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Density-dependent synthetic magnetism for ultracold atoms in optical lattices
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Raman-assisted hopping can allow for the creation of density-dependent synthetic magnetism for cold neutral
gases in optical lattices. We show that the density-dependent fields lead to a nontrivial interplay between density
modulations and chirality. This interplay results in a rich physics for atoms in two-leg ladders, characterized by
a density-driven Meissner-superfluid to vortex-superfluid transition, and a nontrivial dependence of the density
imbalance between the legs. Density-dependent fields also lead to intriguing physics in square lattices. In
particular, it leads to a density-driven transition between a nonchiral and a chiral superfluid, both characterized by
nontrivial charge density-wave amplitude. We finally show how the physics due to the density-dependent fields
may be easily probed in experiments by monitoring the expansion of doublons and holes in a Mott insulator,
which presents a remarkable dependence on quantum fluctuations.
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I. INTRODUCTION

Orbital magnetism is crucial in condensed-matter physics.
In particular, it plays a fundamental role in the integer
and fractional quantum Hall physics [1–3], as well as in
related topics such as anyons [4] and topological insulators
[5,6]. Ultracold gases offer extraordinary possibilities for the
controlled experimental simulation of quantum many-body
systems [7]. However, experiments are typically performed
with neutral particles precluding the direct quantum simulation
of orbital magnetism. Interestingly, synthetic magnetism can
be engineered in cold neutral gases, currently constituting a
major topic in cold-atom research [8,9]. Proper laser arrange-
ments have been used to induce artificial magnetic fields and
spin-orbit coupling [10,11]. In addition, recent experiments
have demonstrated the creation of synthetic magnetism in
two-dimensional (2D) optical lattices [12,13], and realized
the Meissner-superfluid (MSF) to vortex-superfluid (VSF)
transition [14] with bosons in square optical ladders [15–17].

However, in all of these experiments, the fields created were
static since there was no feedback of the atoms on the field.
Nevertheless, such a dynamical feedback plays an important
role in various areas of physics, ranging from condensed
matter [18] to quantum chromodynamics [19]. In order to
experimentally simulate such dynamical gauge fields in optical
lattices, various ideas have been recently suggested [20–28].

While in those kinds of dynamical gauge fields it is
crucial to discriminate the particle and gauge fields’ degrees
of freedom, gauge fields determined by the particle density
appear in a variety of problems in condensed-matter physics,
including effective-field theories for the fractional quantum
Hall effect [29] and their extension to generalized statistics
in one dimension [30], spin models of quantum magnetism
[31], and chiral solitons [32]. Indeed, the atomic backaction
on the synthetic gauge field in experiments on cold gases is
expected to lead to this last type of excitations in Bose-Einstein
condensates [33].

From the experimental standpoint, Raman-assisted hopping
of cold atoms [12,13,15–17] can be used in 1D optical

lattices to realize occupation-dependent gauge fields that result
in effective anyon statistics and thus a clean experimental
realization of a 1D anyon-Hubbard model [34,35]. This
model presents a wealth of new physics, including statistically
induced phase transitions [34], novel superfluid phases [35],
asymmetric momentum distributions [36], and intriguing
dynamics [37–39].

In this paper, we show how a Raman-laser scheme can be
employed for the realization of density-dependent synthetic
magnetism (DDSM) in one and two dimensions and study its
effects in ladder and square lattice geometries. In particular,
we are interested in a system described by the following
Hamiltonian:

H = −
∑

r

[
txb

†
r+ex

eiφrnrbr + tyb
†
r+ey

br + H.c.
]

+ U

2

∑
r

nr(nr − 1) − μ
∑

r

nr, (1)

where br (b†r) is a bosonic annihilation (creation) operator
acting on site r = (i,j ) of the lattice, and nr = b

†
rbr is

the number operator. As discussed below, the experimental
implementation leads to a three-body hard-core constraint on
the on-site occupation, i.e., nr = 0,1,2. The first term in (1)
accounts for the hopping of bosons along the two directions of
the lattice, defined by lattice vectors ex = (1,0) and ey = (0,1),
while the second and third terms account for the usual on-site
Hubbard interaction and the chemical potential which fixes
the total density of the system, respectively [see Figs. 1(a)
and 1(b)]. As shown below, the density-dependent Peierls
phase of the hopping amplitude (eiφrnr ) can be chosen in
such a way that an effective net-magnetic flux per unit cell
is created. In particular, we will concentrate on the case where
the phases depend only on the position in the y direction, i.e.,
φr = φj . Due to the operator nature of this phase, quantum
fluctuations of the density will crucially affect the effective
magnetic flux. In this work, we demonstrate that DDSM has
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FIG. 1. (Color online) (a) Sketch of the density-dependent Peierls phases of the model (1) on a ladder [see also Eq. (11)] and (b) of the
2D square lattice. (c) Scheme of the creation of a density-dependent Peierls phase using Raman-assisted hoppings. (d) Raman-assisted hops
(i)–(iv) as discussed in the main text.

important consequences for bosons in two-leg ladders and
2D square lattices, leading to a nontrivial interplay between
chirality and density modulations.

The structure of the paper is as follows. In Sec. II, we
comment on the realization of DDSM using Raman-assisted
hopping. In Sec. III, we analyze the consequences of DDSM in
optical ladders, whereas in Sec. IV, we focus on the case of 2D
square lattices. In ladders, this interplay results in a density-
driven Meissner-superfluid (MSF) to vortex-superfluid (VSF)
transition with a nontrivial density imbalance between the legs.
In square lattices, DDSM induces a similar transition between
a nonchiral superfluid (SF) and a chiral superfluid (CSF), both
presenting a nontrivial density-wave amplitude. Section V is
devoted to the dynamics of particles and holes, which are
crucially affected by the DDSM, as illustrated by the expansion
of doublons and holes in a Mott insulator (MI), which presents
an intriguing dependence on quantum fluctuations. Finally, in
Sec. VI, we summarize our results.

