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Abstract. In this contribution, different approaches based on
the X-parametersTM to model the behavior of mismatched
nonlinear transfer systems are examined. The X-parameters
based on the PHD1-principle introduced by Verspecht and
Root (2006) as an extension of the well-known S-parameters
describe nonlinear microwave 2-port-networks under large
signal conditions. Using load-pull measurement techniques
they can be used for arbitrary load situations. Beside this
load-pull approach, in the work of Cai et al. (2015), it is
stated that it is sufficient to use one optimized X-parameter
set for each value of the load reflection coefficient without in-
troducing a large error. In another contribution of Cai and Yu
(2015), this approach is extended to cover the whole smith
chart with one optimized X-parameter set instead. In this
work, these different approaches are compared and brought
into question.

1 Introduction

Nowadays, comprehensive behavioral modeling of nonlin-
ear systems is becoming more important. In this respect,
small signal S-parameters have been extended to a few ap-
proaches of large-signal S-parameters as a frequency domain
behavioral model for nonlinear multi-ports. Amoung these
approaches, the so-called X-parameters based on the poly-
harmonic distortion approach of Verspecht and Root (2006)
were made commercially available (Root et al., 2013). Since
a complete behavioral modeling of a nonlinear system is not
possible, X-parameters represent approximately the nonlin-
ear system’s behavior around its so-called LSOP2. For that
purpose, the nonlinear system can be simplified by consid-

1polyharmonic distortion; (Verspecht and Root, 2006).
2large signal operating point.

ering the existence of only one large signal and the other
spectral components as additional small signals that are su-
perimposed linearly (Verspecht and Root, 2006). Originally,
the S-parameters and X-parameters are only valid near the
matched load condition, e.g. ZL=Z0= 50�, of the multi-
port measurement or simulation environment. In reality, per-
fect matching is not realizable and hence behavioral mod-
eling has to account for that load mismatch. For linear sys-
tems, the mismatch at each port of a two- or multi-port can
easily be determined with the definition of the load reflection
coefficient and its relation to S-parameters. Nevertheless, a
clear definition of load-dependency of nonlinear systems is
usually impossible because the reactive part of the load has
different behavior at each multiple of the fundamental fre-
quency in nonlinear systems. However, it is shown in litera-
ture (e.g., Ghannouchi and Hashmi, 2013) that theoretically,
with appropriate bandpass filtering, load dependency can be
defined or measured at each harmonic of the fundamental fre-
quency by passive load-pull method. In this work, different
approaches to handle load dependency of X-parameters are
examined and compared. For that purpose, the paper is orga-
nized as follows. In Sects. 2 and 3, nonlinear scattering vari-
ables and load dependency in both linear and nonlinear sys-
tems are recapitulated. In Sect. 4, the load-pull X-parameter
approach of Root et al. (2013, Sect. 5.2) and simplifying ap-
proaches by Cai et al. (2015) and Cai and Yu (2015) are pre-
sented. In Sect. 5, the simulation results for each approach
based on harmonic balance simulations in Cadence Spectre
are discussed.

2 Nonlinear scattering variables

Since more than 50 years engineers use S-parameters to mea-
sure and simulate circuit characteristics. The S-parameters
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of linear systems are based on the scattering variables which
are power related and thus measurable for radio frequencies
in contrast to voltage and current. Mathematically, they are a
linear combination of the port voltages and currents (Heavi-
side transformation) and can be calculated employing com-
plex AC calculations. In many electrical circuits linear condi-
tions do not exist anymore since the spectrum of the port cur-
rents and voltages exhibit harmonic distortion and intermod-
ulation. Hence, S-parameters are only valid for small signal
levels for which the additional spectral components are negli-
gible. Under large-signal excitation with one or more signals
at integers of a fundamental frequency lω0, i.e. there is no
intermodulation, the nonlinear two-port’s currents and volt-
ages can be formulated in terms of complex Fourier-series
(Howell, 2001) assuming their periodic form and neglecting
sub-harmonics

ip(t)=

∞∑
k=−∞

Ipke
jkω0 , up(t)=

∞∑
k=−∞

Upke
jkω0 . (1)

For real signals the complex Fourier-coefficients have to
fulfill the condition Ip(−k)= I ∗pk and Up(−k)=U∗pk , respec-
tively. Since it is a linear operation, the scattering variables
in nonlinear multi-ports can be calculated for each harmonic
and each port by the Heaviside transformation

Apk =
Upk +Z0,pIpk

2
√
R
{
Z0,p

} , Bpk = Upk −Z∗0,pIpk
2
√
R
{
Z0,p

} (2)

where p refers to the port and k to the harmonic of the inci-
dent Apk and scattered waves Bpk , respectively. Z0,p are the
characteristic impedance of the port p.

