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Experimental certification of millions of genuinely
entangled atoms in a solid
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Quantum theory predicts that entanglement can also persist in macroscopic physical

systems, albeit difficulties to demonstrate it experimentally remain. Recently, significant

progress has been achieved and genuine entanglement between up to 2900 atoms was

reported. Here, we demonstrate 16 million genuinely entangled atoms in a solid-state

quantum memory prepared by the heralded absorption of a single photon. We develop an

entanglement witness for quantifying the number of genuinely entangled particles based on

the collective effect of directed emission combined with the non-classical nature of the

emitted light. The method is applicable to a wide range of physical systems and is effective

even in situations with significant losses. Our results clarify the role of multipartite entan-

glement in ensemble-based quantum memories and demonstrate the accessibility to certain

classes of multipartite entanglement with limited experimental control.
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A clear picture of large-scale entanglement with its complex
structure is so far not developed. It is, however, important
to understand the role of different facets of multipartite

entanglement in nature and in technical applications1, 2. For
example, the so-called Schrödinger cat states3 are fundamentally
different from a single-photon coherently absorbed by a large
atomic ensemble; even though both are instances of multipartite
entanglement (ref. 4, chapter 16.5). The theoretical study of large-
scale entanglement has to be followed by an experimental
demonstration, which consists of two basic steps: the preparation
of an entangled system and a subsequent appropriate measure-
ment verifying the presence of entanglement. In the context of
entanglement in large systems, the preparation of entanglement is
generally much simpler than its verification. For example, single-
particle measurements are often not possible and collective
measurements are typically restricted to certain types and are
of finite resolution. These limitations call for new witnesses
that allow one to certify entanglement based on accessible
measurement data.

The concept of entanglement depth5 was shown to be mean-
ingful for and applicable to large quantum systems. It is defined
as the smallest number of genuinely entangled particles that is
compatible with the measured data. This allows one to witness at
least one subgroup of genuinely entangled particles in a state-
independent and scalable way. Large entanglement depth was
successfully demonstrated with so-called spin-squeezed and
oversqueezed states by measuring first and second moments of
collective spin operators6–9; lately up of 680 atoms10. Similar
ideas were realized for photonic systems11, 12. Recently, a witness
was proposed that is designed for the W state, which is a coherent
superposition of a single excitation shared by many atoms13.
Based on this witness, an entanglement depth of around 2900 was
measured14. However, these witnesses do not detect entanglement
when the vacuum component of the state is dominant13, even
though the W state is known to be quite robust against various
sources of noise, in particular, against loss of particles and

excitation15. Hence, much larger values for the entanglement
depth could be expected.

In this paper, we present theoretical methods and experimental
data that verify a large entanglement depth in a solid-state
quantum memory. A rare-earth-ion-doped crystal spectrally
shaped to an atomic frequency comb (AFC) is used to absorb and
re-emit light at the single-photon level16–19, where at least 40
billion atoms collectively interact with the optical field. Using the
measured photon number statistics of the re-emitted light we
collect partial information about the quantum state of the atomic
ensemble before emission. Then, we show that certain combi-
nations of re-emission probabilities for one and two photons
imply entanglement between a large number of atoms. With the
measured data from our solid-state quantum memory we
demonstrate inseparable groups of entangled particles containing
at least 16 million atoms.

Results
Intuition behind detecting many-atom entanglement. Before
discussing the experiment, we give an intuitive explanation for
the appearance of large entanglement depth when a large atomic
ensemble coherently interacts with a single photon (Fig. 1a).
Suppose that N two-level atoms ( gj i and ej i denote ground and
excited state, respectively), couple to a light field. The quantized
interaction in the dipole approximation is described by20

