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Abbreviations 

 

ABC     approximate Bayesian computation  

BEAST   Bayesian evolutionary analysis by sampling trees 

CI    credible interval 

GARD    generic algorithm recombination detection  

HA     hemagglutinin 

HPD     highest posterior density 

MCMC   Markov chain Monte Carlo 

MC method    Monte Carlo method 

MSE     mean square error 

NA    neuraminidase 

NCBI    National Center for Biotechnology Information 

ODE     ordinary differential equation  

R0    basic reproduction number 

RE    effective reproduction number 

SBP     single breakpoint recombination 

SIR model    susceptible–infectious–removed model 

TMRCA   time to the most recent common ancestor 

WF-model   Wright-Fisher model 

β     transmission rate 

ϒ     removal rate 

µ     mutation rate 
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Preface 

 

The influenza A virus is a zoonotic pathogen that infects a wide range of 

mammalian and avian species [1]. According to the antigenicity of hemagglutinin 

(HA) and neuraminidase (NA), influenza A viruses are divided into 18 HA subtypes 

and 11 NA subtypes [2].  The natural hosts of influenza A viruses are aquatic birds, 

such as ducks, geese, and gulls [3]. Sixteen HA subtypes and 9 NA subtypes of 

influenza A viruses are circulating among these aquatic bird species. So far, H1N1, 

H2N2, and H3N2 subtype viruses have caused pandemics in humans [4,5]. H5N1, 

H5N2, and H7N7 subtype viruses cause highly pathogenic avian influenza to 

chickens, and they have damaged poultry industry for long time [6,7]. Zoonotic 

transmissions of viruses from pigs and chickens to humans have been reported 

frequently [8–10].  

All the influenza A viruses circulating in humans and poultry originated from 

their natural hosts. Kida et al. [11] showed ducks infected with influenza A viruses 

did not show clinical signs of diseases and they produced only low levels of serum 

antibodies. These results suggested that influenza A viruses have undergone neutral 

evolution in their natural host population.  

Understanding the population genetics in the pathogen of infectious disease is 

important for controlling the outbreak. Genetic variation maintained in a 

microorganism population contains information about the evolutionary dynamics of 

the microorganism in the past. 

Tajima’s D is a statistic that can be used to test whether or not the population 

structures of target organisms follow the Wright-Fisher model (WF-model) [12–15]. 

The WF-model starts from three assumptions. First, the population of target 
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organisms is selectively neutral that no mutation affects to fitness of viral population. 

Second, the population is constant in size and not subdivided. Using nucleotide 

sequence data from surveillance studies, Tajima’s D can test whether or not these 

assumptions hold with the population. Tajima’s D is often used to analyze genetic 

variation maintained in a population of organisms, including bacteria and viruses 

[16,17]. 

Estimating epidemiological parameters in early stage of epidemic/pandemic of 

infectious disease is important to establish control measure and intervention policy 

especially concerning vaccination strategy [18]. Basic reproduction number (R0) is 

one of the most important parameter that defines an average number of successful 

transmission number per infectious person when the infectious was introduced into 

the totally susceptible population [18].  

There are several sources of available information to estimate R0 in real–time. 

Firstly, R0 could be estimated using temporal changes of epidemiological incidence 

rate [19,20]. If the collected data could not represent the outbreak for several 

reasons—a rare disease, a biased sampling proportion, difficulty of sampling, or 

minor outbreak, then an accurate estimation would be difficult [21–23]. There was 

research to overcome such a shortage of data in minor outbreak, but there should be 

further studies to solve this problem [24]. Secondly, sequences information of 

pathogens could be used to estimate epidemiological parameters. Pybus et al. used 

coalescent theory to reconstruct genealogy and to estimate population changes by 

showing skyline–plot [25,26]. This method assumed that the population changed 

exponentially or logistically.  Volz et al. estimated population size using 

mathematical model and viral sequence data collected from one time point [27]. This 

method combined coalesce model and compartment model, Susceptible–Infectious–
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Removed (SIR) model, which is unsolvable ordinary differential equation (ODE).  

Stadler et al. developed add–on for BEAST2 program named BDSKY to estimate 

effective reproduction numbers using coalescent theory and Birth–Death model [28]. 

This method expanded the application of sequence information for estimating 

reproduction number.  

This thesis consists of two chapters. The chapter I analyzed segment-specific 

and host-specific Tajima’s D values using Influenza A virus sequences. The chapter II 

introduced new method to estimate epidemiological parameters using sequence data 

of pandemic influenza (2009) with Tajima’s D.  
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Chapter I 

Host-specific and Segment-specific Evolutionary Dynamics of Avian and Human 

Influenza A Viruses: A Systematic Review 

 

Introduction 

In this chapter, I analyzed host-specific and segment-specific Tajima’s D 

trends of influenza A viruses. To minimize bias from viral population subdivision, I 

conducted a systematic review of surveillance studies on influenza A viruses of wild 

mallards, chickens, and humans using nucleotide sequences registered in the database 

of National Center for Biotechnology Information (NCBI). To my knowledge, this is 

the first comprehensive Tajima’s D study that uses datasets obtained by stratifying 

NCBI database sequences according to their isolation hosts, sampling sites, and 

sampling year. To clarify theoretical detectability of influenza outbreaks by Tajima’s 

D, I also conducted computer simulations of viral evolution with changing viral 

demography and confirmed a clear relationship between Tajima’s D and the viral 

population changes. 
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Materials and methods 

Tajima’s D 

Tajima’s D [13] is the normalized difference between two statistics, Watterson’s 

estimator and Tajima’s estimator. Watterson’s estimator θw, that is, the expected 

number of segregating sites between n sequences, is given by  

θ

=

=

−∑
2

1
( 1)

n
W n

k

S

k

.   (1) 

The numerator of equation (1), Sn is the observed number of segregating sites, and the 

denominator of equation (1) is the expected total length of genealogy of n samples 

divided by 2 times total population N. Tajima’s estimator θT, which is the average 

number of nucleotide differences, is given by 

θ π
<

=
− ∑2

( 1)T ij
i jn n

.   (2) 

Here πij denotes the pairwise difference between the ith sequence and the jth sequence 

in the samples, and n(n–1)/2 is the total number of pairs in the samples. 

