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We discuss the geodesic motion of both massive test particles, following timelike geodesics, and light,
following null geodesics, on Finsler spacetimes with cosmological symmetry. Using adapted coordinates
on the tangent bundle of the spacetime manifold, we derive the general form of the geodesic equation.
Further, we derive a complete set of constants of motion. As an application of these findings, we derive the
magnitude-redshift relation for light propagating on a cosmologically symmetric Finsler background, both
for a general Finsler spacetime and for particular examples, such as spacetimes equipped with Bogoslovsky
and Randers length measures. Our results allow a confrontation of these geometries with observations of
the magnitude and redshift of supernovae.
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I. INTRODUCTION

One of the most revolutionary observations in modern
cosmology is the measurement of the magnitude-redshift
relation of distant supernovae [1–5]. It follows from the
kinematics of a homogeneous and isotropic universe,
whose geometry is modeled by a Friedmann-Lemaitre-
Robertson-Walker (FLRW) metric, that this relation allows
one to directly measure the deceleration or acceleration of
the expansion of the universe in terms of a single parameter
q, called the deceleration parameter. Numerous analyses of
supernova data have come to results in the range −1.0 <
q < −0.5 at the present epoch [6–11], where a negative
value indicates an accelerating expansion. This result
clearly contradicts the expected behavior of a universe
described by general relativity and filled with perfect fluid
matter with non-negative barotropic index w ≥ 0, whose
expansion should decelerate.
These observations of supernovae, which have been

complemented by observations of the cosmic microwave
background [12] and baryon acoustic oscillations [13,14],
have stipulated the development of a plethora of models.
Possible explanations for the accelerating expansion
include introducing a new type of fluid with barotropic
index w < −1=3 known as dark energy [15,16], introduc-
ing additional fields besides the metric [17,18], introducing
higher dimensional models [19,20], or modifying the action
of gravity [21,22], possibly introducing a different descrip-
tion for the metric geometry of spacetime [23,24].
However, despite this large theoretical effort the nature

of dark energy and the cause of the accelerating expansion
have so far remained undisclosed.
The aforementioned models have in common that the

propagation of light and the tick rates of clocks, which are
crucial ingredients to the calculation of the magnitude-
redshift relation, are determined from the FLRW metric
geometry of spacetime: light follows null geodesics of the
metric and clocks measure the metric arc length along their
world lines. However, the notions of null geodesics and arc
length are defined not only in metric geometry, but also in
more general geometries. The most general geometry to
define the notion of arc length of a curve, which also
defines the notion of geodesics, is Finsler geometry.
Finsler geometry is a straightforward mathematical gen-

eralization of Riemannian [25] and, after some refinements
of its formulation, also of Lorentzian metric spacetime
geometry [26–36]. It has been realized that Finsler geometry
describes geometries of spacetimes which allow for devia-
tions from Lorentz invariance in their local symmetries
[37,38] and, moreover, the motion of test particles which
obey modified dispersion relations. These may emerge as
effective descriptions of the interaction of a quantized theory
of gravity with test particles [39,40], or in general from
nonmetric field theories [41] like area metric, or general
linear, electrodynamics [42–44] and effective field theories
describing waves in media [35,45–48].
Despite this wide range of applications in physics a

thorough and complete analysis of the impact of a
Finslerian modification of the geometry of spacetime on
astrophysical and gravitational observables is still missing.
Several steps of such a phenomenological analysis have
been done; however, this program is far from being
complete. In [33] a specific first order Finsler perturbation

*manuel.hohmann@ut.ee
†christian.pfeifer@ut.ee

PHYSICAL REVIEW D 95, 104021 (2017)

2470-0010=2017=95(10)=104021(19) 104021-1 © 2017 American Physical Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutionelles Repositorium der Leibniz Universität Hannover

https://core.ac.uk/display/130520156?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1103/PhysRevD.95.104021
https://doi.org/10.1103/PhysRevD.95.104021
https://doi.org/10.1103/PhysRevD.95.104021
https://doi.org/10.1103/PhysRevD.95.104021


of Schwarzschild geometry and its effects on test particle
motion has been analyzed, while in [49] we showed how
another class of spherically symmetric Finsler modification
of Minkowski spacetime can address the fly-by anomaly in
the solar system. Again another class of Finsler spacetime
geometries has been studied toward its influence on
gravitational waves [50]. The effect of Finsler geometry
on an observer’s measurement of length has been studied in
[51] and consequences on the weak equivalence principle
in [52]. In addition to these studies on the influence of a
Finsler modification of the geometry of spacetime on
gravitational observables, the influence of a specific
Finsler modification on the hydrogen atom has been
investigated [53].
Because of the fact that Finsler spacetime geometry is

based on a homogeneous function on the tangent bundle of
spacetime, instead of on a tensor field such as a metric, it is
difficult to analyze observable effects for general Finsler
modifications of the geometry of spacetime. Therefore the
observable consequences analyzed in the articles mentioned
usually choose a specific Finsler spacetimemodel to perform
their studies. In our analysis in this articlewewill be keeping
the maximal degree of generality whenever possible.
However, when we want to derive explicit observable
consequences, we need to choose specific Finsler spacetime
models to make predictions. The long term goal is to find a
systematic scheme to analyze observables of a Finslerian
spacetime modification and their deviation from metric
spacetime geometry, in a framework similar to the para-
metrized post-Newtonian formalism.
In this article we consider Finsler spacetimes with cos-

mological symmetry which are based on the construction we
developed in the articles [31,36,49,54,55]. The central goal
of our work is to derive the magnitude-redshift relation, and
thus also the deceleration parameter q, under the assumption
of a cosmological Finsler background geometry. For this
purpose we study the geodesic motion of both massive test
bodies and in particular light in this background geometry.
These studies yield us the geodesic equation, which canmost
conveniently be expressed by a vector field on the tangent
bundle called the geodesic spray, and a full set of constants of
motion. As a second ingredient we use the tick rates of
comoving clocks on cosmological Finsler spacetimes, in
order to compare the frequencies of emitted and observed
photons. Having derived a general equation for the magni-
tude-redshift relation on general homogeneous and isotropic
Finsler spacetimes we reach the point where we need to
consider specific models to obtain observable predictions.
We choose several classes of Finsler spacetime geometries,
which can be used as generalizations of Lorentzian metric
spacetime geometry in physics, and display expressions for
their deceleration parameters.
The outline of this article is as follows. In Sec. II we

briefly review the notion of Finsler spacetimes with
cosmological symmetry. We then discuss geodesic motion

on cosmological Finsler spacetimes in Sec. III. We derive a
general formula for the magnitude-redshift relation in
Sec. IV. In Sec. V we apply our findings to a number of
examples. We end with a discussion in Sec. VI. Lengthy
formulas are displayed in a number of appendixes: these are
in particular the complete lifts of the cosmological sym-
metry generators in Appendix A, the geodesic spray in
Appendix B, and the radial geodesics in Appendix C.

II. COSMOLOGICAL FINSLER SPACETIMES

In order to derive the cosmological redshift on homo-
geneous and isotropic Finsler spacetimes we start by
introducing the mathematical notations we need during
the remainder of this article. For this purpose we briefly
review the definition of Finsler spacetimes in Sec. II A. We
then display the generators of cosmological symmetry in
Sec. II B. For convenience, we finally introduce adapted
coordinates on the tangent bundle in Sec. II C, which will
simplify our calculations. Further mathematical details and
the derivation of the most general cosmological Finsler
spacetime can be found in the articles [36,49,56,57] and in
the thesis [54].

A. Finsler spacetimes

Finsler spacetimes are straightforward generalizations of
Lorentzian metric spacetimes. Instead of a metric which
defines the geometry of a spacetime M, one derives the
geometry from a general length measure for curves on M.
This concept was developed by Finsler in 1918 [58] and
was further developed by many authors since then. For the
application in physics it is important to deal with indefinite
length measures to distinguish between timelike, lightlike,
and spacelike curves. To incorporate these notions into
Finsler geometry one of us developed the Finsler spacetime
framework [54] which extends and includes a previous
approach to indefinite Finsler geometry by Beem [29].
Finsler spacetime geometry is formulated on the tangent

bundle TM of the spacetime M. We use the following
notations. An element of the tangent bundle Z ∈ TM is a
vector in some tangent space TxM to the spacetime
manifold. In local coordinates x in M we can write Z ¼
ya∂ajx where ya are the components of the vector Z with
respect to the coordinate basis of TxM. This means we can
label the point Z on the tangent bundle with the coordinates
ðx; yÞ, which are called manifold induced coordinates of the
tangent bundle. The corresponding coordinate basis of the
tangent spaces of the tangent bundle will be labeled by
∂
∂xa ¼ ∂a and ∂

∂ya ¼ ∂̄a, and its cobasis is denoted by dxa

and dya.
The precise definition of a Finsler spacetime we use is

the one developed in [36].
Definition 1. A Finsler spacetime ðM;LÞ is a four-

dimensional, connected, Hausdorff, paracompact, smooth
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manifoldM equipped with a continuous function L∶TM →
R on the tangent bundle which has the following properties:

(i) L is smooth on the tangent bundle without the zero
section TMnf0g;

(ii) L is positively homogeneous of real degree h ≥ 2
with respect to the fiber coordinates of TM,

Lðx; λyÞ ¼ λhLðx; yÞ ∀ λ > 0; ð1Þ

(iii) L is reversible in the sense

jLðx;−yÞj ¼ jLðx; yÞj; ð2Þ

(iv) the Hessian gLab of L with respect to the fiber
coordinates is nondegenerate on TMnA where A
has measure zero and does not contain the null set
fðx; yÞ ∈ TMjLðx; yÞ ¼ 0g,

gLabðx; yÞ ¼
1

2
∂̄a∂̄bL; ð3Þ

(v) the unit timelike condition holds, i.e., for all x ∈ M
the set

Ωx ¼
�
y ∈ TxMjjLðx; yÞj ¼ 1;

gLabðx; yÞ has signature ðϵ;−ϵ;−ϵ;−ϵÞ;

ϵ ¼ jLðx; yÞj
Lðx; yÞ

�
ð4Þ

contains a non-empty closed connected compo-
nent Sx ⊂ Ωx ⊂ TxM.

