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Abstract. Torque load measurements play an important part
in various engineering applications, as for automotive indus-
try, in which the drive torque of a motor has to be determined.
A widely used measuring method are strain gauges. A thin
flexible foil, which supports a metallic pattern, is glued to the
surface of the object the torque is being applied to. In case of
a deformation due to the torque load, the change in the elec-
trical resistance is measured. With the combination of con-
stitutive equations the applied torque load is determined by
the change of electrical resistance. The creep of the glue and
the foil material, together with the temperature and humidity
dependence, may become an obstacle for some applications
(Kapralov and Fesenko, 1984). Thus, there have been opti-
cal and magnetical, as well as capacitive sensors introduced
(Turner, 1988; Wolffenbuttel and Foerster, 1990). This paper
discusses the general idea behind an electrostatic capacitive
sensor based on a simple draft of an exemplary measurement
setup. For better understanding an own electrostatical, geo-
metrical and mechanical model of this setup has been devel-
oped.

1 Introduction

The state of the art method for the measuring of mechanical
torque loads are strain gauges. These are thin flexible foils
glued to the surfaces of an object, that change the electri-
cal resistance due to deformation. Their application for engi-
neering purposes is cheap, simple and well established. How-
ever, the measurement accuracy depends on the humidity and
the surrounding temperature. Also, the creep of the foil and
the glue contributes to the measurement error (Kapralov and
Fesenko, 1984). To address these problems an electrostatic
capacitive sensor is being proposed. Similar concepts have

been already introduced in the works of Turner (1988) and
Wolffenbuttel and Foerster (1990).

2 Measuring setup and operation principle

As shown in Fig. 1, the sensor consists of a cantilever beam
with a circular cross-section over an ideal conducting plate.
A thin, elastic electret foil with a constant surface charge den-
sity is attached to the bottom side of the beam. In compari-
son to the electret the plate is assumed to have much big-
ger dimensions. The beam itself and its mounting are made
out of polyethylene. Due to the permittivity of polyethylene,
εpet ≈ 1, these can be ignored in the electrical modeling. The
charge leads to an electrostatic field E and the related elec-
tric displacement field D. This induces an electric charge on
the plate, which can be measured. As a result of the torque
load Mt, the beam deforms, which leads to a changed posi-
tion of the electret relative to the height of the plate. Thus, the
induced charge on the plate changes. This change can be as-
sociated with the equivalent torque load. In the following the
relation between the torque load and the measured charge is
being discussed, by modeling the system in Matlab and per-
forming a numerical analysis for different torque loads. First,
the problem is being approached by analyzing the mechani-
cal behavior of the beam.

3 Model geometry and torsional mechanics

In order to model the behavior of an electrostatic field, it is
important to understand the model geometry and to define the
mechanical assumptions for a beam with a torque load Mt at
the end of the beam. The beam deformation dictates the de-
formation of the electret, therefore it describes the displace-
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Figure 1. Measuring setup consisting of the beam, electret and the
ideal conducting plate.

ment of the electric charge in the space, when a torque load
is applied. For the St. Vénant torsion theory (Szabó, 2001)
the fundamental assumption is a constant twist rate ϑ

l
over

the length of the beam. Furthermore, there is no distortion
of the cross-sections in x and y direction. The cross-sections
rotate as rigid bodies around the beam axis. Also, the warp-
ing of the cross-section is allowed, though it remains equal
over the length of the beam. Furthermore, the electret is be-
ing ignored in this modeling, because it is thin and elastic
enough, not to contribute to the overall stiffness of the beam.
From the mathematical perspective the cross-sections have
to be a connected space with a boundary R. The shear stress
component σzt is tangent to the boundary R.

Assuming the shear angle γ � 1 as shown in Fig. 2a, it is
possible to describe the twist angle at z as

ϑz =
ϑ

l
z. (1)

As shown in Fig. 2b, the motion of a point P depends on
the twist angle ϑz as follows

x+ v = r cos(β +ϑz) , y+w = r sin(β +ϑz) . (2)

Using the trigonometric identities and assuming small defor-
mations, the linear approximation of motion of P in relation
to the twist angle ϑ at the end of the beam is described by

x+ v = r cosβ − rϑz sinβ = x−
ϑ

l
yz (3)

y+w = r sinβ + rϑz cosβ = y+
ϑ

l
xz. (4)

The displacements are

v =−
ϑ

l
yz, w =

ϑ

l
xz. (5)

Based on the St. Vénant assumption of constant cross-section
warping, the deformation along the beam axis can be formu-
lated as

u(x,y,z)=
ϑ

l
ϕ(x,y) ∀z ∈ [0; l]. (6)

Leaving the warping function ϕ(x,y) unknown for the time
being, it is easy to see, that the warping of the cross-section
for small twist rates ϑ

l
also remains small.
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Figure 2. Torsional deformation of the beam. Figures adapted from
Szabó (2001). (a) Twist of the beam along the z-axis. (b) Movement
of a point P(x,y) in the cross-section plane as a result of torsional
beam deformation.

