
 

Instructions for use

Title Renormalization of the highly forward-peaked phase function using the double exponential formula for radiative
transfer

Author(s) Fujii, Hiroyuki; Okawa, Shinpei; Yamada, Yukio; Hoshi, Yoko; Watanabe, Masao

Citation Journal of Mathematical Chemistry, 54(10), 2048-2061
https://doi.org/10.1007/s10910-016-0670-3

Issue Date 2016-11

Doc URL http://hdl.handle.net/2115/67483

Rights The final publication is available at Springer via http://dx.doi.org/10.1007/s10910-016-0670-3

Type article (author version)

File Information JMC_Fujii.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp


Journal of Mathematical Chemistry manuscript No.
(will be inserted by the editor)

Renormalization of the highly forward-peaked phase
function using the double exponential formula for
radiative transfer

Hiroyuki Fujii · Shinpei Okawa · Yukio
Yamada · Yoko Hoshi · Masao Watanabe

Received: date / Accepted: date

Abstract Numerical calculation of photon migration in biological tissue using
the radiative transfer equation (RTE) has attracted great interests in biomedical
optics and imaging. Because biological tissue is a highly forward-peaked scattering
medium, renormalization of the phase function in numerical calculation of the
RTE is crucial. This paper proposes a simple approach of renormalizing the phase
function by the double exponential formula, which was heuristically modified from
the original one. Firstly, the validity of the proposed approach was tested by
comparing numerical results for an average cosine of the polar scattering angle
calculated by the proposed approach with those by the conventional approach in
highly forward-peaked scattering. The results show that calculation of the average
cosine converged faster using the proposed approach than using the conventional
one as a total number of discrete angular directions increases. Next, the accuracy
of the numerical solutions of the RTE using the proposed approach was examined
by comparing the numerical solutions with the analytical solutions of the RTE in
a homogeneous medium with highly forward-peaked scattering. It was found that
the proposed approach reduced the errors of the numerical solutions from those
using the conventional one especially at a small value of the total number of the
directions. This result suggests that the proposed approach has a possibility to
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improve the accuracy for the numerical results of the RTE in the highly scattering
medium.

Keywords Radiative transfer equation · renormalization approach of the phase
function · highly forward-peaked scattering media · double-exponential formula

Mathematics Subject Classification (2000) 85A25 · 92C55 · 65D30 · 74E10

1 Introduction

Numerical calculation of photon migration in biological tissue using the radiative
transfer equation (RTE) is crucial in biomedical optics and imaging such as diffuse
optical tomography (DOT) [10]. DOT has a possibility to enable in-vivo imaging
of various organs and tissue volumes because the imaging technique non-invasively
reconstructs spatial distributions of physiological and structural information in or-
gans and tissue volumes by using the near-infrared light in the wave length range
from 700 nm to 1000 nm based on the relationship between the absorption coeffi-
cient and a concentration of chemical components (oxy- and deoxy hemoglobins);
and between the scattering coefficient and structural properties. In the wave length
range, scattering of photon is dominant over absorption of photon [5], so that pho-
tons migrate in multi-path. Due to this fact, a conventional image reconstruction
algorithm for X-ray computed tomography is not applicable, where absorption of
X-ray is dominant over scattering of X-ray. Hence, DOT requires a mathematical
model to describe photon migration in biological tissue.

The RTE can accurately describe photon migration in scattering media such
as biological tissue in terms of the light intensity as a function of position, angular
direction, and time. Also, the RTE has a scattering integral of the light intensity
multiplied by the phase function over the whole directions, which expresses the
energy incoming to the position of interest from all the directions by scattering.
Because analytical solutions of the RTE are obtained for the limited cases of simple
geometries such as infinite and homogeneous media [22], the RTE is approximated
to simpler formulations like the simplified spherical harmonics system [26,12] or
numerically solved for complicated geometries of organs and tissue volumes. In the
numerical calculation of the RTE, the independent variables (position, direction,
and time) are discretized by numerical schemes. For discretization of the direction,
the discrete ordinates method (DOM) has been widely used [4], and for spatial and
temporal discretization, the finite difference, finite volume, or finite element meth-
ods are employed. Then, the integro-differential equation of the RTE is formulated
to a set of algebraic equations.