The Finsler function associated with L is Fðx; yÞ ¼
jLðx; yÞj1=h and the Finsler metric gFab ¼ 1

2
∂̄a∂̄bF2.

Basically this very general definition of Finsler space-
times ensures that the Finsler spacetime geometry allows
for a precise notion of timelike, lightlike, and spacelike
directions as well as for a well-defined geometry on the null
structure of the L, along which light rays propagate, and
along all timelike directions.

B. Homogeneity and isotropy

A symmetry of a Finsler spacetime is defined by vector
fields X ¼ ξa∂a on spacetime whose complete lifts XC ¼
ξa∂a þ ym∂mξ

a∂̄a annihilate the fundamental geometry
function

XCðLÞ ¼ 0: ð5Þ

For cosmological symmetry we start in spherical coordi-
nates ðt; r; θ;ϕÞ on M and the corresponding manifold

induced coordinates ðt; r; θ;ϕ; yt; yr; yθ; yϕÞ on TM. The
generators of the cosmological symmetry, i.e., homo-
geneity and isotropy, are the generators of rotations

ρ1 ¼ sinϕ∂θ þ
cosϕ
tan θ

∂ϕ; ð6aÞ

ρ2 ¼ − cosϕ∂θ þ
sinϕ
tan θ

∂ϕ; ð6bÞ

ρ3 ¼ ∂ϕ; ð6cÞ

and translations

τ1¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−kr2

p �
sinθcosϕ∂rþ

cosθcosϕ
r

∂θ−
sinϕ
rsinθ

∂ϕ

�
;

ð7aÞ

τ2¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−kr2

p �
sinθ sinϕ∂rþ

cosθsinϕ
r

∂θþ
cosϕ
rsinθ

∂ϕ

�
;

ð7bÞ

τ3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p �
sin θ
r

∂θ − cos θ∂r

�
: ð7cÞ

Their complete lifts to the tangent bundle are listed in
Appendix A. Demanding that the lifted vector fields
annihilate the fundamental geometry function, as described
above, yields that the fundamental geometry function must
be of the form

Lðx; yÞ ¼ Lðt; yt; wðr; θ;ϕ; yr; yθ; yϕÞÞ

with w2 ¼ ðyrÞ2
1 − kr2

þ r2ðyθÞ2 þ r2sin2θðyϕÞ2: ð8Þ

However, working in these coordinates turns out to be
rather cumbersome. In the following we therefore make use
of a more convenient set of coordinates on the tangent
bundle.

C. Adapted coordinates

For the analysis of timelike geodesics, it turns out to be
useful to introduce coordinates y, u, v, w on each tangent
space such that

yt ¼ y; yr ¼ w cos u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p
;

yθ ¼ w
r
sin u cos v; yϕ ¼ w

r sin θ
sin u sin v: ð9Þ

In these coordinates the complete lifts of the generators of
cosmological symmetry take the form
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ρC1 ¼ sinϕ∂θ þ
cosϕ
tan θ

∂ϕ −
cosϕ
sin θ

∂v; ð10aÞ

ρC2 ¼ − cosϕ∂θ þ
sinϕ
tan θ

∂ϕ −
sinϕ
sin θ

∂v; ð10bÞ

ρC3 ¼ ∂ϕ; ð10cÞ

and

τC1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−kr2

p �
sinθcosϕ∂rþ

cosθcosϕ
r

∂θ−
sinϕ
rsinθ

∂ϕ

�

−
cosvcosθcosϕ−sinvsinϕ

r
∂u

þsinvsinθcosϕþcosvtanθsinϕþtanusinϕ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−kr2

p

rtanutanθ
∂v;

ð11aÞ

τC2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−kr2

p �
sinθsinϕ∂rþ

cosθsinϕ
r

∂θþ
cosϕ
rsinθ

∂ϕ

�

−
cosvcosθsinϕþsinvcosϕ

r
∂u

þsinvsinθsinϕ−cosvtanθcosϕ−tanucosϕ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−kr2

p

rtanutanθ
∂v;

ð11bÞ

τC3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p �
sin θ
r

∂θ − cos θ∂r

�

þ sin θ
r

�
sin v
tan u

∂v − cos v∂u

�
; ð11cÞ

which is significantly simpler than the corresponding
expressions shown in Appendix A. One now easily verifies
that the most general cosmologically symmetric Finsler
geometry function reads

L ¼ Lðt; y; wÞ ¼ yh ~Lðt; w=yÞ: ð12Þ

The second equality holds wherever y ≠ 0 and follows
from the fact that L is homogeneous of degree h. The
dependence only on ðt; y; wÞ is consistent with the expres-
sion (8) in induced coordinates.
In the following we will study future timelike curves.

The tangent vectors of these curves constitute the interior of
the forward light cone and hence satisfy y > 0 and ~L ≠ 0.1

In the interior of the forward light cone we now introduce
another set of convenient coordinates,

T ¼ t; R ¼ r; Θ ¼ θ;

Φ ¼ ϕ; Y ¼ yh ~L

�
t;
w
y

�
;

U ¼ u; V ¼ v; W ¼ w
y
; ð13Þ

or conversely,

t ¼ T; r ¼ R; θ ¼ Θ;

ϕ ¼ Φ; y ¼
�

Y
~LðT;WÞ

�1
h

; u ¼ U;

v ¼ V; w ¼ W

�
Y

~LðT;WÞ

�1
h

: ð14Þ

Note that these coordinates would become singular at y ¼
0 and ~L ¼ 0 and can therefore not be used on the null
structure and for the analysis of null geodesics, hence their
restricted domain. However, from the fact that y > 0 on this
domain follows that Y and ~L always have the same sign, so
that both the transformation (13) and its inverse (14) are
well defined and differentiable, and hence constitute a
viable coordinate transformation. We further introduce the
notation

~Lt ¼ ∂T
~L; ~Lw ¼ ∂W

~L ð15Þ

for the derivatives of ~L with respect to its first and second
arguments. We also have

∂t
~L ¼ ~Lt; ∂w

~L ¼
~Lw

y
; ∂y

~L ¼ −
w ~Lw

y2
; ð16Þ

which we will use frequently in the following section,
where we discuss geodesic motion.

III. GEODESIC MOTION

We now come to the discussion of geodesic motion on
cosmologically symmetric Finsler spacetimes as described
in the preceding section. Recall that geodesics are conven-
tionally defined as curves which are extremal with respect
to a length functional. We briefly review the Finsler length
functional and its relation to the geodesic equation in
Sec. III A. The geodesic equation can be expressed in terms
of a vector field S on the tangent bundle, which we derive in
the cosmologically symmetric case in Sec. III B. Functions
on the tangent bundle which are constant along the integral
curves of the geodesic spray are constants of motion, and
we display them in Sec. III C. We show their completeness
in Sec. III D by reconstructing the geodesic equation from

1Observe that we do not fix the sign of ~L here since there exist
interesting examples with either sign of L in the interior of the
forward light cone; see the FLRW and the Randers example in
Sec. V.
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the constants of motion. Finally, we give explicit expres-
sions for radial geodesics in our cosmological coordinates
in Sec. III E.

A. The geodesic equation

The length measure for a curve γ on a Finsler spacetime,
which is also the action for the motion of point particles, is
given by

S½γ� ¼
Z

dτFðγ; _γÞ: ð17Þ

Free particles follow the geodesics of this length functional.
Because of the homogeneity of F of degree 1 it is invariant
under a change of parametrization, so that its Euler-
Lagrange equations cannot be brought into the form
ẍþ G ¼ 0, since the bilinear form defined by the second
derivative of F, not F2 or L, is degenerate. One has to fix
the parametrization of the curves to Fðγ; _γÞ ¼ const. Then
the Euler-Lagrange equations become

ẍa þ Gaðx; _xÞ ¼ 0: ð18Þ

The functions Gaðx; _xÞ define a vector field on TM, the so-
called geodesic spray S ¼ ya∂a −Ga∂̄a, whose integral
curves are the geodesics. Physically free particles propagate
through spacetime along such geodesics which have
tangents that either are null Fðγ; _γÞ ¼ 0 or belong to the
cone of future timelike vectors, which exists by the
definition of Finsler spacetimes. To calculate the geodesic
spray in manifold induced coordinates is a quite lengthy
task and is displayed in Appendix B. In the following
section we display the geodesic spray in cosmological
coordinates, in which it takes a more compact form.

