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In the present paper, a frequency domain method for damping determination is presented.
The described method is especially developed for low damped systems with well separa-
ted eigenfrequencies. Using the Short-Term Fourier transform and Resampling (STFR) of
the signal, decay curves of several mode shapes can be identified and amplitude-dependent
damping values can be calculated. Additionally, two common methods for damping deter-
mination are explained briefly. Finally, the quality of the introduced method is evaluated
comparing the variances of the identified damping values by means of different methods. In
this context, the damping for beams clamped in a suspended way is analyzed. Stainless steel
is used as the specimen material.
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1. Introduction

In fields of mechanical engineering, High Cycle Fatigue (HCF) risk assessment is of great im-
portance. To reduce this risk, the reduction and prediction of vibration amplitudes is a primary
objective. Using nonlinear calculation tools (Petrov and Ewins, 2006; Siewert et al., 2008) to
predict vibration amplitudes, the specification of contact properties as well as structural dam-
ping (among other mechanisms of damping, Rao and Saldanha, 2003) are of great importance.
To specify, for example, structural damping values, a suitable experimental setup and an appro-
priate methodology for damping identification are elementary. In this context, Plunkett (1959)
gives an overview of possible methods (time and frequency domain) for damping determination.
Furthermore, Bert (1973) offers an overview of methods for modeling, experimental determi-
nation and parameter identification of material damping. An extended Half-Power method is
described by Jinting et al. (2013), whereby the parameter identification is performed in the fre-
quency domain. In addition, Yang et al. (2003), Meissner (2012) and Feldman (1994) describe a
method applying the Hilbert transform to calculate decay curves. By Yang et al. (2011), Lardies
and Gouttebroze (2002), Lamargue et al. (2000), Hans et al. (2000), Le and Argoul (2004) and
Slavi et al. (2003), the wavelet transform is applied for parameter identification.
The methodology which is presented in this paper is limited to structures excited by an

impact. Additionally, the eigenfrequencies, respectively the resonant frequencies have to be well
separated. The described method includes the Short-Term Fourier transform and Resampling
(STFR) of the analyzed signal. This procedure makes it possible to get adequate information
concerning the vibration amplitude and the current eigenfrequency which varies as a function
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of amplitude for nonlinear mechanical systems. On this basis, it is possible to identify the decay
curve of one selected mode shape of interest. Using a decay fit (Rice et al., 2007; Siewert et al.,
2008), it is possible to identify the damping value of one selected mode shape. Subsequently, two
other common methods for parameter identification are presented. Furthermore, an experimental
setup is introduced briefly, which provides the experimental data for damping determination.
Finally, the presented methods are used to evaluate the developed STFR method in the last
part of this paper.

2. STFR method

The presented method is used to identify damping values of mechanical systems at decaying
free vibrations. This method is restricted to impulse excited structures. In this context, only
the output signal is needed for damping identification. To achieve an adequate identification
concerning the eigenfrequency and amplitude, the signal is additionally resampled. From this,
tracking of the eigenfrequency depending on the amplitude is also possible.

2.1. Short-Term Fourier transform and Resampling

The basis for the used method is the measured output signal. In this case, the specimen is
excited by an impact, whereby decay curves are recorded. The signal x can be specified by the
following data sequence with Ns values.

x[n] =

{
x(t = nT0) for 0 ¬ n ¬ NS − 1
0 otherwise

(2.1)

wherein T0, t and n denote the sample rate, the time and the value number. From Fig. 1, the
superimposed character of the signal (response of several mode shapes due to impact excitation)
can be clearly seen.

Fig. 1. Measured free vibration

In the next step, the signal has to be extracted with respect to one mode shape of interest.
Therefore, the signal is analyzed stepwise. The signal is equidistantly divided into

U =
NS
NW
− 1 (2.2)
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parts. For these parts of the decaying signal, the Discrete Fourier Transform (DFT) is performed.
NW describes the number of measurement points of the analyzed signal part. The following
u signal portions with 0 ¬ u ¬ U are resulting in

xu[w] =

{
x
(
t = (uNw + w)T0

)
for 0 ¬ w ¬ Nw − 1

0 otherwise
(2.3)

wherein w denotes the value number of the signal portion. Next, the data portion xu[w] has to
be transformed into frequency domain

