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We extend the ideas of wave-packet interferometry [Remetter et al., Nat. Phys. 2, 323 (2006)] to implement
the algorithm of spectral phase interferometry for direct electric-field reconstruction (SPIDER) for characterizing
the amplitude and phase of electron wave packets. Single-photon ionization by an attosecond pulse launches
an electron wave packet in the continuum. Ionization by a train of two attosecond pulses in the presence of a
moderate infrared pulse creates an interferogram in the final photoelectron momentum distribution. From the
interferogram, the complex electron wave function can be reconstructed. If the pulses are well characterized, the
amplitude and phase of the bound-free dipole matrix element can be reconstructed over a wide energy range. This
is demonstrated by application of the retrieval method to momentum distributions obtained by numerical solution
of the time-dependent Schrodinger equation. The case of Coulombic potentials requires appropriate treatment of

the laser-Coulomb coupled dynamics.
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I. INTRODUCTION

The advent of new extreme ultraviolet (xuv) sources [1,2]
and in particular the attosecond pulses [3] have opened new
opportunities for imaging atomic and molecular systems with
unprecedented temporal resolution [4,5]. Attosecond pulses
(1as= 10"'85) have a broadband spectrum in the xuv and
can ionize an atom or a molecule by single-photon absorption
leading to emission of an electron wave packet (EWP). The
EWP contains information about both the attosecond pulse [6]
and the atomic or molecular system [4,7]. The spectrum of the
attosecond pulses and the bound-free transition dipole matrix
element are mapped onto the amplitude and bandwidth of the
electron spectrum.

The dipole matrix element contains structural information
[8,9] about the initial state. Ionization by attosecond pulses
and measurement of the electron spectra provide access to the
absolute value of the dipole transition matrix element over
a broad range of energies. But the phase of this quantity
remains largely unknown and hard to measure. For a complete
characterization of the system, the knowledge of this phase
is essential. It also determines the temporal structure of the
photoionization through the Wigner time delay [4,10].

In this paper we propose a general technique for the
complete characterization of the EWP and the complex
dipole matrix element. In contrast to previous work [6,11]
we do not focus on the characterization of the attosecond
pulse but rather on the characterization of the dipole matrix
element. We build upon the previous demonstration of the
measurement of the EWP phase difference [7] to propose a
general interferometric method for full characterization of the
complex EWP and the dipole matrix element. We introduce
the quantum spectral phase interferometry for direct electron
wave-packet reconstruction (QSPIDER) technique which is
a variant of the SPIDER [12,13] scheme, now applied to
quantum mechanical wave functions.
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The SPIDER technique is an interferometric measurement
of the electric field in short laser pulses. It uses a nonrecursive
algorithm [14] to extract the phase differences between the
different frequency components of the pulse. A frequency shift,
Auw, or relative shear is introduced into one delayed copy of the
pulse. For a laser pulse, E(w), the signal measured in SPIDER
can be written as S(w) = |E(w) + E(w + Aw)e "“7|?, where
E(w) is the electric field of the pulse to be characterized in
the frequency domain and t is the delay between the two
copies [12].

The spectral phase difference ¢p(w + Aw) — ¢p(w) between
the two signals is encoded in the position of the fringes
in the interferogram. It can be retrieved using a four-step
algorithm which consists of a fast Fourier transform (FFT)
to the pseudotemporal domain, a filtering operation to isolate
the ac component, a removal of the extra phase introduced by
the delay 7, and finally an inverse FFT [14-16]. If the shear Aw
is small, the obtained phase difference approximately yields
the derivative of the spectral phase.

The SPIDER technique can be applied to characterize
attosecond pulses as well. As demonstrated by Quéré and
coworkers [6], the spectral phase of such pulses can be obtained
by applying SPIDER to the electron wave packets generated by
photoionization of an atom by the attosecond pulses, assuming
a flat transition dipole. The spectral shear is introduced by
the presence of a moderately strong infrared (IR) field. The
observable containing the interferogram is the photoelectron
momentum distribution. We demonstrate that this technique
[6] can be extended to characterize the amplitude and phase of
the dipole matrix element of the ionization step.