B. The geodesic spray

In arbitrary, noninduced coordinates on the tangent
bundle we can calculate the geodesic spray S as follows.
We start with the differential dL of the geometry function
L, which in the cosmological case reads

dL ¼ yh ~Ltdtþ yh−2ðhy ~L − w ~LwÞdyþ yh−1 ~Lwdw: ð19Þ

Together with the cotangent structure J�, which can be
written in manifold induced coordinates as J� ¼ dxa ⊗ ∂̄a,
this yields the Cartan one-form

θL ¼ J�dL ¼ yh−2ðhy ~L − w ~LwÞdt

þ yh−1 ~Lw

�
cos uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p dr

þ r sin uðcos vdθ þ sin v sin θdϕÞ
�
: ð20Þ

Its exterior derivative ωL ¼ dθL is a symplectic form on
TMnA, called the Cartan two-form. Hence, there exists a
unique vector field S such that

ιSω
L ¼ −ðh − 1ÞdL: ð21Þ

This vector field is the geodesic spray. In cosmological
coordinates on the tangent bundle it reads

S ¼ y∂t þ w cos u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p
∂r þ

w sin u cos v
r

∂θ

þ w sin u sin v
r sin θ

∂ϕ −
w sin u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p

r
∂u

−
w sin u sin v

r tan θ
∂v − y2

~Lww
~Lt − ~Lw

~Ltw

h ~L ~Lww − ðh − 1Þ ~L2
w

∂y

− y
w ~Lt

~Lww þ hy ~L ~Ltw − w ~Lw
~Ltw − ðh − 1Þy ~Lt

~Lw

h ~L ~Lww − ðh − 1Þ ~L2
w

∂w:

ð22Þ

In observer coordinates it takes the simpler form

S¼
�
Y
~L

�1
h
�
∂T þW cosU

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−kR2

p
∂Rþ

W sinUcosV
R

∂Θ

þW sinU sinV
RsinΘ

∂Φ−
W sinU

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−kR2

p

R
∂U

−
W sinU sinV

R tanΘ
∂V −

h ~L ~Ltw− ðh−1Þ ~Lt
~Lw

h ~L ~Lww− ðh−1Þ ~L2
w

∂W

�
: ð23Þ

We will make use of these expressions later when we apply
the geodesic equation to the motion of test bodies and light.

C. Constants of motion

If X ¼ ξa∂a is a vector field onM generating a symmetry
of the Finsler spacetime so that the complete lift satisfies
XCL ¼ 0, then there exists a function CX ¼ ιXCθL on
TM which is constant along geodesics, SCX ¼ 0. In
manifold induced coordinates this formula translates
into CX ¼ ξa∂̄aL.
In order to calculate the constants of motion on a

cosmologically symmetric Finsler spacetime we can make
use of the expression (20) for the Cartan one-form and (10)
and (11) for the complete lifts of the symmetry generating
vector fields. For the generators (6) of rotations we then
obtain the angular momentum

Λ1 ¼ ~Lwryh−1 sin uðsin v cos θ cosϕþ cos v sinϕÞ; ð24aÞ

Λ2 ¼ ~Lwryh−1 sin uðsin v cos θ sinϕ − cos v cosϕÞ; ð24bÞ

Λ3 ¼ ~Lwryh−1 sin u sin v sin θ; ð24cÞ
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while for the generators (7) of translations we have the linear momentum

Π1 ¼ ~Lwyh−1½sin uðcos v cos θ cosϕ − sin v sinϕÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p
þ cos u sin θ cosϕ�; ð25aÞ

Π2 ¼ ~Lwyh−1½sin uðcos v cos θ sinϕþ sin v cosϕÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p
þ cos u sin θ sinϕ�; ð25bÞ

Π3 ¼ ~Lwyh−1ðsin u cos v sin θ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p
− cos u cos θÞ: ð25cÞ

We also use the shorthand notations Λ⃗ and Π⃗. Note that
these are not independent, but satisfy Λ⃗ · Π⃗ ¼ 0. Also,
C0 ¼ L ¼ yh ~L always is a constant of motion. Since the
expressions above are rather lengthy, it is useful to express
them in terms of simpler expressions, which can be
constructed from the original ones. From the squared
vectors

Λ⃗2 ¼ ~L2
wr2y2h−2sin2u;

Π⃗2 ¼ ~L2
wy2h−2ð1 − kr2sin2uÞ ð26Þ

we can construct

C2
1 ¼ Π⃗2 þ kΛ⃗2 ¼ y2h−2 ~L2

w;

C2
2 ¼

Λ⃗2

Π⃗2 þ kΛ⃗2
¼ r2sin2u: ð27Þ

By making use of the relations

Λ1

Λ2

¼ tan v cos θ þ tanϕ
tan v cos θ tanϕ − 1

¼ − tan½ϕþ arctanðtan v cos θÞ�;

Λ2
3

Λ⃗2
¼ sin2vsin2θ; ð28Þ

one can further read off the constants of motion

C3 ¼ ϕþ arctanðtan v cos θÞ; C4 ¼ sin v sin θ: ð29Þ

Finally, we can define

C5 ¼
Π3

C1

¼ sin u cos v sin θ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p
− cos u cos θ; ð30aÞ

C6 ¼
Λ1Π2 − Π1Λ2

C2
1C2

¼ sin u cos θ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p
þ cos u cos v sin θ: ð30bÞ

Making use of these formulas, we can now fully express
L; Λ⃗; Π⃗ in terms of the constants C0;…; C6. First, note that

L ¼ C0; Λ⃗2 ¼ C2
1C

2
2; Π⃗2 ¼ C2

1ð1 − kC2
2Þ: ð31Þ

One can then easily read off the third components

Λ3 ¼ C1C2C4; Π3 ¼ C1C5: ð32Þ

Finally, the remaining components are given by

Λ1 ¼ C1C2 sinC3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − C2

4

q
;

Π1 ¼
C1ðC6 cosC3 − C4C5 sinC3Þffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − C2
4

p ; ð33Þ

Λ2 ¼ −C1C2 cosC3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − C2

4

q
;

Π2 ¼
C1ðC6 sinC3 þ C4C5 cosC3Þffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − C2
4

p : ð34Þ

Of course, also the constants C0;…; C6 are not indepen-
dent, since they are related by

1 ¼ Π⃗2

C2
1

þ kC2
2 ¼

C2
5 þ C2

6

1 − C2
4

þ kC2
2: ð35Þ

The constants of motion form a complete set in the sense
that they fully determine the geodesic equation, and hence
the geodesic spray, as we will see in the following.

D. Reconstruction of the geodesic equation from
constants of motion

We now show that the coefficients Ga in the geodesic
spray S ¼ ya∂a −Ga∂̄a can also be obtained from the
constants of motion shown above. By making use of the
definition (9) of the adapted coordinates, we can express
the geodesic spray by an ansatz of the form

S¼ y∂tþwcosu
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−kr2

p
∂rþ

wsinucosv
r

∂θ

þwsinusinv
rsinθ

∂ϕ−Gy∂y−Gu∂u−Gv∂v−Gw∂w; ð36Þ
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where Gy, Gu, Gv, Gw are to be determined from the
constants of motion. From this ansatz we obtain the linear
system

0¼SC0¼yh−2½y3 ~Lt−hy ~LGyþðwGy−yGwÞ ~Lw�; ð37aÞ

0¼SC1 ¼ yh−3½y3 ~Ltw− ðh−1Þy ~LwGyþðwGy−yGwÞ ~Lww�;
ð37bÞ

0 ¼ SC2 ¼ ðw sin u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p
− rGuÞ cos u; ð37cÞ

0 ¼ SC4 ¼
�
w sin u sin v cos θ

r
− sin θGv

�
cos v; ð37dÞ

which is easily solved by

Gu ¼ w sin u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p

r
; Gv ¼ w sin u sin v

r tan θ
;

Gy ¼ y2
~Lww

~Lt − ~Lw
~Ltw

h ~L ~Lww − ðh − 1Þ ~L2
w

;

Gw ¼ y
w ~Lt

~Lww þ hy ~L ~Ltw − w ~Lw
~Ltw − ðh − 1Þy ~Lt

~Lw

h ~L ~Lww − ðh − 1Þ ~L2
w

:

ð38Þ

One can see immediately that this agrees with the
result (22).

E. Radial geodesics

We consider in particular radial geodesics, for which the
angles θ≡ π=2 and ϕ≡ 0 are constant, so that the geodesic
is specified by functions tðλÞ and rðλÞ, if we allow for
arbitrary parametrizations. One of these functions will be
fixed by the choice of the parametrization. The canonical
lift of such a geodesic to the tangent bundle then has

yt ¼ _t; yθ ¼ _θ¼ 0; yϕ¼ _ϕ¼ 0; yr¼ _r; ð39Þ

where dots denote derivatives with respect to λ. One could
nowmake use of the geodesic equation in manifold induced
coordinates given in Appendix B; this procedure is detailed
in Appendix C. However, it turns out to be easier to rewrite
the left-hand sides in the equations above, which are given
by induced coordinates, in terms of the adapted coordi-
nates. We then obtain

y¼ _t; u¼ 0; v¼ 0; w
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−kr2

p
¼ _r: ð40Þ

In this case the constants of motion derived in the previous
section are given by

C0 ¼ yh ~L; C1 ¼ yh−1 ~Lw; C6 ¼ 1;

C2 ¼ C3 ¼ C4 ¼ C5 ¼ 0: ð41Þ

Moreover the geodesics must be integral curves of the
geodesic spray in order to satisfy the geodesic equation.
Hence, they must further satisfy the relations

_y ¼ −y2
~Lww

~Lt − ~Lw
~Ltw

h ~L ~Lww − ðh − 1Þ ~L2
w

;