II. DENSITY-DEPENDENT FIELDS

In this section, we propose a possible experimental scheme
for the realization of DDSM. First, we briefly review the
proposal for the creation of a density-dependent Peierls phase
in one-dimensional lattices, as described in Ref. [35], which
is the key ingredient for the realization of DDSM. In the
following sections, we discuss how this scheme naturally
extends to higher-dimensional lattices and how it may be
adjusted to effectively reproduce the density-dependent Peierls
phases of model (1).

A. Two-component system

We consider a bosonic species with two internal states,
|A〉 and |B〉. As shown below for the specific case of 87Rb,
we may choose |A〉 ≡ |F = 1,mF = −1〉 and |B〉 ≡ |F =
2,mF = −2〉. A detailed discussion of other species can be
found in the supplemental information of Ref. [35]. Both
components are confined to the lowest band of a tilted 1D
optical lattice along the x axis, of spacing D and depth
V0 = sER , with ER = �

2π2/2mD2 the recoil energy. The
Hilbert space of a single lattice site thus constitutes empty
sites (0), single occupied sites (A) or (B), doubly occupied sites

(AA), (BB), or (AB), etc. Without tilting, there is a hopping rate
J to nearest neighbors. The lattice tilting induces an energy
shift � from site to site, as shown in Fig. 1(c).

We denote as w(x − jD) the Wannier function at site
j . Due to the tilting, it is convenient to use Wannier-Stark
states. For J � �, the Wannier-Stark state centered at site
j may be approximated as ψj (x) � w(x − jD) + J

�
{w[x −

(j + 1)D] − w[x − (j − 1)D]} [40]. The 3D on-site wave
function at site j is �j (r) = ψj (x)ϕ(y,z), where ϕ(y,z) is
given by the strong transversal confinement. For simplicity,
we assume below ϕ(y,z) � w(y)w(z).

On-site interactions between atoms in states α and β (for
α, β = A, B) are characterized by the coupling constant

Uα,β = 4π�
2aα,β

m

∫
d3r|w(r)|4, with aα,β the corresponding

scattering length. For a sufficiently deep lattice, the evaluation
of the on-site interactions is simplified by means of the
harmonic approximation [7]: �(r) � (

√
πl)−3/2e−r2/l2

, where
l = Ds−1/4/π . Using this approximation, we obtain Uα,β �√

2π5/2s3/4 �
2aα,β

mD3 . As shown in Ref. [35], the scheme may as
well be realized with fermionic species; then only interspecies
on-site interactions UAB are possible.

B. Raman-assisted hopping

No direct hopping occurs since J � �,|� − Uα,β |.
Raman-assisted hopping is realized with the setup of Fig. 1(c)
formed by four lasers, Lj=1,...,4, with Rabi frequencies 
j =
|
j |eiφj , wave vectors kj , and frequencies ωj . L1,4 have linear
polarization and L2,3 have circular σ− polarization and couple
states |A〉 and |B〉 far from resonance. |B〉 is just affected
by lasers L1,4 due to selection rules. Although both L2,3 and
L1,4 couple to |A〉, the coupling with L1,4 can be made much
smaller than that of L2,3 (for a detailed discussion, see the
supplemental information of Ref. [35]). Hence we may assume
below that |A〉 is just affected by L2,3.

Following Ref. [40], we evaluate the Raman-assisted
hopping, Jnm, given by lasers Ln=1,2 and Lm=3,4, from site
j to site j + 1:

Jnm = Vnm

4
eiφnm

∫
d3r �j+1(r)∗eiδknm·r�j (r), (2)
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where φnm = φn − φm, δknm = kn − km, and Vnm = �|
n||
m|
δ

,
with δ the (large) detuning to the one-photon transitions. For
J � � and s � 1, we may approximate

Jnm � i

(
Vnm

2�

)
J sin

(
δknm

x D

2

)
eiδknm

x D(j+1/2)eiφnm . (3)

Note that δkx 	= 0 is necessary to establish a significant assisted
hopping [12,13,40]. Each laser pair couples a different Raman
transition [see Fig. 1(d)]:

(i) J23 characterizes the hopping (A,0) → (0,A), which is
accompanied by an energy shift �E = −�. We hence demand
ω2 − ω3 = −� and the transition amplitude is given by V23 �
1
2


2

∗
3

δ
, including the appropriate Clebsch-Gordan coefficients

for the specific case of 87Rb.
(ii) (A,A) → (0,AB) is given by J24, being characterized by

�E = −� + UAB ; we impose ω2 − ω4 = −� + UAB + U ,
with U � UAB,� and the amplitude V24 = 1√

6


2

∗
4

δ
.

(iii) J13 is linked to the hop (AB,0) → (A,A); the energy shift
is �E = −� − UAB ; we demand ω1 − ω3 � −δ − UAB −
U . V13 = 1√

6


1

∗
3

δ
.

(iv) (AB,A) → (A,AB) is given by J14; the energy shift
is �E = −�; we impose ω1 − ω4 = −�. The transition
amplitude is given by V14 = 1

3

1


∗
4

δ
.

The frequencies ωj are chosen such that they compensate
the lattice tilting, and hence no Bloch oscillation is induced in
the rotating frame. In this frame process, (ii) is accompanied by
an energy shift U , (iii) by a shift −U , and (i) and (iv) have no
associated shift. Hence, U may be understood as an effective
on-site interaction energy. Alternatively, these energy shifts
are compatible with an on-site interaction UAB and an effective
nearest-neighbor interaction V = UAB − U . We will return to
this point when discussing the extension to 2D lattices.

