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Asymmetry of Wigner’s time delay in a small molecule
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Ionization by an attosecond pulse launches an electron wave packet in the continuum which contains rich
information about the pulse, the parent system, and the ionization dynamics. This emission process is not
instantaneous in the sense that the electrons take a finite time to leave the potential. This time is closely related
to the Wigner time. In this paper we introduce the stereo Wigner time delay, which measures the relative delay
between electrons emitted to the left and right in an asymmetric system. We present a theoretical study of the
delay in photoemission for a small asymmetric molecular system using the streaking technique. The stereo
Wigner time delay shows advantages compared to previous schemes. Our numerical calculation shows that such
a measurement removes the infrared laser-Coulomb coupling, which has been problematic in the interpretation
of the measured delay in photoemission from atomic systems.
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I. INTRODUCTION

During the last two decades, advances in laser technol-
ogy and the understanding of the nonlinear processes in
laser-matter interaction have allowed us to produce extreme
ultraviolet (XUV) pulses with extremely short duration below
the femtosecond scale. Attosecond pulses are a unique tool
to study electronic quantum processes on their natural time
scale [1,2].

When a single attosecond pulse (SAP) or an attosecond
pulses train interacts with an atom or a molecule, a coherent
ultrabroadband electron wave packet (EWP) is created. If the
photon energies in the attosecond pulse are higher than the
ionization potential, the electron is freed, and the electron mo-
mentum distribution maps the characteristics of the attosecond
pulse and the parent system [3–5]. These electrons are not
emitted instantaneously. Instead, the atom or molecule may
have a “response time” or “delay” in the photoemission [6].
Since the electron travels out of the binding potential with
finite velocity, the delay is of the order of the atomic unit
of time. It is related to the so-called Wigner time [7,8],
which measures the travel time difference between a free
electron and an electron under the influence of a short-range
potential. The response time of the atom or the molecule
is encoded in the phase of the EWP and provides valuable
information about the system [5,6]. But since the information
is in the phase, traditional observables cannot access this
quantity.

Only recently have observations of the delay in photoion-
ization been carried out thanks to the now available tools of
attoscience. Schultze and coworkers [9] have measured the
relative delay in photoemission from the 2s and 2p subshells
of neon using the streaking technique [10]. The measurement is
based on the production of a SAP of some 200-as duration and
a central energy of 106 eV together with a short infrared (IR)
laser pulse. The results showed a 21-as relative delay between
the 2s and 2p orbitals. Also recently, the reconstruction of
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attosecond beating by interference of two-photon transitions
(RABBIT) technique [11] has been used to measure the relative
delay between the 3s and 3p subshells in argon [12]. This
technique uses an attosecond pulse train with a mean energy
of 35 eV in the presence of a moderate IR laser pulse. In this
case, the 3p electron shows an apparent delay of some 100 as
relative to the 3s electron, which seems to leave the atom
earlier.

Several papers have addressed the relation between the
measured times and the intrinsic delay in photoionization or
Wigner time [13,14]. While the Wigner time is included in
the measured time, some other factors such as the polarization
of the initial state [14], multielectron effects [15], and, more
important, the laser-Coulomb coupling are included in the
experimental observable [12,14,16]. Recent work has also the-
oretically addressed the time delay in small molecules such as
hydrogen molecules [13] and other two-center molecules [17],
emphasizing the consequences of having two centers.

In this paper we analyze the delay in photoemission for an
asymmetric molecule and focus on the left-right asymmetries
of this delay. We term the left-right time difference the stereo
Wigner time delay (SWTD). There are certain advantages of
using this quantity. First of all, a single orbital is analyzed,
which means that it is not necessary to analyze two different
orbital shapes and different binding energies. Second, the
problem of the laser-Coulomb coupling in the streaking or
RABBIT techniques is removed with the stereo measurement.
Due to the symmetry of the long-range contribution, it is
removed from the measurement with the left-right SWTD
definition.