4 Explicit formulation of the point motion

Foregoing the derivation of the St. Vénant torsion theory, the
torsion rate at the end is defined as

D =
ϑ

l
=
Mt

GJt
, (7)

where G is the shear modulus and the Jt describes the tor-
sional second moment of area (Szabó, 2001), which for cir-
cular beam cross-sections equals

Jt =

∫
A

r2 dA=
1
2
πr4. (8)

Using the described geometry and the St. Vénant torsion
theory, it is possible to formulate a simple geometrical model
of the small deformations as shown in Fig. 3

0 =

 0x
0y
0z

=

r cos

(
ϕ+

ϑ

l
z

)
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(
ϕ+

ϑ

l
z

)
z

 (9)

where ϕ ∈
[

11
8 π;

13
8 π

]
and z ∈ [0; l].
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Figure 3. Simple geometrical model of the charge holding particles.
For a linear approximation the twist rate follows from Eqs. (1), (7)
and (8).

5 Mathematical modeling of the electrostatic field

The presence of a static charge holding particle results in a
physical electrostatic field (Küpfmüller et al., 2013). The re-
lation of the charge density %(r) to the electric displacement
field D is described by

div D = %(r). (10)

Furthermore, based on the experiments by Coulomb and
Cavendish, the electrostatic field E is defined as the force
on the charge holding particle normalized by the holden
charge q,

E =
F

q
. (11)

Observations of D lead in first order to a linear isotropic con-
stitutive equation

D = εE. (12)

with the constant permittivity ε.
Based on the experiments, it is known that the forces on

the particle are central forces. Thus, the curl of the described
fields has to be equally zero,

rot F = q rot E = εq rot D = 0. (13)

Therefore, the physical electrostatic field can be mathemati-
cally described by

div D = %(r), D = εE, rot E = 0. (14)

Following these equations, a scalar electrostatic field poten-
tial ϕ : R3

→ R is being defined as

E =: −grad ϕ. (15)

This is possible without loss of generality, because of the
curl-free characteristic of the described fields. In general, the

condition rot(grad(·))= 0 is satisfied, therefore the potential
fields are curl-free.

Furthermore, the divergence of the electric displacement
field is used to derive an elliptic partial differential equation

div D = div (−ε · gradϕ)=−ε · div(gradϕ)= %(r). (16)

Thus, the electrostatic field can be described by a Poisson
equation of the field potential ϕ

1ϕ =
∂2ϕ

∂x2 +
∂2ϕ

∂y2 +
∂2ϕ

∂z2 =−
%(r)

ε
. (17)

6 Kirchhoff’s Integral Theorem

In the case of homogeneous potential field problems, in
which the only boundary condition is postulated by the de-
crease of the field over the distance and eventually vanishing
at an infinite distance, there are known analytic solutions to
the elliptic partial differential, e.g. Kirchhoff’s integral theo-
rem based on Greens identities (Küpfmüller et al., 2013),

ϕ(r)=
1

4πε

∫ ∫ ∫
V

%(̃r)

‖r − r̃‖
dV. (18)

Considering the measuring setup in Fig. 4, the Kirchhoff’s
integral can not be applied. The plate beneath the electret
postulates an inhomogeneous boundary condition.

However, there is a possibility to substitute the current
setup with an alternative setup just for the computation pur-
pose. The first point to consider, is the fact that the potential ϕ
at the plate has a constant value. This is a consequence of the
assumption of the electrostatic field theory. The static charac-
teristic of the electrons shall not be violated, therefore no po-
tential differences in the ideal conducting plate are allowed.
Furthermore, because of the fact that the charge influence
decreases with the distance to the charge itself, the potential
at the plate in a certain sufficient distance from the charge
equals zero. The plate is assumed as infinitely large, there-
fore the potential at the plate equals zero. This observation
allows to alternate the current setup, so there are exclusively
homogeneous boundary conditions and the Kirchhoff’s inte-
gral can be applied. The idea is, to mirror the electret at the
plane of the plate and assume the mirrored charge ‘q to be
the opposite charge to q as shown in Fig. 5. The influence
of the physical electret charge q and the introduced artificial
opposite charge ‘q cancel each other resulting in a constant
zero potential at the plane of the plate. Doing so, the bound-
ary condition of a constant field potential at the plane of the
plate is implicitly satisfied and the plate as an inhomoge-
neous boundary condition can be left out. Thus, we obtain an
alternated setup with homogeneous boundary conditions and
the Kirchhoff’s integral can be applied (Küpfmüller et al.,
2013, p. 157).
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Γ; q

ϕ = const

Figure 4. Inhomogeneous electrostatic field problem to solve, with
a constant potential boundary condition at the plate.

Γ; q

‘Γ; ‘q = −q

ϕ = const

Figure 5. Homogeneous electrostatic field problem, with a constant
potential at the plane described by the plate.

