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Multiconfiguration time-dependent Hartree approach for electron-nuclear correlation
in strong laser fields
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The multiconfiguration time-dependent Hartree approach is applied to study the electron-nuclear correlation
in the dynamics of molecules subject to strong external laser fields, using the example of a model hydrogen
molecular ion. The ground state of the system is well described by as few as two single-particle functions
per degree of freedom. A significantly larger but moderate number of configurations is required to predict
laser-induced fragmentation probabilities and high-order harmonic generation spectra accurately, showing that
the correlation between electronic and nuclear degree of freedom is strongly increased by the presence of the
laser field.
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I. INTRODUCTION

The field strength of a high-intensity laser pulse can be
comparable to or larger than typical atomic or molecular
binding forces [1,2]. This leads to a multitude of effects in-
volving high excitation, ionization, and fragmentation. Among
these phenomena, high-order harmonic generation (HHG) [3]
has emerged as a particularly important field of research.
HHG spectra from molecules provide information about the
molecular structure [4] and have been used to construct
electron orbitals [5–7]. HHG has been qualitatively explained
by the three-step model [8] as follows. First, the electron
tunnels out of the atomic or molecular system as the laser field
suppresses the potential barrier. The electron is subsequently
accelerated by the field and driven back toward the parent ion.
In the final step the electron recombines with the parent ion by
emitting the kinetic energy accumulated during its excursion
together with the binding energy into a photon.

For an accurate description of molecules in a strong field,
both the response of the electrons and also the nuclear
degrees of freedom must be taken into account. Ideally, the
dynamics of the different degrees of freedom are treated fully
quantum mechanically. A classical description of the nuclei or
using the Born-Oppenheimer (BO) approximation cannot fully
explain the complex interplay between the different degrees
of freedom in situations where electrons are excited into
high-lying bound or continuum states. The standard method
of solving the full time-dependent Schrödinger equation uses
a representation of the wave function and Hamiltonian in an
appropriate product basis. This approach works very well for
small systems but the required computational resources grow
exponentially with increasing number of degrees of freedom.
Even simple systems such as the H2

+ molecular ion pose
a challenge to theoretical description when they are subject
to intense laser pulses because large grids or basis sets are
required to capture the ionization and fragmentation dynamics
in the nonperturbative regime of laser-molecule interactions.
For H2

+, full non-BO quantum mechanical simulations in-
corporating the nuclear motion have been reported only for
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the case of frozen rotational degree of freedom. For the usual
infrared fields, such simulations are limited to the case of
the molecular axis aligned parallel to the laser field [9–11]
while the case of arbitrary oriented three-dimensional H2

+
has been treated in the fixed-nuclei approximation [12,13].
Recently, the combined treatment of arbitrary orientation and
nuclear motion has been reported [14,15] for driving fields
in the high-frequency (extreme ultraviolet) regime, which are
computationally less demanding than the low-frequency fields.
Another set of recent calculations [16,17] includes the full
rovibrational quantum mechanical motion of the nuclei, but
uses a BO expansion including the three lowest electronic
states.