In the DOM, a quadrature set of the discrete angular directions and weights
should be chosen appropriately for fast convergence of the quadrature sum and for
high accuracy of the numerical solution of the RTE. Although various quadrature
sets for the DOM have been proposed [3,6,1], the most common choice of the sets is
the level symmetric even (LSE) set [6], which is determined to satisfy the symmetry
to all directions over the unit sphere. It has been shown that numerical calculation
of the RTE using the LSE set is accurate especially for isotropic scattering as in the
case of neutron transport. However, it has been reported that in highly forward-
peaked scattering media such as biological tissue, the numerical solution of the
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RTE with the LSE set is inaccurate [15,2]. This is because in highly forward-
peaked scattering, the value of the phase function of the RTE at the small polar
scattering angle tends to increase exponentially, resulting in slow convergence of
the numerical calculation of the scattering integral. For the quadrature set, the
extended trapezoidal rule (ETR) has been employed [16,19]. The advantage of
the ETR set is that the total number of the directions can be chosen according
to a computer memory size, so that the numerical calculation of the scattering
integral can converge with a sufficiently large number of the directions and enough
computer memory size. However, it leads to high computational loads for numerical
calculations of the RTE.

To overcome the difficulty stated above, several works have proposed ap-
proaches to renormalize the phase function for highly forward-peaked scattering in
the filed of radiative heat transfer [17,2,14]. At the early stage, Liu and coworkers
have renormalized the phase function by an inverse of the quadrature sum of the
phase function over the whole directions [17]. Despite the simple approach, they
have shown that the accuracy of the numerical results of the RTE is improved
because their approach satisfies the normalization condition of the phase function
over the whole directions. In their approach, however, numerical results of the av-
erage cosine of the polar scattering angle are deviated from the anisotropic factor,
to which the average cosine must be equal. To satisfy the condition for the average
cosine stated above, recently, the phase function has been renormalized by weight
matrices calculated using the finite volume method [2] or an inverse analysis [14].
It has been actively reported that the renormalization approaches can provide the
accurate numerical results. However, a further development of the renormalization
approach is still necessary to improve the accuracy of the numerical results.

This paper proposes a simple approach to renormalize the phase function in
highly forward-peaked scattering by the double exponential formula, which has
been originally developed for fast convergence of numerical integration having a
singular function [25,20]. For validation of the proposed approach, we compared
the numerical results of the average cosine calculated using the proposed approach
with those using the conventional approach (Liu’s renormalization approach [17]).
In addition, the proposed approach was validated by comparing the numerical
solution of the time-dependent RTE using the proposed approach with an an-
alytical solution of the RTE for a three dimensional, homogeneous, and highly
forward-peaked scattering medium.

The following section provides an explanation of the proposed approach for
numerical calculation of the time-dependent RTE for a three dimensional scatter-
ing medium. Section 3 provides the numerical results to test the validity of the
proposed approach. Finally, conclusions are described.
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2 Photon migration model

2.1 Radiative transfer equation

The time-dependent RTE can provide an accurate description of photon migration
in scattering media, which is formulated in three dimensions (3D) as [4],[

∂

v∂t
+Ω · ∇+ µa(r) + µs(r)

]
I(r,Ω, t)

= µs(r)

∫
4π

dΩ′ p(Ω ·Ω′)I(r,Ω′, t) + q(r,Ω, t), (1)

where I(r,Ω, t) in Wcm−2 sr−1 represents the light intensity as a function of
spatial location r = (x, y, z) in cm for a 3D Cartesian coordinate system, angular
direction Ω = (Ωx, Ωy, Ωz) = (sin θ cosϕ, sin θ sinϕ, cos θ) (polar angle, θ ∈ [0, π],
azimuthal angle, ϕ ∈ [0, 2π] in sr), and time t in ps. µa(r) and µs(r) in cm−1

are the absorption and scattering coefficients, respectively, v is the speed of light
in the medium, p(Ω · Ω′) in sr−1 is the phase function with Ω′ and Ω denoting
the incident and scattered directions, respectively, and q(r,Ω, t) in W cm−2 sr−1

is a source function. Here, the phase function is assumed to be not dependent
on the azimuthal angle, ϕ, but to be dependent on the polar scattering angle,
φ = θ − θ′ = cos−1 Ω ·Ω′, which is the angle between the incident and scattered
directions.

