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Abstract: Global-minimum geometries of ternary and quaternary Lennard-Jones clusters have been 

calculated with constraints on atomic compositions of the clusters.  In the present study, the constraints 

were removed to obtain optimal compositions.  The size ratios of the largest-sized atom to the 

smallest-sized one ranged from 1.1 to 1.6 whereas the depths of the interatomic potentials were constant.  

The heuristic method combined with the geometrical perturbations and atom-type conversion was used 

to search for the global minima of the clusters with up to 50 atoms.  The smallest-sized and 

largest-sized atoms usually occupy cores and outer shells, respectively, and the atoms with intermediate 

sizes are often lacking.  The size ratio has pronounced effects on the compositions, structures, and 

relative stability of the clusters. 

Keywords: Global optimization; Atom-type conversion; Core-shell structures. 
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1. Introduction 

Nanoclusters have peculiar properties compared with bulk matters since the cluster is much smaller 

than the bulk material in size.  Chemical and physical properties of nanoclusters significantly depend 

on the structures.  They have been experimentally studied with spectroscopic and diffraction 

techniques and theoretically investigated employing global optimization methods and simulations.  At 

present, homoclusters with a few hundred atoms are tractable using theoretical approaches.  Compared 

with homoclusters, heteroclusters show considerably complicated structural behavior because a lot of 

combinations of constituent particles of different types are possible.  The complication is an important 

feature of the heteroclusters since it may induce new structures and thus new properties.  Many 

investigations on metallic heteroclusters have been reported as described in the review by Ferrando et al. 

[1] because of great interest in catalysis, and optical and magnetic properties of the clusters. 

As mentioned before, the atomic composition of a heterocluster [2–12] makes the structure prediction 

complicated.  Hence geometry optimizations of multicomponent clusters are still challenging.  For 

one of the simplest multicomponent clusters, binary Lennard-Jones (BLJ) clusters, the putative global 

minima of the clusters with up to 100 atoms are reported in the literature [2–8].  The potential energy 

of the N-atom BLJ cluster (BLJN) is calculated using the interatomic potential V(i, j): 

𝐸𝑁 =  ∑ 𝑉(𝑖, 𝑗)𝑁
𝑖<𝑗 = 4∑ 𝜀𝛼𝛼 ��

𝜎𝛼𝛼
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Here rij represents the distance between atoms i and j, and α and β mean the types of the atoms i and j 

(represented by A and B), respectively.  The evaluation of eq (1) is performed with the relation of 

𝜀AA  =  𝜀BB =  𝜀AB =  𝜀 in the literature [2–8].  The size parameters, σAA and σBB, are set to be SAσ 

and SBσ, respectively, and the σAB value is equal to (σAA + σBB)/2 according to the Lorentz rule.  The 

value of SA is 1 and the parameter SB (= σBB/σAA) is a predefined constant representing the size ratio of 

the B atom to the A atom. 

The original investigation on the BLJ clusters was performed by Doye and Meyer [2].  The study 

was aimed at elucidating the effect of the size of the B atom (SB = 1.05, 1.1, 1.15, 1.2, 1.25, 1.3) on the 
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global minima of the BLJ clusters with 5 to 100 atoms.  Subsequently to this, Cassioli et al. [3], 

Marques and Pereira [4], Kolossváry and Bowers [5], Sicher et al., [6], Tao et al. [7], and Rondina and 

Da Silva [8] proposed different optimization algorithms to search for global minima of the BLJ clusters.  

The lowest-energy geometries obtained in the previous studies are tabulated in the Cambridge Cluster 

Database [13].  Takeuchi [14] also optimized the geometries of BLJ5 to BLJ100 with SB = 1.05 – 1.3, 

and those of BLJ5 to BLJ50 with SB = 1.4 – 2.0.  It was found that the existence of fairly large-sized 

atoms (SB ≥ 1.6) induces complicated structural growth sequence. 