Hint ¼
X
j;k

e�ik�rj akσ
ðjÞ
þ þ eik�rj a†kσ

ðjÞ
� ; ð1Þ

that is, a single photon with wave vector k is annihilated by
exciting atom j via σþ gj i ¼ ej i and vice versa. The phase is given
by the scalar product between k and the position rj of the atom.
When an incoming light field is absorbed via interaction (1), the
imprinted phase relation between the atoms serves as a memory
for the direction and the energy of the absorbed photons.
Without this information, a spontaneous, directed re-emission is
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Fig. 1 Basic intuition and experimental setup. a When atoms spontaneously emit photons, phase coherence between the atoms leads to constructive
interference and enhanced emission probability in a certain direction, measured by a single-photon detector (SPD). Emission in any other direction is
incoherent and hence not enhanced. If this phase coherence is generated by absorbing a single photon, the atoms are necessarily entangled. b The
experiment consists of the heralded single-photon source, the quantum memory (QM), the detection system in the forward mode kf and the fluorescence
measurement in the backward mode kb of the QM. The source is based on a spontaneous parametric down conversion process. A periodically poled KTP
(ppKTP) waveguide is pumped by a monochromatic laser at 532 nm wavelength which leads to the generation of photon pairs. They contain signal (idler)
photons at 883 nm (1338 nm) wavelength spatially separated by a dichroic mirror (DM). The detection of the idler photon (D(i)) heralds the presence of
the signal photon in a well defined spectral, temporal and polarization mode. The heralded single photon is absorbed by the quantum memory which is
based on two Nd3+:Y2SiO5 crystals. A double-pass configuration is used to enhance the absorption process. To estimate p1 and p2, the one-photon and
two-photon probabilities from the re-emission process are measured in the forward direction, kf, using a fiber-based 50/50 beamsplitter (BS) and
two SPDs DðsÞ

1 and DðsÞ
2 . In order to measure the number of atoms N, the single-photon source is replaced by a bright coherent state created using an

electro-optical modulator (EOM). This increases re-emission intensities in forward and backward direction. The backward direction is measured by placing
a polarization beamsplitter (PBS) in the input mode of the memory and using a SPD D(b)
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not possible. In other words, phase coherence between the atoms
is necessary in order to a have well-controlled re-emission
direction21, 22. Now, depending on the nature of the absorbed
light, this coherence implies entanglement between the atoms or
not. On the one hand, the absorption of a coherent state leads to a
coherent atomic state, which is unentangled (ref. 4, chapter 16.7).
On the other hand, if a single photon 1j i is absorbed, the
quantization of the field leads to a W state (or Dicke state with a
single excitation) of the atomic state (ref. 4, chapter 16.5)

1j i ! D1j i /
X
j

e�ik�rj g¼ gejg¼ g
�� �

: ð2Þ

Then, the ensemble is genuinely multipartite entangled15. These
examples suggest a generic relation between directed emission,
single-photon character of the emitted light and large entangled
groups.

In our experiment, we use a neodymium-based solid-state
quantum memory operating at a total read–write efficiency of 7%
(Fig. 1b). This memory was demonstrated to be capable of storing
different types of photonic states and preserving state properties
such as the single-photon character17, 19, 23–25. A heralded single
photon is produced via spontaneous parametric down conversion
(SPDC)26 and coupled to the atomic ensemble, which was
prepared in the ground state D0j i ¼ gj i�N . After a 50 ns delay
time, the coherent excitation is spontaneously re-emitted in
forward direction and detected. In practice, this optical state is
not exactly a single photon. Due to losses at different levels, the
state contains a large vacuum component. Also higher photon
components are present. However, since directed emission and
non-classical photon number statistics are largely preserved,
entanglement between large groups of atoms is expected.

Derivation of the entanglement depth witness. In order to
certify this entanglement, we develop the following entanglement
witness (see Methods section for details). Consider a pure state
that is subdivided into a product of M groups

ψj i ¼ ϕ1j i � ¼ � ϕMj i; ð3Þ

where the ϕij i are arbitrary. Phase coherence between the groups
implies that each group has to carry some excitation. This
necessarily amounts to an emission spectrum that also contains
multi-photon components.