Xu[k] =
Nw−1∑

w=0

x
(
(uNw + w)T0

)
e−j2π

kw
Nw (2.4)

wherein k is the spectral line number. Using this formulation, the frequency resolution reads

∆ωf =
2π

T0Nw
(2.5)

This leads to the problem that the amplitude at the eigenfrequency is underestimated, in par-
ticular for weakly damped structures. Performing a resampling of the analyzed data portion
solves this problem. The goal in this context is the identification of the required sample rate in
a way that the frequency resolution ∆ωf,n is equal to an integer numbered multiple g of the
eigenfrequency of interest ωd,int

ωd,int = g∆ωf,n (2.6)

To achieve the required sample rate corresponding to the criteria in equation (2.6), a real num-
bered alternation d of the sample rate T0 is necessary

∆ωf,n =
2π

T0,nNw
=
2π

dT0Nw
(2.7)

From this, an integral numbered decimation using the factor a followed by an integral numbered
interpolation using the factor b is performed. Hereby, a resampling using the real factor d = a/b
is realized. To avoid aliasing, the Nyquist-Shannon sampling theorem has to be satisfied. In this
respect, a lowpass filter regarding the varied sample rate is used. This lowpass filter avoids the
aliasing effect at decimation and interpolates the signal at interpolation. The resampling process
(Oppenheim and Schafer, 2010) is shown in Fig. 2.

Fig. 2. Resampling

2.2. Methodology

The presented methodology is based on the assumption of well separated eigenfrequencies.
Thus, the knowledge concerning the position of one eigenfrequency, respectively the frequency of
the mode shape of interest, is important. In general, the exact eigenfrequency, which is the crite-
rion for the described resampling methodology, is not known. For this purpose, an identification
of the exact eigenfrequency using an optimization method (such as the Nelder-Mead algorithm,
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Fig. 3. Methodology

Nelder and Mead, 1965) is necessary. The resampling factor d is optimized to detect the maxi-
mum amplitude within the analyzed signal portion u. In Fig. 3, the described methodology to
calculate the decay curve is shown for one mode shape of interest.
After calculating the eigenfrequency using the described methodology, the modal amplitude

for each part of the decay curve can be isolated. Calculating the average time

tm[u] = (u− 1)NwT0 +
Nw
2
duT0 (2.8)

for each part of the decay curve u (Fig. 4), it is possible to reconstruct the decay curve for one
mode shape of interest using the identified amplitude xa[u].

Fig. 4. Identified decay curve

To enable a quantification of a damping parameter, an analytical formulation of the decay
curve is necessary. Using the least squares method, the decay coefficient δ can be determined

U∑

u=0

(
x [tm[u]]− x̂ae

−δtm[u]
)2
→ min (2.9)

In equation (2.9), x̂a denotes the initial amplitude of the decaying signal. Performing the signal
resampling, an additional advantage is present. In this context, the eigenfrequency for each time
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point of the decay curve can be calculated. Hereby, it is possible to examine the dependency
of frequency and time. From the frequency versus time history, nonlinearities with respect to
variation in frequency can be identified. In Fig. 5, two possible frequency-time curve shapes are
presented.

Fig. 5. Frequency versus time

2.3. Amplitude-dependent damping coefficient

To identify an amplitude-dependent damping, the identified decay curve has to be divided
into several parts p. From this, the decay coefficient δm can be calculated as a function of the
mean amplitude xp (see Fig. 6)

xp[tm,u] = x̂a,pe
−δ[xp]tm[u] (2.10)

Fig. 6. Amplitude-dependent normalized mean damping coefficient

In addition to the division of the decay curve to calculate amplitude-dependent damping
values, also an analytical approach is proposed. On this basis, the decay coefficient described in
equation (2.9) is replaced by a time-dependent, respectively amplitude-dependent decay coeffi-
cient δt(t)

x[tm,u] = x̂ae
−δt(tm[u])tm[u] (2.11)
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In the next step, the time derivative of the presented decay curve is calculated. Following
the calculated time derivative of the decay curve, ẋ is divided by the decay curve itself. Hereby,
an inhomogeneous first order differential equation results

−
1

t

ẋ

x
= δ̇t +

1

t
δt (2.12)