 Tajima’s D is derived by subtracting Watterson’s estimator from Tajima’s 

estimator and by normalizing its numerator as follows;   

θ θ
θ θ
−=
−( )

T W

T W

D
Std

.   (3) 

From equation (3), the sample size for Tajima’s D have to be larger than three 

because the denominator of Tajima’s D becomes zero. Fig. 1 showed simple example 

of calculation of Tajima’s D. 
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Figure 1. Simple example of calculation of Tajima’s estimator, Watterson’s 

estimator, and Tajima’s D 

Given the five arbitrarily sequences, Tajima’s estimator was 2.2, Watterson’s 

estimator was 1.92, and Tajima’s D was 0.96. The asterisk marks represent 

polymorphic site. 
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Systematic review  

I downloaded all the database records of influenza A viruses from the GenBank on 

November 24th 2015 by using the Taxonomy ID of influenza viruses as a search 

condition, i.e. “txid=11320”. From the retrieved GenBank records, PubMed IDs were 

collected. Based on the PubMed ID, articles accompanied with more than 100, 300, 

and 1,000 GenBank sequence records respectively for mallard, chicken, and human 

viruses were collected. Influenza virus surveillance studies with wild mallards are 

conducted at a smaller scale than those for chickens and humans. To collect similar 

numbers of studies, I used these different thresholds on the minim sequence numbers 

for mallard, chicken, and human. To avoid bias from population subdivision [12,15], 

the abstract of articles were reviewed, and nucleotide sequences from surveillance 

studies conducted at a single sampling site from single host species were collected. 

Fig. 2 shows the selection process of the systematic review of surveillance studies.  

 

Alignment of sequences and calculation of Tajima’s D  

For each surveillance study selected by above criteria, nucleotide sequences of each 

gene segment were aligned using MAFFT, a multiple sequence alignment program 

(version 7) [29]. Sequences with a length less than 90% of complete gene were 

removed from the alignment. These aligned sequences were stratified according to 

their sampling years. Since Tajima’s D requires at least four sequences for its 

calculation, the datasets having less than four sequences were removed. For each 

dataset containing nucleotide sequences of the same gene segment of influenza A 

viruses isolated from the same sampling site in a single year, Tajima’s D was 

computed by a custom program implemented with Python3 (v.3.3.3). 
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Outbreak simulation 

Viral sequence evolutions in a rapidly expanding population were simulated using 

Python3. I set the length of nucleotide sequences to 500 and mutation rate in the 

simulated evolution to 10-6 per base per generation. For each generation, viruses are 

randomly selected from the previous generation with replacement, and their 

nucleotide sequences were copied to the offspring in the current generation with 

mutations. I used equal mutation rates for all nucleotide bases (JC69 model) [30].  

The simulation was started with 1,000 viruses with identical nucleotide sequences. 

During the first 5,000 generations, the population size was fixed to 1,000. In each 

generation from the 5,000th to 5,005th, the population size was doubled. From the 

5,005th generation, the population size was fixed to 32,000 to the end of the 

simulation. For every 400 generations, 50 viruses were randomly sampled and 

Tajima’s D was calculated from their nucleotide sequences. Totally, 100 simulations 

were conducted with the same setting, and averages of Tajima’s D values were 

calculated.  

  



	 10	

 

Figure 2. The selection process of systematic review of surveillance studies 

  

1,635 studies identified from the PubMed ID field of 
401,121 GenBank records for influenza A viruses

1,424 studies rejected:
• Sequence number in article < 100

211 studies with various hosts

59 studies rejected:
• Target host is not Mallard, Chicken, or Human

• Mallard: 19 studies
• Chicken: 46 studies
• Human: 87 studies

• Mallard: 19 studies used for calculating Tajima’s D value.
• Chicken: 17 studies used for calculating Tajima’s D value.
• Human : 11 studies used for calculating Tajima’s D value.

Chicken: 29 studies  rejected:
• Sequence number in article < 300

Human : 76 studies rejected:
• Sequence number in article < 1000
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Results  

Data retrieval and sequence alignment 

Using 401,212 GenBank records retrieved from the NCBI database, I identified 1,635 

articles published with nucleotide sequences of the influenza A viruses. Among them 

19, 17, and 11 articles satisfied the criteria for mallard, chicken and human, 

respectively (Fig. 2).  A total of 42,664 nucleotide sequences accompanied with these 

47 surveillance articles were used calculating Tajima’s D. Table 1 shows the numbers 

of datasets for each segment and each host after removing dataset having less than 

four sequences in the alignment.  The accession numbers and their nucleotide 

sequences used in this study can be found in the supplementary information.  