The organization of the paper is as follows. We first
introduce the basic theory of photoionization by attosecond
pulses in the presence of an IR laser field. We derive the
interferometric signal with all involved phases. In Sec. III, we
describe how to implement QSPIDER, i.e., how to retrieve
the phases from the photoelectron momentum distribution. In
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Sec. IV, we present examples using momentum distributions
calculated within the strong-field approximation (SFA). The
subsequent sections present numerical simulations based
on the time-dependent Schrodinger equation (TDSE). We
report results for both short-range and long-range Coulombic
potentials. We show that special care is needed in the latter case
due to the laser-Coulomb coupling in the electron dynamics.

II. PHOTOIONIZATION IN THE PRESENCE OF AN
INFRARED FIELD

In this section we describe how the information about the
transition dipole matrix element is encoded into the electron
interferogram.

The ionization by a single attosecond pulse in the presence
of a moderate IR laser pulse can be described by consider-
ing the bound-free transition amplitude ap, = (p|l7 (tr,10)|Wo)
from the initial state |\W() at time f#, before the pulses to a
final continuum state |p) at the detection time #; evolving
according to the operator U (tf,%). An approximate treatment
of this transition is obtained by using perturbation theory
for the xuv-induced ionization and the SFA [17,18] for the
coupling to the IR field (atomic units are used in this paper):

ty N
ay(t) = i / gt M =04 [ [ AL P

fo

xEx(t' — ) -d[p + AL({)]. (1)

Here [, is the ionization potential and A (t) = — [ E(¢')dt’
is commonly referred to as the vector potential of the IR field
E;(t). We consider a linearly polarized IR pulse and xuv
pulses linearly polarized along the same axis. The xuv field
is Ex(t) = e, Eo x(t)Re[e 'x'+i¢x] with envelope Ej x(t)
and the central frequency wy. Here @x(¢) is the phase of the
xuv pulse which may contain, for example, a chirp. In the
notation of Eq. (1), the xuv pulse is centered at 7.

In the SFA approach, the final momentum |p) is approxi-
mated by a plane wave and the dipole matrix element is defined
asd[p+ AL(t)] = —(p + AL(®)|r|¥y). According to Eq. (1),
the ionization is mediated by the xuv pulse only, while the IR
laser pulse contributes to the phase of the EWP and changes
the momentum from p + Ay (¢) at the time of ionization to p
at the final time.

A more convenient formulation can be used when the
attosecond pulse is much shorter than the period of the IR
pulse. The final momentum-space wave function is the product
of an amplitude and a phase factor. For an attosecond pulse
centered at T; we write

ap(t1) = A(p,71)e' P10, )
with

A(p,t1) = 31dIp + AL (@)1l Eo,x(@p), 3)

O(P,T1.1f) = Pappra, ) + Lp(T1 — 1o)
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Here d(p) = d(p)-e, is the component of the dipole
along the polarization axis. The expression Eo x(wp) =
|Eo,x(wp)|e?x@) is the Fourier transform of Eg x(t)e'#*®

it
2

and %‘% = wx — I,. To obtain Eq. (3), we have expanded the
phase integral in the exponent of Eq. (1) to second order in ¢’
around 71, with A7 (') ~ Az (1)) — ErL (7))’ — 11). We further
neglect the changes in the dipole due to the expansion and
approximate d[p + A ()] = d[p + A.(t1)].

In Eq. (4) ¢x(wp) is the spectral phase of the attosecond
pulse which may, for example, contain an intrinsic chirp [19]
and the xuv carrier envelope phase (CEP) as well. The phase
¢Lic(p,T1) describes the laser-induced chirp (LIC) of the EWP
caused by the variations of the IR field around the time of
ionization. Assuming a Gaussian pulse shape Eq x (1) ~ e~ Y
this phase is given by

as a function of w, defined as wp = %[p+AL(rl)]2 —

dLic(p,71) = —larctan F'p,71) 2I'(p,71)
Lic(P,T1) = 2 2u o) + L (p. 1)
1 A 2 p(z) 2 s
X E[p“‘ L('L'])] — 7 s ( )

with I'(p) = [p + AL(71)] - EL(71). The LIC phase is respon-
sible for the different widths of the EWP in the position space
and is a measure of the attosecond pulse duration with respect
to the variations of the vector potential. For short attosecond
pulses (<200 as) and modest intensity (/ < 10'* W/cm?) the
effects of the LIC phase are negligible. This phase depends
on the value of the electric field at ionization time 7; and
is zero if E; (7)) = 0. A similar phase exists in the case of
the optical SPIDER when an insufficiently chirped ancilla is
used [20]. This phase will become relevant for streaking and
interferometric measurements as it can become larger than the
phase of the dipole.

