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General spacetime nonmetricity coupled to neutrons is studied. In this context, it is shown that certain 
nonmetricity components can generate a rotation of the neutron’s spin. Available data on this effect 
obtained from slow-neutron propagation in liquid helium are used to constrain isotropic nonmetricity 
components at the level of 10−22 GeV. These results represent the first limit on the nonmetricity ζ (6)

2 S000
parameter as well as the first measurement of nonmetricity inside matter.
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1. Introduction

The idea that spacetime geometry represents a dynamical phys-
ical entity has been remarkably successful in the description of 
classical gravitational phenomena. For example, General Relativity, 
which is based on Riemannian geometry, has recently passed a fur-
ther experimental test: the theory predicts gravitational waves, and 
these have indeed been observed by the LIGO Scientific Collabora-
tion and the Virgo Collaboration [1].

At the same time, a number of observational as well as the-
oretical issues motivate the construction and study of alterna-
tive gravity theories. Most of these efforts recognize the elegance 
and success of a geometric underpinning for gravitational phe-
nomena and therefore retain this feature in model building. One 
popular approach in this context, known as metric-affine grav-
ity [2], employs an underlying geometry more general than that 
of a Riemannian manifold. The basic idea behind this approach 
can be summarized as relaxing the metric-compatibility condition 
Dα gβγ = 0 and the symmetry condition on the connection coeffi-
cients �α

βγ −�α
γ β = 0. In general, this idea introduces two tensor 

fields

Nαβγ ≡ −Dα gβγ , T α
βγ ≡ �α

βγ − �α
γ β , (1)

relative to the Riemannian case known as nonmetricity and tor-
sion, respectively.
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The specialized situation in which the nonmetricity tensor van-
ishes Nαβγ = 0 and only torsion is nonzero represents the widely 
known Einstein–Cartan theory [3]. In that context, torsion has 
been the subject of various investigations during the last four 
decades [4]. Considering the question of the presence of torsion 
in nature as an experimental one has spawned numerous phe-
nomenological studies of torsion [5–15] yielding bounds on various 
torsion couplings.

An analogous phenomenological investigation of nonmetricity 
has been instigated last year [16]. Paralleling the torsion case, that 
analysis treats the question regarding the presence of nonmetricity 
as an experimental one, and the nonmetricity field Nαβγ is taken 
as a large-scale background extending across the solar system. The 
particular physical situation considered in Ref. [16] lends itself to 
an effective-field-theory description in which Nαβγ represents a 
prescribed external field selecting preferred spacetime directions. 
Thus, such a set-up embodies in essence a Lorentz-violating sce-
nario amenable to theoretical treatment via the Standard-Model 
Extension (SME) framework [17]. For example, sidereal and annual 
variations of physical observables resulting from the motion of 
an Earth-based laboratory through this solar-system nonmetricity 
background represent a class of characteristic experimental signals 
in that context [18].

The present work employs a similar idea to obtain further, com-
plementary constraints on nonmetricity. The specific set-up we 
have in mind consists of liquid 4He as the nonmetricity source. 
Polarized neutrons generated at the slow-neutron beamline at the 
National Institute of Standards and Technology (NIST) Center for 
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Neutron Research traverse the helium and serve as the nonmetric-
ity probe. It is apparent that our set-up involves an Earth-based 
nonmetricity probe. Thus, the key difference between our study 
and that in Ref. [16] is that we examine the situation of non-
metricity sourced locally in a terrestrial laboratory by the 4He. 
This implies that the presumed nonmetricity in our case is co-
moving with the laboratory, and thus the neutron probe, which 
precludes certain experimental signatures, such as sidereal and an-
nual variations. Instead, we utilize the prediction presented below 
that certain components of Nαβγ lead to neutron spin rotation in 
this system.

The outline of this paper is as follows. Section 2 reviews the 
basic ideas behind the effective-field-theory description of a back-
ground Nαβγ in flat Minkowski space and derives the resulting 
spin motion for nonrelativistic neutrons. This effect provides the 
basis for our limits on nonmetricity. The details of the measure-
ment of neutron spin rotation in liquid 4He including the exper-
imental set-up are discussed in Sec. 3. A brief summary is con-
tained in Sec. 4. Throughout, we adopt natural units c = h̄ = 1. Our 
conventions for the metric signature and the Levi-Civita symbol are 
ημν = diag(+, −, −, −) and ε0123 = +1, respectively.