3 Load dependency and mismatch

As above mentioned mismatch occurs when the load at
port p is not equal to the port’s characteristic impedance
ZL,p 6=Z0,p. In linear systems, the available power is located
at the excitation frequency. In fact, the available and obtained
power at each port power can be described in a direct relation
to scattering variables (Gonzalez, 1997). The load reflection
coefficient is defined as ratio of the incident scattering sig-
nal A2 to the reflected scattering signal B2

0L =
A2

B2
=
ZL−Z0

ZL+Z0
. (3)

However, in nonlinear systems the clear definition of 0L is
more complicated due to the harmonic distortion in the sig-
nals spectra as shown in Eq. (2). Nevertheless, in literature,
e.g. Ghannouchi and Hashmi (2013), the harmonic reflection
coefficients can be found

A2l = 02lB2l∀l ∈ N (4a)

which can be formed to a set

0L = {021,022, . . .} . (4b)

In the next section, X-parameter approaches considering this
load reflection coefficients are discussed.

4 X-parameters

In linear multi-ports, S-parameters can describe a linear rela-
tion between the scattering variables at the ports. However, in
nonlinear multi-ports, a multi-dimensional describing func-
tion can be defined

Bpk = Fpk (A11,A12, . . .,A21,A22, . . ., ) (5)

representing the nonlinear relationship between the incident
scattering variables Aql and the reflected scattering vari-
able Bpk .

By means of a Taylor-series expansion of Eq. (5) around
the LSOP, the describing functions convert to the linear (with
respect to the small signals Aql) X-parameter

Bpk ≈X
(F)
pk (|A11|)P

k
+

∑
ql

X
(S)
pk;ql (|A11|)Aql P

k−l

+

∑
ql

X
(T)
pk;ql (|A11|)A

∗

qlP
k+l
∀ (q, l) 6= (1,1). (6)

Therein, Aql are the additional small-signals and
P = ejarg{A11}. These X-parameters depend only on the
DC-bias parameters of the circuit, the fundamental fre-
quency ω0 and |A11| (Verspecht and Root, 2006). However,
if the load is not matched as discussed in the previous
section the whole transmission power could not be obtained
from the load (Gonzalez, 1997). Hence, a part of the power
will be reflected. In Root et al. (2013) load-pull approach is
introduced to describe the mismatched situation in nonlinear
systems.

As a result of the load mismatch, theX-parameters depend
not only on the input signal A11 but also on the reflected
large signals due to load mismatch. Therefore, for analyzing
these load-dependentX-parameters another approach will be
needed.

4.1 Load-pull LSOP-approach

Root et al. (2013) assume that in addition toA11 the reflected
signal at the fundamental frequency (A21=021B21) is much
larger than the other incident signals (Aql ∀ l > 1). Conse-
quently, the describing functions of the system depend not
only on the fundamental excitation at the input A11 but also
on the signal A21 caused by reflection due to load mismatch.
In other words, the system has two large signals, A11 and
A21. Therefore, the validity of the behavioral model Eq. (6)
gained in a matched condition is restricted to a small area on
the smith chart.
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Load-dependent X-parameters can be determined by ac-
tive load-pull or passive load-pull measurements or sim-
ulations. The meaning of active load-pull can be under-
stood by the corresponding LSOPactive={DCOP3, ω0, |A11|,
A21}, which is extended by the large signal A21. Sup-
posed that this signal can be extracted from load mismatch
regarding relation Eq. (4b) due to a mismatched passive
load at port 2, the LSOP converts to the passive load-pull
LSOPpassive={DCOP, ω0, |A11|, 021}. Applying the spectral
linearization of Eq. (5) in the passive load-pull LSOP leads
to the modified X-parameter model

Bpk≈X
(F)
pk (|A11|,021)P

k

+

N∑
q=1

lq,max∑
l=2

X
(S)
pk;ql (|A11|,021)AqlP

k−l

+X
(T)
pk;ql (|A11|,021)A

∗

qlP
k+l

+X
(S)
pk;21 (|A11|,021)

[
A21−021X

(F)
21 (|A11|,021)

]
P k−1

+X
(T)
pk;21 (|A11|,021)

[
A21−021X

(F)
21 (|A11|,021)

]∗
P k+1 (7)

wherein the X-parameter depend on |A11| and complex
reflection coefficient 021= |021|e

j221 . Therefore, the X-
parametersX(·)pk(|A11|, |021|,221) in Eq. (7) depend on three
parameters what increases the necessary measurements to re-
ceive the model enormously.

4.2 Approaches of Cai

In the works of Cai et al. (2015) and Cai and Yu (2015),
it is noted that the amount of necessary model parameters
can be reduced compared to the load-pull X-parameters pre-
sented in the previous section. The presented approach of Cai
et al. (2015) uses one optimized parameter set for each value
of the reflection coefficients’ magnitude |021|. Thus, the
X-parameters are found for the so-called parametric large-
signal operating circle PLSOC ={DCOP, ω0, |A11|, |021|},
instead of an LSOP.

