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Time evolution of open quantum many-body systems

Vincent R. Overbeck* and Hendrik Weimer
Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstraße 2, 30167 Hannover, Germany

(Received 2 October 2015; published 11 January 2016)

We establish a generic method to analyze the time evolution of open quantum many-body systems. Our approach
is based on a variational integration of the quantum master equation describing the dynamics and naturally
connects to a variational principle for its nonequilibrium steady state. We successfully apply our variational
method to study dissipative Rydberg gases, finding very good quantitative agreement with small-scale simulations
of the full quantum master equation. We observe that correlations related to non-Markovian behavior play a
significant role during the relaxation dynamics towards the steady state. We further quantify this non-Markovianity
and find it to be closely connected to an information-theoretical measure of quantum and classical correlations.
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I. INTRODUCTION

Understanding the time evolution of quantum many-body
systems is currently one of the most challenging tasks in
both atomic and condensed matter physics, as concepts and
tools developed for equilibrium systems are largely inappli-
cable. Open quantum systems exhibit even greater inherent
complexity owing to the necessity to describe these systems
in terms of statistical ensembles [1]. Here, we present a
completely generic approach to analyze the time evolution
of open quantum many-body systems, based on a variational
principle.

The tremendous experimental progress in the manipulation
of atomic quantum gases has allowed physicists to reach
a regime where strong interactions can be combined with
controlled dissipative processes [2–6], offering the potential
to dissipatively prepare novel classes of quantum many-body
states [7–9]. Recently, this experimental progress has been
especially pronounced in the context of strongly interacting
Rydberg gases [10–15], as the interaction and dissipation
properties of Rydberg atoms can be widely tuned [16].
Consequently, dissipative Rydberg gases have emerged as
an ideal environment to study strong interactions in an open
quantum many-body system [17–27].

In this paper, we present a generic framework to investigate
the time evolution of open quantum many-body systems. Our
treatment naturally connects to a variational principle for the
nonequilibrium steady state of the dynamics [28], and allows
us to reduce the exponentially diverging number of degrees of
freedom of the full time evolution to a small number of relevant
parameters. We apply our method to the both experimentally
and theoretically important problem of dissipative Rydberg
gases and compare our results to small scale numerical
simulations of the full quantum many-body problem. In our
analysis, we find that the dynamics is inherently linked to the
appearance of non-Markovian behavior within these systems,
which persists even in the nonequilibrium steady state of the
evolution. Remarkably, we observe that this non-Markovianity
is closely related to an information-theoretical measure of the
quantum and classical correlations present in the system.

*vincent.overbeck@itp.uni-hannover.de

II. VARIATIONAL TREATMENT OF A RYDBERG GAS

We consider the dynamics of open quantum systems, which
is described in terms of a quantum master equation for the
density operator ρ, according to a first order differential
equation dρ/dt = Lρ, with the Liouvillian L being the
generator of the dynamics. To be explicit, we focus on the
case where the Liouvillian is given in Lindblad form, i.e.,

Lρ = −i[H,ρ] +
∑

i

(
ciρc

†
i − 1

2 {c†i ci ,ρ}), (1)

where H is the Hamilton-operator, the ci are the jump
operators, describing the spontaneous decay of the Rydberg
state. In the following, we will be interested in a numerical
integration of the quantum master equation. Here, we will
employ the implicit midpoint method [29]

ρ(t + τ ) = ρ(t) + τ

2
L[ρ(t) + ρ(t + τ )] + O(τ 3), (2)

where t is the time and τ the integration step size, which we find
to give the best tradeoff between accuracy of the integration
and computational cost. Within our variational approach, we
parametrize the density operator ρ(t + τ ) by a set of variational
parameters {αi}. Then, we find the variational solution by
minimizing the variational norm D given by

D ≡ ||ρ(t + τ ) − ρ(t) − τ

2
L[ρ(t) + ρ(t + τ )]||1 → min ,

(3)
where || · ||1 denotes the trace norm given by Tr{| · |}.
Crucially, the state reached in the long time limit satisfying
ρ(t + τ ) → ρ(t) corresponds to a direct variational principle
for the nonequilibrium steady state [28]. We also note that
our variational treatment is similar to recent approaches to
treat the time evolution of one-dimensional systems based
on matrix product states [30–32]. In higher dimensions,
previous approaches to analyze the time evolution of open
quantum many-body systems have largely been restricted to
a mean-field decoupling [33–35]; however such a mean-field
treatment is problematic for open systems [26,28,36–38].