To be more specific, we consider the probabilities of the atoms
emitting one and two photons, p1 and p2, respectively. In the low-
excitation limit (see Methods section), these probabilities
correspond to p1 ¼ D1h jψij j2 and p2 ¼ D2h jψij j2, where

D2j i /
X
j<l

e�ik� rjþrlð Þ g¼ gejg¼ gelg¼ g
�� �

; ð4Þ

that is, the phase-coherent superposition of two excitiatons. As
shown in the Methods section, it is possible to find the minimal
p2 for a given p1 within the class (3) with fixed M. By varying p1
and M one finds a lower bound on p2 as a function of p1 and M.
Given the linearity of p1 and p2 when mixing states like in Eq. (3)
(with arbitrary grouping but lower-bounded M), the extension of
the bound to mixed states is straightforward. Examples of such
lower bounds are shown in Fig. 2. Note that the bounds are
independent of N if N � 1. Comparing the lower bounds with
experimental data in turn gives an upper bound on M and, by
additionally measuring N, a lower bound on the entanglement
depth, which simply reads K=N/M.

Experimental realization and measured data. Experimentally, p1
is obtained from the probability to measure a single re-emitted
photon in the forward mode (kf in Fig. 1b) at a predetermined
time, which we herald by the detection of the idler photon at the
source. The value of p2 corresponds to the two-photon statistics
of the re-emitted light in the kf mode. It is inferred from the
measured autocorrelation function gð2Þssji ¼ 2p2=p21 and p1. The
identification of photonic Fock states with atomic Dicke states is
possible because the memory is initially prepared in the ground
state and because of the photon number statistics of the source
(Methods section). From the raw data, we find p1= 2.3(3) × 10−3

and p2= 5(2) × 10−8. The relatively small value of p1 is a product
of the efficiencies of the source, the memory and detectors.
The partial subtraction of these losses leads to different values
of the effective p1 (Fig. 2, Table 1, and Methods): (i) raw data;
(ii) subtraction of detector noise, that is, the actual value for the
emitted light; (iii) subtraction of the re-emission inefficiency, that
is, the single-excitation component of the atomic ensemble just
before emission; (iv) subtraction of phase noise during storage,
that is, overlap with the D1j i state right after absorption. The
values of p2 directly follow using the measured autocorrelation
function gð2Þssji ¼ 0:020ð3Þ, which is—under conservative assump-
tions—not affected by this modeling.

�〉 �1〉 �2〉 �M〉
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Fig. 2 Illustration of the basic ansatz and results of the entanglement witness. a The colored areas in the ensemble are genuinely entangled, while no
entanglement is present between the groups. b The minimization of the two-excitation probability p2 for given single-excitation probability p1 and number
of separable groups M leads to lower bounds which are independent of N if N � 1. The central region in the plot is spanned by separable states (i.e.,
M= N). Entanglement is required to reach smaller p2 while keeping p1 constant. The number next to a colored line is the maximalM that is compatible with
data points on this line. This M is then used to bound the entanglement depth K=N/M. The four black crosses are data points from the experiment
including one standard deviation, where different levels of inefficiencies are taken into account. Data point (i) is directly inferred from the raw data. Data
point (ii) is obtained from (i) by removing the effect of finite detector efficiencies. Data points (iii) and (iv) are more speculative as these points remove the
effect of the re-emission efficiency (for (iii) and (iv)) and the re-phasing efficiency (for (iv)). A maximization of p2 given p1 and M would be necessary to
make statements about the gray top zone (undetermined)
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A key element in the experiment is the high-precision
measurement of N. For this, the relation between ensemble size
and directionality of the re-emitted light is exploited. The ratio of
the coherent emission in the forward direction and the incoherent
emission in the backward direction is a lower bound on the
number of resonant atoms22. Since incoherent emission from
single photons is much lower than detector dark counts, the
single-photon source is replaced by a bright coherent state for this
measurement (Fig. 1b and Methods section) and we find N≥ 4.0
(1) × 1010. The resulting K depends on the level of modeling (i) to
(iv) as mentioned before (Table 1). Our data analysis illustrates
how decoherence and noise reduces the certifiable entanglement
depth. Immediately after absorption of the single photon (iv) we
have an entanglement depth of about 109; this reduces to about
107 just before and immediately after re-emission (iii) and (ii),
respectively, while when taking into account all losses and
detector inefficiencies the certifiable entanglement depth drops to
about 105 (i). In our opinion, a conservative but reasonable
number of the certified entanglement depth is 107. Indeed, on the
one side the entanglement depth of 109 in (iv) relies more on our
theoretical model than on our data, while on the other side the
105 value in (i) takes into account well-understood losses that are
not part of the physical phenomenon we aim to certify.