In order to implement the QSPIDER technique, two delayed
copies of the EWP with a relative shear between them are
needed to construct an interferogram. For this we use an
attosecond pulse train (APT) with two pulses centered at 7; and
7 in the presence of the weak IR laser pulse. The two pulses
generate two EWPs which are delayed relative to each other
by the separation of the pulses in the train [6,21]. The weak
IR laser pulse streaks each of the EWPs by the value of the
vector potential at the ionization time [11] to produce a relative
streaking, AA; = A (1) — AL (1)), between the two copies.
The streaked and delayed copies produce an interferogram
in the final momentum distribution which is conceptually
equivalent to the interferogram of the SPIDER technique.
According to the SFA, the interferogram is

lap(11,22)* = |Ar(p,z)e PP 4 Ap(p,p)e PP
= Ai(p.1)* + Ax(p.12)?
+2A1(p,11)A2(p, 72) cOS(Agh2y). (6)

Here, A;(p, 1) and A>(p,1,) are the (real) amplitudes for each
of the EWPs. The interference term in Eq. (6) is governed by
the relative phase

1o
Apn1 = Agu(p,T1,T2) + 5[ dr'[p+ AL

T

+1,At + Agx(p,71,72) + Adric(p.T1.72).  (7)
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Here, At = 1, — 1 is the delay between the attosecond pulses
and A¢y(P.71,72) = Pap+A,(r)] — Pdip+A.(z)) 1S the phase
difference of the dipole matrix element.

In this approximation the interference depends on five
terms. The first one, A¢,(p, 11, 12), is related to the phase of the
dipole transition matrix element. The second term is the Volkov
phase related to the different time spent in the continuum by the
two EWPs. The third term is the accumulated phase difference
in the initial state before ionization, which we call the atomic
phase. The two last terms are related to the spectral phases of
the attosecond pulses, which also contain the carrier envelope
phase difference, and to the LIC.

The interference between the two streaked EWPs depends
on the emission direction. Assuming a small collection angle
around the polarization direction, we can restrict ourselves to
one-dimensional modeling; i.e., we focus on electrons emitted
along the polarization axis.

The theory outlined above is suitable only for systems
that are well described by the SFA, i.e., potentials without
a Coulomb tail. For Coulombic potentials, the separation
of the electron dynamics into the two steps of ionization
and interaction with the laser field is problematic because
the electron interacts with the laser field and the long-range
potential at the same time. The long-range character is also
reflected in the field-free continuum states that are needed in
the transition dipole matrix elements. For the potential V(x)
with asymptotic behavior —Z/|x|, the positive-momentum
component of the continuum state ®;(x) for the asymptotic
momentum k > 0 behaves as

Dy (x) ~ explikx +iZ In(2kx)/ k], forx — oco. (8)

For the Coulomb-laser coupled dynamics we follow the
eikonal approach by Ivanov and coworkers [22]. For the
purpose of calculating the time evolution of the eikonal
state, we assume an electron trajectory starting at a distance
xo and moving outwards [23]. One finds that the position
representation of the continuum state after evolving from the
time of ionization t to the final time 7 is

(x|U(tr, )l p+AL(D))

— iPx eﬂ‘fr’f dt [p+AL(t)]2/267i./:f dt Vixg+pt—o)+[! dt' AL(t)]

i ‘Xo
x e 7z Jug VO )

where | p) denotes the eikonal continuum state with asymptotic
momentum p and U(ty,7) is the approximate time evolution
operator. Since we are primarily interested in the phase
correction due to the laser-Coulomb coupling, we have omitted
the amplitude correction of the wave function in Eq. (9). In the
following, we assume that the initial positionis xo = 1/[2(p +
A(7)] [23] and furthermore we set xy = xef in accordance with
the boundary condition of Eq. (8). Thus, the last phase factor in
Eq. (9) is equal to 1. After the substitution s = xo + p(t — 1)
and inserting the Coulomb potential V(x) = —Z/|x| we obtain
for positive x that

(x|0(ty, ) p+AL(D) = &P* e I A reA R

iZ X TH(s—x0)/ P -1
x o7 I Bl dr' Ay (") ’