As an alternative to the direct solution of the Schrödinger
equation, approximate methods have been developed that
maintain a fully quantum mechanical picture while alleviating
the problem of exponentially growing computational require-
ments. One such method is the time-dependent Hartree (TDH)
approach [18], in which the wave function is approximated
as one Hartree product. The required effort to solve the
system is reduced significantly but at the cost of losing
the correlation between the degrees of freedom completely.
The TDH approach does not perform well in describing
correlated multielectron dynamics and does not offer a way to
converge to the exact result, which makes it hard to determine
the quality of a calculation. To overcome these problems,
the multiconfiguration time-dependent Hartree (MCTDH)
approach [19–21] has been proposed. The MCTDH wave func-
tion is a sum of Hartree products. Here, each Hartree product
can be understood as a configuration and the sum covers all
possible configurations that arise from the set of single-particle
functions (which are time dependent themselves). MCTDH
has been applied extensively to study the nuclear dynamics
of multidimensional systems. Systems of identical particles
can be studied with the help of the MCTDH method but
this involves a large amount of redundant coefficients in
the multiconfigurational expansion [22]. A variant that is
applicable to the case of many-electron systems is known as the
multiconfiguration time-dependent Hartree-Fock (MCTDHF)
method [23]. MCTDHF differs from the MCTDH in the
explicit antisymmetrization of the electronic wave function.
A TDH approach for identical particles neglects exchange
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effects while this is not the case in MCTDH and MCTDHF.
Note that for distinguishable degrees of freedom (the normal
case in MCTDH applications), there is no exchange effect. The
term configuration in the MCTDH context should be used with
care when comparing with the configuration-interaction (CI)
method of atomic structure theory. In the CI method, the wave
function is written as a linear combination of configuration
state functions built from a given set of spin orbitals. Different
configuration state functions describe the excitation of single
or multiple electrons from occupied orbitals to the unoccupied
orbitals. Time-dependent CI calculations have been carried
out previously [24,25]. It is important to note that in this
method the expansion coefficients are time dependent while
the configurations remain fixed. This is in contrast to MCTDH
where the configurations are allowed to evolve in time as well.
Moreover, the CI wave function does not necessarily include
all possible configurations, but may be restricted to certain
types of excitation (single, double, etc.). In the present work,
we apply the multiconfiguration theory for the first time to the
case of coupled electronic and nuclear motion. We use a one-
dimensional (1D) model H2

+ system [26–32] to compare exact
simulations to the MCTDH method with various numbers of
configurations. For laser parameters that are typically used
in present-day experiments, we find that a moderate number
of single-particle functions is sufficient to provide accurate
quantitative results for fragmentation probabilities and HHG
spectra. Atomic units are used throughout this article.

II. MULTICONFIGURATION TIME-DEPENDENT
HARTREE APPROACH

The MCTDH approach [20] for an f -dimensional system
approximates the wave function � by a sum of Hartree
products. The multiconfigurational wave function ansatz reads

�(Q1, . . . ,Qf ,t) =
n1∑

j1=1

· · ·
nf∑

jf =1

Aj1···jf
(t)

f∏
κ=1

ϕ
(κ)
jκ

(Qκ,t),

(1)

where Q1, . . . ,Qf are the particle coordinates, the Aj1...jf

denote the MCTDH expansion coefficients, and ϕ
(κ)
jκ

are the
nκ single-particle functions (SPFs) for each degree of freedom

κ . We simplify the notation by introducing a composite index
J = (j1 . . . jf ) and the configurations �J:

AJ = Aj1···jf
, �J =

f∏
κ=1

ϕ
(κ)
jκ

. (2)

The numbers nκ of SPFs that are used to build the configu-
rations can be chosen differently for each degree of freedom.
However, each of these numbers nκ should obey the condition,

n2
κ �

f∏
κ ′=1

nκ ′ . (3)

Otherwise, there will be redundant configurations. The con-
dition n1 = n2 follows for two degrees of freedom. For the
present calculation, we thus have f = 2 and n1 = n2 = n, and
the respective number of configurations is n2.

Using the multiconfigurational ansatz in the Dirac-Frenkel
variational principle [33],

〈δ�|H − i∂t |�〉 = 0, (4)

one obtains, under suitable constraints [20], a set of coupled
equations of motion for the expansion coefficients and for the
set of SPFs:

iȦJ =
∑
L

〈�J |H |�L〉AL, (5)

iϕ̇(κ) = (1 − P (κ))(ρ(κ))−1〈H〉(κ)ϕ(κ). (6)

Here a vector notation has been adopted for the
SPFs with ϕ(κ) = (ϕ(κ)