2.2 Henyey-Greenstein phase function

For the formulation of p(Ω · Ω′), the Henyey-Greenstein phase function [13] is
widely employed,

p(Ω ·Ω′) =
1

4π

1− g2

(1 + g2 − 2gΩ ·Ω′)3/2
. (2)

Here, g is the anisotropic factor representing anisotropy of scattering and is defined
as the average cosine of the polar scattering angle with the weight of the phase
function;

g =

∫
4π

dΩ′ p(Ω ·Ω′)Ω ·Ω′∫
4π

dΩ′ p(Ω ·Ω′)
. (3)

A case of g = 0 corresponds to isotropic scattering and a case of g > 0 to forward-
peaked scattering. It is well known that biological tissue is a highly forward-peaked
scattering medium, whose g-value is typically larger than 0.8 [5].

At any values of g, the following normalization conditions for the phase function
and for the average cosine must be satisfied,∫

4π

dΩ′p(Ω ·Ω′) = 1, (4)

g−1

∫
4π

dΩ′p(Ω ·Ω′)Ω ·Ω′ = 1. (5)
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3 Numerical schemes for the time-dependent RTE

In this study, the time-dependent RTE is numerically solved based on the DOM
for angular direction and on the finite-difference method for space and time.

3.1 Discrete ordinates method

The DOM approximates the scattering integral in Eq. (1) to a quadrature sum:

µs(r)

∫
4π

dΩ′ p(Ω ·Ω′)I(r,Ω′, t) ∼ µs(r)

NΩ∑
l′=1

wl′pll′Il′(r,Ωl′ , t), (6)

where wl′ is a weight for numerical integration, Ωl′ is the l′-th discrete angular
direction, and NΩ is a total number of the discrete angular directions. In the DOM,
a quadrature set of (wl,Ωl) needs to be chosen appropriately. Here, we consider
the two kinds of quadrature sets: the LSE [6] and ETR [16] sets. Although efficient
schemes for numerical integration have been extensively developed by modifying
the conventional closed Newton-Cotes method [24], we consider the conventional
method (ETR), which is one of the closed Newton-Cotes methods. The LSE set
is determined to satisfy the symmetry to all the directions over the unit sphere
because photons are scattered in all the directions and numerical solutions of the
RTE should be invariant with respect to a 90 degree axis rotation and a line
reflection as shown in Figs. 1(a) and (b). However, a shortcoming of the LSE set
is a limitation of NΩ ; a maximum value of NΩ is 288 (termed as S16) under a
condition that wl is positive. Although for highly forward-peaked scattering, a
larger value of NΩ is necessary for convergence of the numerical integration (Eq.
(6)), the maximum value of NΩ for the LSE set is insufficient.

The ETR is a simple method to provide the set of (wl,Ωl) and NΩ can be
chosen by a computer memory size. Hence, the numerical integration using the
ETR for highly forward-peaked scattering can be converged whenNΩ is sufficiently
large. Although the directions by the ETR are symmetric over the x-y plane (Fig.
1(c)), however, they are not symmetric over the y-z and z-x planes (Fig. 1(d)).