_w ¼ −y
w ~Lt

~Lww þ hy ~L ~Ltw − w ~Lw
~Ltw − ðh − 1Þy ~Lt

~Lw

h ~L ~Lww − ðh − 1Þ ~L2
w

:

ð42Þ

These two equations can also be derived using the constants
of motion C0 and C1 shown in Eq. (41). From their
derivative with respect to the curve parameter follows

0 ¼ dC0

dλ
¼ yh

�
~Lt_tþ

hy ~L − w ~Lw

y2
_yþ

~Lw

y
_w

�
; ð43aÞ

0 ¼ dC1

dλ
¼ yh

�
~Ltw

y
_tþ ðh − 1Þy ~Lw − w ~Lww

y3
_yþ

~Lww

y2
_w

�
:

ð43bÞ

Inserting _t ¼ y and solving the resulting linear system for _y
and _w then yields the geodesic equation as shown above.
In the case of a timelike geodesic we can rewrite the

geodesic equation also in observer coordinates, so that it
takes the simpler form

_T ¼
�
Y
~L

�1
h

; _R ¼
�
Y
~L

�1
h

W
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kR2

p
; _Y ¼ 0;

_W ¼ −
�
Y
~L

�1
h h ~L ~Ltw − ðh − 1Þ ~Lt

~Lw

h ~L ~Lww − ðh − 1Þ ~L2
w

: ð44Þ

It is obvious that this rewriting procedure into these
coordinates is not possible for null geodesics, due to the
appearance of a factor ~L in the denominator. One can now
use the fact that _Y ¼ 0 and consider the special case of a
geodesic in arc length parametrization Y ¼ 1. In this case
the geodesic equation reduces to

_T ¼ ~L−1
h; _R ¼ ~L−1

hW
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kR2

p
;

_W ¼ − ~L−1
h
h ~L ~Ltw − ðh − 1Þ ~Lt

~Lw

h ~L ~Lww − ðh − 1Þ ~L2
w

: ð45Þ

The equations derived here will be the crucial ingredient for
our derivation of the magnitude-redshift relation in the
following section.
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IV. MAGNITUDE-REDSHIFT RELATION

We can now use our results on the geodesic motion in a
cosmologically symmetric Finsler spacetime detailed in the
previous section in order to derive the magnitude-redshift
relation. This will be done in three steps. First, we will
calculate the redshift of a light source in Sec. IVA. We will
then calculate its observed magnitude in Sec. IV B. Relating
these quantities will then yield us a series expansion of the
magnitude-redshift relation in Sec. IV C. The leading order
expansion coefficient, which is related to the deceleration
parameter, allows for a comparisonof the Finsler background
geometry to observations. Since we do not fix any particular
parametrization for the cosmological time coordinate, we
will finally show the independence of our result from this
choice in Sec. IVD.

A. Redshift of a light source

We consider the emission of light at time te from a source
located at cosmological coordinates ðre; θe ¼ π=2;ϕe ¼ 0Þ.
The light will be received by an observer at coordinates
ðro; θo ¼ π=2;ϕo ¼ 0Þ at time to. These two events must be
connected by a lightlike radial geodesic, which we para-
metrize with curve parameter λ. This allows us to write

dr
dt

¼ _r
_t
¼ w

y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p
: ð46Þ

Along the canonical lift of this geodesic we have that C0 ¼
yh ~L≡ 0 is constant, since L is constant along geodesics.
From y ¼ _t > 0 hence follows that ~L≡ 0 is also constant
along the geodesic, so that we can determineW ¼ w=y as a
function of t by solving

~Lðt;WÞ ≔ L

�
t; 1;

w
y

�
¼ 0 ð47Þ

for all t. We can then use the solution, which we denote

by W
∘ ðtÞ, to integrateZ

ro

re

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p ¼
Z

to

te

W
∘ ðtÞdt: ð48Þ

Note that the integral on the left-hand side only depends on
the location of the source and the observer and is independent
of the timewhen the signal was emitted and observed. If two
subsequent periods of awave are emitted at times te;1 and te;2
and observed at times to;1 and to;2, we thus have

0 ¼
Z

to;2

te;2

W
∘ ðtÞdt −

Z
to;1

te;1

W
∘ ðtÞdt

¼
Z

to;2

to;1

W
∘ ðtÞdt −

Z
te;2

te;1

W
∘ ðtÞdt ≈W

∘ ðtoÞΔto −W
∘ ðteÞΔte;

ð49Þ

where we have first cut out the common integration domain
from te;2 to to;1 and then used the physical assumption that

W
∘ ðtÞ does not change significantly within one period of
radiation. This allows us to write the ratio of the coordinate
time intervals as

Δto
Δte

¼ W
∘ ðteÞ
W
∘ ðtoÞ

: ð50Þ

In order to obtain the redshift, we finally need to calculate the
ratio of the proper time intervals passing at the source and
the observer. Since we assume that both the source and the
observer are at rest with respect to the cosmological back-
ground, and hence obey w ¼ 0, the ratio of coordinate time t
and proper time τ is given by

dt
dτ

¼ j ~Lðt; 0Þj−1
h: ð51Þ

Using the abbreviation L
∘ ðtÞ ¼ ~Lðt; 0Þ we thus find the

redshift

1þ z ¼ Δτo
Δτe

¼
0
@jL∘ ðtoÞj
jL∘ ðteÞj

1
A

1
h Δto
Δte

¼
 
jL∘ ðtoÞj
jL∘ ðteÞj

!1
h W

∘ ðteÞ
W
∘ ðtoÞ

¼ W
∘
LðteÞ

W
∘
LðtoÞ

; ð52Þ

where we have defined W
∘
LðtÞ ¼ W

∘ ðtÞjL∘ ðtÞj−1
h. Note that

we can always choose the coordinate time t such that it
becomes identical to the proper time of an observer at
rest with respect to the cosmological background, such

that L
∘ ðtÞ≡ 1. However, in Sec. V we will encounter also

examples for which a different choice of the coordinate
time is more convenient, and so we will not impose a
particular parametrization here. Note further that in
Finsler spacetimes there may be more than one light
cone, in which case there will be multiple solutions for

W
∘ ðtÞ. This situation implies the existence of multiple
types of light, and which would, in general, undergo
different redshifts.

B. Magnitude of a light source

For convenience we assume in this section that the light
source is located at the origin re ¼ 0, so that at the time of
the observation, the light pulse forms a sphere of coordinate
radius ro. We further assume that at the time te of the
emission of radiation the source has a luminosity (radiation
power) L. The total radiation power flowing through this
sphere as measured by an observer at ro is influenced by the
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cosmological redshift in two ways: both the rate of photons
and the frequency (and hence also the energy) of each
photon, both measured using the respective proper times of
the source and the observer, are reduced by a factor 1þ z,
so that the observed power is

P ¼ L
ð1þ zÞ2 : ð53Þ

In order to calculate the magnitude of the light signal, we
need the area of the illuminated sphere as measured in the
rest frame of the observer given by yt > 0, w ¼ 0, since this
is the frame in which he also measures the detector area.
These areas are determined by the area measure induced

from the Finsler metric via the determinant of its pullback
to the surface of interest. Thus a well-defined area measure
requires a well-defined second derivative of the Finsler
geometry function L at the position of the observer at rest.
This can only be achieved if ∂wLðt; y; wÞ ¼ 0 at y > 0,
w ¼ 0, which implies in particular that ~Lwðt; 0Þ ¼ 0. The
form of this condition arises from the fact that our
coordinates have a coordinate singularity at w ¼ 0, and
a geometry function L with ∂wLðt; y; wÞ ≠ 0 at this point
would possess a cusp. Taking this condition into account,
the Finsler metric becomes

gFabdx
a⊗dxb¼ ~L

2
hdt⊗dtþ1

h
~L
2
h−1 ~Lww

×

�
dr⊗dr
1−kr2

þr2ðdθ⊗dθþsin2θdϕ⊗dϕÞ
�
:

ð54Þ
Note that we need ~L

2
h−1 ~Lww < 0 in order to have a metric

with Lorentzian signature. In particular, we find the area of
the sphere with coordinate radius ro around the origin to be

A ¼ 4πr2o
h

j ~L2
h−1 ~Lwwj: ð55Þ

The radiation flux is thus given by

S ¼ P
A

¼ hL

4πr2oð1þ zÞ2j ~L2
h−1 ~Lwwj

: ð56Þ

The magnitude is hence given by

m ¼ −
5

2
log10Sþ const

¼ 5log10½roð1þ zÞ� þ 5

2
log10j ~L

2
h−1 ~Lwwj

−
5

2
log10Lþ const: ð57Þ

C. Relating magnitude and redshift

We finally need to express the magnitude as a function of
the redshift for a fixed observation time to. For this purpose

it is useful to first express both magnitude and redshift as
functions of the emission time and then to take the inverse
of the latter and substitute it into the former. We start with
the redshift, which can be written as

zðteÞ ¼
W
∘
LðteÞ

W
∘
LðtoÞ

− 1: ð58Þ

The inverse of this relation is given by

teðzÞ ¼ W
∘ −1
L ½ð1þ zÞW∘ LðtoÞ�; ð59Þ

where we require W
∘
LðtÞ to be invertible in the interval

between te and to. For the magnitude we can ignore the

term involving ~L
2
h−1 ~Lww, since it is evaluated at the fixed

observation time to and w ¼ 0, so that it can be absorbed
into the additive constant. Besides the redshift we therefore
only need the radius ro of the sphere around the radiation
source which is spanned by the signal at the observation
time. This can be obtained from the integral