1 , . . . , ϕ(κ)
nκ

)T . Furthermore, P (κ) =∑nκ

j=1 |ϕ(κ)
j 〉〈ϕ(κ)

j | is the projector on the space spanned by
the SPFs for the κ th degree of freedom, ρ(κ) is the density
matrix, and 〈H〉(κ) is the matrix of mean fields. For a detailed
derivation and discussion of Eqs. (5) and (6), see [20]. The
propagation of the wave function is expected to become
more accurate as the number of nκ is increased. Thus, for
nκ → ∞, the MCTDH wave function is expected to converge
toward the exact one. Setting n1 = · · · = nf = 1 one arrives
at the time-dependent Hartree method, which approximates
the total wave function by one product of SPFs. For large
systems, the required effort to solve the MCTDH equations of
motion is typically much less than in the direct solution of the
time-dependent Schrödinger equation.

TABLE I. Ground-state energy for the 1-D H2
+ molecular ion obtained from the Hartree, MCTDH, and exact calculations.

All numbers are in atomic units.

Hartree MCTDH Exact

Number of single-particle functions

nκ = 1 2 4 8 ∞
−E0 0.77484 0.77636 0.77638 0.77638 0.77638
〈T̂ 〉 0.08439 0.08393 0.08392 0.08392 0.08392
−〈Wen〉 1.24113 1.24098 1.24095 1.24095 1.24094
〈Wnn〉 0.38190 0.38069 0.38065 0.38065 0.38065

〈R〉 2.6293 2.6431 2.6435 2.6435 2.6435
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FIG. 1. (Color online) The ground-
state (a) electronic density and (b) nuclear
density obtained for the 1D H2

+ molecular
ion using Hartree, MCTDH, and exact
calculations.

III. THE MODEL SYSTEM

We consider a one-dimensional H2
+ molecular ion since

it is the simplest possible system with coupled electronic and
nuclear motion. The model system is characterized by the
Hamiltonian,

Ĥ = T̂n + T̂e + Wen(x,R) + Wnn(R) + qexE(t), (7)

with T̂n = − 1
2µn

∂2

∂R2 and T̂e = − 1
2µe

∂2

∂x2 . Here, x and R denote
the electron coordinate and the internuclear distance. µn and
µe are the reduced masses of nuclei and electron, respectively,
and qe = 2mn+2

2mn+1 is the reduced charge. Instead of bare Coulomb
potentials, the soft-core potentials,

Wen(x,R) = − 1√(
x − R

2

)2 + ae

− 1√(
x + R

2

)2 + ae

, (8)

Wnn(R) = 1√
R2 + an

, (9)

are used with ae = 1 and an = 0.03. The laser field is given by

E(t) = E0f (t) sin(ωt), (10)

where ω is the laser frequency and E0 is the peak amplitude.
In all our calculations, we use a laser wavelength of 800 nm.
The envelope function, f (t) = sin2(π

2
t

Tramp
), is used to ramp

up the laser field from zero to the maximal field strength
at time t = Tramp. For the time-dependent calculations,
the wave function �(x,R,t) is represented on a grid with
NR × Nx = 256 × 2048 points. The spatial step sizes for
the internuclear distance and for the electron coordinate
are dR = 0.1 a.u. and dx = 0.2 a.u., respectively. For the

calculation of ground-state properties the step sizes were
dR = 0.05 a.u. and dx = 0.1 a.u. A part of our calculations
was carried out using the Heidelberg MCTDH package [34].

IV. RESULTS

A. Ground-state calculation

In this section we compare the ground-state properties
obtained from the Hartree, MCTDH, and exact calculations.
The ground state is obtained via imaginary time propaga-
tion [35]. Table I shows the total ground-state energy E0

obtained from the different methods. The kinetic energy 〈T̂ 〉,
electron-nuclear interaction energy 〈Wen〉, and nuclear-nuclear
interaction energy 〈Wnn〉 are the components that contribute to
E0. The Hartree approach underestimates the absolute value of
the ground-state energy while the MCTDH approach gradually
improves and converges toward the exact results.