3.2 Renormalization approaches of the phase function

Figure 2 shows the Henyey-Greenstein phase function (Eq. (2)) as a function of
Ω ·Ω′ for the cases of g = 0.0, 0.5, and 0.9, in logarithmic scale. For the isotropic
scattering (g = 0.0), the value of the phase function is constant over the whole
region from Ω · Ω′ = −1 (φ = π) to Ω · Ω′ = 1 (φ = 0), meanwhile, for the
highly forward-peaked scattering (g = 0.9) the value of the phase function tends
to increase exponentially as Ω ·Ω′ approaches to unity (φ to 0). This fact means
that for fast convergence of the numerical integration, the values of the weight,
wl′ , should be dependent on Ωl · Ωl′ . However, the values of wl′ is determined
to satisfy the symmetry over the unit sphere like the LSE set. As a result, the
normalization conditions of Eqs. (4) and (5) are not satisfied in the discrete forms
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Fig. 1 Discrete angular directions in x-y and y-z planes for the LSE set (NΩ = 288) ((a)
and (b)) and ETR set (NΩ = 480) ((c) and (d)). Dots are the discrete angular directions, and
circles are boundaries of the unit sphere
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Fig. 2 Henyey-Greenstein phase function as a function of Ω ·Ω′ for isotropic scattering (g =
0.0), moderately forward-peaked scattering (g = 0.5), and highy forward-peaked scattering
(g = 0.9), in logarithmic scale

for highly forward-peaked scattering media:

NΩ∑
l′=1

wl′pll′ ̸= 1 l = 1, 2, · · · , NΩ , (7)

g−1
NΩ∑
l′=1

wl′pll′Ωl ·Ωl′ ̸= 1 l = 1, 2, · · · , NΩ . (8)

To overcome the problem, Liu and co-workers [26] have proposed the renor-
malized phase function, p̂ll′ , in the following form by introducing a renormalizing
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factor of fl,

p̂ll′ = flpll′ , fl =

[
NΩ∑
l′=1

wl′pll′

]−1

. (9)

This simple approach improves the accuracy of the numerical results of the RTE by
satisfying the normalization condition for the phase function (Eq. (4)). However,
the normalization condition for the average cosine (Eq. (5)) is still unsatisfied.

This paper proposes a simple approach to renormalize the phase function for
satisfying both of the normalization conditions in the following equations:

p̂ll′ = flWll′pll′ , fl =

[
NΩ∑
l′=1

wl′Wll′pll′

]−1

. (10)

A renormalizing matrix Wll′ is calculated by the double exponential formula
(DEF), which has been originally developed for fast convergence of numerical
integration of a singular function [25,20],

Wll′ =


cosh(sll′ ) exp[−2 sinh(sll′ )]

{cosh[sinh(sll′ )] exp[− sinh(sll′ )]}2 |sll′ | ≤ smax

cosh(smax) exp[−2 sinh(smax)]
{cosh[sinh(smax)] exp[− sinh(smax)]}2 |sll′ | > smax

, (11)

where sll′ = sinh−1(tanh−1(Ωl ·Ωl′)); and smax is a maximum value of sll′ and
is the only fitting parameter in the proposed approach. Using the Levenberg-
Marquardt method, smax is determined so that the normalized average cosine
of g−1∑NΩ

l′=1 wl′ p̂ll′Ωl · Ωl′ converges to unity. Although the set of (wl,Ωl) is
calculated by the DEF with an unequal step size, our proposed approach utilizes
the set given by the ETR. This is because the directions by the DEF are not
symmetric over the unit sphere and inappropriate. In that sense, here, the DEF is
heuristically modified.

3.3 Finite difference method

The 3rd order upwind scheme is employed for spatial discretization and the 3rd
order TVD (total variation diminishing)-Runge-Kutta method [11] is employed
for temporal discretization, respectively. For time integration, modifications of
the Runge-Kutta type method (Runge-Kutta-Nyström method) or numerically
efficient schemes have been extensively proposed [23,21]. Nevertheless, we employ
the conventional TVD Runge-Kutta scheme among the methods because here
we focus on the renormalization of the phase function over time integration. In
the finite difference method, x, y, z, and t are discretized as xi = i∆x (i ∈
{0, · · · , Nx}), yj = j∆y (j ∈ {0, · · · , Ny}), zk = k∆z (k ∈ {0, · · · , Nz}), and
tm = m∆t (m ∈ {0, · · · , Nt}) with the constant step sizes of ∆x, ∆y, ∆z, and
∆t, respectively, and the numbers of the grid nodes and timesteps of Nx, Ny, Nz,
and Nt, respectively. The step sizes are ∆x = ∆y = ∆z = 0.08 cm and ∆t = 0.5
ps, respectively. In our preliminary study, it was confirmed that the numerical
solutions of the RTE are unchanged even as the step sizes are finer than those
given above.
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Table 1 Quadrature sets of (wl,Ωl) and renormalization approaches