Discussion
This work demonstrates that large entanglement depth is
experimentally certifiable even with atomic ensembles beyond
1010 atoms and low detection and re-emission efficiencies. We
prove that entanglement between many atoms is necessary for the
functioning of quantum memories that are based on collective
emission, because the combination of directed emission (i.e.,
high-memory efficiency) and preservation of the single-photon
character imply large entanglement depth.

Our results further illustrate the fundamental difference
between various manifestations of large entanglement. The scales
at which we observe entanglement depth seem to be completely
out of reach for other types of large entanglement, such as
Schrödinger-cat states2, 27.

As detailed in the Methods section, our reasoning is based on
two steps. First, a model-independent witness for entanglement
depth is derived, which only depends on the overlap of the atomic
state with D1j i and D2j i as well as the total number of atoms, N.
In the experiment, we measure the probabilities p1 and p2 for one
and two photons, respectively, emitted from the atomic ensemble.
The second step consists in identifying p1 and p2 with the
probabilities of the atomic ensemble being in the D1j i and D2j i
state before the re-emission, respectively. This step as well as the
measurement of N are based on some assumptions regarding the
atomic ensemble, the single-photon source and the light-matter
interaction, Eq. (1). In addition, our claimed entanglement depth
in the order of 107 takes finite detector efficiencies into account.
We emphasis, however, that these assumptions have been thor-
oughly tested in the classical and quantum regime in many

previous experiments. Further note that the entanglement depth
is generated by a probabilistic but heralded source. Hence no
post-selection has been made in our experiment.

We report lower bounds on the minimal number of genuinely
entangled atoms, which should not be confused with quantifying
entanglement with an entanglement measure. Indeed, the nature
of the target state, the W state D1j i, and the experimental chal-
lenges suggest that only a small amount of entanglement is pre-
sent in the crystal during the storage.

We note that entanglement between many large groups of
atoms in a solid is demonstrated in a parallel submission by
Zarkeshian et al., where the coherence between these groups is
revealed by analyzing the temporal profile of the re-emission in
the forward direction.

Methods
Heralded single-photon source. The single photon used to prepare the entangled
state of the atomic ensemble is generated using SPDC. A 2 mW monochromatic
continuous-wave 532 nm laser pumps a periodically poled potassium titanyl
phosphate waveguide to generate the signal and idler photons at 883 and 1338 nm,
respectively. The two down-converted photons are energy-time entangled. The
narrow spectral filtering of the signal (idler) photon is performed using a
Fabry–Perot cavity with a linewidth of 600MHz (240 MHz)26. The detection of the
idler photon heralds the presence of a signal photon in a well defined spectral,
temporal and polarization mode. The heralded single photon is then absorbed
in the quantum memory. The zero-time second-order autocorrelation of the
heralded single photon before storage in the quantum memory was measured to be
gss|i= 0.0055(2) when using a 1.2 ns coincidence window. The idler mode is
detected by an InGaAs/InP single-photon detector ID220 from ID Quantique (20%
detection efficiency), while the signal mode is analyzed using silicon avalanche
photodiodes from Perkin Elmer (30% detection efficiency).