Note that processes (i) and (iv) are energetically degener-
ated, but they may be addressed with different lasers due to
selection rules. This point constitutes the major drawback of
the proposal of Ref. [34]. In that proposal, a single component,
A, was considered, and process (iv) was of the form (AA,A) →
(A,AA), which cannot be resolved from process (i). As a result,
in the scheme of Ref. [34], both the combination of L2 and
L3, and of L1 and L4, address both (i) and (iv), preventing
the realization of the desired density-dependent Peierls phase.
The two processes may be just discerned by considering a very
small detuning δ < UAA,�, which would be accompanied by
very large spontaneous-emission losses.

C. Spurious processes

Undesired spurious processes are, in principle, possible:
(v) (A,0) → (0,B); �E = −�.
(vi) (A,A) → (0,AA): �E = −� + UAA.
(vii) (AA,0) → (A,A): �E = −� − UAA.
(viii) (AB,A) → (B,AA): �E = −� + δU , with δU =

(UAA − UAB).
(ix) (AA,B) → (A,AB): �E = −� − δU .
Process (v) is just possible with J24 or J13. But these

laser combinations are (quasi-)resonant with −� ± UAB .
For UAB � W , with W the width of the Raman resonance
(typically of the order of 50 Hz [40]), process (v) is far from
resonance with either J24 or J13. To neglect the (vi) and (vii)

processes, one needs UAA � W . In contrast, to avoid (viii)
and (ix), one must demand δU � W . The latter condition is
certainly more strict, but may be attained in experiments, as
shown in the supplemental information of Ref. [35].

D. Effective 1D Hamiltonian

We assume |
1||
4|
4 = |
2||
3|

3 = |
1||
3|
2
√

3
= |
2||
4|

2
√

3
= 
2,


1 = |
1|e−iφ , and 
j=2,3,4 = |
j |, and obtain the transition
amplitudes V23 � 
2

δ
, V24 = √

2
2

δ
, V13 = √

2
2

δ
e−iφ , and

V14 = 2
2

δ
e−iφ . Note that an additional factor

√
2 is used to

mimic bosonic enhancement. We denote as cj the bosonic
operator corresponding to the Fock-state manifold {|0〉, |1〉 ≡
|A〉, |2〉 ≡ |AB〉}. Assuming k1,2 = key , k3,4 = kex , and
kD = π , we get

H = −t
∑

j

(−1)j [c†j e
iφnj cj+1 + H.c.] + U

2

∑
j

nj (nj − 1),

(4)
with nj = c

†
j cj and t = (
2/δ

2�
)J . Typical values of the Raman-

assisted hopping rate t are of the order of a few tens of Hz [40].
Note that the factor (−1)j , which results from the x projection
of δk, may be easily eliminated by redefining the bosonic
operators in the form b4l = c4l , b4l+1 = c4l+1, b4l+2 = −c4l+2,
and b4l+3 = −c4l+3, with l an integer. In this way, we obtain
the 1D model,

H = −t
∑

j

[b†j e
iφnj bj+1 + H.c.] + U

2

∑
j

nj (nj − 1). (5)

E. Density-dependent gauge fields in 2D lattices

For a 2D square lattice or ladder, one may proceed as
in Refs. [12,13], assuming assisted hopping along x and
natural hopping along y. This is, however, problematic,
as one can clearly understand from the alternative picture
mentioned above (Sec. II B), in which the on-site interactions
remain characterized by UAB , but an effective nearest-neighbor
interaction V is induced along x. In contrast, along y there
is no nearest-neighbor interaction. Although this asymmetric
extended-Hubbard model may be interesting, it is not the
model to be explored in this work.

An effective model with only on-site interactions and a
density-dependent gauge demands both directions to be Raman
assisted. Following the same arguments as above, we evaluate
the assisted hopping given by lasers n and m from a site r =
(Dxrx,Dyry) to the site r + Dj ej , with ej the unit vector along
the j = x,y direction and Dj the lattice spacing along that
direction:

J (j )
nm �

(
iVnmJj

2�j

)
eiφnm sin

(
δknm

j Dj

2

)
eiδknm·(r+Dj

ej
2 ), (6)

where �j and Jj are, respectively, the tilting and the hopping
without tilting along the j direction.

F. Four-laser arrangement

We first consider the same arrangement of four Raman
lasers as discussed above. We assume �x = �y = � and

115120-3



GRESCHNER, HUERGA, SUN, POLETTI, AND SANTOS PHYSICAL REVIEW B 92, 115120 (2015)

Jx = Jy = J . For k3 = k4 = π
Dx

ex , k2 = π
Dy

ey , and k1 =
π+φ

Dy
ey ,

J (j=x,y)
nm (r) =

(
iVnmJj

2�j

)
eiφnmeiπ(rx+ry+1/2)λ(j )

nm, (7)

with λ
(x,y)
23,24 = 1, and λ

(x)
13,14 = eiφjy , λ

(y)
13,14 =

eiφ(jy+1/2) cos(φ/2). Assuming 
2,3 = 
, 
1,4 = √
2
,

and φ1,...,4 = 0, we obtain the effective Hamiltonian,

H = −t
∑

r

(−1)rx+ry

∑
j=x,y

[
c
†
r+ej

fj (ry,nr)cr + H.c.
]

+ U

2

∑
r

nr(nr − 1), (8)

with fx(ry,nr) = eiφrynr and fy(ry,nr) = cos(φnr)eiφ(ry+1/2)nr .
As for the 1D problem, the factors (−1)jx+jy originate
from the projection of all δknm along x and y in order
to achieve assisted hopping along both directions. They
may be readily eliminated by introducing the transformation
b4nx+sx ,4ny+sy

= ε(sx,sy)c4nx+sx ,4ny+sy
, where ε(sx,sy) = −1 if

(sx + sy) mod 4 > 1 and ε(sx,sy) = 1 otherwise. With this
transformation, we obtain

H = −t
∑

r

∑
j=x,y

[
b
†
r+ej

fj (ry,nr)br + H.c.
]

+ U

2

∑
r

nr(nr − 1). (9)

With a four-laser arrangement, it is hence possible to create
a density-dependent Peierls phase in the 2D lattice. However,
since δknm must project on both x and y directions, there is
an additional dependence of the hopping modulus along y on
cos(φnr). Similar dependences of the hopping modulus appear
for other choices of k1,...,4.