(wl,Ωl) p̂ll′

Method A (proposed here) ETR DEF (Eqs. (10) and (11))

Method B ETR Liu’s approach (Eq. (9))

Method C LSE Liu’s approach (Eq. (9))

3.4 Numerical conditions

To test the validity of the proposed approach, three methods for the quadrature
sets, (wl,Ωl), and for the renormalization approaches of phase functions, p̂ll′ , are
compared in Table 1, Method A (proposed here): (wl,Ωl) is given by the ETR set
and p̂ll′ is calculated by the DEF (Eqs. (10) and (11)), Method B: (wl,Ωl) by the
ETR set and p̂ll′ by the Liu’s approach (Eq. (9)), and Method C: (wl,Ωl) by the
LSE set and p̂ll′ by the Liu’s approach.

This paper examines convergence of the average cosine as NΩ increases, and
compares the numerical solutions of the RTE using the three methods with the
analytical solutions for the case of g = 0.9 which is a typical value for biological
tissue. For Methods A and B using the LSE set, NΩ are varied at 60, 112, 180,
264, 364, 480, 760, 1104, and 1512; and for Method C using the LSE set, 48, 80,
168, and 288.

The source code for the numerical calculations were written in the C program-
ming language, and all the matrices were compressed to vectors as the compressed
row storage format. Also, parallel CPU programming was implemented with 48
thread computers (Intel Xeon E5-2690v3@2GHz) by using the OpenMP, which is
a portable and shared-memory programming scheme.

4 Numerical results

4.1 Normalization condition for the average cosine

Firstly, we examined how the normalization for the average cosine, Eq. (5), is
satisfied as stated above. Here, the normalization condition of the phase function,
Eq. (4), was confirmed to be satisfied by the three methods automatically due to
the renormalizing factor, fl (Eq. (10) for Method A; and Eq. (9) for Methods B and
C). For the examination of the average cosine, we calculate numerical integration
of Sg

l as expressed in the following,

Sg
l = g−1

NΩ∑
l′=1

wl′ p̂ll′Ωl ·Ωl′ l = 1, 2, · · · , NΩ . (12)

Here, Sg
l , is calculated at each integer value of l from 1 to NΩ , and Sg

l should
ideally be unity (Eq. (5)). Figure 3(a) shows the mean values of Sg

l averaged over

l, defined as S
g
l =

∑NΩ

l=1 S
g
l /NΩ at different integer values of NΩ in a logarithmic

scale for the three methods. For Method A (proposed here), the values of S
g
l are

almost unity for all the values of NΩ by adjusting smax in Eq. (11) so as to
satisfy Eq. (5). The adjusted values of smax are shown in the inset of Fig. 3(a) to
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Fig. 3 (a) Mean values of Sg
l , S

g
l , for Methods A, B, and C as listed in Table 1 with g = 0.9

at different values of NΩ in a logarithmic scale and smax (Eq. (11)) is plotted in the inset. (b)
Mean absolute percentage error, eg of Sg

l for the three methods with g = 0.9.

behave almost linearly to the logarithm of NΩ . The simple linear relation makes
the adjusting procedure for smax easy. It is observed in Fig. 3(a) that the values of
S
g
l for Method B converge to unity when NΩ is larger than approximately 1000.

Also, it is found that the dependence of the values of S
g
l for Method C on NΩ is

similar to that for Method B, but NΩ for the LSE set is limited up to 288 where
the minimum of S

g
l is reached at approximately 1.02.

The deviation of Sg
l from the unity (theoretical value) is evaluated by the mean

absolute percentage error for the average cosine, eg =
∑NΩ

l=1 |S
g
l −1|×100/NΩ . As

shown in Fig. 3(b), the values of eg for Method A are smallest among the three
methods, indicating the accuracy of the proposed approach. As well as the results
of S

g
l , Method B provides the similar results for eg to Method C. These results

suggest that for the normalization condition for the average cosine, Eq. (5), the
accuracy of the ETR set is the same as that of the LSE set in highly forward-
peaked scattering media, although the LSE set is a higher order than the ETR
set.