(10)
where xy = xo + p(ty — 7).
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Finally, we consider two EWPs with the same asymptotic
momentum p, but launched at two different times, t; and 7,. In
the limit ; — oo, we find that the two wave functions differ
by a relative phase

e
Adve(p.,m) = 5 f di [p+ AL(OP
T

+ X}Enoo(fbc(P’fz) — ¢c(p,T1)),

scpp == [ &
cp,Tj) = — R )
s [ ar AL
J

(1)

where xo ; = 1/[2(p + Ap(z;)] for j = 1,2. We conclude that
in the case of Coulombic potentials, Eq. (7) is replaced by the
Coulomb-corrected phase difference

Apy1 = Apg + Adve + [, AT + Agx + A¢ric,  (12)

where we have omitted the arguments for notational simplicity.

III. IMPLEMENTATION OF QSPIDER

QSPIDER is a quantum implementation of the SPIDER
technique. The interference of two delayed EWPs leads to an
interferogram in the electron momentum distribution, where
the relevant phase difference A¢,; is given by Eq. (7) or (12).

The technique first measures the phase difference A¢,;. For
metrology applications as suggested by Quéré et al. [6], the
spectral phase of the xuv pulse can be recovered to reconstruct
the temporal shape of the xuv pulse. This is possible if A¢,
and the Coulomb corrections are known. In Ref. [6] it was
assumed that these phases vanish, which is not fulfilled for a
real atom. In contrast, our aim is to retrieve the dipole matrix
element, assuming that the xuv field is well known. This also
requires the knowledge of quantities such as the relative shear
and the delay between the pulses. All of these quantities can
be measured and used as input information for QSPIDER.

The scheme for measuring A¢,; is depicted in Fig. 1.
Figure 1(c) shows a typical momentum spectrum as produced
by the applied fields shown in Fig. 1(a). This interferogram
carries information on the amplitude and phase of the EWPs.
The QSPIDER technique for amplitude and phase retrieval
is useful only for a limited range of delays and relative
shears between the copies, similar to SPIDER [12,13]. These
restrictions come from the conditions under which the retrieval
algorithm can be applied.

Once the interferogram is available we can apply the
SPIDER retrieval algorithm which consists of four steps. First
we compute the FFT of the interferogram, transforming from
momentum space to pseudoposition space. The resulting signal
is depicted in Fig. 1(d). It consists of one central peak, the
dc component, and two lateral signals, the ac components.
By placing a soft mask, the central dc part can be isolated
to obtain the square amplitude of the EWP |A(p,;)|%. This
simple procedure allows us to retrieve the amplitude of the
EWP as if only one attosecond was used. To extract the phase
difference A¢y; it is necessary to use a soft mask [dotted red
line in Fig. 1(d)] to isolate the right ac term.

For a correct retrieval of this phase the dc and ac
components need to be well separated. This can be controlled
by adjusting the delay At between the attosecond pulses, the
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FIG. 1. (Color online) General idea of the QSPIDER technique. (a) Two attosecond pulses (violet area) in the presence of a weak vector
potential of the IR laser (red solid line) produce two identical EWPs with different central momentum due to the streaking of the IR field.
Panel (b) shows two EWPs some time after the absorption in position space (green area). (c) The momentum distribution of these EWPs is an
interferogram (violet area) containing information about the amplitude and phase difference of the dipole matrix elements. (d) The FFT of the
momentum distribution consists of a dc central component and two ac components (blue line), which is spaced by (7, — t;) pp with respect to
the dc. After isolating the right ac (red dashed line), the phase difference can be recovered.

central momentum of the EWP, and the spectral width of the
xuv pulse. For the attosecond pulses considered here, the best
retrievals are obtained for delays around At ~ TR, the period
of the laser pulse. Smaller delays At lead to overlap between
the ac and dc components, which are separated by poAr,
thus disturbing the retrieval algorithm. Attosecond pulses
separated by one IR laser cycle have been demonstrated in
high-order harmonic generation (HHG) experiments with two
colors (w,2w) [24]. Furthermore, the delay of two attosecond
pulses can be controlled by means of a segmented mirror [25].
After isolating the ac component, we compute the inverse FFT
to obtain the phase difference A¢,;.

