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Abstract. We investigated the evolution of the response of human, chicken, alligator 1 

and frog glucocorticoid receptors (GRs) to dexamethasone, cortisol, cortisone, 2 

corticosterone, 11-deoxycorticosterone, 11-deoxycortisol and aldosterone.  We find 3 

significant differences among these vertebrates in the transcriptional activation of their 4 

full length GRs by these steroids, indicating that there were changes in the specificity of 5 

the GR for steroids during the evolution of terrestrial vertebrates.  To begin to study 6 

the role of interactions between different domains on the GR in steroid sensitivity and 7 

specificity for terrestrial GRs, we investigated transcriptional activation of truncated 8 

GRs containing their hinge domain and ligand binding domain (LBD) fused to a GAL4 9 

DNA binding domain (GAL4-DBD).  Compared to corresponding full length GRs, 10 

transcriptional activation of GAL4-DBD_GR-hinge/LBD constructs required higher 11 

steroid concentrations and displayed altered steroid specificity, indicating that 12 

interactions between the hinge/LBD and other domains are important in glucocorticoid 13 

activation of these terrestrial GRs. 14 

 15 

Short Title: Evolution of steroid specificity for terrestrial GRs 16 

 17 

Key Words: Glucocorticoid Receptor, Glucocorticoid Evolution, Allosteric Regulation, 18 
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Highlights 22 
Response to corticosteroids evolved in terrestrial vertebrate GRs. 23 

Allosteric interactions between A/B/C and hinge/LBD domains regulate GR response. 24 

Different responses to steroids for full length and GAL4-DBD-hinge-LBD GRs. 25 

 26 

 27 

 28 

1. Introduction 29 

Glucocorticoids (Figure 1) regulate a variety of physiological functions 30 

including carbohydrate and protein metabolism, blood pressure, immune function and 31 

the body’s anti-inflammatory processes via transcriptional activation of the 32 

glucocorticoid receptor (GR) [1-5].  The GR and other steroid receptors belong to the 33 

nuclear receptor family, a large family of transcription factors, which includes receptors 34 

for thyroid hormone, retinoids and other small lipophilic molecules [6-10].  The GR 35 

and other steroid receptors have a characteristic modular structure consisting of an 36 
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N-terminal domain (NTD) (domains A and B), a central DNA-binding domain (DBD) 1 

(domain C), a hinge domain (D) and a C-terminal ligand-binding domain (LBD) 2 

(domain E) [9, 11-13] (Figure 2).  The E domain alone is competent to bind steroids 3 

[11, 12, 14-17]. 4 

The NTD contains an activation function 1 [AF1] domain, which is a strong 5 

transcriptional activator of the GR [18-20].  Interestingly, AF1 is intrinsically 6 

disordered, unlike the DBD and LBD [20-22].  Allosteric interactions between AF1 7 

and other domains on the GR and coactivators lead to a conformational rearrangement 8 

of AF1 that is important in transcriptional activation of the GR [22-25].  In rat GR, 9 

there is evidence that allosteric interactions between DBD and other domains regulate 10 

gene transcription [26, 27].  Recent crystal structures of the DBD-Hinge-LBD domains 11 

of other nuclear receptors [13, 21] identified allosteric signaling between the DBD and 12 

LBD domains. 13 

Although dexamethasone (DEX) and cortisol (F) activation of rodent [28] and 14 

human [19, 29-32] GRs has been investigated,  there has been no systematic 15 

assessment of corticosteroid specificity among phylogenetically diverse terrestrial 16 

vertebrate GRs, such as amphibians, reptiles, birds and mammals.  This is important 17 

because more than one corticosteroid may be a physiological glucocorticoid in 18 

terrestrial vertebrates [33-35].  Reports of transcriptional activation by corticosteroids 19 

of the GR for other terrestrial vertebrates: amphibians, reptiles and birds, are limited [36, 20 

37].  Oka et al. [36] reported half-maximal response (EC50) values for transcriptional 21 

activation of full length alligator GR by F, corticosterone (B), 11-deoxycorticosterone 22 