In Figs. 1(a) and 1(b), we plot the ground-state electronic
density ρe and nuclear density ρn defined as

ρe(x) =
∫ Rmax

0
|�(x,R)|2dR, (11)

ρn(R) =
∫ xmax

−xmax

|�(x,R)|2dx, (12)

where Rmax = 25.6 a.u. and xmax = 204.8 a.u. are the end
of the grid in nuclear and electronic direction, respectively.
The disagreement between the Hartree and exact calculations
is clearly visible in the nuclear density plot. The deviation
of Hartree electronic density from the exact calculation is
very minute. The MCTDH approach leads to almost exact
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FIG. 2. (Color online) Modulus
squared |C(t)|2 of the autocorrelation
function plotted for intensities (a) 2 × 1014

W/cm2 and (b) 3 × 1014 W/cm2 as a
function of time obtained for 1D H2

+

using the Hartree, MCTDH, and exact
calculations.
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FIG. 3. (Color online) Time evolution
of the mean internuclear distance 〈R〉(t)
for the intensities (a) 2×1014 W/cm2

and (b) 3×1014 W/cm2 obtained for 1D
H2

+ using Hartree, MCTDH, and exact
calculations.

results. Only on a closer inspection of Fig. 1(b), we find that
the two-SPF nuclear density deviates slightly from the exact
calculation. For more than two SPFs, the MCTDH densities
are indistinguishable from the exact densities on the scale of
the figure.

B. Dynamics in the presence of a laser field

The model system is subjected to laser pulses with inten-
sities 2 × 1014 W/cm2 and 3 × 1014 W/cm2. A function with
five optical cycles turn-on and turn-off times is used as the
field envelope. The pulse length is 26.7 fs (10 cycles) and the
total propagation time is 50 fs (19 cycles). To avoid reflections
from the boundary, complex absorbing potentials [36] have
been applied.

The autocorrelation function C(t) = 〈�(0)|�(t)〉 is defined
as the overlap of �(t) with the initial ground state �(0). In
Figs. 2(a) and 2(b), we plot |C(t)|2 for the two intensities as a
function of time. This quantity can be viewed as the probability
that the system is still in the ground state at time t . The Hartree
result closely follows the exact calculation initially. Around the
end of the pulse and at later times, the Hartree result deviates
strongly from the exact calculation. In fact, the probability
fails to remain constant during the field-free evolution after
the pulse. The two-SPF case shows improvement compared
to the Hartree calculation but differs strongly from the exact
calculation. With increasing numbers of SPFs, the exact result
is approached.

Figure 3 shows the time-dependent expectation value
〈R〉 = ∫ Rmax

0 ρn(R) R dR of the internuclear distance. For the
intensity 2 × 1014 W/cm2 [Fig. 3(a)], the laser field causes
the molecule to stretch at the beginning of the pulse. As
the field strength is moderate, the internuclear distance starts
oscillating rather than showing dissociation. Compared to
the exact results, the Hartree ansatz reproduces the main
features of the dynamics qualitatively. It follows an initially
increasing and oscillatory behavior of 〈R〉(t). The amplitude
of the oscillation is underestimated while its frequency is
overestimated. The MCTDH approach successfully repro-
duces the features of exact calculation. For the intensity 3 ×
1014 W/cm2 [Fig. 3(b)], the exact and the MCTDH calcula-
tions show initial stretching of the molecule and fragmentation.
It is interesting to see that the two-SPF case qualitatively
reproduces the exact calculation for the weaker field but
fails for the stronger field. The Hartree calculation shows

an oscillatory behavior with higher amplitude than in the
lower-intensity case. The oscillatory result indicates that the
stability of the system against fragmentation is overestimated
by the Hartree ansatz. This is consistent with the too-narrow
shape of the nuclear ground-state density [Fig. 1(b)].