In Sec. II, we introduce a one-dimensional (1D) model for a
small oriented two-center molecule with properties similar to
the carbon monoxide (CO) molecule. We compute the SWTD
from the exact dipole matrix element and describe the results
expected from stereo measurements. In Sec. III, we compare
the results from the dipole matrix element to numerical results
for the travel time for the left and right electrons. Finally, in
Sec. IV, we simulate the streaking technique to extract the
SWTD from experimental observables, and we comment on
the robustness of the technique.
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II. WIGNER TIME DELAY FOR AN
ASYMMETRIC MOLECULE

Similar to the group delay in ultrafast optics, the delay
in photoemission can be defined as the energy derivative
of the photoionization scattering phase shift, i.e., the phase
of the dipole matrix element between the initial state and
the final continuum state [6]. Wigner introduced the delay
between a plane wave propagating freely and the continuum
state in an atomic potential [7,8]. If the angular momentum l

is well defined, this time is directly related to the scattering
phase [18,19]. In the case of photoionization from a single
state, the delay in photoionization can be defined as the
derivative �tW = ∂φl (E)

∂E
of the dipole matrix element phase

φl(E) for transition between the initial state and the continuum
state with respect to the energy E. For brevity we will refer to
this quantity as Wigner time delay.

Next, we introduce a model for an oriented asymmetric
molecule with properties similar to those of CO, and we
compute the exact dipole matrix element to extract the SWTD.
A solution of the full time-dependent Schrödinger equation
(TDSE) for the three-dimensional molecule is very demanding
as it involves several degrees of freedom for the nuclei and
the electrons. We therefore introduce a 1D two-center model
with a single active electron. It is similar to those used in the
literature [20] for CO. We fix the positions of the nuclei as
their dynamics is much slower than the electron dynamics.
In exchange, this model allows us to calculate the exact
continuum states and the complex dipole matrix element, from
which the Wigner time can be calculated directly.

The field-free Hamiltonian for the 1D model is H = p2

2 +
V (z). Atomic units are used throughout the paper. To mimic
an oriented CO molecule along the laser polarization axis, we
define the potential VM(z) and compare it to the hydrogen atom
with soft-core potential VH(z).

VH(z) = − 1
√

a0 + z2
, (1)

VM(z) = − Z1√
a1 + (z − R1)2

− Z2√
a2 + (z − R2)2

. (2)

To solve the time-independent Schrödinger equation we use
the code QFISHBOWL [21], which implements the split-operator
method [22] in one, two, and three dimensions. The ground
states are obtained using imaginary-time propagation. The grid
parameters are the same in both systems, and the time step for
the ground-state calculation is �t = −0.01i. The grid size is
2500 a.u. with a spacing �z = 0.1 a.u. For H the soft-core
parameter is a0 = 2 a.u., which yields a ground state with
ionization potential Ip = 0.5 a.u. For the oriented molecule
model we use the soft-core parameters a1 = 1.60, a2 = 1.33,
the charges Z1 = 0.67, Z2 = 0.33, and the core positions
R1 = −0.6 a.u., R2 = 1.65 a.u. These parameters are chosen
such that the ground-state energy matches the ionization
potential Ip = 0.5 a.u. and that the internuclear distance is R =
2.25 a.u., which are close to the values of CO [23]. The choice
of Z1 and Z2 is motivated by the fact that an electron far away
from the center should move in an asymptotic potential of
−1/|z|, i.e., Z1 + Z2 = 1. Furthermore, we choose Z1 ≈ 2Z2,
where Z1 refers to O and Z2 refers to C, accounting roughly for

the positive charge being greater on the screened O than on the
screened C in a CO molecule [24]. The potential is positioned
such that the maximum of the electron density is located close
to the origin. Our results below confirm that this choice leads
to excellent agreement between the Wigner time delay and
the streaking time delay. Note that a shift of the origin affects
the Wigner time delay and also the time of flight discussed
below, while the streaking time delay is independent of such
a shift.