 

Tajima’s D in natural host species 

Wild mallard 

The mean of Tajima’s D values of PB2, PB1, PA, NP, and M gene segments were 

0.061, 0.028, 0.115, 0.077, and 0.048, respectively (Table 2). Medians of Tajima’s D 

for the internal gene segments (PB2, PB1, PA, NP, and M) across datasets were close 

to zero, and the differences from zero were not significant (p>0.05, 1-sample 

Wilcoxon signed rank test) (Fig. 3(a)). The mean Tajima’s D of the surface protein 

genes (HA and NA) and non–structural gene segment (NS) was 1.524, 1.769 and 

0.657, respectively (Table 2). Medians of Tajima’s D of these gene segments across 

datasets were significantly positive (p<0.05, 1-sample Wilcoxon signed rank test) 

(Fig. 3(a)). 
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Table 1. The number of datasets of nucleotide sequences 

 

  

Host  PB2 PB1 PA HA NP NA M NS 

Mallard          

 
Number of 

dataset 
24 25 23 24 30 22 29 30 

 
Total number 

of sequences 
237 240 228 244 367 206 388 315 

Chicken          

 
Number of 

dataset 
14 19 19 18 18 13 31 23 

 
Total number 

of sequences 
342 468 414 271 429 143 634 497 

Human          

 
Number of 

dataset 
24 30 28 16 30 24 33 33 

 
Total number 

of sequences 
1019 1110 1053 861 1169 880 1191 1191 
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Table 2. The mean and standard deviation of Tajima’s D 

 

  

Host  PB2 PB1 PA HA NP NA M NS 

Mallard          

 Mean 0.061 0.028 0.115 1.524 0.077 1.769 0.048 0.657 

 SD 0.630 0.516 0.755 1.065 0.800 0.805 0.672 1.534 

Chicken          

 Mean –

0.550 

–

0.447 

–

0.678 

–

0.872 

–

0.816 

–

0.766 

–

0.473 

–

0.431 

 SD 1.325 1.507 1.378 0.903 1.089 1.118 1.100 1.279 

Human          

 Mean –

1.109 

–

1.013 

–

1.056 

–

1.417 

–

1.008 

–

1.201 

–

0.941 

–

1.200 

 SD 0.978 1.003 0.940 0.970 0.956 0.730 0.898 0.999 
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Figure 3. Tajima’s D values for gene segments sampled from the mallards, 

chickens and humans.  

(a) shows Tajima's D values for the viruses isolated from wild mallards, (b) shows 

those from domestic chickens, and (c) shows those from humans. Black circles and 

error bars represent estimated medians and 95% confidence intervals for the median 

of Tajima's D across datasets using 1-sample Wilcoxon signed rank test. Gray circles 

represent Tajima's D values of each dataset. Asterisk denotes the significantly positive 

or negative Tajima's D based on the result of 1-sample Wilcoxon signed rank test. 
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Tajima’s D in non-natural host species 

Chicken 

Influenza A viruses that were circulating in chickens had an overall mean Tajima D of 

−0.629. The mean values of Tajima’s D in PB2, PB1, PA, HA, NP, NA, M, and NS 

gene segments were −0.550, −0.447, −0.678, −0.872, −0.816, −0.766, −0.473, and 

−0.431, respectively (Table 2). Medians of Tajima’s D values for HA, NP, NA, and 

MP gene segments across datasets were significantly negative (p<0.05, 1-sample 

Wilcoxon signed rank test) (Fig. 3(b)). There were significant differences in Tajima’s 

D between the wild mallard and chicken except NS gene segment (p<0.05; Two-

sample Kolmogorov-Smirnov test).   

 

Human 

Influenza A viruses circulating in humans had a mean Tajima’s D of −1.118.  The 

mean values of Tajima’s D in PB2, PB1, PA, HA, NP, NA, M, and NS gene segments 

were −1.109, −1.013, −1.056, −1.417, −1.008, −1.201, −0.941, and −1.200, 

respectively (Table 2). Medians of Tajima’s D for all gene segments were 

significantly negative (p<0.05, 1-sample Wilcoxon signed rank test) (Fig. 3(c)), and 

there were significant differences in Tajima’s D between the wild mallards and 

humans for all gene segments (p<0.05; Two-sample Kolmogorov-Smirnov test).  

 

Outbreak simulation 

At the first duration when the viral population size was constant over viral 

generations, the mean of Tajima’s D of 100 simulations was around zero and was 

within the range of 95% confidence interval for D=0 (the error distribution was 
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assumed to be beta distribution [13], which agreed with the theory of Tajima’s D. 

After a sudden increase of the viral population, the mean Tajima’s D value decreased 

to –2.052, which is significantly negative (p<0.05; beta distribution) (Fig. 4). 

Consequently the mean Tajima’s D value increased gradually and returned within the 

range of 95% confidence interval for D=0 (Fig. 4(b)).   
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Figure 4. The change of Tajima’s D with a sudden increase of population 

(a) shows the setting of time evolution of viral population size and (b) shows the 

result of time series change of mean Tajima’s D. Gray dot line represents 95% 

confidence interval of Tajima’s d value for D=0. 
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Discussion 

In this chapter, I analyzed host-specific and segment-specific Tajima’s D trends of 

influenza A viruses through a systematic review of viral sequences registered in the 

NCBI GenBank. To avoid bias from viral population subdivision, viral sequences 

were stratified according to their sampling locations and sampling years. Tajima’s D 

values for internal gene segments of influenza A viruses circulating in wild mallards 

were close to zero. On the other hand, interestingly, Tajima’s D for external gene 

segments of influenza A viruses circulating wild mallards showed positive. Tajima’s 

D values for both internal and external gene segments in non-natural hosts—chicken 

and human—were negative.  

The trends of Tajima’s D are different between internal and external gene 

segments of influenza A viruses circulating in wild mallards. Wild mallard are 

considered as the natural host of influenza A viruses.  Tajima’s D of influenza viruses 

in mallards is expected to be close to zero due to the low pathogenicity, or slightly 

negative due to the selective sweep by low immune response. However, Tajima’s D 

values for external genes showed positive value, suggesting balancing selection or 

population subdivision. Since all gene segments should show positive Tajima’s D if 

viral population were subdivided, balancing selection on external gene segments were 

more likely to be the cause of positive Tajima’s D values. 