In Fig. 4, the time evolution of the nuclear density is
plotted for the laser intensity 3×1014 W/cm2. The eight-
SPF case [Fig. 4(c)] and the exact calculation [Fig. 4(d)]
exhibit dissociation. Here the nuclear density splits into two
parts: one representing the part of the wave function which
remains bound in some superposition state, while the other
one corresponds to a dissociative packet. The two-SPF case
[Fig. 4(b)] shows almost negligible dissociation, similar to the
Hartree method [Fig. 4(a)]. The time evolution of electronic
density is plotted in Fig. 5. The slowly outgoing electronic
wave packets observed in the center of the plot [Figs. 5(c)
and 5(d)] are associated with a dissociation process: as the
nuclei move apart, the electron follows the one or the other. The
separation of dissociating wave packets from the ground-state
region is not visible in the Hartree method [Fig. 5(a)] and
two-SPF case [Fig. 5(b)].
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FIG. 4. (Color online) Time evolution of the nuclear density
obtained for 1D H2

+ in a laser pulse with intensity I = 3 ×
1014 W/cm2.
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FIG. 5. (Color online) Time evolution of the electronic density
obtained for 1D H2

+ in a laser pulse with intensity I = 3 × 1014

W/cm2.

The calculation of fragmentation probabilities is of partic-
ular interest in the simulations of strong-field phenomena. We
can distinguish two types of fragmentation: (i) dissociation
into H + H+, denominated in the following as photodissoci-
ation [37], and (ii) fragmentation into H+ + H+, known as
Coulomb explosion [37,38]. In principle, the calculation of
fragmentation probabilities requires projection of the many-
body wave function on all the continuum states. Alternatively,
one can use a geometrical picture to obtain approximate results.
It rests on the simplified assumption that all bound states
of the system under consideration are contained inside some
finite volume of the numerical grid. In our calculation, we set
Rbox = 8 a.u. and xbox = 25 a.u. to define the probabilities of
survival (SU), photodissociation (PD), and Coulomb explosion
(CE) as follows:

PSU =
∫ Rbox

0
dR

∫ xbox

−xbox

dx|�(x,R,t)|2, (13)

PPD =
∫ Rmax

Rbox

dR

∫ xbox

−xbox

dx|�(x,R,t)|2, (14)

PCE = 1 − PSU − PPD. (15)

In Fig. 6 we plot PSU, PCE, and PPD as functions of time
for the intensities 2 × 1014 W/cm2 and 3 × 1014 W/cm2.
When the model system is subjected to the field intensity
2 × 1014 W/cm2, the system remains in some vibrationally
excited bound state most of the time. The fragmentation of
the molecule is very small. The exact calculation shows that
roughly 94% of the molecule withstands fragmentation, while
the Hartree result exhibits very little fragmentation [Fig. 6(a)].
The same is true for the two-SPF case. In Fig. 6(b), we see that
the one-SPF case shows a slight decrease in PCE at long times.
This is purely an artifact of one-SPF calculation and can be
attributed to the “shrinking” of the wave function after the end
of the pulse. The photodissociation probability is practically
zero for the one-SPF case and is not visible in Fig. 6(c). The
two-SPF case shows a minute improvement. With increasing
numbers of SPFs, the deviation becomes less and the MCTDH
results converge toward the exact results. For the intensity
3 × 1014 W/cm2 [Figs. 6(d)–6(f)], the MCTDH calculations
reproduce the results of the exact calculation well. As before,
the one-SPF approach fails to give a proper account of
electron-nuclear correlation in the presence of an external field
[39].