4.2 Fluence rate

In this subsection, we compare the numerical solutions of the RTE using the three
methods with the analytical solution of the RTE. As the analytical solution, an
approximate RTE solution, Φinf , is used here for infinite homogeneous media with
highly forward-peaked scattering [18,22],

Φinf (ρ, t) = v

(
1− ρ2

v2t2

)1/8 (
3µ′

s

4πvt

)3/2

G

(
µ′
svt

[
1− ρ2

v2t2

]3/4)
×e−µ′

tvtΘ(vt− ρ),

G(λ) = 8(3λ)−3/2
∞∑

Λ=1

Γ (3Λ/4 + 3/2)

Γ (3Λ/4)

λΛ

Λ!
, (13)

where Φ is the fluence rate defined as
∫
4π

dΩI, Θ is the Heaviside step function,
µ′
t = µa + µ′

s, µ
′
s = (1 − g)µs, and ρ is the distance from the source position

of (xs, ys, zs). It has been reported that the approximate solution agrees with
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Fig. 4 (a) Source and detector positions in the homogeneous cubic medium. (b) Temporal
profiles of the fluence rate, Φ, normalized by their peak values at the source-detector distances,
ρ =0.56 cm with g = 0.9. A dotted curve represents the approximate solution (AS) given by
Eq. (13); and solid curves represent the numerical solutions (NS) by the three methods listed
in Table 1.

Monte Carlo simulations [18]. To compare the analytical solution for infinite media
with numerical solutions for finite media, the source and detector are positioned
in the finite medium far from the boundary as shown in Fig. 4(a). It has been
confirmed that such a comparison test is possible in our previous study [8,9].
Here, we consider a homogeneous cubic medium with a side of 2.88 cm, where
a source is located at the center of the medium, (xs, ys, zs) =(1.44 cm, 1.44 cm,
1.44 cm) with ρ = 0.56 cm for the detector position. In our preliminary study, it
was confirmed that even when the medium size increases, the numerical solutions
are unchanged, meaning little effects of the boundary condition on the numerical
solutions. The optical properties of the medium are given as µa = 0.38 cm−1,
µs = 140 cm−1, and g = 0.9 which are those of the cerebral cortex of a rat at the
wave length of 780 nm [7].

Figure 4(b) shows the temporal profiles of Φinf (Eq. (13)) and numerical solu-
tions for Φ using the three methods normalized by their peak values at the detector
position of (xs, ys, zs + ρ) =(1.44 cm, 1.44 cm, 2.00 cm) with NΩ = 480 for Meth-
ods A and B, and NΩ = 288 for Method C. As shown in Fig. 4(b), the numerical
solutions are strongly influenced by the methods of angular discretization although
the spatial and temporal discretization are the same. It is observed that the nu-
merical solution using Method A agrees with Φinf , while those using Methods B
and C deviate from Φinf , meaning that the improvement for the accuracy of the
numerical solution was achieved by the proposed approach.

Next, we examined the invariance of the numerical solutions with respect to
a 90 degree axis rotation and a line reflection, because it is desirable that the
discrete angular directions are symmetric over the unit sphere, and the numerical
solutions are invariant with the rotation and reflection. For this examination, we
considered six cases of detector positions as shown in Fig. 5(a): x± = (xs ±
ρ, ys, zs), y± = (xs, ys ± ρ, zs), and z± = (xs, ys, zs ± ρ) with a source position of
(xs, ys, zs) and source-detector distance of ρ =0.56 cm. If the numerical solutions
satisfy the invariance, the numerical solutions are the same for the six cases. The
invariance was evaluated by the mean absolute percentage error, eΦ, of the fluence
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Fig. 5 (a) Six detector positions in the homogeneous medium: x± = (xs ± ρ, ys, zs), y± =
(xs, ys ± ρ, zs), and z± = (xs, ys, zs ± ρ). A red dot represents a source position of (xs, ys, zs).
(b) Histogram of eΦ given by Eq. (14) at the six detector positions for Method A (NΩ = 480),
Method B (NΩ = 480), and Method C (NΩ = 288) at ρ = 0.56 cm. The results at z+
correspond to Fig. 4(b).