Bpk,PLSOC ≈X
(F)
pk (|A11|, |0L|)P

k

+

N∑
n=1

Ln∑
l=1︸ ︷︷ ︸

{n,l}6={1,1}

X
(S)
pk,nl (|A11|, |0L|)AnlP

k−l

+X
(T)
pk,nl (|A11|, |0L|)A

∗

nlP
k+l

+X

(
S2)
pk,nl (|A11|, |0L|)A

2
nlP

k−2l

+X

(
T2)
pk,nl (|A11|, |0L|)

(
A∗nl

)2
P k+2l

+X
(ST)
pk,nl (|A11|, |0L|) |Anl |

2P k (8)

The possible loss of accuracy by this model order reduction
is compensated by increasing the order of the series expan-

3Direct current operating point; (Cai et al., 2015).
3Parametric large-signal operating circle; (Cai et al., 2015).

sion underlying the X-parameter model. Instead of a linear
a quadratic approach is employed and denoted as QPHD4.
This approach is shown with an adapted notation in Eq. (8)
wherein the X-parameters X(·)pk(|A11|, |021|) depend only on
two parameters in addition to the DCOP and the fundamental
frequency ω0.

Continuing this idea of model order reduction in Cai and
Yu (2015), one optimized parameter set of the QPHD-model
approach is extracted for the whole load plane. Thus, every
X-parameter X(·)pk(|A11|) of this approach is a function of
the large signal amplitude |A11| as for the matched case in
Eq. (6). For each of the named approaches, it is shown in the
following section how the model extraction is performed.

4.3 Model extraction

In order to extract the X-parameters X(·)pk of the matched
Eq. (6) and load-pull Eq. (7) approach, there are two mea-
surement approaches summarized in Root et al. (2013,
Sect. 4.4) namely the offset-frequency and -phase technique.
The idea of the latter is captured by the approaches of Cai.

In the original offset-phase method, the parameters X(F)pk
are found measuring the large signal response only. The
small signal X-parameters X(S)pk,ql and X(T)pk,ql are found by
solving a linear system of equations. If it is over-determined,
the impact of measurement outliers can be reduced. The dif-
ference between the previously shown approaches is how
the datapoints of the system of equations are measured. The
offset-phase method (Root et al., 2013) superimposes to each
LSOP the small signals Aql separately with different phases
arg{Aql}. The PLSOC approach of Cai et al. (2015) sweeps
the phase 22l , l≥ 1 of the lth harmonic load-pull tuner for a
fixed magnitude 02l (cf. Eq. 4b). As a result, there is a ran-
domized change in A2k ∀ k≥ 1 due to the reflection Eq. (4b)
at the load port along the PLSOC. The full smith chart opti-
mization technique introduced in Cai and Yu (2015) uses the
datapoints of several PLSOCs in order to find one optimized
X-parameter set for the whole smith chart. This randomized
phase variation is not capable to vary the small signals of the
input port A1k .

If the large signal parameters X(F)pk are included in the
optimization problem, the over-determined system of equa-
tions with M data points for all approaches has to be solved
e.g. by means of least-squares approximation. The system of
the (Q)PHD-approach is

1 Aql,1 A∗ql,1 . . .

...
...

...
...

1 Aql,M A∗ql,M . . .



X
(F)
pk

X
(S)
pk,ql

X
(T)
pk,ql

...

=
Bpk,1...
Bpk,M

 , (9a)

which can be rewritten as

4Quadratic polyharmonic distortion; (Cai et al., 2015)
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Figure 1. Class-C MOS-amplifier with source follower output
stage.

A · x= b (9b)

with A∈CM×N , x∈CN×1 and b∈CM×1. The small sig-
nal excitation matrix A can be factorized by means of
QR decomposition A=Q ·R with the orthogonal matrix
Q∈CM×N and the upper triangular matrix R∈CN×N . Since
for orthogonal complex matrices the product with its Hermi-
tian is the unity matrix I=Q ·QH, the system

R · x=QHb (9c)

results which can be solved by back substitution. Although
being slower, the QR decomposition is preferable to the nor-
mal equations used by Cai et al. (2015) and Cai and Yu
(2015) due to its better numerical properties (Dahmen, 2008).