In analogy to the optical SPIDER technique, we can remove
the known phases in Eq. (7) or (12) to extract the phase dif-
ference of the complex dipole transition matrix A¢y(p,11,72).
In principle, the phase difference can be obtained regardless
of the value of the relative streaking between the two copies
but if the relative streaking AA; = Ap(t) — Ar(7y) is suffi-
ciently small the phase difference gives the derivative of the
phase:

09
Ada(p,71,12) ~ a_pd AA;. (13)

Finally, integration with respect to momentum yields the phase
of the dipole matrix element.

The optical SPIDER technique is not able to retrieve the
linear spectral phase term, which determines the absolute
timing of the pulse, nor the absolute phase [13].

In QSPIDER, the situation is somewhat different: the
linear term of the momentum-dependent dipole phase can
be retrieved since all other contributions in Eq. (7) can be
computed, but the absolute dipole phase cannot be retrieved.
Therefore, when integrating the retrieved phase derivative to

obtain ¢,, an arbitrary integration constant may be added. The
removal of the Volkov phase,

1 T2 5 p2 T
5/ dt"[p+ A ()] = 7At+p-f A (tHdt”
T

a

17
+ % / A2 (t"at”, (14)
7
is straightforward if a full characterization of the IR pulse is
available. The same holds for the Coulomb-corrected phase
of Eq. (11). The delay At can be calibrated by measuring
the spacing between fringes in the case of ionization by two
attosecond pulses without IR field. The relative shear between
the copies could be measured by blocking alternatively one
of the attosecond pulses while leaving the IR laser pulse; this
would result in the momentum distribution streaked by the
value of the vector potentials Ay (t;) and A (t,) alternatively.
The spectral phase of the xuv pulse A¢yx must be charac-
terized either by some other technique available [6,11] or by
an estimation of the intrinsic chirp based on the HHG process
producing the APT. When the xuv and IR pulses are known,
we can also evaluate the contribution A¢yc.

IV. RESULTS WITHIN THE STRONG-FIELD
APPROXIMATION

In this section, we use the SFA theory to calculate the
photoelectron momentum distribution for a helium ion. We
then apply the QSPIDER method and compare the retrieved
dipole matrix element with that used in the SFA calculation.
We can assess the quality of the retrieval depending on the
different parameters such as the delay between the pulses
and the intensity of the streaking field. To evaluate the SFA
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expression we use the differential formulation [26]

dadpft) =iEx(t — 1) - d[p + A (1)) ")
2
_ iwal}(f), (15)

which can be derived from Eq. (1) by differentiating with
respect to the upper limit of the integral ¢, = ¢. This expression
is helpful because it can be integrated with any algorithm for
differential equations and does not require the saddle point
approximation. The calculation can be parallelized easily using
the message passing interface (MPI) [27] paradigm or multiple
threads with a graphic card such as CUDA [28].

We use the ground state |¢g) of the helium ion with
1 [(,O) = 2.0 a.u. (54.4 eV) and the first excited state |¢;) with
1;1) = 0.5 a.u. (13.60 eV). For the first case the dipole has a
constant phase due to the plane waves used in the SFA matrix
elements and the symmetry of the initial state. This helps us
to distinguish extra phases occurring in the measurement or in
the retrieval algorithm. In the second case the dipole phase is

PHYSICAL REVIEW A 87, 023408 (2013)

constant except for a phase jump of 7 at a momentum where
the amplitude of the dipole is zero.

In the case of the |¢y) state we have used the following
pulse parameters. The APT consists of two pulses with central
frequency wyx = 2.845 a.u. (77.4 eV). The pulse envelope is
Gaussian for both pulses with FWHM ~170 as. The intensity
of the xuv pulses is Ix = 10'> W/cm?. The best delay for the
retrieval is close to one IR period and 0.04 a.u. of momentum
shear AA; . The parameters of the IR pulse used here and in the
next sections are wavelength Ajg = 800 nm (wr = 0.057 a.u.)
and intensity Iig = 5.0 x 10'' W/cm?. The time duration of
the laser pulse is around FWHM ~4 fs; the envelope of the
field is a Gaussian function.

Figures 2(b) and 2(c) show the retrieved momentum
distribution of the EWP for negative and positive momenta
compared to the case of the absorption from a single attosecond
pulse without an IR field. Also shown is the retrieved derivative
of the dipole phase. The results show a very good agreement
in the region defined by the spectral momentum width of the
EWP. Figures 2(d) and 2(e) show the retrieval of the dipole
amplitude and the dipole phase. The amplitude of the dipole

)

=

=}

g8 0.05

ST e

S

s o

°

o

£ -0.05 . L L

g 100 150 200 250 300
Time (a.u.)

|ap |2 (arb. units)

-2 -1.5 -1
Momentum (a.u.)

|d |2 (arb. units)

—02 -1.5 -1 —0.g

Momentum (a.u.)

d¢/dp (a.u.)

