) + φ(p)

+ φ(p) + φ(p)
,

(B.3b)

where ( ) denotes one-loop correction calculated in subsection 6.2.2. Since φ and φ
are Hermitian conjugate each other, the above two corrections are also conjugate. It is thus
sufficient to calculate either of the above contributions. Explicit calculation leads

φ(p) = φ(p)(1 + 1− 1− 1)×

[
4img33

∫
d2q̂

(2π)2
q̂2

D(q̂)2

∫
d2k̂

(2π)2
1

D(k̂)D(q̂ − k̂)

]
= 0.

(B.4)

Therefore all the tadpole contributions vanish.
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