Solid-state quantum memory. The single-photon storage is performed using a
broadband and polarization-preserving quantum memory19 realized by placing
two 5.8 mm-long 75 ppm Nd3+:Y2SiO5 crystals around a 2 mm-thick half-wave
plate. An AFC is prepared on the center of the Nd3+ ions transition at 883 nm
(absorption line 4I9/2 → 4F3/2) by optical pumping. Using optical path consisting of
acousto-optic and phase modulators we create a 600MHz comb with a spacing of
20 MHz between the absorption peaks24. The resulting optical depth of the
absorption peaks is d= 2.0 ± 0.1. This value was doubled using a double-pass
propagation through the crystals (Fig. 1b). The overall single-photon efficiency of
the AFC quantum memory is 7(1)% with a 50 ns storage time. The absorption
probability of one photon by the crystal was estimated to be 82(1)%, which was
obtained from the probability for the single photon to be transmitted.

One-photon and two-photon probabilities. The one-photon and two-photon
probabilities in the forward mode are obtained as follows. First, the transmission
probability along the path from the photon pair source to the single-photon
detectors was carefully estimated using heralded single photons. The overall
transmission consists of (i) the heralding probability of the single photon before the
quantum memory 19(1)%; (ii) the overall quantum memory efficiency 7(1)%; and
(iii) the detection efficiency including the transmission of the system 17(1)%. From
this we found that the total probability to detect a single-photon re-emitted from
the crystal is p1= 2.3(3) × 10−3. Then, the probability p2 can be estimated from a
measurement of the zero-time second-order autocorrelation function
gð2Þssji ¼ 2p2=p21. We measured gð2Þssji ¼ 0:020ð3Þ. This value is higher than the one
before the storage, which is due to spurious noise coming from the photon pair
source28. The probability to detect two photons is estimated to be p2= 5(2) × 10−8.

To connect the experimental observation of one and two photons with
p1 ¼ D1h jρ D1j i and p2 ¼ D2h jρ D2j i, respectively, some details have to be clarified.
First, we note that the actual coupling between light and atoms is not uniform as in
Eq. (1) due to position dependent field intensities and the inhomogeneous
broadening of the atomic ensemble. However, it is possible to mathematically
replace this by an ideal, uniform coupling with a reduced ensemble size29 . We
expect that replacing an ensemble by a smaller one only lowers the bounds on
entanglement depth. Since N � 1 and the weak coupling between the field and a
single atom, the dynamics from Eq. (1) are well approximated by a first-order
expansion of the Holstein–Primakoff transform30, that is, the linear regime

U†akU ¼ ffiffiffi
η

p
N�1=2Sk� þ

ffiffiffiffiffiffiffiffiffiffiffi
1� η

p
ak ; ð5Þ

where η is the transfer efficiency and Sk± ¼ PN
j¼1 e

�irj �kσðjÞ± are the creation and
annihilation operators for a collective atomic excitation (up to the normalization
factor N−1/2 31. All formulas in this paper are based on this approximation and the
next-order correction O(1/N) is omitted.

Table 1 Results for entanglement depth K

Level of modeling p1 K K − 3σ

(i) Raw data 0.0023(3) 4.76 × 105 7.54 × 104

(ii) After re-mission 0.013(2) 1.64 × 107 3.72 × 106

(iii) Before re-mission 0.016(2) 2.46 × 107 5.24 × 106

(iv) After absorption 0.16(1) 3.23 × 109 2.09 × 109

Depending on the level of modeling the inefficiencies of the experimental setup, different values
for p1 and hence for K are obtained (cf. Fig. 2b). By sampling p1, p2, and N around the measured
values within the estimated uncertainties, we calculate the expected entanglement depth K. The
values in the last columns are lower bounds on K with confidence 3σ= 99.7%
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Second, the states D1j i, Eq. (2), and D2j i, Eq. (4), are not the only ones that
give rise to the emission of one and two photons, respectively. Let us introduce
the canonical basis j;m; αj ik