To analyze the selection on the external genes of influenza A viruses 

circulating in wild mallards, I compared Tajima’s D of the data containing only one 

subtype with those containing multiple subtypes using dataset from Bahl et al. [31]. 

Tajima’s D values of sequences containing two subtypes were positive: the values 

were 1.159 in 2006 and 1.032 in 2007, suggesting balancing selection. On the other 

hand, the Tajima’s D for sequences stratified by subtypes were not positive: −0.721 
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(−1.420) for the H3 HA in wild mallard in 2006 (2007), −1.222 (−0.535) for H4 HA 

in 2006 (2007), respectively, suggesting neutral or weak purifying selection (Table 3). 

A similar pattern was observed for NA (Table 4). These results suggested that 

selection within a subtype was neutral or weak purifying selection as observed in 

other non-natural hosts, on the other hand, selection across subtypes is balancing 

selection.  

The diversity of influenza A viruses circulating wild mallard is much higher 

than other hosts. This high diversity is not able to be explained by relatively low 

pathogenicity or low immune response of wild mallard, which is one of the main 

reasons why wild mallard is considered to be the natural host of influenza A viruses. 

These factors can explain neutral selection on the viruses, but they cannot explain 

balancing selection.  

Several studies have analyzed the evolutionary dynamics of avian influenza 

viruses using their nucleotide sequences. Time to the most recent common ancestor 

(TMRCA) of HA, NA and NS were much older than that of internal gene segments 

[32], and the result is consistent with my results. The phylogenetic analyses of HA 

and NA suggested high inter-subtype diversity and low intra-subtype diversity, which 

were not seen in internal gene segments [33]. The distinct divergence between two 

alleles of NS suggested balancing selection on NS [33], and this was consistent with 

this results. The dN/dS ratio—the ratio of the number of non-synonymous 

substitutions per site to the number of synonymous substitution per site—had 

suggested purifying selection on internal gene segments [31], while Tajima’s D in this 

study supported neutral selection. This discrepancy between results from dN/dS and 

Tajima’s D remains as an open question, and one possible explanation for this is that 
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the discrepancy would be attributed to difference between the selection at the lineage 

level and the selection at the population level. 

The negative Tajima’s D values observed in the human and chicken viruses 

rejected the WF-model for these viral populations. These negative Tajima’s D values 

should be attributed to the population increase due to recent outbreaks, purifying 

selection due to viral adaptation to new hosts, or combined effects of population 

change and selection. However, Tajima’s D itself cannot be used to examine which of 

these factors are causes of negative Tajima’s D values. This problem highlighted a 

need for the development of a new methodology that can be used to separate the 

composite signal into components of population change and selection.  

Tajima proposed the use of beta-distribution to reject WF-model and to 

calculate the 95% confidence interval of Tajima’s D under the WF-model [13]. 

Computer simulations showed that Tajima’s D values fell outside 95% confidence 

interval right after the sudden increase of viral population. Although Simonsen et al. 

[34] showed that criteria using beta-distribution was too conservative to reject WF-

model when neutrality assumption does not hold, computer simulations suggested that 

beta-distribution could be used to reject WF-model when population size is rapidly 

growing. When I have multiple samples independently collected form the population, 

an alternative approach to reject WF-model is to use 1-sample Wilcoxon signed rank 

test, as shown in the previous section.  

It would be of particular interest to find connection between the Tajima’s D of 

an infectious agent and the effective reproduction number of infectious disease caused 

by the agent. The effective reproduction number measures the continuance of an 

outbreak and the expected number of secondary infections. Recent studies have 

utilized coalescent theory to estimate the time evolution of population size of the 
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ancestors of sampled sequences. By assuming constant-sized population between two 

coalescence events, Pybus et al. developed a method to estimate the time evolution of 

population size from their nucleotide sequences [25].  Mathematical models on 

population dynamics of infectious diseases have been also proposed to characterize 

infectious disease outbreaks from nucleotide sequences of infectious agents [27,28].   
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Table 3. Subtype specific Tajima’s D of HA in mallard. 

Subtype  
Year 

2006 2007 

H3  
  

 Sample size 11 17 

 Tajima’s D –0.721 –1.42 

H4    

 Sample size 6 8 

 Tajima’s D –1.222 –0.535 

H3, H4 and others (mixed)    

 Sample size 20 28 

 Tajima’s D 1.519 1.032 
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Table 4. Subtype specific Tajima’s D of NA in mallard. 

Subtype  
Year 

2006 2007 

N6    

 Sample size 7 9 

 Tajima’s D –0.442 –1.315 

N8    

 Sample size 11 14 

 Tajima’s D 0.498 –0.011 

N6, N8 and others (mixed)    

 Sample size 21 26 

 Tajima’s D 2.125 2.052 
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Summary 

Understanding the evolutionary dynamics of influenza viruses is essential to control 

both avian and human influenza. Here, we analyze host-specific and segment-specific 

Tajima’s D trends of influenza A virus through a systematic review using viral 

sequences registered in the National Center for Biotechnology Information. To avoid 

bias from viral population subdivision, viral sequences were stratified according to 

their sampling locations and sampling years. As a result, we obtained a total of 580 

datasets each of which consists of nucleotide sequences of influenza A viruses 

isolated from a single population of hosts at a single sampling site within a single 

year. By analyzing nucleotide sequences in the datasets, we found that Tajima’s D 

values of viral sequences were different depending on hosts and gene segments. 

Tajima’s D values of viruses isolated from chicken and human samples showed 

negative, suggesting purifying selection or a rapid population growth of the viruses. 