For ternary LJ clusters AlBmCn (N = l + m + n), Wu and coworkers [9, 10] examined the effect of the 

size parameters, σBB and σCC (= SCσ), on the global-minimum geometries.  In these studies, the 

clusters are defined as follows: (i) l = m = n = 10, 1.0 ≤ SB ≤ 1.3, 1.0 ≤ SC ≤ 1.3 [9]; (ii) N = 9 – 55 (l : 

m : n ≅ 1 : 1: 1), (SB , SC) = (1.1, 1.2), (1.2, 1.4) [9]; (iii) l = 13, m + n = 42, SB = 1.05, SC = 1.1 [9]; (iv) 

l = 12, m = n = 13, 1.0 ≤ SB ≤ 1.4, 1.0 ≤ SC ≤ 1.4 [10].  They also calculated the global-minimum 

structures of noble gas systems of Ar12KrmXen (m + n = 26) [10], Ar13KrmXen (m + n = 42) [10], 

Ar19KrmXe19 (m = 0 – 17) [11], Ar19Kr19Xem (m = 0 – 17) [11], and ArmKr19Xe19 (m = 0 – 17) [11].  

Dieterich and Hartke [12] investigated cluster systems of binary to quinary mixtures (He19Xe19, 

Ar19Kr19, Ar32Kr6, Ar13Kr13Xe12, Ar18Kr19Xe, He2Ne2Ar5Kr5Xe5, He11Ne11Ar11Kr11Xe11) to 

demonstrate the effects of compositional changes on the structures.  In the above studies [9 – 12], the 

atomic compositions are partially or completely fixed and the cluster sizes are rather limited in some 

cases.  Hence global minima of the LJ clusters with at least three components have never been 

elucidated.  Important issues on the ternary LJ (TLJ) and quaternary LJ (QLJ) clusters, structural 

growth sequence (size-dependent evolution of the structures) and relative stability, are still unsettled. 

For bimetallic clusters, a lot of investigations have reported the effects of the compositions on the 

structures [1].  Factors such as surface energies, cohensive energies, relative atomic sizes, and bond 

strengths are taken into account to understand properties of the clusters.  Recent studies [15 – 27] on 
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bimetallic and trimetallic clusters examine the structures as the function of the cluster size and atomic 

composition.  The other systems of binary clusters are also investigated in [28 – 33]. 

As well known in the studies on the LJ homoclusters [34 − 41], the number of stable configurations of 

the cluster drastically increases with increasing cluster size.  The minima corresponding to the stable 

configurations are separated by barriers and the barrier heights prevent optimization methods from 

searching for global minima.  In addition to this difficulty, heteroclusters exhibits a lot of atomic 

compositions.  The optimization of the composition has been treated with the following two strategies.  

One is to convert the type of an atom in the optimization algorithm.  The other is to exchange two 

atoms of different types.  In this approach, the atomic composition of the cluster is invariant and thus 

calculations are repeated for different compositions.  The former approach directly optimizes the 

composition of the system.  In Refs [2 – 5, 7, 14], the atom-type conversion was used in the 

optimization of the BLJ clusters.  The case study in the literature [7] suggests that the atom-type 

conversion is efficient for searching for the global minima of the clusters expressed by pair potentials 

with the constant well depth since the conversion significantly reduces the potential energy. 

The present study was undertaken to examine the structures of the TLJ and QLJ clusters with 

emphasis on the effects of the atomic sizes on the compositions, structures, and relative stability of the 

clusters.  The heuristic method combined with geometrical perturbations and atom-type conversion 

(HMGPAC) [14] was used to optimize the structures of these clusters.  Since the efficiency of the 

atom-type conversion was not discussed in detail [2 – 5, 7, 14], its performance was examined using the 

calculated results. 