(DOC) and aldosterone (Aldo).  The EC50s for F and B were 0.29 nM and 0.16 nM, 23 

respectively, which is consistent with the known role of these two steroids as 24 

glucocorticoids in mammals.  However, the EC50s for Aldo and DOC were 2.9 nM 25 

and 2.8 nM, which is unexpected because both steroids have a lower binding affinity for 26 

human GR [29, 31] and are weak transcriptional activators of human GR [29, 38, 39].  27 

Similar intriguing findings for Aldo were reported for chicken GR by 28 

Proszkowiec-Weglarz and Porter [37], who found that the EC50s for transcriptional 29 

activation of chicken GR by Aldo and B were 0.8 nM and 1.8 nM, respectively, with the 30 

level of transcription due to B being about 30% higher than to Aldo.  The EC50s of 31 

DOC and other corticosteroids for chicken GR and of DEX for alligator GR were not 32 

determined. 33 

These unexpected responses of alligator and chicken GRs to Aldo and our 34 

interest in the evolution of specificity for corticosteroids in the GR in vertebrates [12, 36, 35 

40-42] motivated us to investigate the response to a panel corticosteroids, DEX, F, 36 
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cortisone (E), B, DOC, 11-deoxycortisol (S) and Aldo of the GR from chicken and the 1 

amphibian [Xenopus laevis] for comparison to human and alligator GR with the goal of 2 

clarifying the evolution of corticosteroid specificity in terrestrial vertebrates.  In 3 

addition, we were interested in investigating the role of domains A-C and domains D-E 4 

[13, 20-22, 42-45] in the response of GRs to steroids.  The influence of domains A-C 5 

on steroid responses for the GR has not been studied previously in non-mammalian 6 

terrestrial vertebrates.  For these studies we constructed a plasmid containing the 7 

GAL4 DBD fused to the D domain and E domain of the GR (GR-LBD). 8 

We found significant differences in the EC50s of these full length GRs to 9 

corticosteroids indicating that during the evolution of these terrestrial vertebrates there 10 

were changes in their response to various corticosteroids.  Moreover, in the presence of 11 

corticosteroids, truncated GRs containing a GR LBD fused to a GAL4 DBD had a 12 

higher EC50 value (weaker activation) than their corresponding full length GRs, 13 

indicating altered steroid specificity among these terrestrial vertebrate GRs and that the 14 

evolution of the response of terrestrial vertebrate GRs to different steroids was complex.  15 

The effect of interactions between the domains D-E and other GR domains [21, 42, 43] 16 

on transcriptional activation may involve post-translational modification of domains A, 17 

B or C [46-48], alterations in the binding of co-regulator proteins [23, 46, 49] or a 18 

combination of these mechanisms. 19 

 20 

2. Materials and Methods 21 

2.1 Chemical reagents 22 
DEX, F, E, B, Aldo, DOC and S were purchased from Sigma-Aldrich.  For the 23 

reporter gene assays, all hormones were dissolved in dimethylsulfoxide (DMSO) and 24 

the final concentration of DMSO in the culture medium did not exceed 0.1%. 25 

 26 

2.2 Construction of plasmid vectors 27 

The full-coding regions and D/E domains of the GR from X. laevis, alligator, 28 

chicken and human were amplified by PCR with KOD DNA polymerase (TOYOBO 29 

Biochemicals, Osaka, Japan).  The PCR products were gel-purified and ligated into 30 

pcDNA3.1 vector (KpnI-NotI site for human, chicken and alligator GRs, and 31 

HindIII-NotI site for X. laevis GR) (Invitrogen) for the full-coding region or pBIND 32 

vector (MluI-NotI site) (Promega) for D-E domains.  As shown in Figure 2, the D 33 

domain begins at human GR (487), chicken GR (482), alligator GR (490) and X. laevis 34 

GR (486) [36]. 35 

 36 
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2.3 Transactivation Assay and Statistical Methods 1 
CHO-K1 cells (Chinese hamster ovary cell) were used in the reporter gene assay.  2 

Transfection and reporter assays were carried out as described previously [36, 50].  3 