The negative Tajima’s D values in rapidly growing viral population were also 

observed in computer simulations. Tajima’s D values of PB2, PB1, PA, NP, and M 

genes of the viruses circulating in wild mallards were close to zero, suggesting that 

these genes have undergone neutral selection in constant-sized population. On the 

other hand, Tajima’s D values of HA and NA genes of these viruses were positive, 

indicating HA and NA have undergone balancing selection in wild mallards. Taken 

together, these results indicated the existence of unknown factors that maintain viral 

subtypes in wild mallards.  
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Chapter II 

Estimating epidemiological parameters of pandemic influenza using 

approximate Bayesian computation and Tajima’s D  

 

Introduction 

In this chapter, I showed a new method to estimate epidemiological parameters using 

sequence data of infectious diseases. A Bayesian approach —approximate Bayesian 

computation (ABC) was used to estimate parameters. Based on Tajima’s D of 

observed sequence data, I used sequence data randomly collected from simulation of 

individual based compartment model with mutations. By comparing Tajima’s D 

values from observed sequences and those from simulated sequences, posterior 

distributions of epidemiological parameters were estimated [35]. Here, I applied this 

method to the viral sequence data sampled from pandemic influenza (2009) in the 

Buenos Aires, Argentina [36] and estimated epidemiological parameters of pandemic 

influenza (2009) and compared with precedent researches. 
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Materials and methods 

 

Data selection  

After downloading the influenza A virus database from GenBank on November 24th 

2015, sequence data was subdivided to each assigned articles.  To choose appropriate 

articles, of which sequence data was enough to get time–series Tajima’s D values 

during the outbreak, I filtered articles, which had less than 200 sequences in one gene 

segment. 

 

Alignment of sequences and Tajima’s D values 

The MAFFT, a multiple sequence alignment program (version 7) was used to align 

the sequences [29]. After alignment, sequences in each 3 consecutive days were 

stratified to make a new time unit. Tajima’s D value was calculated using all sequence 

information in each time unit by a custom program implemented with Python3 

(v.3.3.3).  

 

SIR model simulation with evolving viral sequences  

Viral sequence evolutions in the infectious population, which I assumed that they 

followed the SIR model, were simulated using Python3. Initially, total population (N) 

was set to constant to 300,000, the number of initial population of the infectious state 

was set to one, the length of nucleotide sequences was set to 500, and the number of 

sequences samples for Tajima’s D value was calculated for each time unit to 10. One 
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generation was assumed to be one day.  The population of the infectious changed 

based on discrete SIR compartment model, which is given by,  

 

		

S(t +Δt)= S(t)− ΔtβS(t)I(t)
I(t +Δt)= I(t)+ΔtβS(t)I(t)− Δtγ I(t)
R(t +Δt)= R(t)+Δtγ I(t)

.      (4) 

   

!!S(t) , !!I(t)  and !!R(t)  represent the population of the susceptible, the 

infectious, and the removed state at time t, respectively. At time !t +Δt , the number of 

the infectious, 		I(t +Δt) , was the sum of the number of the infectious at time !t  and 

newly infected population and subtraction of newly removed population at time !t . 

The newly infected population is a product of the number of susceptible at time !t , the 

number of the infectious at time !t , and transmission rate (β). The newly removed 

population is a product of the number of infectious at time t and removal rate (𝛾).  

Using equation (4), the basic reproduction number (R0= βN/𝛾) was calculated and the 

β was replaced to R0𝛾/N. For stochastic simulation, parameter R0 was assumed to 

follow uniform distribution from 1 to 6, parameter γ was assumed to follow uniform 

distribution from 0.05 to 1 per day, and parameter µ was assumed to follow uniform 

distribution from 10-6 to 10-4 per nucleotide per day. The range of each distribution of 

parameter was non–informative and was decided empirically to include all possible 

values.  

During the simulation, the number of newly infected population (X) followed 

Poisson distribution of which rate was S(t)I(t)R0𝛾/N, and the number of newly 

removed population (Y) followed Poisson distribution of which rate was I(t) 𝛾. The 

viruses in each infectious individual at time !t , were copied to the next individual at 

time !t +Δt  with random mutations with equal mutation rates for all nucleotide bases 
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(JC69) [30]. To make a smooth population changes, !Δt  was set to be 0.1 day (Fig. 5). 

With this setting, I conducted 100,000 simulations of the SIR model. 
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Figure 5. Simulation of SIR model with random mutations when 		Δt =1 : a 

conceptual overview 
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Calculation of Tajima’s D values for simulated data 

For each simulation, viral sequence data for three days were stratified to match the 

unit with selected Tajima’s D values. Among accumulated sequences, which 

contained more than 40 sequences, 10% of them were randomly sampled to calculate 

Tajima’s D values. For every calculation, the total number of accumulated sequences 

was recorded. 

 

Approximate Bayesian computation (ABC) 

The purpose of the ABC in this study was to estimate the three parameters—R0, γ, and 

µ. At first, Tajima’s D values were computed from selected sequences as an observed 

data. On the other hand, Tajima’s D values calculated from simulated dataset as a 

simulated data and were used to calculate summary statistic for the reject algorithms 

as below, 

 

!!
summary!statistics =

Dk
(obs ) −Dj−i+k

(sim)( )
nk=1

n∑
2

. (5) 

   

Here !!Dt
(obs )  and !!Dt

(sim)  are the observed and simulated Tajima’s D value at time t, 

respectively. The i and j are the time point when !!Dt
(obs )  and !!Dt

(sim)  take the minimum 

value, respectively. If !!Dj−i+k
(sim)  are undefined the summary statistics is +∞ . The 

equation (5) is the mean square error (MSE) between the time evolution of Tajima’s 

D values of observed sequences and those values of simulated sequences. If the MSE 

was less than 0.3, then the parameters used for the simulation were collected to 

estimate posterior distributions of the parameters.  
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Estimating effective reproduction number (RE) 