 

2. Optimization method 

The geometry optimization starts from configurations randomly generated.  For the TLJ clusters, the 

numbers of the atoms of three types Nα (α = A, B, and C) are randomly selected.  The atoms are 

placed within a sphere with the volume of ∑ 𝑁𝛼𝛼 �𝑟e,𝛼�
3
 where 𝑟e,𝛼 =  √26 𝜎αα.  The geometry is 
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locally optimized with a limited memory quasi-Newton method (L-BFGS [42]).  Then the type of an 

atom is twice converted: the type A is changed in the order, B, C; the type B is changed in the order, C, 

A; and the type C is changed in the order, A, B.  After a conversion, the geometry is optimized by the 

L-BFGS [42] method.  If the potential energy of the cluster is improved with the conversion followed 

by local optimization, the cluster geometry and atom type are updated.  Finally the atom-type 

conversion is 2N times performed for all the atoms. 

After the atom-type conversion is finished, the geometry is optimized with two geometrical 

perturbation operators (surface and interior operators).  These operators move an atom or some atoms 

with the highest potential energy to positions which are expected to decrease the potential energy of the 

cluster.  The positions are selected from the neighborhood of either the cluster center or the surface.  

The local optimization due to the L-BFGS [42] method is performed for the geometries created with the 

operators to locate new local minima.  The two operators are briefly described below (the detail of 

them is given in [14, 40]). 

The interior operator moves the selected atoms to the surface of the sphere which takes the radius of 

re,α/2 and the center coincident with the center of mass of the cluster.  The number of the moved atoms 

[14] is randomly selected from 1 to 5.  If the potential energy of the cluster is not improved during the 

last ten interior operators followed by local optimizations, the surface operator is carried out.  Stable 

positions on the surface of the cluster are examined and the best positions are chosen from them as the 

positions of the moved atoms.  If the energy of the cluster is not improved by moving the 

highest-energy atom, the second highest-energy atom and the third highest-energy atom are separately 

moved [14].  The number of the moved atoms is initially 1 and increases up to 4 at an interval of 1 if 

the energy of the cluster is not improved.  When energy-lowering is observed, the number is initialized 

and the cluster geometry is updated.  When the surface operator with 4 moved atoms does not improve 

the energy of the cluster, the optimization algorithm returns to the atom-type conversion.  In a run, a 

series of the atom-type conversion, the interior operator, and the surface operator is repeated.  The 
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termination condition of the run is that the lowest energy obtained before the atom-type conversion is 

invariant compared with that obtained after the surface operator. 

The QLJ clusters take atoms of an additional type D (σDD = SDσ).  The initial compositions of the 

clusters are randomly determined.  With the atom-conversion operator, the type A is changed in the 

order, B, C, D.  Similarly the type B is changed in the order, C, D, A, the type C is changed in the 

order, D, A, B, and the type D is changed in the order, A, B, C.  Consequently, the atom-type 

conversion is 3N times carried out. 

For the TLJ clusters, 6 sets of (SA, SB, SC) were used: (1.0, 1.05, 1.1), (1.0, 1.1, 1.2), (1.0, 1.15, 1.3), 

(1.0, 1.2, 1.4), (1.0, 1.25, 1.5), and (1.0, 1.3, 1.6).  The sets of (SA, SB, SC, SD) for the QLJ clusters 

were (1.0, 1.05, 1.1, 1.15), (1.0, 1.1, 1.2, 1.3), (1.0, 1.15, 1.3, 1.45), and (1.0, 1.2, 1.4, 1.6).  Since the 

size parameters grow in an arithmetical progression, the parameters SC and SD are used to define the 

TLJ and QLJ clusters, respectively. 

Since the present method adopts a monotonic descent algorithm, the energy of the final geometry is 

lowest in the run.  The computations were performed on dual core 3 GHz Intel Xeon 5160 processors.  

No parallel computation was carried out.  With HMGPAC, a run for the 50-atom TLJ cluster was 

completed in 5 s and the corresponding time needed for the 50-atom QLJ cluster was 7 s. 