� �
j;m;α

for the angular momentum operators

Sz ¼ 1
2 Skþ; S

k
�

� �
and S2k ¼ S2z þ 1

2 Skþ; S
k
�

� �
, where S2k j;m; αj ik ¼ jðjþ 1Þ j;m; αj ik

and Sz j;m; αj ik ¼ m j;m; αj ik . The third quantum number α labels the
degeneracies for asymmetric states. For η= 1, any atomic state j;�jþ l; αj ik with
N/2 − j=O(1) (low-excitation limit) and k the forward mode transforms via Eq. (5)
to the photonic Fock state lj i. Now, assuming that the single-photon source is the
only source of coherent excitation, the population of the subspaces N/2 +m is
strongly decaying with m, such that the overlap of the atomic state before
re-emission with D1j i � N=2;�N=2þ 1; 1j ik is much larger than with the entire
subspace spanned by j;�jþ 1; αj ik

� �
j<N=2 (i.e., the nonsymmetric subspace

emitting a single photon). Using the gð2Þssji directly measured at the source, it can be

estimated that corrections taking the nonsymmetric subspace into account are
much smaller than the uncertainty of the measured p1. A similar argument applies
to the two-photon emission.

Finally, the memory preparation ideally sets the atomic ensemble to the ground
state. In practice, we estimate that roughly 10−5 ×N atoms are at the end of the
preparation phase in the excited state without any phase coherence between them.
In the linear regime, these excitations simply drop out from all calculations and can
hence be safely ignored.

Number of atoms in the atomic ensemble. Another parameter is the number of
atoms N participating to the collective atomic mode, which was estimated with a
separate measurement. The ratio between coherent (signal) and incoherent (noise)
emission from the atomic ensemble was used to estimate the number of atoms
coupled to the optical mode. A simple model for this signal-to-noise ratio (SNR)
was developed, where the number of atoms N is a free parameter. By independent
characterization of the remaining other parameters and by measuring the SNR, we
obtain and estimate of N. Intuitively, this is based on the fact that the re-emission
from the atomic ensemble is enhanced in the spatial mode of the incident single
photon, due to the constructive interference between all the atoms which have
collectively absorbed the single photon. This probability ideally equals to Nps,
where ps is the probability for spontaneous emission of a single atom22. In any
other mode, including the backward mode, there is no collective enhancement, and
the probability of an incoherent re-emission is just ps. Hence, the SNR is given by N
in the ideal case where no other source of noise is present.

In principle, one could measure the SNR from the probability to detect the
heralded single photon in the backward mode. In practice, this cannot be done
because N ~ 1010. The incoherent re-emission probability is extremely small and is
therefore lost in the noise due to detector dark counts and spurious light. To
overcome this limitation, strong coherent state pulses with mean photon number
αj j2 up to 106 were used instead to estimate the SNR. This value is still much lower
that the total number of atoms which keeps the interaction in linear regime. In this
case the noise becomes less important and the true incoherent re-emission can be
measured. To detect it with a low noise level we used a Picoquant silicon avalanche
photodiode detector with 35% efficiency and 4 Hz dark count rate.

To perform the SNR measurement the forward kf and the backward kb spatial
modes were used to measure signal and noise, respectively (Fig. 1b). For each mode
spatial filtering was performed using single-mode fibers. This allowed us to confirm
that modes in both directions (forward kf and backward kb) are probing the same
volume of the QM. For this the light was sent in both directions and the coupling
was aligned simultaneously for both couplers after the PBS, as shown in Fig. 1b.
Furthermore, the incoherent re-emission from the strong coherent state pulses was
detected simultaneously in both modes. By applying corrections for diverse optical
losses the ratio between the intensities in both modes was found to be very close to
1 as expected (Supplementary Note 1). This confirms that the forward kf and
backward kb modes correspond to the coherent and incoherent re-emission modes
defined by our model. Note that any systematic error that leads to an
underestimated signal or to overestimated noise only reduces the inferred N and
hence leads to an underestimated entanglement depth. For example, scattered
photons from the kf mode that could have been mistakenly collected in the kb
mode would increase the noise and hence would lead to an underestimated N. We
are not aware of any systematic error in our experiment that would let us
overestimate N.