Q
0.5 1 1.5 2
Momentum (a.u.)
1 0
Y 5
0.5p-0-0-0-0-0-0-0-0-00000000000 —1.5g
=
-3
8.5 2

1 1.
Momentum (a.u.)

FIG. 2. (Color online) QSPIDER retrieval for the ground state of the He™ ion based on SFA momentum distributions. (a) The red solid line
shows the vector potential of the IR laser pulse. The violet area is the field envelope of the APT. The retrieved momentum distribution of the
EWP (blue circles) compared to the exact momentum distribution (violet solid line) from the interaction with a single attosecond pulse in the
absence of the IR field is plotted in panels (b) and (c) for negative and positive momenta. The retrieved derivative of the dipole phase is shown
in red and green circles, respectively, in panels (b) and (c). The retrieved squared amplitude (blue circles) and phase (red and green circles)
of the dipole matrix element is compared to the exact squared amplitude (violet solid line) and phase (red and green solid lines) in panels (d)

and (e).
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FIG. 3. (Color online) QSPIDER retrieval for the first excited state of the He™ ion based on SFA momentum distributions. Lines and

symbols are as defined in Fig. 2.

can be found by dividing the retrieved amplitude of the EWP
by the xuv amplitude | Eo, x(wp)| [29]. The agreement between
the retrieved amplitude and the exact one is good over all the
accessible region. The retrieved dipole phase after integration
is constant, which indicates that the algorithm does not add
any artificial phase.

In the second case we analyze the first excited state |¢; ). The
dipole matrix element has a node around p, = 1.4 a.u. and the
phase exhibits a phase jump by 7 at this final momentum. This
behavior is similar to that found around the Cooper minimum
in photoionization of argon [30]. The sequence of pulses is
shown in Fig. 3(a). The APT consists of two pulses with
wx =1.605 a.u. (43.7 eV) and FWHM ~215 as. The IR field
parameters are the same as in the first example.

Figures 3(b) and 3(c) show the retrieved momentum
distribution of one EWP compared to the case of the ab-
sorption from a single attosecond pulse without an IR field.
Also shown is that the retrieved derivative of the phase is
in very good agreement with the exact phase derivative.
Figures 3(d) and 3(e) show the phase after the integration
with the correct jump around p, = 1.4 a.u. as expected. The
agreement between the retrieved and exact dipole amplitudes
is good over all the accessible region for negative and positive
momentum.

V. TIME-DEPENDENT SCHRODINGER EQUATION (TDSE)
FOR A SHORT-RANGE POTENTIAL

A more realistic description of the phases of the system
is the numerical solution of the TDSE. Such calculations
include all the couplings in the system exactly. We use the
code QFISHBOWL [31] which implements the split-operator
technique to obtain the time evolution of the wave function
in one, two, and three dimensions. The code uses the parallel
FFTW [32], leading to a very fast propagation for any type
of input pulse. In this section, we use the ground state
(I, = 0.5 a.u.) of a one-dimensional model with a short-range
potential of the form

e—m«/(H-x2
va+ x?

For the calculation of the exact dipole matrix elements, the
continuum states need to be computed. These are obtained
following a scheme similar to that in Ref. [33] except that we
must select the incoming scattering solution in the context of
photoionization; i.e., the continuum state is a superposition of
incoming scattering wave and outgoing plane wave.

The TDSE momentum distributions are calculated after the
end of the APT and the IR pulse. To this end, the TDSE wave

Vix) = — (16)

023408-6



RETRIEVAL OF THE AMPLITUDE AND PHASE OF THE . ..

PHYSICAL REVIEW A 87, 023408 (2013)

005k @ !

-0.05

Vector Potential (arb. units)
(=]

150

Time (a.u.)

|ap|2 (arb. units)

. 1
Momentum (a.u.)

-1.5

1 1.5
Momentum (a.u.)