In general, the computation of the variational solution is
still an exponentially complex task. However, it is possible
to obtain upper bounds to the variational solution, which can
be calculated efficiently and are known to produce reliable
results for the steady state [28,36]. As a basic example, let us
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consider a system consisting of N identical two-level systems,
interacting by a nearest-neighbor interaction. If we restrict our
variational manifold to the set of product states, we may write
the density operator as

ρp =
N∏

i=1

⎛
⎝1

2
+

∑
μ∈{x,y,z}

αμσ (i)
μ

⎞
⎠, (4)

where the σ (i)
μ are the Pauli matrices. Then, we find an upper

bound to the variational norm to be [28,36]

D �
∑
〈ij〉

||ρij (t + τ ) − ρij (t) − τL
[
ρij (t) + ρij (t + τ )

]||1,
(5)

where ρij = Tr �i �j {ρ} is the reduced two-site density operator
of the particles i and j . Variational states including nearest-
neighbor correlations can be expressed as

ρc =
N∏

i=1

ρi +
∑
〈ij〉

RCij +
∑

〈ij〉�=〈kl〉
RCijCkl + · · · (6)

with the superoperator R transforming 1i in ρi and nearest-
neighbor correlations Cij defined as ρij = ρi

↔
ρj +Cij . We

can express the reduced density operator ρij in terms of the
variational parameters as

ρc
ij = 1

4
+

∑
μ,ν

αμνσ
(i)
μ ⊗ σ (j )

ν . (7)

In the case of such correlated variational states, the corre-
sponding upper bound to the variational norm is found to be

D �
∑
〈ijk〉

||ρijk(t + τ ) − ρijk(t)

− τL[ρijk(t) + ρijk(t + τ )]||1, (8)

where ρijk = Tr �i �j �k{ρ} is the reduced three-site density oper-
ator. In a translationally invariant system, the minimization
reduces to a single three-site problem and can be solved
with only a small number of variational parameters, even for
infinitely large systems. The right hand side of Eq. (8) is a
measure of the error made during the integration arising from
the restriction of the dynamics to the variational manifold. In
our analysis, this error is always the most important one, e.g.,
errors from the finite step size τ are negligible in comparison.

In the following, we will exemplify the application of this
variational principle for the time evolution for open quantum
systems by investigating dissipative Rydberg gases. To be
specific, we consider a two-dimensional spin 1/2 model,
with the electronic ground state and a single Rydberg state
corresponding to the two spin states. We neglect van der Waals
interactions between the Rydberg states beyond the nearest-
neighbor distance. Then, we can express the Hamiltonian of
the system as

H = �

2

∑
i

σ (i)
x + �

2

∑
i

σ (i)
z + V

4

∑
ij

σ (i)
z σ (j )

z (9)

where � and � follow from the laser parameters and V is the
interaction strength between neighboring sites. The dissipative
terms in the Liouvillian are given in terms of jump operators
of the form ci = √

γ σ
(i)
− , describing the spontaneous decay of

the Rydberg state with a decay rate γ . In the following, we will

γt
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FIG. 1. Time evolution of the Rydberg density nr calculated via
the quantum trajectory method in a 4 × 4 lattice (solid) and the
variational methods including correlations ρc (dashed) and product
states ρp (dotted) (� = γ , V = 2 γ ).

focus on the situation where the spin Hamiltonian describes
an Ising model in a purely transverse field, i.e., � = 0.

The initial state is fully polarized into the electronic ground
state, corresponding to the typical experimental situation. In
the following, we compare the variational solutions based on
product states and on states including nearest-neighbor corre-
lations, to a quantum trajectory solution of the quantum master
equation for a 4 × 4 lattice [39]. The resulting time evolution
of the average Rydberg density nr is shown in Fig. 1. While
the steady state value is consistent in all three approaches, the
variational product state solution shows significant deviations
during the relaxation dynamics. Remarkably, the variational
approach based on correlated states shows much better
quantitative agreement with the full numerical simulation for
all times. This agreement is also found over a large region of
both � and V ; see the Appendix. Only in the regime with
� � γ and V � γ are there significant differences as the
system undergoes a liquid-gas phase transition of the steady
state [28]. However, in this regime, the quantum trajectories
solution cannot be expected to provide an accurate description
of the system in the thermodynamic limit, as strong finite
size effects are present in a 4 × 4 system [36]. These results
demonstrate that our variational approach can be used to
accurately approximate the time evolution of open quantum
many-body systems.