Estimating RE was performed using the Bayesian evolutionary analysis by sampling 

trees (BEAST) 2 program (BDSKY add-on) [28,37] using JC69 [30] for substitution 

model with strict clock. “Birth Death Skyline Serial” was selected for tree prior.  For 

other priors, except sampling proportion (beta distribution with default), uniform 

distributions were set as same as the priors that were used previously. For estimating 

serial RE values, the number of dimension was selected to ten in prior setting of 

reproduction number. The analysis was performed with the Markov chain Monte 

Carlo (MCMC) algorithm, running 10 million chains with logging data for every 

5,000 chains and MCMC result was analyzed by Tracer v1.6 program.   
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Results 

 

Data selection and calculation of Tajima’s D 

A study conducted by Barrero et al. was qualified by conditions [36]. Sequences were 

collected from patients in children hospital located in Buenos Aires from 25th May to 

24th August (Fig. 6(a)). A total of 265 NA gene segment sequence information—34 of 

full sequence data and 231 of fragment sequence data were used in this study. The 

number of sequences from 23rd June to 25th June was the peak, 58. After alignment, 

212 sequences with 357 base pair were remained and 8 consecutive Tajima’s D values 

were calculated from 15th June to 7th July.  The minimum Tajima’s D value, −1.926, 

was computed using sequences from 26th June to 28th June (Fig. 6(a)). 

Estimation of epidemiological parameters 

After 100,000 of stochastic simulations, 70,796 simulations were successful.  Among 

them, 69,614 simulations were rejected after ABC algorithm. From accepted 1,182 

simulations, three parameters from each simulation— R0, γ, and µ—were stratified 

then plotted posterior distributions. 

Simultaneously, each parameter was estimated with 95% credible interval 

(CI). The estimated mode value of R0 was 1.47 (95% CI; 1.19– 4.93), and the 

estimated mode value of γ was 0.12 /day (95% CI; 0.1– 0.92), and the estimated mode 

value of µ was 1.63*10−4 substitutions/nucleotide/day (95% CI; 7.13*10−5 – 

4.48*10−4) (Fig. 7). After collecting the date of epidemic start, epidemic peak, and 

epidemic end in simulated SIR data, the distribution of each date was plotted. The 

mode date of epidemic start was 7th June (95% CI: 14th May – 10th June), epidemic 

peak was 19th July  (95% CI: 4th July – 15th August), and epidemic end was 23rd 
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October  (95% CI: 3rd August – 28th November)  (Fig. 8). Accumulated curve of the 

infectious of every accepted simulation with date showed overall distribution of 

epidemic dates (Fig. 9). 

 

 Effective reproduction number (RE) 

After Bayesian MCMC approach with strict clock, the mean of RE was estimated from 

ten divided time units.  From time unit one to time unit seven, the mean values of RE 

was estimated between 1 and 2. For the time unit 1, the estimated mean RE was 1.42 

(95% HPD; 0– 3.46).  The value increased to 4.45 (95% HPD; 3.60– 5.00) sharply 

from time unit 7 to 8 then it decreased blow one from time unit 8 to 10 gradually (Fig. 

10). 
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Figure 6. Sequence sampling information from pandemic influenza 2009 in 

Buenos Aires 

(a) The number of collected sequence by three–days unit and the calculated Tajima’s 

D value after alignment from selected study conducted by Barrero et al.. Black circles 

represent Tajima’s D values using every sequence data in each time unit. Gray bar 

represent number of accumulated sequence data during each three–day unit. (b) The 

numbers of reported case number to WHO and sampled sequence number. Black line 

represents weekly–reported case report from FluNet and gray line represents weekly–

accumulated sequence number. (c) Sampling proportion for each point. Gray dot–line 

represents period when Tajima’s D values were calculated. 
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Figure 7. Posterior distribution of three parameters, basic reproduction number 

(R0), removal rate (γ), and mutation rate (µ) after ABC rejection algorithms 

(a), (b), (c) show posterior distribution of R0, γ, and µ, respectively. Black vertical 

lines represent mode value and gray vertical lines represent 95% credible intervals. 
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Figure 8. Posterior distribution of epidemic start, epidemic peak, and epidemic 

end 

 Black vertical line represents mode value of epidemic peak date and gray vertical 

lines represent 95% credible interval. 
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Figure 9. The changes of the population in the infectious in 1,182 accepted 

simulations 

Each replicate is based on each parameter drawn randomly from each prior 

distribution as described in Materials and Methods. Black vertical line represents 

estimated mode value of epidemic peak date, 25th July. 
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Figure 10. Time serial estimated mean RE values using BEAST 2 program 

Black circles represent estimated mean RE and the vertical lines mean 95% HPDs. 

Purple horizontal line represents estimated mode R0 using ABC and the gray box 

represents its 95% credible interval. 
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Discussion 

 

In this chapter, I introduced a new method to estimate epidemiological parameters—

R0, γ, and epidemic peak— using time evolution of Tajima’s D values. I showed that 

distance between Tajima’s D values of given sequence data and those calculated from 

SIR model simulations could be used for summary statistics in ABC algorithm.  

BEAST is program developed for Bayesian analysis of molecular sequences 

using MCMC to reconstruct phylogenies in 2007 [38]. This program had been 

updated to BEAST2 with various extensions, recently [37]. Using BEAST2 program 

with BDSKY add–on and the same sequence information, I estimated RE values and 

compared it with our estimation. The mean value of RE at first time unit was 1.42 (95% 

HPD; 0– 3.46) and it was consistent with the mode value of our basic reproduction 

number, 1.47 (95% HPD; 1.19– 4.93). Though RE is not identical to R0, I can assume 

that these two value is theoretically similar because I used the dataset of pandemic 

influenza, which I can ignore initial immunity effect on the susceptible population. 