FIG. 4. (Color online) QSPIDER retrieval for the ground state of the short-range potential based on TDSE calculations. Graph (a) shows
the IR vector potential (red solid line) and the xuv field envelopes (violet area) used in the TDSE simulation. (b) and (c) QSPIDER retrieval for
the EWP amplitude (blue circles) compared to the exact momentum distribution (violet solid line) from the interaction with a single attosecond
pulse in absence of the IR field for negative and positive momenta. The retrieved derivative of the dipole phase [red circles in panel (b) and
green circles in panel (c)] is compared with the exact dipole phase derivative [red solid line in panel (b) and green solid line in panel (c)].

function is projected on the continuum states. The potential
well parameters used in our simulation are m =a =1/2. The
number of grid points is 240 000 and the grid spacing is dx =
0.01 a.u. The momentum spacing used for the momentum
distribution is dp = 0.001 a.u.

The APT consists of two pulses with wy =2.0 a.u.
(54.4 eV) and FWHM ~243 as. The IR field parameters are
the same as in the first example, but now the envelope is a
sine square function. The delay for the QSPIDER retrieval
is chosen close to one IR period, as shown in Fig. 4(a). The
momentum shearis AA; = —0.04 a.u., i.e., much bigger than
the momentum spacing dp. Figures 4(b) and 4(c) show the
excellent agreement between the retrieved EWP momentum
distribution and the case of the absorption from a single
attosecond pulse without an IR field. The retrieved derivative
of the phase is in very good agreement with the exact phase
derivative within the EWP momentum bandwidth. Note that
the phase derivative would be equal to zero if plane waves were
used in the dipole matrix elements. Thus, our results show that
QSPIDER retrieves the linear term in the exact dipole phase
quite accurately.

As a general rule, the shear AA; should not be chosen too
small, as it was found in the optical SPIDER technique [34].
Otherwise small errors in the measured phase difference A¢,
will lead to large errors in the retrieved phase derivative
A¢y/AAL. An estimate of the required shear can be obtained
by measuring first the residual phase difference A¢f10) for
vanishing shear in the presence of the IR field. The shear
for QSPIDER should then be chosen such that the measured
A¢y is much larger than A¢((10).

VI. TIME-DEPENDENT SCHRODINGER EQUATION
FOR A COULOMBIC POTENTIAL

In this section, we consider the ground state of a
model helium ion described by the soft-core Coulombic
potential:

ey

a7

The photoelectron momentum distribution is obtained from
the numerical solution of the TDSE by projection on the exact
scattering continuum states. Due to the long-range character
of the potential, we require the continuum states to satisfy the
boundary condition (8).

The simulation parameters are dx = 0.01 a.u., 250 000 grid
points, and soft-core parameter a = 1/2. The attosecond pulse
shape is Gaussian for both xuv pulses with FWHM ~170 as
and central frequency wy =4.0 a.u.

Figures 5(b) and 5(c) show the results. The retrieved
derivative of the phase is in good agreement with the exact
phase derivative within the EWP momentum bandwidth. In
this case both the LIC phase and the Coulomb-laser coupling
phase are important and contribute to the overall phase in
similar weights. Therefore it is necessary to calculate these
contributions with high accuracy. Further, as the derivative of
the phase is calculated as division between two quantities, for
small values of relative shear AA; we need a great precision
for these two phases which are the most sensitive of all
considered here.
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FIG. 5. (Color online) QSPIDER retrieval for the ground state of the helium model ion based on TDSE calculations. Lines and symbols

are as defined in Fig. 4.

VII. CONCLUSION

We have presented the QSPIDER technique to fully
characterize the EWP and the complex dipole matrix element
in an atom, ion, or molecule undergoing photoionization. The
technique requires interaction of the system with a train of
two attosecond pulses in the presence of a streaking IR field.
QSPIDER can retrieve amplitudes and phases faithfully in a
region defined by the central frequency and spectral width of
the attosecond pulses. If the pulses are well known and the
Coulomb-laser coupling is taken into account, the technique
measures the complex dipole matrix element, which can be
used in the future to access structural information of larger
systems.

QSPIDER inherits most of the known issues of the
SPIDER techniques. High resolution is needed to measure
the interferogram. In the case of QSPIDER this concerns
the energy or momentum resolution in the spectrometer.
Several methods have been proposed to overcome these

issues for SPIDER which may be helpful also in QSPIDER
[34,35].

Since the phase is closely related to the Wigner time,
QSPIDER will provide an alternative way to determine
the delay in photoionization, which has previously been
investigated with the streaking method [4].
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