After separation of the variables and the solution of the homogeneous differential equation, a
variation of the constants is performed to solve the differential equation. The analytical solution
to equation (2.12) is the time-dependant decay coefficient

δt(t) = −
1

t

∫
ẋ

x
dt+
C

t
(2.13)

The constant C can be calculated using a signal part ts of the decay curve. For this purpose, it
can be assumed that the average decay coefficient through this signal part is equal to the non-
amplitude-dependent decay coefficient δm,ts . The latter can be calculated using the formulation
in equation (2.9) applying the least squares method

C =

(

δm,ts
(
max(ts)−min(ts)

)
+

max(ts)∫

min(ts)

(1
t

∫
ẋ

x
dt
)
dt

)(
ln
max(ts)

min(ts)

)
−1

(2.14)

Using the prior identified eigenfrequency ωd(t) as a function of time and the time-dependent
decay coefficient, damping can be quantified by different physical magnitudes

Λ(t) = 2π
δ(t)

ωd(t)
= 2π

D(t)
√
1−D(t)

(2.15)

In equation (2.15), Λ(t) and D(t) denote the logarithmic decrement and the damping ratio.
Applying the amplitude formulation in equation (2.10), the time-dependent damping values can
be specified in terms of amplitude.

2.4. Example of application

To clarify the presented methodology, a predefined amplitude-time curve is analyzed. For
this reason, a time-dependent, i.e. amplitude-dependent, damping and frequency value is used

x(t) = x̂1e
−δ1(t)t cos(ω1(t)t) + x̂2e

−δ2(t)t cos(ω2(t)t) + x̂3e
−δ3(t)t cos(ω3(t)t) (2.16)

The signal consists of three frequencies, whereby the second one may be of interest. The other
signal parts can be treated as additional mode shapes which are not of interest for the analysis.
In this context, x̂i, δi(t) and ωi(t) denote the initial amplitude, the decay coefficient and the
vibration frequency of each signal part. In Table 1, the magnitudes of the different values are
summarized. Hereby, the units millimeters and seconds are used.
In the first step, the presented signal is transformed stepwise into frequency domain. The

signal is resampled stepwise with respect to the analyzed mode shape. The considered frequency
range has to consist only of the mode shape of interest. From this, an optimization of the
amplitude with respect to the maximum amplitude in the analyzed signal portion is performed.
In Fig. 7, one signal portion before resampling and after resampling and the resulting time-
frequency-amplitude diagram are shown.
With respect to the time-frequency axis, the eigenfrequency variation can be identified. In

doing so, the time dependency of the identified and the default eigenfrequency of the second
signal portion are shown in Fig. 8.
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Table 1. Summarized specifications of equation (2.16)

i x̂i [mm] δi(t)
[1
s

]
ωi(t)

[rad
s

]

1 10mm 1.2
1

s
− 0.05

1

s2
t 2π · 400

1

s
+
1

s2
t

2 8mm 0.6
1

s
− 0.045

1

s2
t 2π · 500

1

s
+ 2
1

s2
t

3 11mm 3
1

s
− 0.05

1

s2
t 2π · 650

1

s
+
1

s2
t

Fig. 7. Time-frequency-amplitude curve and signal resampling

Fig. 8. Eigenfrequency versus time

In this figure, it is shown that the eigenfrequency time dependency is estimated very well.
Regarding the time-amplitude axis, the decay curve of one mode shape of interest can be ana-
lyzed. Applying the developed methodology to identify amplitude-dependent damping values
(presented in Section 2.3), the damping-time (respectively decaying amplitude) dependency can
be analyzed (see Fig. 9).

Accordingly to the well estimated eigenfrequency behavior, the damping values can be evalu-
ated in a suitable way. On this basis, it can be shown that the frequency and damping variation
are investigable in their magnitudes and courses.
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Fig. 9. Decay coefficient versus time

3. Common methods for damping determination

In this Section, two common methodologies for damping determination used in modal analysis
are presented. For this purpose, an estimation of the transfer function is necessary. The esti-
mated transfer function is the basis for the presented methods. In this context, the Rational
Fractional Polynomials method (Richardson and Formeti, 1982) and the Least-Squares Com-
plex Exponential method (He and Fu, 2001) are described. In the final step, the damping values
determined by the developed methodology are compared to the damping values identified by
the RFP and the LSCE method respectively.