G. Six-laser arrangement

A model in which the tunneling modulus does not depend
on the occupation may be attained by adding two additional
lasers. This six-laser arrangement allows as well for a more
flexible realization of density-dependent Peierls phases. We
consider �x 	= �y and two additional lasers L5,6, with ω5 =
ω1 + �y − �x and ω6 = ω2 + �y − �x . In this way, the
hopping processes (i) to (iv) along y are produced, respectively,
by J63, J64, J53, and J54. If |�x − �y | � W , the y hops may be
hence addressed independently from those along x. We impose
δknm

x Dx = π for n = 1,2 and m = 3,4, and δkn′m
y Dy = π

for n′ = 5,6 and m = 3,4. A possible example is given by
k3,4 = − π

Dx
ex , k2,5,6 = π

Dy
ey , and k1 = π+φ

Dy
ey . We choose


2/
√

3 = 
1/2 = 
′, 
3/
√

3 = 
4/2 = 
, and 
6/
√

3 =

5/2 = 
′′ and, after eliminating the factors (−1)jx+jy as
above, we obtain the Hamiltonian (1) with tx = 

′

δ

Jx

2�x
,

ty = 

′′
δ

Jy

2�y
, and φy = φry . Although the system (9) also

exhibits DDSM, in the following we will, for simplicity, focus
our analysis on Hamiltonian (1) with pure density-dependent
Peierls phases.

III. DDSM IN LADDERS

Ladders with static fields [i.e., Hamiltonian (1) with
density-independent Peierls phases] have been recently re-
alized in several experimental groups [15–17] and studied
theoretically as well [14,41–46].

An important observable in this context of density-
independent fields, but also for DDSM, is currents [15]. From
the continuity equation〈

dnr

dt

〉
= i〈[H,nr]〉 = −

∑
〈s〉

J (r → s), (10)

we can define the current J (r → s) from a site r to a
neighboring site s.

At low fluxes, the system is a MSF [14], characterized
by the absence of rung currents. At a critical flux, which
depends on tx/ty and interactions, currents penetrate the rungs,
form vortices, and the system becomes a VSF. Figures of
typical current configurations of the VSF and MSF phases
may be found in Fig. 2(d), anticipating the discussion below.
The MSF-VSF transition is signaled by a cusp in the chiral
current defined to be the net current flowing through the
boundary of the system (i.e., the legs). For bosonic systems
with a finite interaction U , vortices may form crystals of a
commensurate vortex density ρV , which is a nonconserved
quantity measuring the number of vortices per system size.
Such so-called vortex-lattice (VLρV

) phases have been studied
in the weak-coupling regime [14] as well as in numerical
calculations [46].

In the following, we study the DDSM in a ladder geometry
shown in Fig. 1(a). In this situation, it is given by the following
Hamiltonian:

Hladder = −tx
∑

i

[b†i+1,1e
iφ1ni,1bi,1 + H.c.]

− tx
∑

j

[b†i+1,2e
iφ2ni,2bi,2 + H.c.]

− ty
∑

i

[b†i,2bi,1 + H.c.] + U

2

∑
i,j

ni,j (ni,j − 1).

(11)

A. MSF and VSF phases with imbalanced density

In the limit of strong on-site repulsion U � J , model (11)
with density-dependent phases may easily be mapped onto a
system of hard-core bosons without a flux for fillings 0 < ρ <

1. For 1 < ρ < 2, we may consider doublons |2〉i,j on top of
a uniform MI background

∏
i,j |1〉i,j as hard-core particles,

which, however, now experience a finite flux φ = φ1 − φ2,
such that the effective Hamiltonian in this limit may be written
as

H
ρ>1
hardcore = − 2tx

∑
i,j

[c†i+1,j e
iφj ci,j + H.c.]

− 2ty
∑

i

[c†i,2ci,1 + H.c.], (12)

with ci,j (c†i,j ) being the creation (annihilation) operator of a
doublon on site (i,j ). Thus, in the strongly interacting regime
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FIG. 2. (Color online) (a),(b) Phase diagram for a ladder with ty = tx , φ1 = 0.8π , and φ2 = 0 as a function of tx/U and chemical potential
μ computed with the density matrix renormalization group (DMRG). The color code indicates (a) the particle density imbalance between the
legs �n and (b) the chiral current Jc (obtained from simulations with L = 24 rungs). Solid lines mark the MI with ρ = 1, and (very narrow)
with ρ = 1/2 and 3/2 (extrapolated to the thermodynamic limit from systems with up to L = 96 rungs). The dashed line denotes the MSF-VSF
transition. (c) �n (dashed line) and Jc (solid line) for the same parameters as in (a) and (b), but U = 0 and L = 48. (d) Typical particle density
and current configurations for U = 0 and (d1) ρ = 0.1, (d2) ρ = 0.63, (d3) ρ = 1.25, (d4) ρ = 1.46, (d5) ρ = 1.77. The size of the circles is
proportional to the on-site density, and the arrows encode the strength of the local currents.

U � J , model (11) is expected to reproduce the physics of
hard-core bosons in a magnetic static field exhibiting MSF and
VSF phases, as discussed in detail in [45].

A qualitative insight on the physics induced by the
occupation-dependent Peierls phases away from that limit is
provided by a simple mean-field decoupling of the tunneling
terms (between neighboring sites r and r′) in Eq. (11): Since
(b†r)3 = 0, then b

†
r′eiφnrbr = b

†
r′ [1 + (eiφ − 1)nr]br. Using the

decoupling b
†
r′nrbr � 2κ(r′,r)(nr − n̄r) + 2n̄rb

†
r′br, we obtain

b
†
r′e

iφnrbr + H.c. � [(1 + 2n̄r(eiφ − 1)b†r′br + H.c.]