The harmonic spectrum is obtained by taking the modulus
squared of the Fourier transform of the time-dependent dipole
acceleration a(t) [40]:

µea(t) = 〈�(t)|∇Wen + qeE(t)|�(t)〉, (16)

ã(ω) = 1√
2π

∫
a(t)eiωtdt. (17)

For the calculation of HHG we have used 10-cycle pulses with
two-cycle (5.3 fs) sin2-shaped ramping-on and ramping-off
functions. HHG spectra obtained for the model system are
plotted in Fig. 7. We find well-defined peaks at odd harmonics
order (i.e., harmonic frequencies that are odd multiples of
the incident laser frequency). The peaks in the HHG spectra
from the MCTDH approach with four SPFs and eight SPFs
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FIG. 6. (Color online) Survival (SU), Coulomb explosion (CE), and photodissociation (PD) probabilities obtained for 1D H2
+ in fields of

intensities 2 × 1014 W/cm2 [panels (a)–(c)] and 3 × 1014 W/cm2 [panels (d)–(f)] as functions of time.
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FIG. 7. (Color online) HHG spectra obtained for 1D H2
+ in a laser pulse with intensity I = 3 × 1014 W/cm2.

[Fig. 7(b)] lie at the same position as in the exact spectra.
The Hartree calculation produces peaks, but it is difficult
to distinguish them in the plateau region [see Fig. 7(a)].
Apparently, a sufficiently large number of SPFs is needed
to produce the shape of the HHG peaks accurately, and the
16-SPF result is very close to the exact result [see Fig. 7(c)].

V. CONCLUSION

We have studied the electron-nuclear correlation in the
presence of strong laser fields using the MCTDH formalism
using the example of the one-dimensional H2

+ molecular
ion. Although rather simple, the model system shows a rich
dynamics and exhibits many of the salient features that are
characteristic of the behavior of diatomic molecules in intense
fields (ionization, photodissociation, Coulomb explosion).
We have demonstrated that the Hartree approach fails while
the performance of the MCTDH approach converges toward
the exact results with increasing numbers of single-particle

functions. It allows one to systematically improve the accuracy
toward the exact result. Besides, we have shown that the
number of configurations required for numerically converged
results increases for increasing peak intensity of the infrared
laser pulse (i.e., the correlation between electronic and nuclear
motion is increased by the field). Nevertheless, the number
of required SPFs is moderate. While two to four SPFs are
sufficient to calculate ground-state properties accurately, eight
to 16 SPFs yield good results for the laser-driven system.
We conclude that the MCTDH method is a practicable
approach for the treatment of coupled electronic and nuclear
motion.
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78, 033410 (2008).

[7] S. Haessler et al., Nature Phys. 6, 200 (2010).
[8] P. B. Corkum, Phys. Rev. Lett. 71, 1994 (1993).
[9] V. Roudnev, B. D. Esry, and I. Ben Itzhak, Phys. Rev. Lett. 93,

163601 (2004).
[10] S. Chelkowski, T. Zuo, O. Atabek, and A. D. Bandrauk, Phys.

Rev. A 52, 2977 (1995).

[11] F. He, C. Ruiz, and A. Becker, Phys. Rev. Lett. 99, 083002
(2007).

[12] G. L. Kamta and A. D. Bandrauk, Phys. Rev. A 71, 053407
(2005).

[13] T. K. Kjeldsen, L. B. Madsen, and J. P. Hansen, Phys. Rev. A
74, 035402 (2006).

[14] M. Førre and H. Bachau, Phys. Rev. A 77, 053415 (2008).
[15] S. X. Hu, L. A. Collins, and B. I. Schneider, Phys. Rev. A 80,

023426 (2009).
[16] M. Winter, R. Schmidt, and U. Thumm, Phys. Rev. A 80,

031401(R) (2009).
[17] M. Winter, R. Schmidt, and U. Thumm, New J. Phys. 12, 023020

(2010).
[18] A. D. McLachlan, Mol. Phys. 8, 39 (1964).
[19] H.-D. Meyer, U. Manthe, and L. S. Cederbaum, Chem. Phys.

Lett. 165, 73 (1990).
[20] M. H. Beck, A. Jäckle, G. A. Worth, and H.-D. Meyer, Phys.

Rep. 324, 1 (2000).