3.1. Estimation of the transfer function

Due to noise which occurs in the measured input y(t) and output x(t) signal, an estimation of
the Frequency Response Function (FRF) is necessary. Hereby, several FRF estimators are usable.
To determine the estimators, the cross-spectrum (SXY and SY X) and the auto-spectrum (SY Y
and SXX) of the input and output signals are used. In Table 2, the common FRF estimation
functions are presented.

Table 2. FRF estimators

Estimator Equation Properties

H1(ω)
SXY (ω)

SY Y (ω)

underestimation of amplitude,
good estimation in anti-resonance

H2(ω)
SXX(ω)

SY X(ω)

overestimation of amplitude,
good estimation in resonance

Hv(ω)
√
H1(ω)H2(ω)

mix of H1(ω) and H2(ω),
minimize input and output noise

Resulting from the applicability of the RFP and LSCE method to linear systems, the cohe-
rence γ of the signals has to be analyzed, too. If the signals are free from noise and error, and
a linear system behavior being additionally existent; the H1(ω) estimator is equal to the H2(ω)
estimator. In this case, the system causality has a maximum, and the coherence is equal to 1.

3.2. Rational fractional polynomials method

The Rational Fractional Polynomials (RFP) method is a frequency domain method. In this
case, the model fit is performed in frequency domain. The basis for this method is the estimated
FRF with the procedure described in Section 3.1. At the beginning, the analytical formulation of
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a FRF of a multi degree of freedom system is necessary. This transfer function can be expressed
in Laplace domain using the complex argument s = jωi

Ha(s) =
n∑

k=1

( rk
s− pk

+
r∗k
s− p∗k

)
=

m∑

k=0
aks
k

n∑

k=0
bksk

(3.1)

wherein, the number of pole pairs pk, i.e. the number of degrees of freedom is described by n. In
this context, rk, ai and bi denote complex residues and coefficients of the analytical formulation
of the FRF. In the next step, the error between the analytical formulation of the FRF and the
measured data has to be calculated

ei =
m∑

k=0

ak(jωi)
k
− hi

[
n−1∑

k=0

bk(jωi)
k + (jωi)

n

]

(3.2)

Using hi, the measured data of the FRF at the frequencies ωi are defined. The square error
criterion is specified as follows

L∑

i=1

e2i → min (3.3)

This error has to be minimized using the variables ai and bi. Based on the calculated variables,
the constant eigenfrequencies and the damping values can be determined.

3.3. Least-squares complex exponential method

The Least-Squares Complex Exponential (LSCE) method is a time domain method. Here,
the fit is performed in the time domain. The basis within this method is the Inverse Fourier
Transform (IRF) of the FRF formulated in frequency domain

Ha(s) =
2n∑

k=1

rk
s− pk

(3.4)

In the next step, the IRF is calculated

ha(t) = ifft
(
Ha(s)

)
=
2n∑

k=1

rke
pkt (3.5)

This equation describes the structural response after impulse excitation. If the response is present
at discrete time points, the exponential expression can be replaced by zmk = e

pkm∆t using the
z-transform. Based on this, it is possible to rewrite equation (3.5) as follows

ha(m∆t) =
2n∑

k=1

rkz
m
k (3.6)

Applying the Prony equation (He and Fu, 2001), the poles pk i.e. z
m
k are estimated. This equation

represents zmk as roots of a polynomial with real coefficients

c0 + c1z + c2z
2 + . . .+ c2nz

2n = 0 (3.7)

This equation is for each root equal to 0. Using the several samples m of the IRF data, it is
possible to merge equation (3.6) with equation (3.7)

2n∑

m=0

cmha(m∆t) = 0 (3.8)



404 O.P. Hentschel et al.

From this relationship, the coefficients cm can be determined directly. Using the calculated
coefficients, the roots zm in equation (3.7) can be calculated. In the final step, the constant
eigenfrequencies and the damping values can be determined by the poles of the system zm.

It should be noted that in order to apply the RFP and the LSCE method, the input signal
(excitation) and the output signal (measured decay) are necessary. In a next step, the FRF has
to be estimated. From this, two noisy signals are used for parameter identification.