The use of CHO-K1 cells and an assay temperature of 37C does not replicate the 4 

physiological environment of X. laevis, alligator and chicken.  Nevertheless, studies 5 

with mammalian cell lines at 37C have proven useful for other studies of transcriptional 6 

activation by corticosteroids of teleost fish GRs [51-54] and other non-mammalian GRs 7 

[37, 55, 56].  Levels of expression of the different non-mammalian GRs and their 8 

truncated counterparts may differ in CHO-K1 cells.  However, comparisons of the 9 

EC50 of different corticosteroids for each GR would be valid, which is the goal of our 10 

study.  All transfections were performed at least three times, employing triplicate 11 

sample points in each experiment.  The values shown are mean ± SEM from three 12 

separate experiments, and dose-response data and EC50 were analyzed using GraphPad 13 

Prism.  Comparisons between two groups were performed using t-test, and all 14 

multi-group comparisons were performed using one-way ANOVA followed by 15 

Bonferroni test.  P < 0.05 was considered statistically significant. 16 

 17 

3. Results 18 

3.1 Different steroid-responses for full length and truncated human, chicken, 19 

alligator and X. laevis GRs. 20 

In Figure 3we compare corticosteroid-inducible transcriptional activation of full 21 

length and truncated (GAL4-DBD_GR-LBD) of terrestrial vertebrateGRs by DEX, F, E, 22 

B, Aldo, DOC and S.  At 10 nM steroid , there were significant differences between all 23 

full length and truncated GRs for all corticosteroids.  Human and Xenopus GRs had the 24 

greatest difference between full length and truncated GRs.  Full length human GR was 25 

strongly activated by DEX, F and B and weakly activated by DOC and S, while the 26 

truncated human GR was activated by DEX (Figures 3A, B).  Full length Xenopus GR 27 

was strongly activated by DEX and B and weakly activated by F, Aldo and DOC 28 

(Figure 3G).  Truncated GR was activated by DEX and B (Figure 3H).   29 

Chicken GR and alligator GR were similar to each other regarding 30 

transcriptional activation of full length GRs.  For full length chicken GR, B, Aldo and 31 

DOC were strongest activators at 10 nM (Figure 3C).  DEX, F and S had similar lower 32 

transcriptional activity for chicken GR.  Interestingly, E had low, but significant, 33 

activity for full length chicken GR.  For truncated chicken GR, only DEX, F and B had 34 

strong activity (Figure 3D).  S, Aldo and DOC had low, but significant activity.  For 35 

full length alligator GR, all steroids, except E, had good activity (Figure 3E).  E had 36 
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low, but significant activity.  Truncated alligator GR was strongly activated by DEX 1 

and F, and less activated by B (Figure 3F).  Aldo and S had very low, but significant 2 

activity. 3 

 4 

3.2 EC50 values for transcriptional activation of full length human, chicken, 5 

alligator and X. laevis GRs 6 

Next we examined the concentration-dependence of transcriptional activation of 7 

full length terrestrial vertebrate GRs by DEX, F, E, B, Aldo, DOC and S (Figure 4, 8 

Table 1).  Compared to the other steroids, DEX has the lowest EC50 for all of the full 9 

length GRs (Table 1).  Interestingly, there are significant differences among the GRs of 10 

the EC50s for other corticosteroids, including F and B, which are the major 11 

physiological glucocorticoids in terrestrial vertebrates.  For example, for full length 12 

GRs, B has a lower EC50 than F for X. laevis GR, while F has a lower EC50 than B for 13 

human, chicken and alligator GR. 14 

Aldo, which is a mineralocorticoid, has an EC50 of 2.7 nM and 44 nM 15 

respectively, for alligator GR and X. laevis GR and an EC50 of 2 nM and 82 nM, 16 

respectively, for chicken and human GR.  DOC, which also is a mineralocorticoid, has 17 

an EC50 of 2.6 nM and 23 nM, respectively, for alligator GR and X. laevis GR, and an 18 