The 1D model for the molecule allows us to calculate
the exact continuum functions. These are constructed by
numerically matching states in the grid to the asymp-
totic Coulomb wave �(a)

p (z) = 1√
2π

exp[ipz + i Z
|p| ln(2pz)]

for z → ∞sgn(p) [5,25]. They can be efficiently computed for
all values of the final momentum p. The momentum grid size is
10 a.u., and the momentum step is �p = 0.01 a.u. From these
states, we calculate the complex dipole transition bound-free
matrix element d(p) = −〈�p|z|�0〉 from the initial state |�0〉
to the continuum state |�p〉. We then extract the Wigner
time �tW according to the definition. We compute also the
dipole matrix element using plane waves for comparison. If the
continuum states were obtained by matching the grid solutions
to plane waves, the Wigner time would not converge as the
matching point is moved to infinity.

The projections on the plane waves and the scattering waves
give different absolute dipole amplitudes in the H system
[see Figs. 1(a) and 1(b)]. The phases shown in Figs. 1(a)
and 1(b) also differ significantly. For the CO system, the dipole
amplitudes calculated using both methods differ, as shown in
Figs. 1(c) and 1(d). For the plane-wave projection, the CO
dipole amplitude is symmetric, while it is slightly asymmetric
for the scattering waves. The green dashed lines in Figs. 1(c)
and 1(d) show that the dipole phases also differ strongly due to
the influence of the Coulomb potential. The asymmetry of the
CO potential is exposed in the dipole matrix element, which
in turn is mapped into the electrons emitted to the left and
the right after the absorption of an attosecond pulse. While the
asymmetry occurs both in the dipole matrix element amplitude
and phase, the asymmetry in the amplitude is very small and is
probably very hard to measure. On the contrary, the asymmetry
in the dipole phase is large and therefore sensitive to the details
of the asymmetric potential. It is a more powerful tool to
measure the characteristics of the molecule.

We define the left Wigner time as the derivative of the dipole
phase with respect to the energy for electrons with negative
momentum �t

(L)
W = 1

p

∂φ(p)
∂p

. The right Wigner time is defined

as �t
(R)
W = 1

p

∂φ(p)
∂p

for electrons with positive momentum,
and the SWTD is defined as the difference between these
two quantities, �t

(LR)
W = �t

(L)
W − �t

(R)
W . For the H atom and

molecular system, Fig. 2 shows the SWTD. Both the plane
waves and scattering waves yield a SWTD of zero in the
atomic case. However, for the molecular case the SWTD
is not zero. A clear minimum is obtained, which changes
its position depending on whether plane waves or scattering
waves are used. In Fig. 2(d) we plot the relative asymmetry
of the dipole amplitude SA(E) = |dL(E)|−|dR(E)|

|dL(E)|+|dR(E)| as a function

of the photoelectron energy E = p2

2 . We have found that
SA(E) is very small and thus difficult to measure in an
experiment.
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FIG. 1. (Color online) Dipole matrix elements. The amplitude (blue solid line) and phase (green dashed line) of the dipole d(p) for 1D H
by projection on (a) plane and (b) scattering waves. (c) and (d) The same as (a) and (b) but for a 1D CO molecular system. The inset graph
depicts a zoom of the dipole amplitude, which demonstrates a small asymmetry in the case of scattering-wave calculation.

III. TIME OF FLIGHT

The SWTD can also be measured by tracking in time the
EWPs emitted to either side. In this section, we estimate
these times from a dynamical simulation, and we compute
the asymmetry and compare it to the results obtained with the

previous definition. We define the time �tTOF = td − t0 that
an EWP spends in the continuum from an initial time t0 until
the arrival td at a certain position zd as the “time of flight”
(TOF). By taking the left-right difference, we will show that
the SWTD can be obtained from the TOF method for the
ionization induced by XUV attosecond pulses.