rate normalized by its peak value, Φ̂,

eΦ =
1

N −M

N∑
m=M

∣∣∣∣∣ Φ̂m − Φ̂inf (tm)

Φ̂inf (tm)

∣∣∣∣∣× 100, (14)

where Φ̂m and Φ̂inf (tm) represent the values of Φ̂ at the m-th time step, tm, in the
numerical and analytical solutions of the RTE, respectively; and the summation
with respect to m is over a time period from the peak time (m = M) to the time
when Φ̂ reduces to 10−1.5 ⋍ 0.032 (m = N). Here, a time period earlier than the
peak time is excluded from the calculation of eΦ because the approximate nature
of the analytical solution (Eq. (13)) appears strongly in the early time period, and
because in the early time period, the numerical solutions in this study are slightly
affected by numerical instability due to the 3rd order upwind scheme.

Figure 5(b) shows a histogram of eΦ for Method A (NΩ = 480), Method B
(NΩ = 480), and Method C (NΩ = 288) at the six detector positions. Results of eΦ
for Method C are independent of the detector positions, meaning that Method C
satisfies the invariance with respect to the rotation and reflection. This is because
the LSE set is symmetric over the unit sphere as shown in Figs. 1(a) and (b). For
Method B, the results of eΦ are the same for the four detector positions of x± and
y±, indicating the invariance with respect to the rotation and reflection in the x-y
plane. However, the results of eΦ for x± and y± are different from those for z±,
meaning a failure of the invariance in the x-z (or y-z) plane. This is ascribed to
the asymmetry of the ETR set over the unit sphere as shown in Figs. 1(c) and
(d). Method A reduces eΦ for all the detector positions from those for Method B.
However, Method A less improves the failure of the invariance in the x-z and y-z
planes experienced by Method B.

Finally, we calculated eΦ at different values of NΩ for the three methods at
ρ =0.56 cm with g = 0.9 as shown in Fig. 6. Among the six detector positions
(Fig. 5(a)), here, x− and z+ are selected because eΦ for Method C is independent
of the positions, and eΦ for Methods A and B at x− and z+ are the same as that
at x+ (or y±) and z−, respectively, as shown in Fig. 5(b). It is observed in Fig.
6 that eΦ for the three methods decreases as NΩ increases, and that the values
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Fig. 6 eΦ for the three methods at different values of NΩ for x− and z+ at ρ = 0.56 cm with
g = 0.9. Source-detector positions are the same as Fig. 5(a)

of eΦ for Method A both at x− and z+ are smaller than those for Method B. In
particular, the values of eΦ for Method A at z+ are negligibly small in the range of
NΩ larger than around 500. The values of eΦ for Method C at x− (open squares)
are hidden behind those at z+ (solid squares) because they are the same. In the
range of NΩ smaller than about 300, the values of eΦ for Method B at x− (open
circles) are similar to those for Method C, indicating that the accuracy of the LSE
set (Method C) is almost the same as that of the ETR set (Method B) in the range
of NΩ , like the normalization condition of the average cosine discussed in Sec. 4.1.
Also, in the range of NΩ smaller than about 500, the differences of eΦ between
x− and z+ for Method A are smaller than those for Method B, suggesting that
the proposed approach is effective in the region of NΩ . As a result, the proposed
approach (Method A) can improve accuracy of the numerical solutions of the RTE
compared with the conventional methods (Methods A and B) in the whole range
of NΩ in this study.

5 Conclusions

In summary, we developed a simple approach for renormalizing the phase function
in the RTE based on the double exponential formula. The validity of the proposed
approach was confirmed by examining the numerical results of the average cosine
and numerical solutions of the RTE for the three methods of the quadrature sets
and renormalization approaches. We found that the proposed approach reduced
the numerical errors of the average cosine and numerical solutions when compared
with the conventional approach. Although various approaches for the renormaliza-
tion have been proposed, our approach is useful to improve the accuracy for the
numerical results of the RTE.
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