EC50 of 0.63 nM and 110 nM, respectively, for chicken GR and human GR.  19 

Interestingly, S has an EC50 of 0.17 nM and 0.35 nM, respectively, for chicken and 20 

alligator GR, and a much higher EC50 for human GR [50 nM] and X. laevis GR [530 21 

nM] (Table 1). 22 

 23 

3.3 EC50 values for transcriptional activation of truncated (GAL4-DBD_GR-LBD) 24 

terrestrial vertebrate GRs 25 
The concentration-dependence of transcriptional activation of truncated 26 

terrestrial vertebrate GRs by DEX, F, E, B, Aldo, DOC and S is shown in Figure 4 and 27 

Table 1.  Transcriptional activation by several steroids was dramatically different 28 

among terrestrial vertebrate GRs that lacked the A-C domains.  For example, truncated 29 

human GR has a strong response to DEX (EC50 = 8.3 nM) and a very weak response to 30 

F (EC50 = 1.2 µM), and no significant response to B, Aldo, DOC or S (Table 1).  This 31 

contrasts to other vertebrate truncated GRs.  Truncated chicken GR has nM EC50s for 32 

DEX, F and B, and a weaker but significant response to Aldo and S.    Truncated 33 

alligator GR has nM EC50s for DEX and F, a weaker, but significant, response to B 34 

(EC50 = 49 nM), a weak response to Aldo (EC50 = 0.16 µM) S (EC50 = 0.12 µM) and 35 

E (EC50 = µM).  Truncated X. laevis GR has EC50s of 67 nM and 48 nM, respectively, 36 
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for DEX and B (Table 1). 1 

These results suggest that allosteric signaling between the hinge/LBD and one or 2 

more of the A, B and C domains influences the response of terrestrial vertebrate GRs to 3 

corticosteroids. 4 

 5 

3.4 Analysis of a 25 residue segment on human GR and MR that influences 6 

corticosteroid specificity 7 
Rogerson et al. [57] identified 12 amino acids in a 25 residue segment, located 8 

in the c-terminus of helix 5, a β-turn and helix 6 on human GR, that could be replaced 9 

with corresponding residues from human MR to yield a hybrid GR that had an EC50 of 10 

3 nM for Aldo.  In Figure 5, we compare this segment in chicken, alligator and X. 11 

laevis GRs with the corresponding segments in human MR and GR.  The alignment 12 

does not reveal a pattern of similarity between chicken and alligator GRs and human 13 

MR that can explain the lower EC50s that Aldo has for chicken and alligator GRs 14 

compared to human and X. laevis GRs. 15 

 16 

4. Discussion 17 

Although there are several reports of the response to different corticosteroids 18 

of the mammalian GR [19, 28-32, 38, 42], the corticosteroids that activate GRs from 19 

other terrestrial vertebrates have not been studied in depth.  In birds and amphibians, B 20 

appears to be the physiological glucocorticoid [33, 34, 58], and S has been found to be a 21 

physiological glucocorticoid in lamprey [59, 60].  However, as discussed below, our 22 

data (Table 1) supports the presence of more than one physiological glucocorticoid in 23 

some terrestrial vertebrates.  Also, our data indicate that there were changes in 24 

specificity for corticosteroids in the GR at key transitions in the evolution of terrestrial 25 

vertebrates. 26 

As shown in Figures 3 and 4 and Table 1, we find significant differences in 27 

the response to a panel of corticosteroids of full length GRs from X. laevis, alligator, 28 

chicken and humans, providing evidence for the evolution of selectivity of terrestrial 29 

vertebrate GRs for F, B, Aldo, DOC and S.  We confirm previous studies [36, 37] that 30 

Aldo has nM EC50s for full length chicken and alligator GR.  This contrasts with the 31 

response to Aldo of full length human and X. laevis GR, for which the EC50 is 82 nM 32 

and 44 nM, respectively.  The low EC50s of B for chicken GR (0.23 nM), alligator GR 33 