FIG. 2. (Color online) Stereo Wigner time with plane and scattering waves. (a) The left (green circles) and right (blue solid line) Wigner
times and the SWTD (red dashed line) �t

(LR)
W in the H atom calculated by scattering waves. (b) and (c) Same as (a) but using plane and

scattering waves for the asymmetric molecule CO, respectively. The minimum in the SWTD shifted in these two pictures. (d) The asymmetry
of the dipole matrix element amplitude shows very small values in the molecular case.
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FIG. 3. (Color online) Ionization by a single attosecond pulse. Electron densities as a function of the position z and time t for the ionization
by an XUV attosecond pulse are shown for (a) the atomic and (b) molecular systems. The red horizontal lines are the symmetric positions on
either side zd = ±30 a.u., and the red dashed lines are the corresponding arrival TOFs. (c) Absolute values of the positions at the maxima of
electron densities [green (light gray) and blue (dark gray) solid lines] and the average values [red (gray) and black circles with dashed lines] as
a function of time. The horizontal dashed line indicates the target position 30 a.u., and the vertical ones mark the corresponding TOFs for both
sides. (d) Comparison between the stereo delay from the TOF technique using (i) the position of maximal density [blue (dark gray) circles] and
(ii) average position values [green (light gray) circles] and the results extracted from the exact dipole phase as a function of the photoelectron
energy.

The emission of EWPs on both sides by the absorption of
a SAP are tracked in time, as shown in Figs. 3(a) and 3(b).
We consider symmetric final positions on the left and right
(|z(L)

d | = |z(R)
d |). The EWPs take times �t

(L)
TOF and �t

(R)
TOF to

reach these positions. The difference �t
(LR)
TOF = �t

(L)
TOF − �t

(R)
TOF

can be understood as the relative delay between an EWP
emitted to the left and another one to the right. We refer to
these calculations as the stereo TOF delay.

The Hamiltonian of the system is H (t) = 1
2 [p + AX(t)]2 +

VM(z) in the velocity gauge, where p denotes the electron
momentum and AX(t) is the vector potential, defined as
AX(t) = − ∫ t

dt ′EX(t ′), with EX(t) being the electric field,
which is linearly polarized along the molecular axis. The grid
parameters are the same as in the last section, and the time
step is �t = 0.01 a.u. The peak intensity of the attosecond
pulse is IX = 1012 W/cm2, the central frequency is ωX =
1.5 a.u. (40.8 eV), and the pulse has a FWHM of 9.53 a.u.
(230 as), a Gaussian envelope, and zero carrier envelope
phase (CEP).

For both systems, the emitted electronic densities are
calculated as a function of time by projecting out the first
two bound states from the wave function. Figure 3 shows
the results. In the case of the H atom, both EWPs reach the

positions ±30 a.u. at the same time on either side. As shown
by red dots in Fig. 3(a), the arrival TOFs for both sides are
�t

(L)
TOF = �t

(R)
TOF = 34 a.u. However, in the molecular case,

the arrival TOFs are not the same, as shown in Fig. 3(b).
The molecular values are �t

(L)
TOF = 33.27 a.u. and �t

(R)
TOF =

35.35 a.u. This gives a stereo TOF delay of �t
(LR)
TOF = −2.08

a.u., which is shown in Fig. 3(c). For this calculation we have
tracked the positions of the EWP maxima (z(L)

max,z
(R)
max) and

the average positions [〈z(L)〉 = ∫ 0
−∞ �∗(z)z�(z)dz,〈z(R)〉 =∫ ∞

0 �∗(z)z�(z)dz] as a function of time t . The absolute values
of these quantities are shown in Fig. 3(c) for the molecular
case. The stereo TOF delay using the average position method
gives �t

(LR)
TOF = −2.00 a.u., which is very close to the value

obtained from the position of the maximal electron density,
�t

(LR)
TOF = −2.08 a.u.
The comparison between the exact stereo delay �t

(LR)
W

defined via the derivatives of the dipole phase and the results
�t

(LR)
TOF from the TOF method is depicted in Fig. 3(d) as a

function of the photoelectron energy. The XUV attosecond
pulse parameters for these calculations are ωX = 1.5, 2.0, 2.5,
3.5 a.u. and FWHM = 9.5, 7.2, 5.7, 4.8, 4.1 a.u., respectively.
The other parameters are the same as in the first example with
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FIG. 4. (Color online) Streaking traces for measuring the stereo Wigner time delay. For H and CO, (a) and (b) show the streaking traces,
which are the photoelectron momentum distributions as a function of time delay τ between the attosecond pulse and the IR laser field. White
lines are the negative value of the vector potential, −AL(τ ). The green squares and blue circles are the expectation values for the electrons with
negative and positive momenta. These expectation values and the vector potential −AL(τ ) for both systems are depicted in (c) and (d). The
inset graph in (d) shows a clear time delay �t