+ [2κ(r′,r)(eiφ − 1) + c.c.](nr − n̄r),

(13)

with n̄r ≡ 〈nr〉 and κ(r′,r) ≡ 〈b†r′br〉. The first term on the
right-hand side (rhs) of Eq. (13) results in an effective Peierls
phase. A density-dependent effective flux is hence given by
the phase accumulated when encircling a plaquette. For model
(11), the effective flux is uniform for homogeneous n̄i,j = n̄i .
The second term at the rhs introduces a shift of the local
chemical potential, which is leg dependent for φ2 	= −φ1

in Eq. (11). We hence expect from this simple argument
that the occupation-dependent Peierls phase introduces an
interplay between density-dependent fields and density im-
balance between the legs. We employ below density matrix
renormalization group (DMRG) [47] calculations to confirm
this insight. In these calculations, we use system sizes up to
100 rungs with open boundary conditions keeping up to 1000
matrix states.

We monitor the chiral current,Jc = J1 − J2, where the leg
currents are now defined by Eq. (10), including the density-
dependent Peierls phases as

Ji = i

L

∑
j

〈b†i,j e−iφini,j bi+1,j − H.c.〉, (14)

in units of tx/�, with Nb the number of bonds along the leg.
The density-dependent effective flux induces a characteristic
dependence of Jc on chemical potential μ, as shown in
Figs. 2(b) and 2(c) for φ1 = 0.8π and φ2 = 0 (similar results
occur for other parameter values). In addition to MI phases, we

observe two different SF regimes. For a given tx/U , there is a
critical μ at which Jc presents a cusp [see Fig. 2(c)], indicating
a MSF-VSF transition induced by the increasing effective flux
for growing lattice filling ρ.

This transition is as well characterized by a kink in the
equation of state ρ(μ), which signals a change in the number
of gapless modes of the system: The MSF phase has a gap in
the antisymmetric (or, naively, “vortex”) sector [14], while the
symmetric (“charge”) sector remains gapless. The number of
gapless modes is also reflected by the central charge c, which
is c = 1 in the MSF phase and c = 2 in the VSF phase. We
verify this by numerically extracting c from the scaling of the
entanglement entropy [45].

Figures 2(a) and 2(c) also show that the occupation-
dependent Peierls phase leads to a marked density imbalance,
�n = 2(n̄2 − n̄1)/(n̄2 + n̄1). Three important points should
be noted. First, although |�n| is particularly large in the
MSF, it is nonvanishing as well within the VSF. Second, �n

presents a kink at the MSF-VSF transition. Third, although �n

results from the explicitly broken symmetry between the legs
in Eq. (11), its sign depends nontrivially on μ or ρ. Figure 2(c)
shows that �n may change its sign going through a balanced
point, �n = 0.

B. Strong rung-coupling limit

As for the case of static magnetic fields where the MSF-VSF
transition has been explored for a fixed flux in Ref. [15] as a
function of ty/tx , also for the DDSM the rung hopping strength
constitutes an important degree of freedom. In Fig. 3(a), we
study the phase diagram, in particular the commensurate-
to-incommensurate MSF-VSF transition, on ty for U = 0,
φ1 = π , and φ2 = 0. Interestingly, we basically observe two
different regimes: For small interchain couplings ty/tx � 1,
the MSF-VSF boundary (dashed line) is located close to
unit filling; however, as ty/tx � 1, it shifts quickly to larger
densities, ρ ∼ 3/2.

For φ1 − φ2 	= π above a critical value of ty/tx , the VSF
phase may vanish. In the strong-rung-coupling limit ty/tx � 1,
several gapped band insulating phases at commensurate fill-
ings ρ = 1 and 3/2 are stabilized. The extent of the MI phases
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FIG. 3. (Color online) (a) Phase diagram for a ladder with U = 0, φ1 = π , and φ2 = 0 as a function of ty and μ (in units of tx = 1).
As discussed in the main text, for large densities, a VSF is realized, while for low densities, the system is in a MSF phase, separated
by a commensurate-to-incommensurate (with respect to the vortex density ρV ) phase transition (dashed line). Dotted lines denote lines of
constant particle density ρ = 1/2,1,3/2, and 7/4, while solid lines indicate the gapped phases. (b) Phase diagram as a function of μ/U and
φ1 = −φ2 = φ for U = tx and ty = 10tx , computed with DMRG. The shaded areas denote gapped phases of ρ = 1/2,1,3/2, and 2 filling; the
white area corresponds to MSF phases. As a characteristic feature of the density-dependent fields, one observes a sequence of direct transitions
between the gapped phases resulting in a macroscopic jump of density around φ = π , 2π/3, and π/2 (see text). All gapped phases exhibit
finite rung-string order ORSO and rung-parity order ORPO, as defined in the main text. The inset shows ORPO (solid line) and ORSO (dashed line)
for ρ = 1/2.

strongly increases with ty/tx , as discussed below. For the
parameters of Fig. 3(a), a MI phase at ρ = 1/2 is suppressed.
Additionally, one may observe a gapped charge density-wave
phase at filling ρ = 7/4 (see [45] for a detailed discussion of
similar phases at 1/4 filling for density-independent synthetic
magnetism). Apart from the SF phases, the MI phases may also
be of the Meissner-MI [in Fig. 2(a) for ρ = 1/2 and ρ = 1]
and of the vortex-MI (for ρ = 3/2) types, as discussed in Ref.
[45]. Both exhibit a mass gap; however, the vortex MI still
has a gapless mode (i.e., the neutral gap in the manifold of
constant particle number vanishes), while the Meissner-MI
phase is completely gapped.