 

3. Results 

The putative global minimum of each cluster could be located many times from 1000 initial 

geometries.  In a few cases, however, 15000 initial geometries were necessary to locate the global 

minimum twice or third times.  The potential energies and geometries of the putative global minima of 

the clusters are tabulated in supplementary data together with the number of the initial geometries and 

the number of the runs in which the final geometries correspond to the putative global minima.  In the 

present method, the local optimization is always carried out for each of the geometries generated 

initially and with the atom-type conversion, interior and surface operators.  Hence the average number 
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of the local optimizations performed in one run is also listed in the supplementary data as an indicator of 

the performance of the method. 

3.1. Structural features 

The optimal atomic compositions of the TLJ clusters are shown in Figure 1.  The results show that 

the compositions of the TLJ clusters depend on the sizes of the constituent atoms.  The A atoms 

coexist with the C atoms whereas the B atom is lacking in a lot of the clusters.  In the series of the 

clusters with SC = 1.4, the number of the C atoms is strikingly large for N = 36 – 40.  The similar trend 

is found for the TLJ(SC = 1.5) clusters with N = 35 – 38.  The structural motifs of these clusters are 

different from those of the other clusters as described later. 

To investigate the distribution of the atoms in the TLJ cluster, the distances between the center of 

mass and the atoms were averaged for each of the atom types as follows: 

𝑅ave =  1
𝑁α
∑ |𝑟𝑘���⃗ −  𝑟cm������⃗ |𝑁α
𝑘=1 ,     α = A, B, or C (2) 

Here 𝑟k���⃗  and 𝑟cm������⃗  represent the vectors directed to the position of the atom of the type α and to the 

center of mass, respectively.  The obtained results are shown in Figure 2.  For the TLJ(SC = 1.1) 

clusters with N = 48 – 50, the values of Rave for the B atom are close to zero.  For each of the other 

clusters, the A and C atoms usually take the smallest and largest Rave values, respectively.  

Accordingly, the A atoms occupy cores of the clusters whereas the C atoms construct outer shells.  The 

Rave values for the B atoms are usually larger than those for the A atoms, indicating that the B atoms 

exist on the A atom core. 

The compositions of the QLJ clusters are shown in Figure 3 together with the average distances.  

The intermediate-sized atoms (B and C) are often lacking in the clusters.  In the QLJ clusters as well as 

the TLJ clusters, the smallest-sized atoms form cores and the larger-sized atoms occupy outer surfaces.  

The number of the D atoms is significantly large in the QLJ(SD = 1.45) clusters with N = 35 – 40 as 

found in some of the TLJ(SC = 1.4, 1.5) clusters.  The numbers of the A and D atoms in the QLJ 
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clusters with SD = 1.15, 1.3, 1.45, 1.6 are similar to those of the A and C atoms in the TLJ clusters with 

SC = 1.1, 1.3, 1.4, 1.6, respectively. 

The number of atoms surrounding a core atom (coordination number for an A atom) was analyzed to 

extract features of the global-minimum structures.  In the analysis, the coordinated atom satisfies the 

following condition: the distance between the coordinated and core atoms is shorter than a tentative 

cutoff distance (1.2 times as long as the equilibrium interatomic distance).  The clusters with less than 

12 coordination atoms are marked with plus in Figure 4.  The other clusters take the maximum 

coordination number of 12.  Geometries formed by 12 coordination atoms were classified into the 

icosahedron, elongated pentagonal dipyramid (Ino decahedron), and triangular orthobicupola.  These 

polyhedra are also found in the BLJ clusters with SB ≤ 1.6 [14].  The clusters marked with closed 

circles in Figure 4 include at least one icosahedron and the maximum number of the icosahedra is 15.  