2. Theory

Our analysis is based on the approach to nonmetricity couplings 
taken in Ref. [16], so we begin with a brief review of that ap-
proach. The basic idea is to follow the usual reasoning that the 
construction of an effective Lagrangian should include all terms 
compatible with the symmetries of the model. In the present 
context, possible couplings between the background nonmetric-
ity Nαβγ and the polarized-neutron probe need to be classified. 
Since we are interested in a low-energy experiment, we may disre-
gard the neutron’s internal structure and model it as a point Dirac 
fermion with free Lagrangian L0 = 1

2 ψ γ μi
↔
∂μψ − m ψψ , where m

denotes the neutron mass. Conventional gravitational effects are 
negligible, so that the flat-spacetime Minkowski limit gμν → ημν

suffices for our present purposes.
The next step is to enumerate possible couplings of ψ to the 

background nonmetricity Nαβγ . This yields a hierarchy of possi-

ble Lagrangian terms L(n)
N labeled by the mass dimension n of the 

corresponding field operator:

LN = L0 +L(4)
N +L(5)

N +L(6)
N + . . . . (2)

For the experimental set-up we have in mind, nonmetricity cou-
plings affecting the propagation of neutrons are the most relevant 
ones. Moreover, Nαβγ must be small on observational grounds. 
We therefore focus on contributions to L(n)

N that are quadratic in 
ψ and linear in Nαβγ . General arguments in effective field the-
ory suggest that Lagrangian terms of lower mass dimension n may 
be more dominant. Capturing the leading effects of all nonmetric-
ity components then requires inclusion of Lagrangian terms up to 
mass dimension n = 6 [16].

The construction of the explicit form of each individual contri-
bution L(n)

N is most easily achieved by decomposing Nαβγ into its 
Lorentz-irreducible pieces. These are given by two vectors (N1)μ
and (N2)μ , a totally symmetric rank-three tensor Sμαβ , and a rank-
three tensor Mμαβ with mixed symmetry [16]:

(N1)μ ≡ −ηαβ Nμαβ ,

(N2)μ ≡ −ηαβ Nαμβ ,

Sμαβ ≡ 1
3

[
Nμαβ + Nαβμ + Nβμα

]

+ 1 [
(N1)μ ηαβ + (N1)α ηβμ + (N1)β ημα

]

18
+ 1
9

[
(N2)μ ηαβ + (N2)α ηβμ + (N2)β ημα

]
,

Mμαβ ≡ 1
3

[
2Nμαβ − Nαβμ − Nβμα

]

+ 1
9

[
2(N1)μ ηαβ − (N1)α ηβμ − (N1)β ηαμ

]

− 1
9

[
2(N2)μ ηαβ − (N2)α ηβμ − (N2)β ηαμ

]
. (3)

With these pieces, the nonmetricity tensor can be reconstructed as 
follows [16]:

Nμαβ = 1
18

[ − 5(N1)μηαβ + (N1)αηβμ + (N1)βημα

+ 2(N2)μηαβ − 4(N2)αηβμ − 4(N2)βημα

]

+ Sμαβ + Mμαβ . (4)

The sign changes in Eqs. (3), (4), and some subsequent equations 
relative to the corresponding equations in Ref. [16] arise due to dif-
fering conventions for the metric signature and for the sign of the 
Levi-Civita symbol. We also remark that although Eqs. (3) and (4)
employ a notation similar to that for the irreducible components 
of torsion T α

βγ [14], the nonmetricity and torsion pieces are un-
related.

With this decomposition, the following Lagrangian contribu-
tions can be constructed [16]:

L(4)
N = ζ

(4)
1 (N1)μ ψγ μψ + ζ

(4)
2 (N1)μ ψγ5γ

μψ

+ ζ
(4)
3 (N2)μ ψγ μψ + ζ

(4)
4 (N2)μ ψγ5γ

μψ ,

L(5)
N = − 1

2 iζ (5)
1 (N1)

μ ψ
↔
∂μψ − 1

2 ζ
(5)
2 (N1)

μ ψγ5
↔
∂μψ

− 1
2 iζ (5)

3 (N2)
μ ψ

↔
∂μψ − 1

2 ζ
(5)
4 (N2)

μ ψγ5
↔
∂μψ

− 1
4 iζ (5)

5 Mμν
ρ ψσμν

↔
∂ρψ

+ 1
8 iζ (5)

6 εκλμν Mκλρ ψσμν
↔
∂ρψ

+ 1
2 iζ (5)

7 (N1)μ ψσμν
↔
∂νψ + 1

2 iζ (5)
8 (N2)μ ψσμν

↔
∂νψ

− 1
4 iζ (5)

9 ελμνρ(N1)λ ψσμν

↔
∂ρψ

− 1
4 iζ (5)

10 ελμνρ(N2)λ ψσμν

↔
∂ρψ ,

L(6)
N ⊃ − 1

4 ζ
(6)
1 Sλ

μν ψγ λ∂μ∂νψ + h.c.