4. Experimental tests

In this Section, an experimental setup for damping evaluation is presented briefly, see Hentschel
et al. (2014) for details. This setup delivers the necessary data to compare the methods for
parameter estimation. It consists of a specimen with defined eigenfrequencies which is clamped
in its nodes of vibration (regarding the analyzed mode shape). The structure is excited by a
force impact using a voice coil actuator.

Fig. 10. Experimental setup

4.1. Excitation and measurement

The analyzed specimen is excited by a force impact generated by a voice-coil actuator. Hereby,
an automated test sequence with a high reproducibility of the excitation force is realizable. In
addition, no mass loading between excitation and structure is necessary. From this, a potential
source for data distortion is eliminated. The voice-coil actuator is operating in current mode to
control the acceleration of the actuator. The decaying velocity is measured by a laser vibrometer.
The optical measurement technique is used to avoid the mechanical coupling between the sensor
and the structure. In Fig. 11, the schematic experimental setup is presented. The excitation and
the measurement are carried out at one point of the structure. In doing so, a system reduced to
a single input and output is analyzed.

4.2. Specimen clamping

The investigated specimens are beams with defined eigenfrequencies. The sample geometry
(width, length and thickness) is selected in a way so that the eigenfrequencies are well seperated.
To reduce the influence of frictional damping due to clamping and to ensure a linear system
behavior, the specimens are clamped in a suspended way, see Hentschel et al. (2014) for details.
The beams are clamped in their nodes of vibration. Bolts with an apex are used to fix the
specimens depending on the analyzed mode shape. This allows an evaluation of “free” modes of
vibration and prevents rigid body mode shapes.



Introduction and evaluation of a damping determination method... 405

Fig. 11. Experimental setup (schematic)

5. Evaluation

To quantify the quality of the presented STFR method, the damping values identified using
the different methods are compared. To apply the LSCE and the RFP method respectively, an
estimation of the transfer function is necessary. As it is usual for modal analysis, the average
of several transfer functions is performed, until a sufficient value of the identified coherence is
present. For this purpose, an averaging of five measurements is performed. On this basis, the
FRF is estimated using the H2(ω) FRF estimator. Applying the LSCE and the RFP method,
the damping values are calculated for the first two mode shapes of the specimen. To calculate
a standard deviation of the identified damping values using the two common methods, the
described procedure is repeated six times after reassembly of the experimental setup.
Using the performed thirty measurements to identify the damping by making use the RFP

and the LSCE method respectively, the STFR method is applied to identify the damping values.
Hereby, the decay curve is identified by means of the procedure described in Section 2.2. On
the basis of the analytical formulation in equation (2.9), the least square method is applied to
identify the decay coefficient. The mean damping values and the standard deviations calculated
with the several methods are shown in Fig. 12.

Fig. 12. Methods for damping determination

It can be seen that nearly the same mean damping values are calculated using the several
methodologies. The standard deviations calculated on the basis of the RFP and the LSCE
methods show almost equal magnitudes. However, the standard deviation found by using the
STFR method is lower in comparison to the other methods. This difference arises from the
calculation of the FRF which is necessary to apply the LSCE and the RFP method respectively.
Besides the measured output signal, the measured input signal including noise and measurement
errors are necessary, too. This is not the case applying the STFR method.
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6. Conclusions

In this paper, a method for the evaluation of damping values from experimental tests is presen-
ted. The presented method is limited to excited structures by an impulse with well separated
eigenfrequencies. On this basis, resampling of the original data is introduced to achieve a suf-
ficient quality concerning the calculated amplitude and frequency. An additional benefit of the
applied resampling procedure is the identification of the present eigenfrequency depending of
the vibration amplitude. To perform the damping identification, only the output signal is ne-
cessary in contrast to other common methods. For this purpose, determination of the transfer
function is not necessary. In addition, the analysis of a given output signal is performed to
clarify the approach for parameter identification. In this context, an amplitude-dependant dam-
ping and eigenfrequency is predefined. Hereby, the possibility of non-linear signal evaluation is
demonstrated.

Finally, the presented methodology is compared to common methods used in linear modal
analysis. Hereby, an analysis of experimentally identified damping values is performed. It can
be shown that the intended method allows adequate parameter identification, in which only the
output signal is used. Additionally, the identification of the amplitude dependent frequency and
damping value is possible.
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