(LR)
S = −2.9 a.u. between electrons emitted to the left and right. As expected, in the case of the H

atom, this difference is zero; see the inset in (c).

central frequency ωX = 1.5 a.u. Both of the TOF methods give
a very good agreement with the SWTD.

This method shows the physical meaning of the SWTD, but
it is not suitable as a measurement scheme in the laboratory. In
the following section we describe how to measure the SWTD
with the streaking technique and the issues related to such a
measurement.

IV. MEASUREMENT OF THE TIME DELAY BY THE
STREAKING TECHNIQUE

The streaking technique is a pump-probe technique which
consists of the absorption of a SAP in the presence of a moder-
ate and short IR pulse [2]. The final momentum of the electrons
emitted is modified according to the instantaneous value of
the vector potential at the time when the attosecond pulse
acts. The final momentum is p(τa) = p0 − AL(τa), where τa

is the time at which the electron starts to feel the presence of
the IR field. Here, p0 is the central photoelectron momentum
without IR field, p0 = √

2(ωX − Ip), which depends on the
central XUV frequency ωX and the ionization potential Ip.
The Wigner time delay �tW is intuitively expected to shift the
appearance time τa . Experimental results by Schultze et al. [9]

show a relative time delay in the photoemission from the 2s

and 2p orbitals of the neon atom. However, the measured time
using the streaking technique contains more than the Wigner

FIG. 5. (Color online) Streaking measurement of the stereo
Wigner time delay. The graph shows the comparison between the
exact SWTD �t

(LR)
W (red line) and the time �t

(LR)
S obtained by the

streaking technique (black circles) as a function of the photoelectron
energy.
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FIG. 6. (Color online) Stereo Wigner time delay for the molecular case. (a) Stereo Wigner time delay as a function of XUV FWHM. The
red squares depict the averages of the exact SWTD 〈�t

(LR)
W 〉 within the photoelectron energy bandwidth of the EWP. The black circles are the

values measured by the streaking technique, �t
(LR)
S . (b) SSTD as a function of the IR peak electric field strength (black circles).

time [13,16]. The basic assumption of the streaking technique
is that the IR field modifies neither the initial state nor the
final continuum state except for the momentum shift −AL(τa).
However, while the IR laser field effects can be neglected
in the initial state, in the continuum the coupling between
the laser fields and the Coulomb potential well produces a
delay which needs to be removed from the measured delay
in order to obtain the Wigner time delay [14,16]. Although
this may be possible, the dependence of the laser-Coulomb
coupling on the laser parameters makes it difficult in practice.
The SWTD �t

(LR)
W removes the laser-Coulomb coupling from

the measurement because it is identical on the left and on
the right [16]. The SWTD avoids the need to estimate this
contribution for each ionization channel. In turn, the SWTD
can only be applied to asymmetric systems. Note that in our
terminology, “laser-Coulomb coupling” refers to the effect of
the asymptotic potential −1/|z|, which is the same on both
sides. Any left-right difference of the potential is merely
in the short-range behavior. Such a difference is therefore
incorporated in the SWTD.