Also, R0 itself could be calculated using cumulative incidence of outbreaks, which is 

increased exponentially constant growth rate, initially [20]. Serial RE values, except 

time unit 8 and 10, showed similar values with the first estimated value (Fig. 10). The 

reason for inconsistence in time unit 8 and 10 would be sampling proportion. In this 

study, sampling proportion was calculated dividing weekly observed sequence 

numbers by weekly case report numbers downloaded from FluNet data 

(“FluNetLaboratorySurveillanceData,” 2016.02.19.). Sampling proportions during 

15th June to 7th July, Tajima’s D value available period, showed decreasing tendency 

as times go by (Fig. 6(b) and 6(c)). This means that though Tajima’s D value could be 
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calculated using only more than four sequences data, if sampling proportion is too 

low, this value might not be enough to represent the population state.  

 I also compared my estimation of R0 with previous studies, which used 

epidemic data of pandemic influenza H1N1 (2009) in countries in southern 

hemisphere. The mean value of estimated RE of 18 values from 5 countries—

Australia, Chile, New Zealand, Peru, and South Africa—was 1.50 (2.5–97.5 

percentile: 1.19–2.21) [40].  Especially, the mean of RE in Chile (bordering country 

with Argentina) was ranged from 1.19 to 1.8, which was overlapped with my 

estimation.  

 This method had several advantages. At first, my estimation used Tajima’s D 

values as a statistics and used simple technique for summary statistics and did not 

need to reconstruct genealogy from sampled sequences. Second, this method had a 

good expandability. I could describe specific infectious disease with mutations 

explicitly by adding compartment, which could explain infectious disease precisely. 

Thirds, I could interpret the tendency of Tajima’s D values calculated from sampled 

sequence data of accepted simulations. Changes of Tajima’s D value could reflect 

population changes or selection pressure altogether [14]. The minimum Tajima’s D 

value calculated from observed data was −1.92 and this meant that this viral 

population did not follow Wright–Fisher model with 95% confidence based on beta–

distribution criteria [13]. This inferred that the viral population was growing or under 

purifying selection. Intuitively, it is easy to understand that the viral population is 

growing, because the sequence data was collected from the patients suffered from 

pandemic influenza. Barrero et al. also showed that overall dN/dS of this sequence 

data was 0.14 and there were 11 negatively selected codons [36]. The ratio below one 

could be interpreted as purifying selection. At last, this method could estimate 
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epidemic start, peak, and end date. Estimated epidemic start date, 7th June (95% 

credible interval; 14th May – 10th June) (Fig. 8(a)), was consistent with the first 

isolation date in selected study and FluNet data, 27th May and 16th May, respectively. 

Estimation epidemic peak was available even the sequences data were collected 

before real epidemic peak had arrived. Though there was 8 days discrepancy between 

the estimated date, 19th July  (95% credible interval; 4th July – 15th August), and 

observed data in FluNet, 11th Jul, but it was still located in 95% credible interval (Fig. 

8(b)). This gap could be explained by the source of each data. The sequence data that 

used for estimation was collected only from Buenos Aires but FluNet data represent a 

whole country, Argentina. The estimation of epidemic end was 23rd October  (95% 

credible interval; 3rd August – 28th November) (Fig. 8(b)) and observed last sequence 

was collected on 24th August, which was still in credible interval (Fig. 8(c)), but it did 

not match with FluNet data. Reason for this estimation would be its weak seasonality 

of H1N1 after pandemic in Argentina. To estimate accurate epidemic end date, I 

might need to modify compartment model to apply this seasonality.  

There exist disadvantages also. At first, the more accurate estimation I have, 

the more computational expense I need. If I want to increase sensitivity of summary 

statistics—if I decrease the criteria of summary statistics from 0.3 to 0.1—, I could 

get more accurate estimation but this would take much more time than current 

estimation [41]. Though the time consumption is flexible depends on initial 

parameters and distribution of priors, it took seven days for 100,000 simulations in 

this study.  Second, our method would be useful only to rapidly evolving viruses such 

as RNA virus, of which rapid mutation could explain it adjustment in new 

environment in short time [42].  Third, though, Tajima’s D was a statistic that could 

infer population changes and selective pressure, it is difficult to quantify the extent of 
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each effect on Tajima’s D value [43]. Fourth, this method did not consider 

recombination. Fortunately, the sequences that I used in this study did not have 

evidence for recombination [43] but we should test whether  or not the recombination 

was detected in the sequences data such as generic algorithm recombination detection 

(GARD) and single breakpoint recombination (SBP) to get  accurate estimation.  

This method succeeds to estimate the epidemiological parameters in Influenza 

pandemic 2009.  The estimations were highly consistent with precedent researches 

and statistics. This method also showed some limitations. Current method could not 

tell how extent the population size or selection pressure affects on Tajima’s D values. 