Furthermore, the electret consists of a thin foil, so it is pos-
sible to simplify the integration in Eq. (18) to

ϕ(r)=
1

4πε

∫∫
Ã

%(̃r)

‖r − r̃‖
d Ã. (19)

7 Approximation of the analytic solution

Although, an analytic solution for the sensor model has
been derived, there still exists the problem of integrating the
charge over a complex geometry. For the modeling purpose
it is easier to use a discretization of the electret and translate
the integration into a sum.

For the discretization, the electret is divided into regu-
lar small part-areas 1Ã with a part-charge 1q̃ as shown in
Fig. 6. The integration in Eq. (19) is translated into a sum

ϕ(r)=
1q̃1Ã

4πε

∑
1Ã

1
‖r − r̃‖

(20)

and is applied for

ϕ(x,z)|y=const ∀y ∈ [−h;+∞). (21)

This restriction to the solution is based on the fact, that in
reality the space below the ideal conducting plate is shielded
from the influence of the electric charge by the plate itself.

Γ; Q; A

∆Ã; ∆q̃

Figure 6. Regular discretization of the electret.

8 Induced charge on the plane

As described in Sect. 2 the induced charge Q on the plane
depends on the torque load Mt. This induced charge can be
calculated using the results in Sect. 6 for the potential ϕ by
applying the divergence theorem

Q=

∫
V

divD dV =
∮
A

D ·n dA (22)

and using the constitutive equation

D =−εgradϕ. (23)

Assuming only a static electric field, the field in the immedi-
ate proximity of the plate is perpendicular to the ideal con-
ducting plate and the gradient at the plate is defined by

D =−ε lim
1h→0

ϕ(x,z)|y=−h−ϕ(x,z)|y=−h+1h

1h
ey . (24)

Similar to the discretization of the electret, it is possible to
sum over the small part-areas of the ideal conducting plane
as follows

Q=
∑
1Ã

De>y 1Ã. (25)

Although, the ideal conducting plate is assumed to be infi-
nite, it is accurate enough, to sum over a finite area. The ar-
eas further away from the electric charge do not contribute to
the overall induced charge on the plate, because the potential
field decreases over the distance.

9 Computation results

In Fig. 7 the potential is shown in two different heights over
the electret. It becomes apparent that the potential reaches its
major values, where it is closer to the electret.

Figure 8 represents the charge density on the ideal con-
ducting plate.
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Figure 7. Potential planes ϕ(x,z)|y=const in two different heights. (a) y =−h+ 1
4h. (b) y =−h+ 1

2h.

Figure 8. Charge density σ(x,z) as the charge per area.

The quantity of the induced charge is calculated as de-
scribed in Sect. 8. This charge can be measured and depends
on the torque load, which is applied to the beam. Therefore,
a characteristic curve of the sensor is derived. For this pur-
pose, the charge for different torque loads is simulated and
recored. Finally, the characteristic curve is approximated by
a polynomial function of 2nd order. The results are shown in
Fig. 9.

10 Conclusions

As one can see in Fig. 9, the maximum induced charge oc-
curs, when there is no torque load being applied to the beam.
At that configuration the electret is closest to the plate. By
increasing the load, the electret is being moved further away
from the ideal conducting plate and one can observe a de-
crease in the induced charge on the plate. The numerical anal-
ysis of the measuring setup also shows, that it is only possi-
ble to conclude the absolute value of the torque load from the

Figure 9. The characteristic curve of the sensor fitted by a polyno-
mial function of 2nd order Qp(Mt).

charge induced on the ideal conducting plate. This result is
in line with the symmetry of the system.

Furthermore, an expected sensitivity deficiency is being
observed. This is bound to the small quasi-permanent charge
an electret holds and the distance to the ideal conducting
plate.

Interestingly, the polynomial function of 2nd order
Qp(Mt) fitted by the method of least squares fits the char-
acteristic curve well. Introducing an objective error metric as
a median error

eQ =

∑n
i=1‖Qi(Mi)−Qp(Mi)‖2

n
(26)

where Qi(Mi) is the measured charge for an applied torque
Mi and Qp(Mi) is the value of the polynomial function
at that point; assuming there are n different probed torque
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loads, for the characteristic in Fig. 9 the error adds up to
5.31× 10−12. As the dimension of the charge is of order
2.44× 10−7, it is reasonable to deduce a quadratic trend of
the sensor, when linear assumptions are met.

11 Summary

In this contribution an analysis of an electrostatic sensor for
torque load measurements is presented. Due to the necessity
of describing the position of the charge in the physical space,
a geometrical and mechanical model based on the St. Vé-
nant torsion theory is described. In order to solve the well
known Poisson equation for this problem, the Kirchhoff’s in-
tegral theorem and an alternated model are used. Further, a
discretization is used to solve the integral and also to calcu-
late the induced charge numerically. As shown, the proposed
sensor has only a low sensitivity. Considering the dimensions
and the sensitivity issues of the measuring setup, the practi-
cal application is not optimal. Nevertheless, in the further re-
search an improvement of the sensitivity will be considered.
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