III. NON-MARKOVIANITY AND QUANTUM LINEAR
MUTUAL INFORMATION

Using our variational method, we can now investigate the
dynamics of the system in more detail. As the variational
state involving two-site correlations provides an accurate
description, we focus on the dynamics of the reduced two-
site density operator ρij as our subsystem of interest. The
interaction with the environment formed by the other sites
results in additional coherent and dissipative terms. In the most
general case, the equation of motion for the reduced density
operator can be written in the form [40]

d

dt
ρij = −i[H (t),ρij ]

+
d2−1∑
k=1

γk(t)

(
Lk(t)ρijL

†
k(t) − 1

2
{Lk(t)L†

k(t),ρij }
)

(10)
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FIG. 2. Lattice structure for the calculation of the non-
Markovianity f (t). The variational state ρij is being iterated over
a complete set of initial states. The environment interacting with the
sites i and j is given by the solution to the time evolution of the
system for correlated states ρc

kl ; see Fig. 1.

where d is the dimension of the state space, which in this case
realizes to d = 4, with the Lk(t) forming an orthonormal basis
according to

Tr[Lk(t)] = 0, Tr[L†
j (t)Lk(t)] = δjk, (11)

and with the Hermitian operator H (t) acting as an effective
Hamiltonian. In contrast to the Liouvillian in the Lindblad
form of Eq. (1), the generalized jump operators Lk(t) can
now become time dependent, and the generalized decay rates
γk(t) may become negative. The appearance of a negative
decay rate corresponds to the dynamics being non-Markovian;
conversely, if all decoherence rates are positive, the dynamics
is Markovian. This relationship provides a natural measure for
the degree of non-Markovianity of the dynamics,

f (t) = 1

2

d2−1∑
k=1

[|γk(t)| − γk(t)], (12)

which is the sum of all negative decay rates [40]. This quantity
is also closely related to other measures of non-Markovianity
[41].

For the calculation of the generalized decay rates γk(t),
we consider the dynamics of a complete set of linearly
independent states,

ρ00 = σ0 ⊗ σ0

4
; ρmn = 1 + σm ⊗ σn

4
m,n ∈ {0,x,y,z}; m + n �= 0, (13)

with σ0 being the identity. While the reduced density operator
ρij is iterated over a complete set, the state of the environment
is fixed to the variational solution ρc(t); see Fig. 2. This
results in a consistent treatment of the non-Markovianity
of the dynamics, which is governed by the correlations
between the two-site system of interest and the environment
formed by the remaining sites.

For the calculation of the non-Markovianity f (t), we
need to obtain both ρij (t) and ρ̇ij (t). Here, we can readily
compute ρij (t) using the variational method, from which we
can determine its derivative according to

ρ̇ij (t + τ ) = ρij (t + 2τ ) − ρij (t)

2τ
+ O(τ 3). (14)

The dynamics can be rewritten in the form

ρ̇ij (t + τ ) =
∑
αβ

cαβ(t + τ )Gαρij (t + τ )Gβ, (15)

0
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γt
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(t
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γ

V = γ/2
V = γ

FIG. 3. Time evolution of the non-Markovianity f (t) for an
interaction strength of V = γ /2 (solid) and V = γ (dashed) (� = γ ).

which is also valid in the case of non-Markovian dynamics
[42]. Here, the Gα form a complete set of Hermitian operators,
i.e., all possible combinations of the tensor product of two
Pauli matrices. By iterating over all possible initial states for
ρij , we can uniquely determine the matrix elements cαβ(t),
from which we can finally calculate the generalized decay
rates γk(t) [40]. Hence, the generalized decay rates and the
effective jump operators Lk(t) are calculated via the variational
solution of the full quantum many-body model and differ
from the purely Markovian jump operators in Eq. (1). Then,
according to Eq. (12), we find that the non-Markovianity f (t)
is nonzero during the entire evolution; see Fig. 3. We also
see that the degree of non-Markovianity is the largest for
intermediate times, which explains why product states—which
cannot generate non-Markovian dynamics—do not give an
accurate description of the relaxation dynamics. Remarkably,
the non-Markovianity even persists in the steady state.

Experimentally measuring the quantity f (t) is a challenging
task, requiring us to separate the dynamics of the two sites
of interest from their environment. Therefore, we aim to
construct a much more accessible quantity, which can serve
as a witness for the non-Markovianity of the nonequilibrium
steady state of the system. Here, we find that the quantum
linear mutual information (QLMI), which depends only on the
two-site density operator ρij fulfills this property. The QLMI
is a measure for the quantum and classical correlations in the
system and is defined as [43]

I = Sl(ρi ⊗ ρj ) − Sl(ρij ), (16)

according to the linear entropy

Sl(ρij ) = 1 − Tr{ρ2
ij }. (17)

Consequently, the QLMI is a natural extension of the
(linear) entanglement entropy for mixed quantum states. As
the QLMI is a functional of the reduced density operator ρij ,
it can be experimentally determined using standard quantum
state tomography. In our case, the relationship between the
QLMI and non-Markovianity can be understood as both being
intrinsically related to the correlations present in the system.
Indeed, we observe a good quantitative agreement, up to a
trivial constant factor, between the two measures; see Fig. 4.