Each of the clusters marked with open circles has a triangular orthobicupola as the local structure and 

contains no intermediate-sized atoms.  In the cluster marked with the open square, 1, 2, or 3 elongated 

pentagonal dipyramids coexist with at least one icosahedron.  The structural growth sequence pattern 

of the TLJ clusters is similar to that of the QLJ clusters when the value of SC(TLJ) is equal or close to 

that of SD(QLJ).  Hence the largest atom sizes are correlated with the structural growth sequence 

patterns of the clusters as well as the atomic compositions. 

3.2. Relative stability 

The relative stability of the cluster is calculated using the equation 

SN = EN + 1 + EN – 1 – 2EN (3) 

The results obtained for the TLJ and QLJ clusters are shown in Figure 5; a positive value of SN means 

that the N-atom cluster is stable compared with the (N ± 1)-atom clusters.  As shown in the figure, 

most of the clusters with N = 13, 19, 23, 26, 29, 32, 34, 37, 39, 41, 45, 48 (marked with dashed lines) 

are relatively stable.  A few exceptions are observed for the TLJ(SC = 1.6) clusters with N = 31, 33, 47 

and the QLJ(SD = 1.6) clusters with N = 31, 33.  The QLJ(SD = 1.6) clusters with N = 31, 33 are 

identical to the TLJ(SC = 1.6) clusters with N = 31, 33 since these clusters have no intermediate-sized 
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atoms.  It is important to note that the positions of the positive peaks for the TLJ clusters with SC = 1.1, 

1.3, 1.4, 1.6 are similar to those for the QLJ clusters with SD = 1.15, 1.3, 1.45, 1.6, respectively.  This 

is consistent with the results on the atomic compositions and structural growth sequence patterns. 

3.3. Efficiency of the optimization method 

The number of local optimizations Nopt required for searching for the global minimum once is a 

useful parameter to evaluate the efficiency of the optimization algorithm.  It was calculated from the 

data in Tables S1 and S2 (the number of the initial geometries, the number of the runs in which the final 

geometries correspond to the putative global minima, and the average number of the local optimizations 

performed in one run).  The results obtained for the TLJ and QLJ clusters are shown in Figures 6 and 7, 

respectively.  The large Nopt values indicate that it is difficult to obtain the global minima of the 

clusters.  In Figure 6, the data of the TLJ clusters are compared with those of the BLJ clusters; the 

values of Nopt of the TLJ clusters are usually larger than the corresponding ones of the BLJ clusters.  

The Nopt values for the TLJ clusters tend to increase with increasing SC and the similar trend is found 

for the QLJ clusters.  Hence, the inclusion of large-sized atoms in the multicomponent clusters lowers 

the ability of HMGPAC to search for the global minima. 

The efficiency of HMGPAC is determined by the ability of the interior, surface, and atom-type 

conversion operators to lower potential energies.  Figure 8 shows the energy lowering due to each 

operator for the series of the TLJ(SC = 1.6) clusters; the numerical data were obtained from the results 

of the runs in which the global minima were located.  The atom-type conversion considerably reduces 

the energies of the clusters.  This is found for the clusters under investigation. 

 

4. Discussion 

4.1 Compositions, structures, and relative stability 

In the TLJ and QLJ clusters, the large-sized atoms prefer occupying the outer shell as shown in 

Figures 2 and 3.  This is also found for the BLJ clusters [14].  The cohesive energy of the atoms is 

independent of the atom types because the potential parameter εαβ in eq (1) is constant.  On the other 
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hand, the surface energy of the large-sized atoms is smaller than that of the small-sized atoms.  As 

described in [1], the particles with lower surface energy tend to segregate to the surface and 

smaller-sized particles tend to occupy the core.  This is consistent with the global-minimum geometries 

of the TLJ and QLJ clusters.  The clusters under investigation would prefer the situation that the 

number of surface particles is small since they are less stable than core particles.  Accordingly, in the 

TLJ and QLJ clusters, the large-sized and small-sized atoms occupy the surface and core, respectively. 