(0.35 nM) and X. laevis GR (5.1 nM) are consistent with a role for B as a physiological 34 

glucocorticoid in these vertebrates [33, 34, 58].  We also find that DOC, another 35 

mineralocorticoid [39, 41, 61, 62], has a low EC50 for full length chicken GR (0.6 nM) 36 
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and alligator GR (2.6 nM), in contrast to DOC’s higher EC50 for human GR (110 nM) 1 

and X. laevis GR (23 nM).  S also has a substantially lower EC50 for chicken GR (0.17 2 

nM) and alligator GR (0.35 nM) compared to human GR (50 nM) and X. laevis GR 3 

(953 nM).  Interestingly, there is a weak but significant, response to E of chicken and 4 

alligator GR.  The low EC50s of B, DOC and S for chicken and alligator GRs and of B 5 

for X. laevis GR leaves open the possibility that these steroids are physiological 6 

glucocorticoids in these vertebrates.  There are regulatory implications for DOC and S 7 

as glucocorticoids because these steroids lack an 11β-OH group that is present in F and 8 

B (Figure 1).  Thus, DOC and S would be inert to 11β-HSD2, and could activate 9 

chicken and alligator GRs in tissues containing 11β-HSD2, which would inactivate B 10 

and F [1, 63-65]. 11 

Our studies with truncated GRs (hinge-LBD) reveal that one or more of the A, 12 

B and C domains are important in the response of terrestrial vertebrate GRs to 13 

corticosteroids.  We find that compared to full length GRs, all truncated GRs 14 

(hinge-LBD) have substantially higher EC50s for all corticosteroids.  For example, the 15 

EC50s of DEX and F for truncated human GR increased to 8.3 nM and 1.2 µM, 16 

respectively.  Moreover, Aldo, B, DOC and S have an EC50 greater than 1 µM for 17 

truncated human GR.  Similar changes for these steroids to higher EC50s were found 18 

for the non-mammalian vertebrate GRs.  Thus, F, Aldo, DOC and S have EC50s 19 

greater 1 µM for truncated X. laevis GR.  DOC has an EC50 greater 1 µM for 20 

truncated chicken and alligator GR. 21 

There are several overlapping mechanisms that could account for stronger 22 

response to corticosteroids of full length GRs compared to their truncated GR 23 

counterparts.  Different corticosteroids may induce conformations in the LBD that alter 24 

binding of coactivators and transcriptional activation [43, 46].  Allosteric interactions 25 

between the LBD and the NTD [42, 43, 46] or DBD [26, 45] are known to influence 26 

transcriptional activation of human and rat GRs.  These allosteric interactions may be 27 

influenced by post-translational modification of the NTD by phosphorylation [46, 47] or 28 

SUMOylation [48], which also may influence binding of co-activators [23, 43, 46, 49, 29 

66]. 30 

Based on Rogerson et al. [57] identification of a region in hMR that could be 31 

substituted into hGR and increase its response to Aldo, we analyzed the corresponding 32 

segment on chicken, alligator, X laevis and human GRs for clues to differences in their 33 

responses to corticosteroids.  Our analysis of this segment (Figure 5) did not find a 34 

pattern that can explain the relatively strong responses to Aldo of chicken and alligator 35 

GRs, suggesting that other mechanisms such as interactions with the LBD of the NTD 36 
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on alligator and chicken GRs may contribute to the differences in their response to 1 

corticosteroids compared to human and X. laevis GRs. 2 

 3 

4.1 Evolution 4 

Our data indicate that there were significant changes in the response to 5 

corticosteroids during the evolution of terrestrial vertebrates.  Among the species that 6 

we have studied, chicken and alligator are closest, having diverged about 150 million 7 

years ago (myr) from a common ancestor.  Consistent with this close relationship, full 8 

length chicken and alligator GRs have similar EC50s for B, Aldo and S.  In contrast, 9 

full length GR from X. laevis, which is the most divergent of the studied 10 

non-mammalian species, has the high EC50s for all tested corticosteroids. 11 

It is interesting that human mineralocorticoid receptor [MR] which descended 12 

from a common ancestor with the GR [67-69], also has an interaction between domains 13 

A and B and the LBD that regulates transcriptional activation by Aldo [70-72] as does 14 

zebrafish MR [73].  The A/B domains on human and zebrafish MR can interact with 15 

each other’s LBD, indicating that this is an ancient property of the MR.  This suggests 16 

that the role in transcriptional activation of the interaction between the A/B and LBD 17 

domains arose in the common ancestor of the GR and MR.  Further studies of the role 18 

in transcriptional activation of the A, B and C domains on the GR and MR should 19 

provide insights into the evolution of steroid specificity in these receptors. 20 