This method also did not consider possible recombination event that could affect 

evolutionary dynamic in pathogens. Further studies are needed to solve these 

limitations.   
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Summary 

 

Estimating epidemiological parameters at initial stage of epidemic is important to 

establish effective control strategies of infectious diseases. Here, epidemiological 

parameters were estimated by approximate Bayesian computation (ABC) using 

Tajima’s D. At first, NA gene sequence data during 2009 pandemic influenza in 

Buenos Aires were collected and stratified into 7 datasets according to their isolation 

dates. Then simulations of SIR model with mutations were conducted and randomly 

selected sequences after simulation were stratified in same manner. If the distance 

between Tajima’s Ds of observed sequences and those of sequences evolved in the 

simulations were acceptable, then the parameters that were used for the simulation 

were assembled to make posterior distributions, respectively. After all, the mode 

value of R0 was estimated to be 1.47 (95% CI; 1.19– 4.93). This estimation was 

consistent with other precedent researches. The mode of epidemic peak was estimated 

as 19th July (95% CI; 7th July – 30th August). Estimated epidemic peak was also 

consistent with WHO report. This analysis showed that epidemiological parameters of 

pandemic influenza (2009) could be estimated successfully using ABC with Tajima’s 

D. I anticipate that this method could be applicable to another infectious diseases. 
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Conclusion 

Tajima’s D value of aligned sequence information informed us whether or not the 

sampled population follows WF-model. This value is helpful to estimate population 

changes or selective pressure given sequence information. 

In chapter I, I calculated host-specific and segment specific Tajima’s D values 

of influenza A viruses through a systematic review using viral sequences registered in 

the NCBI database. Sequences encoding external proteins of influenza A viruses 

showed positive Tajima’s D in wild mallards, suggesting the existence of balancing 

selection, although zero or negative Tajima’s D was expected. This result suggests the 

existence of missing factors other than low immune response or low pathogenicity to 

maintain the variation of the subtypes circulating in the natural hosts.  

In chapter II, I extended application of Tajima’s D to estimating 

epidemiological parameter with Bayesian approaches. I showed successful estimation 

of R0, γ, epidemic peak, and µ of pandemic influenza H1N1(2009) in Buenos Aires, 

Argentina using viral sequence information. I applied ABC algorithm to bypass 

unsolvable ODE and to select accepted parameters from prior distributions. Our 

estimation was consistent with previous researches which using epidemic data in 

neighboring countries.  I also confirmed our result is consistent with those obtained 

by BEAST2 program based estimation using same sequence. I expect this estimating 

method could be applied to other infectious disease if it is applied with appropriate 

compartment model with mutations.  

Through the population genetic analyses of nucleotide sequences of influenza 

A viruses isolated from humans, chickens, and wild ducks, I showed that Tajima’s D 

can be useful not only to understand population genetics of the pathogens but also to 

estimate epidemiological parameters of infectious diseases caused by the pathogens. I 
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hope these knowledge obtained through this research would contribute to the control 

of zoonotic infectious diseases, of which pathogens are maintained in wild animal 

population and occasionally cause outbreaks in human population.   
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和文要旨  

感染症病原体の集団遺伝学的理解は，その病原体によって引き起こされる感

染症を制御する上で重要である。病原微生物の集団にみられる遺伝子変異に

は，その微生物集団の過去の集団サイズと進化動態に関する情報が含まれて

いる。Tajimaの Dは，解析の対象とする集団が，一定サイズのひとつ集団の

もとで中立的に進化をしているか否かを検定する指標である。 

	 本研究では，はじめに，米国国立生物工学情報センターに登録されている

塩基配列を用いたシステマティックレビューにより，A型インフルエンザウ

イルスの分節特異的および宿主特異的な Tajimaの Dの値の傾向を解析した。

ウイルス集団の分断によるバイアスを避けるために，ウイルスの塩基配列を

それらの分離年と分離場所ごとに層化した。その結果，同じ年に同じ場所で

同じ宿主動物から分離された A型インフルエンザウイルスの塩基配列集合

580セットを得た。これらの塩基配列集合を解析した結果，ウイルスの塩基

配列の Tajimaの Dの値は，宿主および遺伝子分節によって異なることが判明

した。ニワトリおよびヒトから分離したインフルエンザウイルスの Tajimaの

Dの値は負であり，ウイルス株間での浄化選択または集団拡大が起きている

ことが示された。ウイルスの集団サイズの急激な増加により，Tajimaの Dが

負の値をとることをコンピューターシミュレーションによっても確認した。

野生のカモから分離されたインフルエンザの PB2，PB1，PA， NPおよびM

遺伝子においては，Tajimaの Dがおよそ 0であり，これらの遺伝子は，一定

サイズの集団のもとで中立的に進化していることが示唆された。一方， HA, 

NAおよび NS遺伝子の Tajimaの Dは正であり，野生のカモにおいて，HA，
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NAおよび NSが平衡選択を受けていることが示された。これらの結果は，野

生のカモにおいてインフルエンザウイルスの亜型の多様性を保持する未知の

メカニズムの存在が示唆された。 

	 次に，本研究では，感染症流行時の病原体の塩基配列 Tajimaの Dの時系列

変化から，感染症の流行を特徴付ける疫学的パラメータを推定する手法を開

発した。米国国立生物工学情報センターのデータベースから，2009年のイン

フルエンザパンデミック時にブエノスアイレスで分離された H1N1亜型の A

型インフルエンザの NA遺伝子の塩基配列 265本を取得した。塩基配列の

Tajimaの Dの時系列変化と，感染症流行における遺伝子変異のコンピュータ

ーシミュレーションで得られる Tajimaの Dの時系列変化とを比較した。近似

ベイズ計算を用いることにより，ブエノスアイレスにおける 2009年のパンデ

ミックインフルエンザの基本再生産数の最頻値は， 1.47 (95% 信用区間: 1.19 

– 4.93)であることが推定された。同様に，回復率の最頻値は 0.12／日(95%信

用区間:0.1– 0.92)，流行のピークは 7月 19日 (95% 信用区間：7月 7日– 8月

30日)と推定された。これらの推定値は，これまでの他研究および世界保健機

関の報告と無矛盾である。感染症流行初期における疫学的パラメータの推定

は効果的な制御対策の策定に重要である。本研究で開発した手法は，病原体

を限定しないため，インフルエンザ以外の感染症における疫学的パラメータ

の推定にも有用であると考える。 
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