For ty � U,tx , the ladder reduces to an effective rung-chain
model with intriguing features due to the density-dependent
Peierls phases. We may then map to rung states |Ñ〉 with a
fixed occupation of Ñ = 0,1,2,3,4 particles on each rung. For
the particular case of φ1 = −φ2 = φ at tx = 0, the ground
states of the decoupled rungs are the rung states

|0̃〉 ≡
(

0

0

)
, μ < −ty,

|1̃〉 ≡ 1√
2

[(
1

0

)
+

(
0

1

)]
, − ty < μ < −ty + U

2
,

|2̃〉 ≡ 1

2

[(
2

0

)
+

√
2

(
1

1

)
+

(
0

2

)]
, − ty + U

2
< μ <

U

2
,

where the notation (n1
n2

), denotes the rung state with n1 (n2)
particles in the upper (lower) leg. At low ρ (in the vicinity
of μ ∼ −ty), for which Ñ > 2 are irrelevant, the effective
rung-chain model becomes of the form

H = −tx
∑

j

{B†
j [1 − sin2(φ/2)Nj ]Bj+1 + H.c.}

+ U

4

∑
j

Nj (Nj − 1) − (μ + ty)
∑

j

Nj , (15)

where Bj are bosonic operators in the space {|0̃〉,|1̃〉,|2̃〉} and
Nj = B

†
jBj . Note that inter-rung hops |0̃〉|1̃〉 ↔ |1̃〉|0̃〉 and

|1̃〉|1̃〉 ↔ |0̃〉|2̃〉 have an amplitude tx , whereas |1̃〉|1̃〉 ↔ |2̃〉|0̃〉
and |2̃〉|1̃〉 ↔ |1̃〉|2̃〉 have an amplitude tx cos2(φ/2). The latter
rate vanishes for φ = π . As a result, a direct transition occurs
for finite tx between the gapped phases at fillings ρ = 1/2
and 1, i.e., Ñ = 1 and 2, with an infinite compressibility
and a macroscopic density jump [Fig. 3(b)]. Similarly, direct
transitions occur between gapped phases with ρ = 1 and 3/2
(at φ = 2π/3), and 3/2 and 2 (at φ = π/2).

The presence of the density-dependent phases results in
a broken space-inversion symmetry, since the amplitudes
of |1̃〉|1̃〉 ↔ |2̃〉|0̃〉 and |1̃〉|1̃〉 ↔ |0̃〉|2̃〉 are not equal. As
discussed in Ref. [49], the broken space-inversion symmetry
may result in the exotic situation of the simultaneous presence
of both nonlocal parity order and string order in the insulating
MI phases. The MI phase of a usual 1D Bose-Hubbard model
is characterized by a finite hidden parity order due to bound
particle-hole pairs that has been observed in experiments with
single-site resolution [48]. A nonvanishing string order, but
vanishing parity order, characterizes the Haldane insulator,
predicted in polar lattice gases [50,51] and bosons in frustrated
lattices [52]. The explicit expressions in the effective rung-state
model may be borrowed from the corresponding orders of a
spin S = 1 chain [51]: We define the rung-parity order ORPO ≡
lim|i−j |→∞〈(−1)

∑
i<k<j δNk 〉 (with δNk = Ñ − Nk) and the

rung-string order ORSO ≡ lim|i−j |→∞〈δNi(−1)
∑

i<k<j δNk δNj 〉.
For φ = 0, the Mott phases of the rung-chain model (15)
present finite rung-parity order ORPO but vanishing rung-string
order ORSO. Due to the density-dependent phases, the Mott
rung phases acquire a simultaneous finite ORPO and ORSO, as
may be seen in the inset of Fig. 3(b).

C. Symmetries and vortex-lattice phases

Density-independent magnetic fields are up to a gauge
transformation completely defined by the net flux per unit
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FIG. 4. (Color online) (a) Density imbalance �n and (b) chiral
currentJc as a function of φ1 and φ2 for tx = ty , U = tx , and ρ = 1.25
as obtained by DMRG calculations. In addition to the MSF and VSF
phases, a small vortex lattice phase at vortex density ρV = 1/2, VL1/2-
SF may be observed. Dashed lines indicate the phase boundaries from
the VSF to the MSF and VL1/2-SF phases.

cell of the lattice. Due to its operator nature, this is not
true for the case of the density-dependent Peierls phases.
Indeed, as may be seen in Fig. 4, the phase diagram may
significantly depend on the values of both phases φ1 and φ2

of model (11). While the MSF-VSF phase boundary mainly
just depends on the total effective flux φ1 − φ2, only in the
vicinity of φ1 � −φ2 � π/2, where also the density imbalance
�n vanishes, do we observe a vortex-lattice phase at vortex
density ρV = 1/2 (VL1/2 phase). Apart from the characteristic
staggered pattern of the currents as shown for the case of
static magnetic fields, e.g., in [46], the VL1/2 phase may
be discriminated from the VSF phases by the calculation of
the central charge, which is c = 1 in vortex-lattice phases.
For strong phase imbalances φ1 = 0,φ2 = φ, as in Fig. 2, no
vortex-lattice phases are observed.

Note that the phase diagram is symmetric with respect
to inversion of the phases I1 : (φ1,φ2) → (−φ1, − φ2) and
exchange of the two legs of the ladder I2 : (φ1,φ2) → (φ2,φ1)
for φ1,φ2 ∈ [0,2π ). The density imbalance �n [Fig. 4(a)]
is (anti)symmetric with respect to I1 (I2). The chiral cur-
rent [Fig. 4(b)] is an antisymmetric quantity under both I1

and I2.