In a lot of the TLJ(SC = 1.1) clusters, the number of the B atoms is zero as shown in Figure 1.  As 

shown in Figure 4, most of the TLJ(SC = 1.1) take polyicosahedral structures.  In a regular icosahedron 

formed by the same-type atoms, the distance between the central and outer atoms are shorter than that 

between the nearest neighboring outer atoms.  The ratio of the former distance to the latter one is 1 : 

1.05 and thus the central atom is compressed by the outer atoms.  For the TLJ(SC = 1.1) clusters, the 

ratio of the equilibrium A...C distance to the corresponding C...C distance (1.05 : 1.1) is close to the 

above-mentioned ratio 1 : 1.05.  To release the strain on the central atom, the TLJ(SC = 1.1) clusters 

are considered to mainly consist of the A and C atoms. 

In the TLJ(SC = 1.2) clusters, the A and B atoms takes suitable sizes (SA = 1.0 and SB = 1.1) to 

release the strain in the icosahedron.  However, Figure 1 shows that the number of the B atoms is much 

smaller than that of the C atoms.  This indicates that the surface energy of the C atoms significantly 

contributes to the stability of the TLJ(SC = 1.2) clusters.  This would be the case for the other TLJ 

clusters. 

The increase of the size of the C atom leads to the expansion of the outer surface area.  To properly 

keep close contacts between the core and surface in the TLJ(SC = 1.2 – 1.6) cluster, the core formed by 

the A atoms is expanded by increasing the number of the A atoms and/or the surface area is reduced by 

substitution of the B atom for the C atom.  Consequently the compositions of the TLJ clusters depend 

on the atom sizes. 

The icosahedron is stable as indicated by the positive peaks at N = 13 in Figure 5.  The relative 

stability of the clusters with N = 13, 19, 23, 26, 29, 32, 34, 37, 39, 41, 45, 48 can be explained by the 
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formation of a new icosahedron at these sizes.  The other structural segments, the elongated pentagonal 

dipyramid and triangular orthobicupola, are not considered as stability factors of the TLJ and QLJ 

clusters since these structures in the isolated state converge to icosahedra by local optimization.  These 

segments are stabilized by atoms surrounding them.  Hence the structures formed by the surrounding 

atoms are important to understand the stability of the clusters including the segments. 

The relatively stable clusters (N = 31, 33) have the segment of the triangular orthobicupola (Figure 4) 

and their stability can be explained in terms of the structure of the surface.  The cores of the clusters 

are covered with many triangles and squares formed by the outer atoms.  Since the lengths of the sides 

of the triangles and squares are close to the equilibrium distances, no atom can be embedded in the 

surfaces.  These close contacts between the surface atoms results in the relative stability of these 

clusters.  The similar factor leads to the stability of the TLJ(SC = 1.6) cluster with N = 47.  This is the 

case for the icosahedron found in most of the clusters since it has 30 close contacts in the surface. 

The atomic compositions, structural growth sequence patterns, and relative stability of the QLJ 

clusters are similar to those of the corresponding TLJ clusters.  Hence the features of the QLJ clusters 

can be understood by the factors described above for the TLJ clusters, that is, the strain in the 

icosahedron, close contacts between cores and outer surfaces, surface energies of the largest-sized atoms, 

and close contacts between surface atoms control the above features of the QLJ clusters. 

4.2. Efficiency of the method 

As mentioned before, the efficiency of HMGPAC depends on the largest atom size in the cluster.  

The large difference between atomic sizes enhances geometrical variety, as inferred from the structural 

features in Figure 4.  This might make it more difficult to locate the global minimum. 

The atom-type conversion is the important step determining the performance of the present 

optimization method as shown in Figure 8.  Since the clusters are randomly generated, the atomic 

composition is improved with the atom-type conversion operator.  The perturbation induced by the 

atom-type conversion for an atom would diffuse to its surrounding atoms through the local optimization 

process.  The atom-type conversion for interior atoms is considered to be very efficient since the 
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energy of the atoms near the center of the mass of the cluster contributes to the total energy of the 

cluster more significantly than that of the surface atoms.  The atom-type conversion must be associated 

with improvement of the whole geometry of the cluster as well as that of the atomic composition, 

leading to its high efficiency. 