 21 
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 26 

Figure Legends 27 

Figure 1. Structures of various corticosteroids. 28 
Cortisol and corticosterone are physiological glucocorticoids in terrestrial vertebrates 29 

and ray-finned fish [12, 67, 74].  Cortisone is a metabolite of cortisol, in which the 30 

C11-alcohol is metabolized to a ketone.  Aldosterone, 11-deoxycorticosterone and 31 

11-deoxycortisol are physiological mineralocorticoids [12, 41, 61, 70].  Aldo and DOC 32 

are weak transcriptional activators of human GR [29, 31, 38].  11-deoxycortisol is both 33 

a mineralocorticoid and a glucocorticoid in lamprey [59]. 34 

 35 

Figure 2. Comparison of domains in some terrestrial vertebrate GRs. 36 



 16 

GRs from human, chicken, alligator and X. laevis are compared.  The functional A/B 1 

domain to E domains are schematically represented with the numbers of amino acid 2 

residues and the percentage of amino acid identity between the domain in the human 3 

GR and the corresponding domain in the other vertebrate GRs.  For example, the entire 4 

human GR sequence is 75% identical to that of chicken GR, while domain E (LBD) on 5 

human GR is 90% identical to that of chicken GR.  GenBank accession numbers: 6 

human GR (NM_000176), chicken GR (NM_001037826), alligator GR (AB701407), X. 7 

laevis GR (NM_001088062). 8 

 9 

Figure 3. Ligand-specificities of human, chicken, alligator and X. laevis full length 10 

GRs and LBD GRs. 11 

Full-length human GR (A), chicken GR (C), alligator GR (E), and X. laevis GR (G) 12 

were expressed in CHO-K1 cells with an MMTV-luciferase reporter.  Plasmids for 13 

corresponding truncated GRs (human (B), chicken (D), alligator (F) and X. laevis (H)) 14 

containing the D domain and LBD (E domain) fused to a GAL4-DBD were expressed 15 

in CHO-K1 cells with a luciferase reporter containing GAL4 binding site.  Cells were 16 

treated with 10 nM DEX, F, B, Aldo, DOC, S, E or vehicle alone (DMSO).  Results are 17 

expressed as means ± SEM, n=3.  Y-axis indicates fold-activation compared to the 18 

activity of control vector with vehicle (DMSO) alone as 1.  Transcriptional activation 19 

of the different GRs in the presence of the DMSO control is at background level, 20 

indicating that these GRs do not have constitutive activity. 21 

 22 

Figure 4. Concentration-dependent transcriptional activation by corticosteroids of 23 

full length and truncated human, chicken, alligator and X. laevis GRs. 24 

Plasmids encoding full length GRs (A, B: human GR, E, F: chicken GR, I, J: alligator 25 

GR, M, N: Xenopus GR) or plasmids encoding the GAL4-DBD fused to the D domain 26 

and LBD of GRs (C, D: human GR, G, H: chicken GR, K, L: alligator GR, O, P: 27 

Xenopus GR) were expressed in CHO-K1 cells.  Cells were treated with increasing 28 

concentrations of Dex, F, B, Aldo, DOC, S, E or vehicle alone (DMSO).  Y-axis 29 

indicates fold-activation compared to the activity of control vector with vehicle 30 

(DMSO) alone as 1. 31 

 32 

Figure 5. Analysis of a region in human GR and MR that is important for 33 

mineralocorticoid specificity. 34 
Rogerson et al. [57] identified a segment in human MR that could be inserted into 35 

human GR and increase its response to Aldo.  Exchange of underlined amino acids 36 



 17 

from hMR to hGR yields a mutant GR with high affinity (Kd=3 M) and low EC50 for 1 

Aldo.  Also shown are the corresponding regions in chicken, alligator and X. laevis 2 

GRs.  Residues that are conserved in all vertebrate GRs are underlined. 3 