DðroÞ ¼
Z

ro

0

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p ¼
Z

to

te

W
∘ ðtÞdt; ð60Þ

where D is the inverse of the function Σ defined by

ΣðxÞ ¼
X∞
i¼0

ð−kÞi x2iþ1

ð2iþ 1Þ! ¼

8>><
>>:

sin x k ¼ 1;

x k ¼ 0;

sinh x k ¼ −1:
ð61Þ

Thus, we have

roðteÞ ¼ Σ
�Z

to

te

W
∘ ðtÞdt

�
: ð62Þ

This finally yields the magnitude

mðteÞ ¼ 5log10

2
4Σ�Z to

te

W
∘ ðtÞdt

�
W
∘
LðteÞ

W
∘
LðtoÞ

3
5

−
5

2
log10Lþ const: ð63Þ

We see that both zðteÞ and mðteÞ, and hence also mðzÞ, are
fully determined by the functions W

∘
, describing light

propagation on the cosmological Finsler background,

and W
∘
L, describing the redshift. In order to determine

mðzÞ in the recent past, i.e., for small z, it is helpful to
develop these functions in a Taylor series around the
observation time to in the form
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W
∘ ðtÞ ¼

X∞
i¼0

diW
∘

dti

				
t¼to

ðt − toÞi
i!

¼
X∞
i¼0

W
∘
i
ðt − toÞi

i!
; ð64Þ

and analogously for W
∘
L. For the redshift we then find the

series expansion

zðteÞ ¼
1

W
∘
L0

�
W
∘
L1ðte − toÞ þ

1

2
W
∘
L2ðte − toÞ2

þ 1

6
W
∘
L3ðte − toÞ3 þOððte − toÞ4Þ

�
ð65Þ

and its inverse

teðzÞ ¼ to þ
W
∘
L0

W
∘
L1

z −
W
∘ 2

L0W
∘
L2

2W
∘ 3

L1

z2

−
W
∘
L1W

∘
L3 − 3W

∘ 2

L2

6W
∘ 5

L1

W
∘ 3

L0z3 þOðz4Þ: ð66Þ

Here we now further demand that also the inverse W
∘ −1
L of

W
∘
L appearing in the underlying Eq. (59) can be developed

into a Taylor series around the corresponding point W
∘
L0,

which in particular implies W
∘
L1 ≠ 0, since otherwise W

∘ −1
L

would not be differentiable at this point. The radius r0 takes
the form

r0ðteÞ ¼ −W
∘
0ðte − toÞ −

1

2
W
∘
1ðte − toÞ2

−
1

6
ðW∘ 2 − kW

∘ 3

0Þðte − toÞ3 þOððte − toÞ4Þ: ð67Þ

This yields the magnitude

mðteÞ ¼ const: −
5

2
log10Lþ 5log10ðte − toÞ

þ 5

2 ln 10

0
@W

∘
1

W
∘
0

þ 2
W
∘
L1

W
∘
L0

1
Aðte − toÞ

þ 5

24 ln 10

0
@4

W
∘
2

W
∘
0

þ 12
W
∘
L2

W
∘
L0

− 3
W
∘ 2

1

W
∘ 2

0

− 12
W
∘ 2

L1

W
∘ 2

L0

− 4kW
∘ 2

0

1
Aðte − toÞ2 þOððte − toÞ3Þ; ð68Þ

where all constant terms, including constant prefactors
appearing inside logarithms, have been absorbed into the
term called “const.” Finally, we find the magnitude-redshift
relation

mðzÞ ¼ 5log10zþ
5

2 ln 10

�
2þW

∘
1W
∘
L0

W
∘
0W
∘
L1

−
W
∘
L0W

∘
L2

W
∘ 2

L1

�
z

þOðz2Þ − 5

2
log10Lþ const: ð69Þ

Comparing the coefficient in brackets with the conven-
tionally used expression 1 − q in terms of the deceleration
parameter q finally yields

q ¼ W
∘
L0W

∘
L2

W
∘ 2

L1

−
W
∘
1W
∘
L0

W
∘
0W
∘
L1

− 1: ð70Þ

We see that the value of the deceleration parameter at the
observation time is fully determined by the first three

coefficients of the Taylor expansion of the functionsW
∘
and

W
∘
L. This result holds for any cosmologically symmetric

Finsler spacetime with a well-defined null structure and

W
∘
0 ≠ 0, W

∘
L1 ≠ 0, so that the procedure above can be

applied.

D. Invariance under time reparametrization

Since we have used an arbitrary parametrization
for the cosmological time t in our derivation above,
we finally discuss the invariance of the result under
strictly monotonous reparametrizations t → t0ðtÞ of the
time coordinate, while leaving the spatial coordinates
r; θ;ϕ unchanged. Under this reparametrization the
cosmological coordinates transform to y0 ¼ y∂tt0 and
w0 ¼ w, where ∂tt0 > 0. The geometry function, which
is a scalar function on the tangent bundle, then trans-
forms as

L0ðt0ðtÞ; y0ðt; yÞ; w0ðwÞÞ ¼ L0ðt0; y∂tt0; wÞ ¼ Lðt; y; wÞ:
ð71Þ

For w ¼ 0 we find in particular

L
∘ 0ðt0ðtÞÞ ¼ L0ðt0ðtÞ; 1; 0Þ ¼ Lðt; ð∂tt0Þ−1; 0Þ

¼ Lðt; 1; 0Þð∂tt0Þ−h ¼ L
∘ ðtÞð∂tt0Þ−h: ð72Þ

Similarly, we can determine W
∘ 0

from

0 ¼ L0ðt0ðtÞ; 1;W∘ 0ðt0ðtÞÞÞ ¼ Lðt; ð∂tt0Þ−1;W
∘ 0ðt0ðtÞÞÞ

¼ Lðt; 1;W∘ 0ðt0ðtÞÞ∂tt0Þð∂tt0Þ−h; ð73Þ

so that W
∘ 0ðt0ðtÞÞ ¼ W

∘ ðtÞð∂tt0Þ−1. In the following we
will drop the arguments whenever they are clear from
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the context, and simply write W
∘ ¼ W

∘ 0∂tt0 and

L
∘ ¼ L

∘ 0ð∂tt0Þh. Note in particular that

W
∘
L
0 ¼ W

∘ 0

jL∘ 0j1h
¼ W

∘

jL∘ j1h
¼ W

∘
L; ð74Þ

which proves that the redshift z in (52) is invariant, as
necessary for an observable quantity relating proper
time intervals. Also the luminosity L of the source is
invariant, as it is defined using the proper time of the
source. Equation (53) then implies that also the radiation
power P at the observation time is invariant. The Finsler
metric (54) is invariant, which can most easily be seen
from the transformations

dt ¼ dt0ð∂tt0Þ−1;
~Lðt; 0Þ ¼ ~L0ðt0; 0Þð∂tt0Þh;

~Lwwðt; 0Þ ¼ ~L0
w0w0 ðt0; 0Þð∂tt0Þh−2: ð75Þ

Hence, also the area (55), the flux (56), and finally the
magnitude (57) are invariant under reparametrization of
the time coordinate, as expected. We thus conclude that
also the magnitude-redshift relation mðzÞ, its series
expansion (69), and finally the deceleration parameter
(70) are invariant. To see this directly, one derives the
transformation rules

W
∘
0 ¼ W

∘ 0
0∂tt0jto ; W

∘
1 ¼ W

∘ 0
1ð∂tt0jtoÞ2 þW

∘ 0
0∂2

t t0jto ;
W
∘
L0 ¼ W

∘ 0
L0; W

∘
L1 ¼ W

∘ 0
L1∂tt0jto ;

W
∘
L2 ¼ W

∘ 0
L2ð∂tt0jtoÞ2 þW

∘ 0
L1∂2

t t0jto : ð76Þ

Inserting these relations into the expression (70) for the
deceleration parameter then yields

q¼W
∘
L0W

∘
L2

W
∘ 2

L1

−
W
∘
1W
∘
L0

W
∘
0W
∘
L1

−1¼W
∘ 0
L0W

∘ 0
L2

W
∘ 02
L1

−
W
∘ 0
1W
∘ 0
L0

W
∘ 0
0W
∘ 0
L1

−1¼ q0:

ð77Þ

This finally proves that also the deceleration parameter
is invariant under a reparametrization of the time
coordinate. We can thus apply our result to particular
examples of Finsler spacetimes and choose any suitable
parametrization for the cosmological time. This will be
done in the following section.

V. EXAMPLES

We now apply our calculation of the magnitude-redshift
relation and the deceleration parameter of a general

cosmological Finsler spacetime from the previous section
to particular examples. As a model independent example
we consider a general first order Finsler perturbation of
metric FLRW spacetime geometry, while afterwards we
study particular nonperturbative Finsler spacetime models.
The latter are split into two classes, those which have a light
cone structure identical to metric FLRW geometry, and
those which have a Finslerian light cone structure.
For all examples we calculateW

∘
by solving Eq. (47), and

then W
∘
L is given by W

∘
L ¼ W

∘ jL∘ j−1
h. Together they deter-

mine the magnitude-redshift relation and the deceleration
parameter according to Eq. (70). For convenience we
display the examples in their explicit coordinate form in
the adapted coordinates T and W defined in Eq. (13), and
add a comment on how they are defined covariantly in
terms of tensor fields on spacetime.