− 1
4 ζ

(6)
2 Sλ

μν ψγ5γ
λ∂μ∂νψ + h.c. (5)

Here, the real-valued couplings ζ (n)

l are taken as free parameters; 
they can in principle be fixed by specifying a definite underly-
ing nonmetricity model. For the mass-dimension six term L(6)

N , we 
have only listed those contributions that contain the Sμαβ irre-
ducible piece; all other components of Nαβγ are already present 
in the terms L(4)

N or L(5)
N of lower mass dimension.

Equations (2), (3), and (5) determine the low-energy neutron 
effective Lagrangian in the presence of general background non-
metricity relevant for the experimental situation we have in mind. 
We note, however, that the terms (5) would generally be viewed 
as part of a more complete Lagrangian L ⊃ LN that also treats 
Nαβγ as a dynamical variable. The nonmetricity field equations 
then contain ∂L/∂Nαβγ , and thus neutron source terms. This idea 
provides the justification for taking the 4He nucleus as a non-
metricity source in the experimental set-up discussed below. The 
protons and electrons of the 4He atom may produce additional 
nonmetricity contributions if these particles exhibit nonmetricity
couplings analogous to those in Eq. (5). In what follows, we make 
no assumptions regarding the dynamics of Nαβγ or additional 
nonmetricity–matter couplings; we simply presume that the 4He 
generates some nonzero nonmetricity.

A model refinement can be achieved by focusing on the lead-
ing contribution to Nαβγ . Note that Nαβγ = Nαβγ (x) must exhibit 
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a nontrivial spacetime dependence determined by the interatomic 
distance and the velocity of the 4He atoms. However, the ran-
dom nature of these two quantities suggests that the leading non-
metricity effects are actually governed by the spacetime average 
〈Nαβγ (x)〉. For this reason, we may take Nαβγ = const. in what fol-
lows. The nonmetricity contributions (5) then form a subset of the 
flat-space SME Lagrangian, a fact that permits us to employ the full 
repertoire of theoretical tools developed for the SME framework.

One such SME result relevant for the present situation con-
cerns the observability of constant background fields [17,19]. For 
example, it is known that contributions associated with the cou-
plings ζ (4)

1 , ζ (4)
3 , ζ (5)

1 , ζ (5)
2 , ζ (5)

3 , ζ (5)
4 , ζ (5)

7 , and ζ (5)
8 can be removed 

from the Lagrangian—at least at linear order—via judiciously cho-
sen field redefinitions. We may therefore disregard these terms in 
what follows. Their measurement would require situations involv-
ing nonconstant Nαβγ , the presence of gravity, or the consideration 
of higher-order effects.

An additional simplification arises from the isotropy of the liq-
uid helium. The 4He ground state has spin zero, so anisotropies 
would have to be tied to excited states of 4He or arrangements of 
the helium atoms involving preferred directions. However, the ab-
sence of polarization and the aforementioned random nature of 
both position and velocity of individual 4He particles precludes 
sizeable, large-scale anisotropies. The leading background non-
metricity contributions generated by the liquid-helium bath can 
therefore also be taken as isotropic in the helium’s center-of-mass 
frame. It follows that the present experimental set-up is only sen-
sitive to the rotationally invariant pieces of Nαβγ .

To uncover the isotropic content of Nαβγ , we may proceed by 
inspecting its irreducible pieces (3). Clearly, components without 
spatial indices are rotation symmetric: (N1)0, (N2)0, and S000. Note 
that Mαβγ obeys the cyclic property

Mαβγ + Mβγα + Mγ αβ = 0 , (6)

which implies M000 = 0. Further isotropic components in S and 
M with spatial indices must have spatial-index structure δ jk or 
ε jkl , where Latin indices run from 1 to 3. Since both S and M
are symmetric in their last two indices, they cannot contain pieces 
of ε jkl . This only leaves contributions involving δ jk . But these do 
not yield independent isotropic contributions because both S and 
M are traceless. To see this, consider as an example a piece of the 
form S0 jk = s δ jk , where s is the isotropy parameter in question. 
But S is traceless, so that we have 0 = S0αβ ηαβ = S000 − S0 jk δ jk =
S000 − s δ jk δ jk . It follows that 3s = S000 does not represent an 
additional independent isotropic contribution to S . An analogous 
reasoning applies to M , so that (N1)0, (N2)0, and S000 are indeed 
the only isotropic nonmetricity components.