Using a coherent state pulse with a mean number of photons equal to αj j2, the
signal is proportional to η αj j2, where η is the re-phasing efficiency of the quantum
memory. The incoherent re-emission in the backward mode is proportional to
αj j2/N + δ, where δ is a noise probability. Hence, the SNR is given by
η αj j2= αj j2=N þ δ

	 

, from which N can be obtained (Supplementary Note 1). From

this, the number of atoms was found to be N= 4.0(1) × 1010. An estimate for the
number of atoms obtained by considering the doping concentration, the length of
the crytals and the size of the optical mode roughly gives 3 × 1011, which confirms
at least the order of magnitude. Note, however, that the latter method comes with
much larger uncertainties and therefore we rely only on the first number.

Ansatz for M-separability. We now give some details for the derivation of a lower
bound of p2 given p1 and the ansatz state (3). We start with the ansatz that for every
pure state decomposition of an atomic state the pure states are separable between at

leastM groups (where each group is genuinely multipartite) and there exists at least
one pure state in every decomposition that consists of exactly M-separable groups.
Such a state is called M-separable. In principle, the sizes of the groups are inde-
pendent from each other as long as the total number of atoms is conserved.
However, we fix the group size K to be constant, that is, MK=N for the following
reason. Our final goal are bounds on numbers of entangled atoms. This is a “min-
max” problem. For every possible state the entanglement depth is the size of the
largest entangled group in the state. By varying the state, our task is to find a state
such that this largest group is minimized. From this, it follows that it is best to have
an equal size for all groups in order to avoid few very large groups. Clearly, if we fix
N and M, K does not have to be an integer. So, generally, one has to reduce the size
of one group such that (M − 1)K + K′=N. However, we will consider many groups
such that the size of a single group is in the order of or smaller than the uncertainty
of N. Hence a detailed analysis with K′< K is not necessary.

Since we are concerned with at most two excitations in total, it is sufficient to
work with pure states of the form

ψj i ¼ �M
i¼1

ai d0j i þ bi d1j i þ ci d2j ið Þ; ð6Þ

where dkj i here refers to Dicke states within one group, that is, symmetric
superposition of k excitations. With this ansatz, the probabilities read

p1 ¼ Aj j2
M

X
i

bi
ai

�����
�����
2

ð7Þ

and

p2 ¼ Aj j2
M2 1� 1

N

	 
 ffiffiffi
2

p X
i<j

bibj
aiaj

þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

K

r X
i

ci
ai

�����
�����
2

ð8Þ

where A ¼ ΠM
i¼1ai . In the following, we ignore the corrections 1/N and 1/K. While

the factor (1 − 1/N)−1 is arguably negligible, dropping
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1=K

p
only lowers p2 in

the relevant regime (i.e., the interval I discussed later).
Formally, the task is now to minimize p2 for given p1,M over the parameters of

the ansatz state (6), that is,

pmin
2 p1;Mð Þ ¼ min

ψ :p1¼const
p2: ð9Þ

When this is done for all p1, one has to find the minimum of all convex
combinations for a bound on mixed states. In our case, it will turn out that the
lower bounds for pure states are already convex implying that they are also valid
for mixed states. Then, one can invert the results and determine the maximal M
that is compatible with a given pair (p1, p2). This bounds the M-separability of the
atomic state generated in the experiment.