A. First order Finsler perturbations of FLRW geometry

As mentioned in the introduction of this article, when
Finsler spacetime geometries are analyzed one often uses
specific models, due to the large variety of possible Finsler
spacetime geometries. In addition to our analysis of specific
Finsler models in the previous and in the next subsection
we consider a general first order Finslerian perturbation of
FLRW geometry which takes the form

~LðT;WÞ ¼ ð−1þ aðTÞ2W2Þh2 þ ϵ ~GðT;WÞ; ð78Þ

where the function ~GðT;WÞ is generated from a function
Gðt; y; wÞ which is h-homogeneous and reversible with
respect to its last two arguments by setting

~GðT;WÞ ¼ 1

yh
Gðt; y; wÞ ¼ GðT; 1;WÞ; ð79Þ

in the same way as ~L is defined through L. For ϵ ¼ 0 the
geometry derived from ~LðT;WÞ is the usual metric FLRW
geometry for any choice of h; see [49]. However, to obtain
well-defined Finsler spacetimes we need to require that h ¼
2n for some integer n ≥ 1. Observe that if n is itself even,
then ~L is positive, while for n being odd ~L is negative along
the future pointing timelike curves. Both cases are of
phenomenological interest. For n ¼ 1 the example is a
Finsler perturbation of FLRW geometry, while for n ¼ 2
the example includes first order bimetric geometries like
the geometry which describes the propagation of light in an
uniaxial crystal [59].
Now determining W

∘
from the light cone condition

~LðT;W∘ Þ ¼ 0 requires solving

W
∘ 2 ¼ 1þ ð−ϵ ~GðT;W∘ ÞÞ1n

aðTÞ2 : ð80Þ
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Since we are interested in the effect of the Finsler
modification ~G on the observables in FLRW geometry

we make the Ansatz W
∘ ¼ 1

aðTÞ þW
∘
G. We find that to the

first perturbation order in W
∘
G the equation is solved by

W
∘
G ¼

�
2aðTÞ

�
−ϵ ~G

�
T;

1

aðTÞ
��

−1
n

−
2∂W

~GðT; 1
aðTÞÞ

h ~GðT; 1
aðTÞÞ

�−1

¼ 1

2aðTÞ
�
−ϵ ~G

�
T;

1

aðTÞ
��1

n þOðϵ2
nÞ: ð81Þ

Thus the normalized W
∘
L becomes to leading order in ϵ

W
∘
L ¼W

∘ jL∘ j− 1
2n ¼W

∘ �
1− ð−1Þn ϵ

2n
~GðT;0ÞþOðϵ2Þ

�
≈W

∘
;

ð82Þ

since the leading order in ϵ in the expression (81)
contributes with ϵ

1
n, which for small ϵ has a larger effect

than the order ϵ term in W
∘ ð−1Þn ϵ

2n
~GðT; 0Þ. The only case

in which this is not true is for n ¼ 1, where we find

W
∘
L ≈W

∘ þ ϵ

2aðTÞ
~GðT; 0Þ; ð83Þ

since here the order ϵ contribution from − ϵ
2
W
∘
~GðT; 0Þ is of

the same order as the relevant order in W
∘
and so cannot be

neglected.
From these expressions we can derive the ingredients

to calculate the deceleration parameter q according to
Eq. (70), which simplifies for all models with n ≠ 1 to

qjn≠1 ¼
W
∘
0W
∘
2

W
∘ 2

1

− 2: ð84Þ

It is convenient to introduce a series expansion of the form

aðTÞ ¼ a0

�
1þH0ðT − ToÞ −

1

2
H2

0q0ðT − ToÞ2
�

þOððT − ToÞ3Þ ð85Þ

around the current time To in terms of the current time
Hubble parameterH0 and deceleration parameter q0 for the
scale factor aðTÞ. In terms of these expansion parameters
we find

qjn≠1¼ q0þ
ϵ
1
n

2n2
1

a20H
2
0

ð− ~G00Þ1n−2fð1−nÞðH0
~G01−a0 ~G10Þ2

þna20 ~G00
~G20þn ~G00½H2

0ð ~G02−a0q0 ~G01Þ
þ2a0H0ða0ðq0þ1Þ ~G10− ~G11Þ�gþOðϵ2

nÞ; ð86Þ

where, for the coefficients of the Taylor expansion of ~G, we
use the shorthand notation

~Gij ¼
∂iþj ~G
∂Ti∂Wj

�
To;

1

aðToÞ
�
: ð87Þ

In the case n ¼ 1 we must employ the general formula

qjn¼1 ¼
W
∘
L0W

∘
L2

W
∘ 2

L1

−
W
∘
1W
∘
L0

W
∘
0W
∘
L1

− 1; ð88Þ

which, using the notation introduced above, yields

qjn¼1 ¼ q0 −
ϵ

2

1

a20H
2
0

fa20 ~G20 þH2
0ð ~G02 − a0q0 ~G01Þ

þ 2a0H0½a0ðq0 þ 1Þ ~G10 − ~G11�
− a20H0ð1þ 2q0ÞG

∘
10 − a20G

∘
20g þOðϵ2Þ; ð89Þ

where

G
∘
ij ¼

∂iþj ~G
∂Ti∂Wj ðTo; 0Þ: ð90Þ

Now the deceleration parameter is a direct observable
quantity for which we derived the influence of a
Finslerian spacetime geometry to leading order. This yields
the possibility to compare the modification of q with the
experimental data and to identify viable Finsler perturba-
tions which are in agreement with observations. This result
is one further step in the systematic phenomenological
analysis of Finsler perturbations of the Lorentzian metric
geometry of spacetime.

B. FLRW metric null structure

One way to construct Finsler spacetime geometries is to
multiply the usual metric length measure by another
function on the tangent bundle. Common examples in
the literature are the following:

(i) The FLRW length measure itself

~LðT;WÞ ¼ −1þ aðTÞ2W2; ð91Þ

which is a metric Finsler spacetime L ¼ gabðxÞyayb.
In this example jL∘ j ¼ ~LðT; 0Þ ¼ 1 and so W

∘
L ¼ W

∘
.

Using the notation introduced when discussing the
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perturbative example, one easily finds forW
∘
and the

deceleration parameter

W
∘ ¼ 1

aðTÞ ; q ¼ q0: ð92Þ

(ii) Bogoslovsky’s length measure [60], respectively, the
length measure of very special relativity [61], which
was recognized in Finsler geometry [37] and also
analyzed in cosmological context earlier [62],

~LðT;WÞ ¼ ð−1þ aðTÞ2W2ÞbðTÞ2: ð93Þ

This length measure is constructed from a product
between a metric length measure and a one-form,
L ¼ ðgabðxÞyaybÞðAcðxÞycÞ2. Its null structure is
given by the union of the FLRW light cone and
the set of vectors X which are annihilated by the one-
form A. In the discussion of the Bogoslovsky’s
length it is usually assumed that light propagates
only on the metric light cone, which is the FLRW
light cone here. On this part of the null structure the

solution for W
∘

is the same as in the FLRW case;

however, since W
∘
L ≠ W

∘
,

W
∘ ¼ 1

aðTÞ ; W
∘
L ¼ 1

aðTÞ
1ffiffiffiffiffiffiffiffiffiffiffiffijbðTÞjp ; ð94Þ

the deceleration parameter is different in this class of
Finsler spacetimes. If we use the same series
expansion (85) for a and a Taylor expansion of
the form

bðTÞ ¼
X∞
i¼0

dib
dTi

				
T¼To

ðT − ToÞi
i!

¼
X∞
i¼0

bi
ðT − ToÞi

i!

ð95Þ

for b, we obtain

q ¼
H2

0q0 þ 1
2
ðb1b0Þ

2 −H0
1
2
b1
b0
− 1

2
b2
b0

ðH0 þ 1
2
b1
b0
Þ2

¼ q0 −
H0ð1þ 2q0ÞB1 þ B2

2H2
0

þOðB2Þ: ð96Þ

In the last expression we approximated the free
function bðTÞ by bðTÞ ¼ 1þ BðTÞ and linearized q
in BðTÞ, using a Taylor expansion of the same form
as (95) for b. We needed to expand bðTÞ around 1
since this is the case in which the Bogoslovsky
length measure is identical to the FLRW length
measure. An expansion around bðTÞ ¼ 0 does not
make sense since then the length measure would
vanish.

(iii) An exponential modification of FLRW geometry,
inspired by the example discussed in [34],

~LðT;WÞ¼ ð−1þaðTÞ2W2Þð1þe
− ðbðTÞÞ2
j−1þaðTÞ2W2 jÞ; ð97Þ

which is a product of the metric length measure and
the exponential of a zero-homogeneous function on
the tangent bundle,

L ¼ gabðxÞyayb
�
1þ exp

�
−

½AaðxÞya�2
jgabðxÞyaybj

��
; ð98Þ

determined by a one-form A and a metric g. AgainW
∘

is identical to the FLRW case

W
∘ ¼ 1

aðTÞ ; W
∘
L ¼

1

aðTÞ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þe−bðTÞ2Þ
q ; ð99Þ

and q is different,

q¼ð1þeb
2
0Þ2H2

0q0þð1þeb
2
0Þðb21þH0b1b0þb2b0Þ−2eb

2
0b20b

2
1

½H0ð1þeb
2
0Þ−b1b0�2

¼ q0þ
b21þb0½H0ð1þ2q0Þb1þb2�

2H2
0

þOðb4Þ: ð100Þ

In the last line we expanded q into the dominating order in
b around b ¼ 0, which is the quadratic order for this
exponential length element.
These examples nicely show how a Finslerian spacetime

geometry changes the prediction of the magnitude redshift
relation, even though the light cone is not altered in these
geometries compared to FLRW spacetime. Interestingly
one finds for both, that in case b1 ¼ b2 ¼ 0, i.e., the first

and second derivatives of the function b at the observation
time vanish, the deceleration parameter is identical to the
one predicted by FLRW spacetime geometry, q ¼ q0.
For a more fundamental theoretical prediction the only

missing ingredients are dynamical equations which deter-
mine aðTÞ and bðTÞ, just as the Einstein equations
determine the scale factor in general relativity. Finsler
generalization of the Einstein equations have been
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developed, for example, in [49] or [31]; however, solving
them for these examples is still work in progress and could
not be achieved so far.