As the absorption of a SAP leads to the emission of electrons
on both sides, two streaking traces can be recorded, one on the
left and another one on the right, and the stereo streaking time
delay (SSTD) can be obtained from them. We compute the
streaking traces using the TDSE, which allows us to simulate
the interaction of a SAP in the presence of a weak IR field
and to record the final electron momentum density at the end
of the pulses. We do this for each delay τ between the SAP
and IR field. Figures 4(a) and 4(b) show the streaking traces
for H and CO, respectively. The attosecond pulse parameters
are intensity IX = 1012 W/cm2, central frequency ωX = 0.75
a.u. (20 eV), and FWHM = 21.6 a.u. (524 as). The field has a
peak intensity IIR = 2.5 × 1012 W/cm2, the central frequency
is ωIR = 0.057 a.u., the temporal width is FWHM = 2.7 fs,
and the CEP is set to zero. The grid parameters are the same
as in the previous section. The IR FWHM is fixed to a single
cycle to keep the time of the numerical calculation small.

To extract the delay in photoemission from the streaking
traces, we measure the expectation values 〈pL(τ )〉 and 〈pR(τ )〉
for all delays τ between the SAP and the IR pulse. We calculate
the Fourier transform (FT) of these expectation values and then
extract the time delay in photoemission for both sides �t

(L)
S =

φ
(L)
S (ω0)
ω0

and �t
(R)
S = φ

(R)
S (ω0)
ω0

as the FT phase φS(ω) evaluated
at the central frequency ω0 of the IR laser vector potential
divided by ω0. Then we compare the extracted relative delay
for each side �t

(LR)
S = �t

(L)
S − �t

(R)
S .

The results show a time shift between the IR vector potential
−AL(τ ) and the expectation values for 〈pL〉 and 〈pR〉 in the
H atom [see Fig. 4(c)]. As expected, the SSTD is zero for this
case. In contrast, the streaking results for the molecule show
clearly that there is a time delay between the 〈pL〉 and 〈pR〉
curves [see Fig. 4(d)] which is different from zero. This value is
�t

(LR)
S = −2.9 a.u. at a photoelectron energy (E0 = ωX − Ip)

of 0.24 a.u.
The results shown in Fig. 4 are for a single XUV attosecond

pulse. To test whether the streaking technique works in a broad
range of XUV frequencies, we have calculated the streaking
traces for a set of carrier frequencies between 0.75 (20.40 eV)
and 3.6 a.u. (97.95 eV). The results are depicted in Fig. 5.
They show that the retrieved SSTD is in very good agreement
with the exact stereo Wigner time delay �t

(LR)
W as obtained

from the exact complex dipole matrix element and the TOF
technique defined above. This shows that the SWTD can be
measured experimentally and provides a simple way to remove
the laser-Coulomb coupling. The technique is very sensitive
to the asymmetry of the molecular potential and is robust to
laser parameter changes.

We also address the natural question on how the SWTD
changes with the temporal width of the attosecond pulse or
with the peak intensity of the IR laser pulse, which determines
the laser-Coulomb coupling. Figure 6(a) shows the average

〈�t
(LR)
W 〉 =

∫
�t

(LR)
W (E)|�(E)|2dE∫ |�(E)|2dE

of the stereo Wigner time as a
function of the XUV attosecond pulse duration (FWHM).
Here, |�(E)|2 is the energy density of the EWP. The attosecond
pulse used in these simulations has a central frequency of
ωX = 1.5 a.u. and a peak intensity of IX = 1012 W/cm2, and
the CEP is set to zero. The XUV attosecond pulse parameters
used in Fig. 6(b) are the same as in the simulation results
depicted in Fig. 6(a), but the FWHM is fixed to 12 a.u. This
average is in good agreement with the results �t

(LR)
S from the

streaking method. The streaking result �t
(LR)
S as a function

of the IR peak electric field is constant [see Fig. 6(b)]. This
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demonstrates that the laser-Coulomb coupling has been
effectively eliminated.

V. CONCLUSIONS

Attosecond pulses are a useful probe for the dynamics
of ionization. In small oriented asymmetric molecules, the
Wigner time delay is different for left and right photoelectrons.
Even when the dipole amplitude asymmetry is small, as in
the case presented here, the stereo Wigner time delay is
significant and provides information about the dipole transition
matrix element phase. We have shown that the SWTD can be
measured by the streaking technique, and it is not affected by
the unwanted laser-Coulomb coupling. The method is robust

against variation of the frequency, duration of the pulse, and
streaking field intensity.
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