Since the state (6) could contain further elements not contributing to p1 and p2,
one has in general that aij j2 þ bij j2 þ cij j2 � 1 for all i. Thus the minimization (9)
has to be done over 3M complex parameters. One easily shows that the
complexity reduces to 2M real parameters as the optimal state has ai ≥ 0, bi 2 R
and ci ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� a2i � b2i
p

(Supplementary Note 2).

Lagrange multiplier. To solve Eq. (9), we use the Lagrange multiplier method,
which is suitable for constrained minimization problems. In our case, we consider

f ai; bif gi
	 
 ¼ f2 ai; bif gi

	 
þ λ f1 ai; bif gi
	 
� C

� � ð10Þ

with f1 ¼ ffiffiffiffiffiffiffiffiffi
Mp1

p
and f2 ¼

ffiffiffiffiffiffiffiffiffiffiffi
M2p2

p
. The formulas for the partial derivatives are

given in the Supplementary Note 3. The results are quartic equations with four
solutions for every group i> 1 that depend on the parameters of the first group
a1≡ a and b1≡ b for all i.

Note that the first solution (called the symmetric solution in the following)
implies that ai= a and bi= b. The probabilities in this case read

psym1 ¼ Ma2M�2b2 ð11Þ

and

psym2 ¼ a2M
1ffiffiffi
2

p ðM � 1Þ b
2

a2
þ c
a

� �2
; ð12Þ

with c ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2 � b2

p
.

Fixing a, b of the first group determines the four possible solutions for every
other group. A priori, the unknowns (a, b, λ) can be found by solving the remaining
equations ∂f/∂a= 0, ∂f/∂b = 0 and ∂f/∂λ= 0. Given the complexity of the equations,
this is analytically not possible. Alternatively, one chooses for each group i= 2, …,
M one out of four solutions, and solve Eq. (9) numerically for (a, b). As a result, we
find many local extrema, from which one has to choose the global minimum.
Hence, we reduced the minimization problem to a finite set of possibilities. The
problem is the large number of solutions. Due to symmetry, it is sufficient to
determine the number of groups, mj, that are chosen to take solution j= 1, …, 4
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with the constraints m1> 0 and
P

j mj ¼ M (Supplementary Note 4). In the
following, we call a certain choice C= (m1, m2, m3, m4) a configuration. The
number of configurations scales as O(M3).

It turns out that most of the configurations are not relevant for the following
reason. For all M, there exist states such that p1> 0 and p2= 0. Two analytic
examples are (i) (a1, b1) = (0, 1) and (ai>1, bi>1)= (1, 0), resulting in plim1

1 ¼ 1=M
and (ii) a symmetric state where one maximizes p1 given that Eq. (12)
vanishes. The solution plim2

1 is a long and analytic expression which scales as
plim 2
1 ¼ eMð Þ�1=2 þ O M�1ð Þ. For M> 4, plim 2

1 >plim 1
1 . Furthermore, the maximal p1

is given by pmax
1 ¼ 1� 1=Mð ÞM�1. We conclude that there is a nontrivial interval

I ¼ max plim 1
1 ; plim 2

1

	 

; pmax

1

� �
where we look for the minimal p2. One can show that

for large M, only the symmetric solution lies in I (Supplementary Note 4). With a
numerical study (an unconstrained maximization over (a, b)), we find that this
happens when M> 53, but already for M≳ 30, we observe that pmax

1 � plim 2
1 	 1

for all nonsymmetric configurations.
Numerically, we find that for all groups M≥ 5, the symmetric solution gives the

global minimal p2. From Eq. (11), we obtain b2= p1/Ma2–2M and insert this into
Eq. (12), which has to be minimized. With the parameters p1 and M, this is a
single-parameter polynomial and hence a numerically stable minimization is
possible. The example M= 3 is discussed in the Supplementary Note 5 to
demonstrate a case where a nonsymmetric configuration realizes the global
minimum.

Data availability. All relevant data is available upon request.
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