C. Finslerian null structure

Finsler spacetime geometries which alter the null struc-
ture of metric spacetime geometry more fundamentally
have different solutions for W

∘
from Eq. (47), as we have

just seen. Here we consider the further simple examples of
nonmetric geometry functions:

(i) The most general fourth order polynomial
geometry

~LðT;WÞ ¼ −1þ aðTÞ2W2 þ bðTÞ4W4 ð101Þ

is a Finsler spacetime geometry based on a
general fourth rank tensor on spacetime, L ¼
GabcdðxÞyaybycyd. In this example the calculation
of the deceleration parameter becomes surprisingly

simple sinceW
∘ ¼W

∘
L by the fact that jL

∘ j¼j ~LðT;0Þj¼
1. Solving for W

∘
yields

W
∘ 2 ¼ 1

2b4
ð−a2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4 þ 4b4

p
Þ: ð102Þ

We consider in particular the case b ≪ 1 of a small
perturbation of a geometry function given by

Lðt; y; wÞ ¼ y4 ~Lðt; w=yÞ ¼ y2ð−y2 þ aðtÞ2w2Þ;
ð103Þ

which as a factor contains a FLRW metric geometry
with scale factor a. The deceleration parameter is
given by

q ¼ q0 þ 2
b20

a40H
2
0

fH2
0ðq0 − 3Þb20 − 3b21

− b0½2H0ðq0 − 3Þb1 þ b2�g þOðb8Þ; ð104Þ

where the lowest perturbationorder is givenbyOðb4Þ.
(ii) An alternative fourth order ansatz is given by

~LðT;WÞ ¼ −1þ 2aðTÞ2W2 − ½aðTÞ − bðTÞ�4W4;

ð105Þ

which leads to the solution

W
∘ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bð2a − bÞð2a2 − 2abþ b2Þ

pq :

ð106Þ

Again W
∘ ¼ W

∘
L as above. For b ≪ a this can be

viewed as a perturbation of the geometry function

Lðt; y; wÞ ¼ −ð−y2 þ aðtÞ2w2Þ2; ð107Þ

which is essentially the square of the FLRW metric
geometry function. Using the series expansion (85)
and the Taylor expansion (95) we then find the
deceleration parameter

q ¼ q0 þ
H2

0ð2q0 þ 1Þb20 þ b21 − 2b0½H0ð2q0 þ 1Þb1 þ b2�
4H2

0

ffiffiffiffiffiffiffiffiffiffi
a0b30

q þOðbÞ: ð108Þ

Note that the lowest perturbation order is given by Oð ffiffiffi
b

p Þ.
(iii) Randers geometry is also discussed in the literature

[63] andknown in physics as point particle action for a
charged particle in an external electric potential,

~LðT;WÞ¼ 1

ðytÞ2

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jgabðxÞyaybj
q

þAaðxÞya
�2

¼

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j−1þaðTÞ2W2j
q

þbðTÞ
�2
; ð109Þ

where we require bðTÞ < 0 in order to obtain
directions for which ~L becomes zero. Just as the
Bogoslovsky example it is built from a metric and a
one-form, L ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gabðxÞyayb

p
þ AaðxÞyaÞ2. Ob-

serve that the Randers length does not define a
Finsler spacetime according to our definition of
Finsler spacetimes given in Sec. II A: the geometry

function is neither smooth on TMnf0g nor revers-
ible. However, we can derive the deceleration
parameter of a cosmological Randers geometry here
with the methods developed throughout this article,
since for the derivation we only need the weaker
condition that L is smooth on its nontrivial null
directions and on the observer at rest.

For W
∘

and W
∘
L we obtain

W
∘ 2 ¼ 1 − b2

a2
; W

∘
L ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2

p

a
1

ð1þ bÞ ; ð110Þ

which yield once more by using Eq. (70) the
deceleration parameter q,
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q ¼ H2
0q0ðb20 − 1Þ2 þ b20ðH0b1 þ b2Þ −H0b1 − b2 − 2b0b21 − b0b1½H0ð1 − b20Þ þ b1�

½H0ð1 − b20Þ þ b1�2

¼ q0 −
H0ð1þ 2q0Þb1 þ b2

H2
0

þOðb2Þ: ð111Þ

In the last line we again expanded q to first order in b
around b ¼ 0. Surprisingly to first relevant order in
the Finslerian effect the q derived from the Randers
length element and from the Bogoslovsky length
element are nearly the same. The difference lies in
a factor of 1

2
. As in the examples with the FLRW light

cone structure b1 ¼ b2 ¼ 0 implies q ¼ q0.
It is clear that the interplay between the free functions in

the length measure determines the redshift and hence the
deceleration parameter. Again a quantitative statement can
be made only after obtaining explicit expressions for these
functions by solving the Finslerian gravitational dynamics.
For the models presented in this section a deviation from
the deceleration parameter as predicted by the standard
ΛCDM model derived in general relativity already appears

in the functional form of W
∘
, in contrast to the examples of

Sec. V B, where deviations enter only through W
∘
L.

VI. DISCUSSION

In this article we have discussed the geodesic motion and
the propagation of light in Finsler spacetimes with cos-
mological symmetry. We have derived the geodesic equa-
tion using coordinates adapted to the cosmological
symmetry, as well as a complete set of constants of motion
which can be used to characterize geodesics and to
reconstruct the geodesic equation. We have then discussed
light propagation and derived expressions for the magni-
tude and redshift of a light source, from which we have
obtained the magnitude-redshift relation for a general
cosmologically symmetric Finsler spacetime as the central
result of our work. In particular, we have derived a formula
for the deceleration parameter in terms of the Finsler null
structure.
From this general result we have derived the magnitude-

redshift relation and deceleration parameter for several
examples of Finsler spacetimes. In particular, we have
discussed FLRW metric spacetime and its general pertur-
bation, Bogoslovsky and Randers length measures, as well
as exponential and fourth order corrections to FLRW
spacetime. We have seen that at the kinematic level the
deceleration parameter of several models agrees with that
of FLRW metric spacetime, provided that they share the
same null structure. For other models, which we treated as
perturbations of FLRWmetric spacetime, we have obtained
leading order corrections to the deceleration parameter.
Note that our treatment of Finsler spacetimes has so far

remained purely kinematic, since we have not assumed any

particular action functional or dynamics for the Finsler
geometry. For a full treatment of Finsler cosmology, of
course, dynamics must also be taken into account. We leave
this full treatment, based on Finsler gravity action func-
tionals as given, e.g., in [31,49], for further investigation.
Our results allow a confrontation of cosmologically

symmetric Finsler spacetimes with the most recent obser-
vations of supernovae [3–5], for which magnitude and
redshift have been determined. The simplest approach
would be a comparison of the deceleration parameters
we have obtained to the values determined by previous
analyses of supernova data [6–11]. However, it should be
noted that these values, in general, depend on the
assumption of a particular kinematic model for the expan-
sion of the universe, and may even depend on the para-
metrization of the magnitude-redshift relation, which
complicates the analysis and makes a thorough, model-
dependent study inevitable [64–66]. We will not enter this
discussion here, as this would exceed the scope of this
article, and we leave this topic for future research.
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APPENDIX A: COMPLETE LIFTS OF THE
SYMMETRY GENERATORS

In manifold induced coordinates the complete lifts of the
generators (6) of rotations displayed in Sec. II B are

ρC1 ¼ sinϕ∂θ þ cot θ cosϕ∂ϕ þ yϕ cosϕ∂̄θ

−
�
yθ

cosϕ
sin2θ

þ yϕ cot θ sinϕ

�
∂̄ϕ; ðA1aÞ

ρC2 ¼ − cosϕ∂θ þ cot θ sinϕ∂ϕ þ yϕ sinϕ∂̄θ

−
�
yθ

sinϕ
sin2θ

− yϕ cot θ cosϕ

�
∂̄ϕ; ðA1bÞ

GEODESICS AND THE MAGNITUDE-REDSHIFT RELATION … PHYSICAL REVIEW D 95, 104021 (2017)

104021-15



ρC3 ¼ ∂ϕ; ðA1cÞ

while the complete lifts of the translation generators (7) are

τC1 ¼χsinθcosϕ∂rþ
χ

r
cosθcosϕ∂θ−

χ

r
sinϕ
sinθ

∂ϕ

þðyrχ0sinθcosϕþyθξcosθcosϕ−yϕξsinθsinϕÞ∂̄r

þ
�
yr
�
χ

r

�0
cosθcosϕ−yθ

χ

r
sinθcosϕ−yϕ

χ

r
cosθsinϕ

�
∂̄θ

þ
�
−yr
�
χ

r

�0sinϕ
sinθ

þyθ
χ

r
sinϕ
sin2θ

cosθ−yϕ
χ

r
cosϕ
sinθ

�
∂̄ϕ;

ðA2aÞ

τC2 ¼χsinθsinϕ∂rþ
χ

r
cosθsinϕ∂θþ

χ

r
cosϕ
sinθ

∂ϕ

þðyrχ0sinθsinϕþyθξcosθsinϕþyϕξsinθcosϕÞ∂̄r

þ
�
yr
�
χ

r

�0
cosθcosϕ−yθ

χ

r
sinθsinϕþyϕ

χ

r
cosθcosϕ

�
∂̄θ

þ
�
yr
�
χ

r

�0cosϕ
sinθ

−yθ
χ

r
cosϕ
sin2θ

cosθ−yϕ
χ

r
sinϕ
sinθ

�
∂̄ϕ; ðA2bÞ

τC3 ¼ −χ cos θ∂r þ
χ

r
sin θ∂θ − ðyrχ0 cos θ − yθχ sin θÞ∂̄r

þ
�
yr
�
χ

r

�0
sin θ þ yθ

χ

r
cos θ

�
∂̄θ; ðA2cÞ

where we used the abbreviation χ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p
and primes

denote derivatives with respect to r.