5 Simulation results

In this section, the described methods are shown and dis-
cussed using an exemplary Class-C amplifier (cf. Fig. 1).
It is designed in Cadence Spectre in an Austria Microsys-
tems 350 nm process. The amplifier is excitated by the large
signal |A11| = 10.6m

√
W which corresponds to an ampli-

tude of û11= 150 mV and an additional small signal source
at the second harmonic at the output port with the ampli-
tude of û22= 7.5 mV that implies the additional small sig-
nalA22. The system’s periodic steady state is simulated using
the harmonic balance method in combination with an load-
pull block. The magnitude of the reflection coefficient is set
to |021| = 0.65. The load-pullX-parameter are calculated for
221= k · 45◦ for k={0, . . . , 7} on the basis of a phase sweep
φ22 ∈ [0, 355◦] with the stepsize of 5◦ by means presented
in Eq. (9) using MATLAB. In addition to the PHD-based
linear load-pull X-parameters, for comparison purpose, the
QPHD-approach is calculated for each load-pull LSOP gain-

ing X
(
S2)
pk,22(|A11|, 021) etc.

In contrast, the X-parameters of the PLSOC-approach
Eq. (8) are calculated for |021| = 0.65 by the randomized
phase sweep method (Cai et al., 2015), i.e. varying the load-
pull tuner phase 221 ∈ [0, 355◦] with a stepsize of 5◦.

Figure 2. Behavior of magnitude |X(F)21 | swept over 221 at
|0L| = 0.65 and |A11| = 10.6m

√
W .

Figure 3. Behavior of |B21| as a function of 221 at |0L| = 0.65.

The optimized QPHD-approach (Cai and Yu, 2015) is cal-
culated by performing the randomized phase sweep for sev-
eral values of |021| ∈ [0.05, 0.95] with a stepsize of 0.1.

In Fig. 2, the resulting large signal X-parameters X(F)21 of
each approach are shown over the range of 221. The load-
pull PHD and QPHD approaches share the same varying
non-constant results with a min-max deviation of 10 dB. The
PLSOC results in a constant large signal parameter that is
approximately in the middle of that variation. The resulting
X
(F)
21 of the optimized QPHD-approach lies approximately

1 dB below that of the PLSOC-approach since it considers
measurement values of the whole smith chart. The other not
shown X-parameter exhibit similar behavior.

The impact of the different X-parameters on the scattered
variables are shown in Figs. 3 and 4 for the exemplary B21.
In Fig. 3, the magnitude |B21| is shown in dB over the swept
variable 221. The result shows that the total model calcula-
tion of the different approaches in comparison to the cadence
simulation. The load-pull X-parameters again deliver the
same results and map the Cadence simulation. In contrast, the
model order reduced approaches namely the PLSOC QPHD
and the optimized QPHD exhibit a difference to each other
and to the other approaches. In this depiction, the difference
seems not that grave. However, shown in the complex plane
in Fig. 4, the difference becomes more obvious. As expected,
the optimized QPHD which is the most order reduced is not
capable of mapping the behavior, whereas the PLSOC seems
to be a good compromise.

Nevertheless, the depicted results are shown for the value
of the small signal A22 that was used for theX-parameter ex-
traction which means for which the quadratic error in Eq. (9)
was minimized. If the model is used for different values of
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Figure 4. Behavior of B21 in the complex plane swept over 221 at
|0L| = 0.65.

the small signal, the behavior can differ severely. For the
exemplary load situation 021= 0.65 ej135◦ a sweep over the
small signal source up to û22=

û11
2 is shown in Fig. 5. The

extraction value is marked with a vertical black line. As seen
from the previous figures, for that value the models deliver a
close result to the reference simulation in Cadence. However,
for larger values of the small signal excitation the model or-
der reduced approaches differ severely. Taking a closer look
to the behavior of the load-pull PHD- and QPHD-approach,
it can be observed that although being of higher order and
hence against expectation the QPHD varies from the PHD-
approach that maps the reference simulation up to the max-
imal value. A possible explanation for that trend is the ex-
traction method of the load-pull approaches. For the QPHD-
approach, several values of the amplitude û22 should be used
in addition to the phase sweep in order to get a better condi-
tioned matrix A which will be performed in future work.

6 Conclusions

In this contribution, different approaches of the X-
parameters were examined in order to model load-dependent
behavior of nonlinear transfer systems considered as multi-
ports. In addition to the X-parameter extracted at each load
by means of fundamental frequency load-pull technique
(Root et al., 2013), the model order reduced approaches of
Cai et al. (2015) and Cai and Yu (2015) were compared. On
the basis of an exemplary simulation, it was shown that the
model order reduced approaches can be a good compromise
if used the vicinity of the system situation for which they
were extracted. For large deviation from that state, they can
introduce a large error due to the extraction methods based
on the numeric least-squares approximation. In addition, the
randomized phase variation of the load-pull tuner is not ca-

Figure 5. Behavior of |B21| as a function of û22 at |021| = 0.65 and
|221| = 135◦.

pable to extract X-parameter for small signals at the input
port A1k .
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