Remarkably, this quantitative agreement is only found for
the QLMI; it is absent for other measures such as the von
Neumann mutual information IVN, where the linear entropy Sl

is replaced by the von Neumann entropy S(ρ) = −Tr{ρ ln ρ}.
We can understand this property by considering an expansion
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FIG. 4. Non-Markovianity f (V ) and the QLMI I (V ) of the
steady state for different values of the interaction strength V (� = γ ).

of ρij around product states,

ρij = ρi ⊗ ρj + εA, (18)

where ε is the expansion parameter and A = σ (i)
κ σ

(j )
λ is a tensor

product of two Pauli matrices. We now expand ρi and ρj in
terms of the variational parameters αμ, according to Eq. (4).
Then, we find for the von Neumann mutual information

IVN = ε Tr{A ln(ρi ⊗ ρj )} + O(ε2), (19)

which leads to a logarithmic dependence on the variational
parameters αμ. On the other hand, the non-Markovianity
follows from minimizing the variational norm D. Here, we
find that both D and the variational solution for ρij (t + τ )
are a bilinear function in terms of the parameters αμ, which is
incompatible with the logarithmic dependence predicted by the
von Neumann mutual information. In contrast, the leading term
of the QLMI remarkably reproduces this bilinear form, i.e.,

I = εακαλ + O(ε2). (20)

This singles out the QLMI as the correct information-
theoretical measure to serve as a witness for non-Markovianity

in our analysis. We also note that our focus on the linear
contribution in ε becomes less accurate for larger values of V :
In the case of sufficiently strong interactions, the coherent part
of the dynamics essentially becomes frozen and the stationary
state lies close to the pure state with all atoms being polarized
into their electronic ground state. This is accompanied by
a vanishing of the first order contribution to the QLMI, as
all coefficients except for αz approach zero. In this regime,
the QLMI and the non-Markovianity indeed begin to deviate
from each other; see Fig. 4, with the QLMI decaying faster
than the non-Markovianity.

IV. SUMMARY

In summary, we have successfully demonstrated a varia-
tional method for calculating the time evolution of open quan-
tum many-body systems. Our method allows for a systematic
treatment of correlations in the system, and thus gives access to
evaluate quantities associated with non-Markovian dynamics.
Finally, we wish to point out that our variational method is also
applicable to the time evolution of closed quantum many-body
systems in the absence of dissipation. Crucially, the description
in terms of correlated variational states generically leads to an
effective equation of motion that contains dissipative terms
that are formed by tracing out the environment formed by
the other sites of the system. We thus expect our method to
be highly relevant for the investigation of quench dynamics
[44–46], thermalization in closed quantum systems [47,48], or
quantum control of many-body systems [49].
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FIG. 5. Dynamics of the Rydberg density nr for � = γ , calculated by the variational approach (solid) and the quantum trajectory method
(dashed).
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FIG. 6. Rydberg density nr for � = 2 γ and several values of the interaction strength V .

APPENDIX: COMPARISON OF THE VARIATIONAL
METHOD AND THE QUANTUM TRAJECTORY METHOD

In the following, we compare the dynamics gained via the
variational principle with the dynamics of the full quantum
master equation. The latter is calculated by the quantum
trajectory method on a two-dimensional 4 × 4 lattice with
periodic boundary conditions.

Figs. 5–8 show the dynamics of the Rydberg density
for � = γ to � = 4 γ , respectively, for different interaction
strengths V . For larger values of � and V , the system
undergoes a phase transition of the nonequilibrium steady
state [28]. In that region, the variational solution does not
match very well with the solution of the full quantum master
equation anymore, as can be seen for the case of � = 3 γ

and � = 4 γ . This can be traced back to two reasons:
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FIG. 7. Rydberg density for � = 3 γ and several values of V .
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FIG. 8. Rydberg density for � = 4 γ and several values of V .

(i) Close to the phase transitions, long-range correlations
become relevant, whereas our variational approach only
takes nearest-neighbor correlations into account. (ii) At the

same time, the quantum trajectories solution is subject to
finite size effects, which also become important close to the
transition.
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P. Zoller, Quantum states and phases in driven open quantum
systems with cold atoms, Nat. Phys. 4, 878 (2008).

[8] F. Verstraete, M. M. Wolf, and J. Ignacio Cirac, Quantum com-
putation and quantum-state engineering driven by dissipation,
Nat. Phys. 5, 633 (2009).

[9] H. Weimer, M. Müller, I. Lesanovsky, P. Zoller, and H. P.
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