063421-6

http://dx.doi.org/10.1103/RevModPhys.81.163
http://dx.doi.org/10.1088/0953-4075/40/16/R01
http://dx.doi.org/10.1038/nature03183
http://dx.doi.org/10.1038/nature03183
http://dx.doi.org/10.1103/PhysRevA.78.033410
http://dx.doi.org/10.1103/PhysRevA.78.033410
http://dx.doi.org/10.1038/nphys1511
http://dx.doi.org/10.1103/PhysRevLett.71.1994
http://dx.doi.org/10.1103/PhysRevLett.93.163601
http://dx.doi.org/10.1103/PhysRevLett.93.163601
http://dx.doi.org/10.1103/PhysRevA.52.2977
http://dx.doi.org/10.1103/PhysRevA.52.2977
http://dx.doi.org/10.1103/PhysRevLett.99.083002
http://dx.doi.org/10.1103/PhysRevLett.99.083002
http://dx.doi.org/10.1103/PhysRevA.71.053407
http://dx.doi.org/10.1103/PhysRevA.71.053407
http://dx.doi.org/10.1103/PhysRevA.74.035402
http://dx.doi.org/10.1103/PhysRevA.74.035402
http://dx.doi.org/10.1103/PhysRevA.77.053415
http://dx.doi.org/10.1103/PhysRevA.80.023426
http://dx.doi.org/10.1103/PhysRevA.80.023426
http://dx.doi.org/10.1103/PhysRevA.80.031401
http://dx.doi.org/10.1103/PhysRevA.80.031401
http://dx.doi.org/10.1088/1367-2630/12/2/023020
http://dx.doi.org/10.1088/1367-2630/12/2/023020
http://dx.doi.org/10.1080/00268976400100041
http://dx.doi.org/10.1016/0009-2614(90)87014-I
http://dx.doi.org/10.1016/0009-2614(90)87014-I
http://dx.doi.org/10.1016/S0370-1573(99)00047-2
http://dx.doi.org/10.1016/S0370-1573(99)00047-2


MULTICONFIGURATION TIME-DEPENDENT HARTREE . . . PHYSICAL REVIEW A 81, 063421 (2010)

[21] H.-D. Meyer, F. Gatti, and G. A. Worth, Multidimensional
Quantum Dynamics: MCTDH Theory and Applications (Wiley-
VCH, Weinheim, 2009).

[22] O. E. Alon, A. I. Streltsov, and L. S. Cederbaum, J. Chem. Phys.
127, 154103 (2007).

[23] J. Zanghellini, M. Kitzler, T. Brabec, and A. Scrinzi, J. Phys. B
37, 763 (2004).

[24] T. Klamroth, Phys. Rev. B 68, 245421 (2003).
[25] N. Rohringer, A. Gordon, and R. Santra, Phys. Rev. A 74, 043420

(2006).
[26] K. C. Kulander, F. H. Mies, and K. J. Schafer, Phys. Rev. A 53,

2562 (1996).
[27] W. Qu, Z. Chen, Z. Xu, and C. H. Keitel, Phys. Rev. A 65,

013402 (2001).
[28] S. Chelkowski, C. Foisy, and A. D. Bandrauk, Phys. Rev. A 57,

1176 (1998).
[29] G. L. Ver Steeg, K. Bartschat, and I. Bray, J. Phys. B 36, 3325

(2003).
[30] B. Feuerstein and U. Thumm, Phys. Rev. A 67, 043405 (2003).
[31] C. Liu, Z. Zeng, P. Wei, P. Liu, R. Li, and Z. Xu, Phys. Rev. A

81, 033426 (2010).

[32] M. Lein, T. Kreibich, E. K. U. Gross, and V. Engel, Phys. Rev.
A 65, 033403 (2002).

[33] J. Broeckhove, L. Lathouwers, E. Kesteloot, and P. Van Leuven,
Chem. Phys. Lett. 149, 547 (1988).

[34] G. A. Worth, M. H. Beck, A. Jäckle, and H.-D. Meyer,
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