APPENDIX B: THE GEODESIC SPRAY

We want to calculate the components of the geodesic
spray Ga discussed in Sec. III B in manifold induced
coordinates ðt; r; θ;ϕ; yt; yr; yθ; yϕÞ on TM

Ga ¼ 1

2
gLabðym∂m∂̄bL − ∂bLÞ: ðB1Þ

The derivatives with respect to the r, θ, and ϕ coordinates,
as well as their corresponding directions yr, yθ, yϕ are

∂αL ¼ ∂wL
∂αw2

2w
;

∂̄αL ¼ ∂wL
∂̄αw2

2w
¼ ∂wL

yα
w
; ðB2Þ

where yα ¼ wαβyβ and wαβ ¼ 1
2
∂̄α∂̄βw2 is the spatial part of

the FLRW metric. The indices α; β;…, run over 1 ∼ r,
2 ∼ θ, and 3 ∼ ϕ. All higher derivatives can be decomposed
in an analogue way. Expanding the components of the
geodesic spray yields

Ga ¼ 1

2
gLat

�
yt∂t∂̄tLþ ∂w∂̄tL

yα∂αw2

2w
− ∂tL

�

þ 1

2

gLaαyα
w

�
yt∂t∂wLþ ∂w∂wL

yβ∂βw2

2w

�

þ 1

2
gLaαðyβ∂β∂̄αw − ∂αwÞ∂wL: ðB3Þ

The missing ingredient to completely calculate the
components of the geodesic spray is the inverse of
the L metric. Observe that the L metric takes the
following form:

gLab¼
1

2
∂̄a∂̄bL∼

0
B@

1
2
∂̄t∂̄tL

1
2
∂̄t∂wL

yα
w

1
2
∂̄t∂wL

yβ
w

∂wL
2w wαβþ1

2

�
∂w∂wL−

∂wL
w

�
yα
w
yβ
w

1
CA

¼
�

A Xα

Xβ hαβ

�
: ðB4Þ

The inverse of a matrix of this form can be expressed in
terms of the inverse hαβ of hαβ and Xα ¼ hαμXμ

gLab ¼
 1

A−h−1ðX;XÞ − Xα

A−h−1ðX;XÞ

− Xβ

A−h−1ðX;XÞ hαβ þ XαXβ

A−h−1ðX;XÞ

!
: ðB5Þ

Identifying the abbreviations with their definitions in
terms of derivatives acting on L we obtain

A ¼ 1

2
∂̄t∂̄tL; ðB6aÞ

hαβ ¼ 2

�
w

∂wL
wαβ −

ð∂w∂wL − ∂wL
w Þ

w∂wL∂w∂wL
yαyβ

�
; ðB6bÞ

Xα ¼ 1

2w
∂̄t∂wLyβhαβ ¼

yα

w
∂̄t∂wL
∂w∂wL

; ðB6cÞ

h−1ðX;XÞ ¼ XαXα ¼
1

2

ð∂̄t∂wLÞ2
∂w∂wL

: ðB6dÞ

We now use these expressions to further simplify the
components of the geodesic spray (B3),

Gt ¼ 1

2
gLtt
�
yt∂t∂̄tLþ ∂w∂̄tL

yα∂αw2

2w
− ∂tL

�

−
1

2
gLtt

∂̄t∂wL
∂w∂wL

�
yt∂t∂wLþ ∂w∂wL

yβ∂βw2

2w

�

¼ 1

2
gLtt
�
yt∂t∂̄tL −

∂̄t∂wL
∂w∂wL

yt∂t∂wL − ∂tL

�
: ðB7Þ
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Additionally we can use the homogeneity of L which implies yt∂̄tL ¼ hL − w∂wL to finally find

Gt ¼ ðh − 1Þ
2

gLtt

∂w∂wL
ð∂tL∂w∂wL − ∂wL∂t∂wLÞ ¼ ðh − 1Þ ∂tL∂w∂wL − ∂wL∂t∂wL

∂w∂wL∂̄t∂̄tL − ð∂w∂̄tLÞ2
: ðB8Þ

The spatial components of the geodesic spray are

Gα ¼ −
1

2
gLttXα

�
yt∂t∂̄tL − ∂tL −

∂̄t∂wL
∂w∂wL

ðyt∂t∂wLÞ
�

þ yα

w∂w∂wL

�
yt∂t∂wLþ ∂w∂wL

yβ∂βw2

2w

�
þ wwαλ

�
yβ∂β

∂̄λw2

2w
−

1

2w
∂λw2

�

¼ yα

w∂w∂wL

�
yt∂t∂wLþ ∂w∂wL

yβ∂βw2

2w
−Gt∂̄t∂wL

�
þ wwαλ

�
yβ∂β

∂̄λw2

2w
−

1

2w
∂λw2

�

¼ yα

w

�
yt

∂t∂wL
∂w∂wL

þ yβ∂βw2

2w
− Gt ∂̄t∂wL

∂w∂wL

�
þ wwαλ

�
yβ∂β

yλ
w
−

1

2w
∂λw2

�

¼ yα

w

�
yt

∂t∂wL
∂w∂wL

þ yβ∂βw2

2w
− Gt ∂̄t∂wL

∂w∂wL

�
þ wαλ

�
yβ∂βyλ −

yλ
2w2

yβ∂βw2 −
1

2
∂λw2

�

¼ yα

w

�
yt

∂t∂wL
∂w∂wL

− Gt ∂̄t∂wL
∂w∂wL

�
þ 1

2
yβyσwαλð∂βwλσ þ ∂σwλβ − ∂λwβσÞ: ðB9Þ

APPENDIX C: RADIAL GEODESICS

Here we present the radial geodesics derived in Sec. III E
in manifold induced coordinates, in which the geodesic
equations take the form

ẍa þ Gaðx; _xÞ ¼ 0: ðC1Þ
Since θ;ϕ; yθ, and yϕ are fixed to be ðπ

2
; 0; 0; 0Þ we first

check, with the help of Eq. (B9), that the corresponding
geodesic equations are satisfied,

θ̈þGθ ¼ 0þ2wwθθ

�
_r∂r

�
1

w
r2 _θ

�
−
1

w
r2 sinθcosθ _ϕ2

�
¼ 0;

ðC2aÞ

ϕ̈þ Gϕ ¼ 0þ 2wwϕϕ _r∂r

�
1

w
r2 sin θ2 _ϕ

�
¼ 0: ðC2bÞ

The remaining two geodesic equations are

̈tþGt ¼ 0;

̈rþGr ¼ ̈rþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p �
_t
∂t∂wL
∂w∂wL

− Gt ∂̄t∂wL
∂w∂wL

�

þ _r2
kr

1 − kr2
¼ 0; ðC3Þ

where Gt is given in Eq. (B8) and we used the fact that

1

2
wrr∂rwrr ¼

kr
1 − kr2

: ðC4Þ

In addition we have for radial geodesics

_r ¼ yr ¼ w
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p
; ðC5Þ

which implies that

̈r ¼ _w
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p
−w2kr: ðC6Þ

Hence, the radial equation simplifies to

_wþ
�
_t
∂t∂wL
∂w∂wL

− Gt ∂̄t∂wL
∂w∂wL

�
¼ 0: ðC7Þ

This is consistent with the fact that for radial geodesics we
have one remaining nonvanishing constant of motion
C1 ¼ ∂wL ¼ yh−1 ~Lw, which implies

0 ¼ d
dλ

C1 ¼ ∂t∂wL_tþ ∂̄t∂wL̈tþ ∂w∂wL _w: ðC8Þ

Solving for _w then yields

_w ¼ ð−∂t∂wL_tþ ∂̄t∂wLGtÞ 1

∂w∂wL
: ðC9Þ

Employing the fact that C0 ¼ L itself is constant along the
geodesics allows one to eliminate the _t in terms of t and w
from the equations. Thus to solve for radial geodesics on a
homogeneous and isotropic Finsler spacetime it suffices to
solve ∂wLðt; _t; wÞ ¼ const for wðtÞ. This expression then
can be integrated to obtain rðtÞ.
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