 

5. Conclusions 

The present study is aimed at studying atom-size-induced compositions and structural features of the 

multicomponent clusters under the condition that the depths of the interatomic potentials are constant.  

The heuristic method combined with the atom-type conversion, interior, and surface operators was 

applied to the ternary and quaternary LJ clusters with up to 50 atoms.  The atom-type conversion 

operator was crucial for the geometry optimization of the multicomponent clusters because it 

significantly lowered the potential energy.  Most of the clusters have icosahedral segments with the 

largest-sized and smallest-sized atoms occupying the surfaces and cores, respectively.  The 

intermediate-sized atoms are often lacking in the clusters.  The largest-sized atoms considerably affect 

the compositions and structural growth sequence patterns of the clusters.  This means that the ratio of 

the largest-sized atom to the smallest-sized atom is an essential factor controlling features of the 

multicomponent LJ clusters.  The stability of the clusters can be explained with the network of the 

close interatomic contacts. 

 

Appendix A. Supplementary data 

Supplementary data associated with this article can be found, in the online version, at 

http://dx.doi.org/xxxxx. 
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Figure Captions 

Figure 1.  The numbers of the A, B, and C atoms (NA, NB, and NC) in the ternary Lennard-Jones 

clusters with SC = 1.1, 1.2, 1.3, 1.4, 1.5, 1.6. 

Figure 2.  Average distances Rave between the center of mass and the atoms calculated for each of the 

atom types A, B, and C in the ternary Lennard-Jones clusters with SC = 1.1, 1.2, 1.3, 1.4, 1.5, 1.6. 

Figure 3.  Atomic compositions and interatomic distances of the quaternary Lennard-Jones clusters 

with SD = 1.15, 1.3, 1.45, 1.6: left panels, the numbers of the A, B, C, and D atoms (NA, NB, NC, and 

ND); right panels, average distances Rave between the center of mass and the atoms calculated for each 

of the atom types A, B, C, and D. 

Figure 4.  Structures of the segments in the ternary and quaternary Lennard-Jones clusters.  When the 

coordination number obtained for the cluster is smaller than 12, it is designated with a plus symbol.   

To distinguish the geometries formed by 12 coordination atoms, 3 symbols are used: closed circle, 

icosahedron; open square, mixture of icosahedron and elongated pentagonal dipyramid; open circle; 

triangular orthobicupola. 

Figure 5.  Relative stability SN of the global-minimum geometries of the ternary and quaternary 

Lennard-Jones clusters.  Dashed lines show typical magic numbers.  (a) The results of the ternary 

Lennard-Jones clusters with SC = 1.1, 1.2, 1.3, 1.4, 1.5, 1.6.  The data for SC = 1.2 to 1.6 are offset 

vertically by 50(SC – 1.1) for clarity.  (b) The results of the quaternary Lennard-Jones clusters with SD 

= 1.15, 1.3, 1.45, 1.6.  The data for SD = 1.3 to 1.6 are offset vertically by 100/3⋅(SD – 1.15) for clarity. 

Figure 6.  The number of local optimizations Nopt required for searching for the global minimum of the 

ternary Lennard-Jones cluster together with that of the corresponding binary Lennard-Jones cluster. 

Figure 7.  The number of local optimizations Nopt required for searching for the global minimum of the 

quaternary Lennard-Jones cluster. 

Figure 8.  Energy lowering ∆E due to the atom-type conversion, interior, and surface operators which 

is obtained for the ternary Lennard-Jones clusters with SC = 1.6.  The data for the interior and surface 

operators are multiplied by 5. 
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Figure 6 
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Figure 7 
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Figure 8 
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