IV. TWO-DIMENSIONAL SQUARE LATTICES

We now extend our study to the effect of DDSM on two-
dimensional square lattices. Equivalently to the ladder case,
we show that the occupation-dependent Peierls phase induces
a nontrivial interplay between the density-dependent phases
and density modulations. As a first approach, we focus on the
limiting case of π phases, i.e., φr = jπ , for which the Peierls
phase in Hamiltonian (1) takes the simpler form,

eiφrnr = (−1)jnr . (16)

Despite this simplification, the Peierls phase of the hopping
along the x direction still rends the 2D model (1) to be
intrinsically frustrated and thus highly nontrivial to approach
from a computational perspective. In the following, we will
use the composite boson mean-field theory (CBMFT) [53,54],
which is a useful tool to unveil strongly correlated phases
of spin and boson lattice models, where other methods face
significant problems.

CBMFT is based on the use of clusters of the original
degrees of freedom as the basic degrees of freedom that contain
the necessary quantum correlations to describe the phases
emerging in the system under study. In practice, we tile the
lattice into clusters of equal size, in such a way that each site r
of the original 2D lattice belongs to a unique cluster. The tiling
is performed preserving most of the symmetries of the model.
Each quantum state of each cluster can be represented by the
action of a creation composite boson (CB) over a CB vacuum.
Since the mapping relating the original bosons {b†r,br} to the
new CBs is canonical [53], one can rewrite (1) in terms of CBs
and approach it by standard many-body techniques, with the
advantage that short-range quantum correlations are exactly
computed by construction.

Here we will use the CB Gutzwiller ansatz, a simplest
product of uncorrelated cluster wave functions,

|�〉 =
∏

R

a
†
R,g|0CB〉 =

∏
R

|g〉R, (17)

where a
†
R,g is the creation CB associated with the cluster R

in the state |g〉R = ∑
n U

(R)
n |n〉R, and n refers to a cluster

configuration in the occupation basis. The amplitudes U
(R)
n are

then determined upon variational minimization of the energy.
In the homogeneous case, i.e., U

(R)
n = Un, this variational

determination is equivalent to exactly diagonalize a unique
cluster with open boundary conditions and a set of self-
consistently defined mean fields acting on its borders [54].

The CB Gutzwiller ansatz (17) allows one to compute
observables and order parameters in a systematic way. In
particular, the energy obtained is variational, and the ground-
state phase diagram can be obtained by monitoring the
ground-state energy and its derivatives. In addition, low-lying
excitations over the ground state can be analyzed within the
CBMFT framework self-consistently [53]. Nevertheless, this
analysis is out of the scope of the present work.

We define a (0,π ) charge density-wave (CDW) order
parameter, ρCDW = ∑

r e−iπj 〈�|nr|�〉/N , which computed
with an homogeneous CB Gutzwiller ansatz |g〉 takes the form

ρCDW = 1

LxLy

∑
r∈�

e−iπj 〈g|nr|g〉, (18)

and the bond-chiral order parameter,

η = 1

Nb

∑
〈r,r′〉

|〈�|J (r → r′)|�〉|, (19)

where Nb is the number of bonds and the currents Jr,r′ are
defined through the continuity equation (10).

Figures 5(a) and 5(b) show CBMFT results of the ground-
state phase diagram of Eq. (1) with π phases and clusters of size
Lx × Ly = 2 × 2,4 × 2. These sizes preserve the periodicity
imposed by the Peierls phase with effective π flux. In order to
enhance the nontrivial hopping of bosons along the x direction,
we have set tx = 2ty .

As we can see in Figs. 5(a) and 5(b), the system presents
the usual MI lobes of integer density for small values of the
hopping tx . For bigger values of the hopping, the ground state
presents superfluid order, characterized by a nonvanishing
condensate density, ρ0 = 〈�|b†k=0bk=0|�〉/N (not shown). In
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FIG. 5. (Color online) (a),(b) Ground-state phase diagram of model (1) in 2D with π phases φr = jπ and tx = 2ty computed with CBMFT
with clusters of size Lx × Ly = 2 × 2 (black lines) and 4 × 2 (dotted gray lines). Solid lines mark the boundaries of the MI, while the onset of
a finite chiral bond order parameter η, signaling the CSF-SF transition, is marked with dashed lines and the dashed curve marks. The color code
indicates (a) the charge density-wave order parameter ρCDW and (b) the chiral bond order parameter η, as defined in the main text. Note that the
CBMFT results remain stable under increasing of the cluster size. (c) Chiral bond order parameter η (solid line) and charge density-wave order
parameter ρCDW (dashed line) for a cut in the phase diagram along tx/U = 0.1. (d) Typical current and density configuration of the CSF phase.
The size of the circles is proportional to the on-site density, and the lengths and widths of the arrows encode the strength of the local currents.

particular, a SF phase with modulated density and vanishing
bond-chiral order emerges for ρ < 1, while for ρ > 1 the
ground state is a CSF characterized by having nonvanishing
bond currents in a pattern of fully stacked checkerboard pattern
of vortices and antivortices [Fig. 5(d)]. Notice that the CSF
phase is nothing but a limiting case of the VSF previously
described in the ladder case, when the vortices are of the size
of a single plaquette in the square lattice. In addition, the
CSF has nonvanishing density modulations. Were the Peierls
phase density independent, all of the superfluid region would
have nonvanishing chiral order, and the density modulations
would disappear (not shown). Thus, the density dependence
in the Peierls phase has the effect of inducing finite density
modulations and reducing the region with nonvanishing chiral
order to that of ρ > 1.

The phase transitions are, in all cases, found to be of
second order, signaled by discontinuities in the second-order
derivative of the energy with respect to the chemical potential.
The continuous vanishing of the superfluid order parameter
(SF-MI transition) and the bond-chiral order η (CSF-SF
transition) also supports this assumption. Moreover, the phase
diagram remains stable under increasing of the cluster size,
as the CBMFT-4 × 2 includes minor quantitative corrections
to the phase borders of the CBMFT-2 × 2. In particular,
the CSF-SF phase boundary obtained with 2 × 2 and 2 × 4
basically overlap [Figs. 5(a) and 5(b)].

Comparing the phase diagrams for the ladder (Fig. 2) and
the 2D square lattice (Fig. 5), we observe that the modulated
SF can be considered as the bulk counterpart of the MSF
appearing in the ladder geometry.

V. DYNAMICALLY PROBING THE DENSITY-DEPENDENT
FIELD

DDSM results in an intriguing dynamics that may be easily
probed experimentally. We illustrate this point with the partic-
ular case of the ladder model (11) with φ1 = −φ2 = φ and tx =
ty . We are interested in the dynamics of a defect (formed by
either a doubly occupied site, i.e., a doublon, or an empty site,
i.e., a holon) created in a MI with ρ = 1, initially at site (1,j =
0). Note that this initial condition is chosen for simplicity of

the analysis. The initial doublon or holon may be created in a
more delocalized region of the ladder. The relevant conclusions
about the expansion dynamics would be unaffected. Similar
dynamics has been studied recently in the context of Bose-
Hubbard models without gauge fields [58] and may be
observed in experiments with single-site resolution [55–57].

For U � tx , quantum (particle/hole) fluctuations of the MI
are irrelevant, and the defect expansion is like that of a single
particle with a hopping tx (2txe

±iφ) for the holon (doublon).
Both holon and doublon propagate ballistically along the
ladder, i.e., �j (τ ) =

√
〈j 2〉(τ ) ∼ γ τ (we consider below the

time τ in units of �/tx for holons and �/2tx for doublons).
The expansion coefficient γ is, however, markedly different.
Holons do not experience any magnetic flux, and thus they
propagate with a φ-independent γ = √

2. In contrast, doublons
experience a flux 2φ and their trajectories are partially diverted
by cyclotron motion. Hence, γ decreases with φ (Fig. 6). The
inset of Fig. 6 depicts examples of �j (τ ) for different φ.
This situation has to be contrasted with the case of density-
independent magnetic fields. Here holons and doublons will
both experience the same magnetic flux 2φ and propagate—up
to a factor of 2 due to bosonic enhancement—in the same way.

For lower U/tx , quantum fluctuations become relevant, al-
tering the defect expansion in an intriguing way. A perturbative
treatment of the role of particle-hole fluctuations offers an
instructive starting point of the study. Up to second order,
one virtual doublon-holon pair may be created and annihilated
which mediate new hoppings of the initial holon (doublon) of
the form

H(2) = −2t2
x

U

∑
i,j

[αi |j + 2,i〉〈j,i| + H.c.]

− 2tx ty

U

∑
i,j

[βi |j + 1,k 	= i〉〈j,i| + H.c.], (20)

where |i,j 〉 denotes a defect at site (i,j ), αi ≡ eiφi (e−iφi ),
and βi = 1 + eiφi (1 + e−iφk 	=i ) for doublons (holons). In order
to study the influence of quantum fluctuations beyond per-
turbation theory, we perform t-DMRG calculations [47], with
system sizes up to 100 rungs keeping up to 1000 matrix states.
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FIG. 6. (Color online) Expansion coefficient γ of a defect along
the ladder as a function of the effective flux φ for tx = ty , as well as
U/tx = 50 (circles) and U/tx = 10 (diamonds). Hollow (filled) sym-
bols denote the t-DMRG results for the holon (doublon) expansion.
Dashed (solid) curves denote single-particle (exact-diagonalization)
results for holons (doublons), which match well with the t-DMRG
results for large U/tx . The inset depicts typical linear expansions of
�j (τ ) for a doublon at U → ∞ and φ/π = 0 (solid line), 0.5 (dashed
line), and 1 (dotted line).

As shown in Fig. 6 for U/tx = 10, for φ = 0, fluctuations
speed up defect expansion; the expansion coefficient may reach
values of γ � 1.6. This is intuitively clear since there are more
processes expanding the defect along the ladder. This remains
true for small φ. However, the peculiar phase dependence of
the extra terms (20) modifies as well the effective magnetic
flux experienced by the doublons. Indeed, for a sufficiently
large φ, fluctuations slow down the doublon expansion, i.e.,
they strengthen the cyclotron motion diverting the doublon
expansion, corresponding to an increase of the effective mag-
netic field experienced by the doublons. Moreover, quantum
fluctuations make holon expansion φ dependent due to virtual
doublons. For sufficiently large φ, fluctuations slow down the
holon expansion, i.e., holons experience an effective cyclotron
motion induced by quantum fluctuations of the MI substrate.

VI. SUMMARY

Raman-assisted hopping may be used to induce density-
dependent synthetic magnetism in cold lattice gases. In one-
dimensional systems, this results in the interesting possibility
of studying the anyon model [35]. For ladders and 2D square
lattices, we have shown that these fields lead to a rich
ground-state physics characterized by the nontrivial interplay
between density modulations and chirality. In two-leg ladders,
it is characterized by a density-driven Meissner-superfluid to
vortex-superfluid transition. Moreover, DDSM significantly
affects the dynamics of particles in the lattice, leading in
particular to an intriguing expansion dynamics for doublons
and holons in a MI, which presents a remarkable dependence
on quantum fluctuations and may be used to experimentally
reveal the DDSM.

Although we have focused on ladders and 2D square
lattices, similar ideas may be applied to more general lattices,
opening interesting possibilities for the realization of density-
induced geometric frustration. In this work, we discussed
bosonic particles in the presence of DDSM. In Ref. [35], it is
shown that fermionic species also may be a useful candidate for
the realization of DDSM in cold-atom experiments, since here
the spurious (vi)–(ix) processes of Sec. II E identically vanish.
While in one-dimensional systems this can be exploited to
study the anyon Hubbard model, in two and higher dimensions,
a significantly different model is realized. These possibilities
will be examined in forthcoming works.
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