The model determined by Eqs. (2) and (5) permits a fully rel-
ativistic description of all dominant nonmetricity effects on the 
propagation of both neutrons and antineutrons in the present 
context. Since our current goal is an analysis of the spin mo-
tion of slow neutrons, we may disregard all antineutron physics, 
and focus entirely on the 2 × 2 nonrelativistic neutron Hamilto-
nian h = h0 + δh + δhs resulting from our model Lagrangian (5). 
Here, h0 is the ordinary nonrelativistic piece. The spin-independent 
nonmetricity contribution δh is irrelevant for this work. The spin-
dependent correction δhs resulting from Eq. (5) can be gleaned 
from previously established SME studies [20]. The result for both 
isotropic as well as anisotropic contribution reads

δhs =
[(

ζ
(4)
2 − m ζ

(5)
9

)
(N1) j +

(
ζ

(4)
4 − m ζ

(5)
10

)
(N2) j

]
σ j

+
[(

ζ
(4)
2 − m ζ

(5)
9

)
(N1)0 +

(
ζ

(4)
4 − m ζ

(5)
10

)
(N2)0

] 	p · 	σ

m

+ 1
2

[
ζ

(5)
5 M̃ jαβ + 3

2 ζ
(5)
6 M jαβ + m ζ

(6)
2 S jαβ

] pα pβσ j

m

+ 1
2 ζ

(6)
2 S0αβ

pα pβ 	p · 	σ
m

. (7)

This expression contains the leading contribution in the nonrel-
ativistic order |	p|/m for each nonmetricity component. In the 
above equation, we have set M̃αβγ ≡ εαβ

μν Mμνγ . Moreover, pμ =
(p0, 	p) = (p0, p j) denotes the neutron’s 4-momentum, and σ j

are the usual Pauli matrices. Note that nonmetricity effects corre-
sponding to ζ (6)

1 only produce spin-independent effects. They are 
therefore absent from δhs and cannot be determined by observa-
tions of neutron spin rotation.

3. Experimental analysis

To extract experimental signatures resulting from the non-
metricity correction (7), we analyze the aforementioned experi-
mental situation, namely spin motion of a neutron as it passes 
through liquid 4He. As argued above, our Lagrangian (5) implies 
that neutrons, and hence 4He nuclei, can generate nonmetricity. 
The injected neutron beam would then be affected by this non-
metricity background. Moreover, our “in-matter” approach permits 
us to search for short-ranged or non-propagating nonmetricity. 
In particular, this encompasses situations analogous to minimally 
coupled torsion, where the torsion tensor vanishes outside the 
spin-density source [4]. Such an approach rests on the premise 
that the probe penetrates the matter and that the effects of con-
ventional Standard-Model (SM) physics are minimized. The 4He–
neutron system appears to be ideal in this respect for two reasons. 
First, the neutron mean free path inside liquid 4He is relatively 
long allowing for the accumulation of the predicted spin-rotation 
effect. This is due to the small elastic and the essentially vanish-
ing inelastic cross sections as well as rapidly decreasing neutron–
phonon scattering as T → 0. Second, contamination of the non-
metricity spin rotation by ordinary SM physics can be excluded on 
the grounds that these conventional effects lie below the current 
detection sensitivity. This latter fact is explained in more detail be-
low.

The rotation of the spin of a transversely polarized slow-
neutron beam is called neutron optical activity. It is quantified by 
the rotary power dφP V /dL defined as the rotation angle φP V of 
the neutron spin about the neutron momentum 	p per traversed 
distance L. The nonmetricity correction (7) leads to the following 
expression for the rotary power:

dφP V

dL
= 2

(
ζ

(4)
2 − m ζ

(5)
9

)
(N1)0 + 2

(
ζ

(4)
4 − m ζ

(5)
10

)
(N2)0

+ m2ζ
(6)
2 S000 , (8)

where we have implemented the isotropic limit. The neutron ro-
tary power is amenable to high-precision experimental studies and 
can therefore be employed to measure or constrain the combina-
tion of nonmetricity components appearing on the right-hand side 
of Eq. (8).

The experiment described in detail below measured the neu-
tron rotary power to be

dφP V

dL
= +1.7 ± 9.1(stat.) ± 1.4(sys) × 10−7 rad/m (9)

at the 1-σ level. Conversion to natural units together with Eq. (8)
yields the following nonmetricity measurement:

2
(
ζ

(4)
2 − m ζ

(5)
9

)
(N1)0 + 2

(
ζ

(4)
4 − m ζ

(5)
10

)
(N2)0 + m2 ζ

(6)
2 S000

= (3.4 ± 18.2) × 10−23 GeV . (10)
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We interpret this result as the 2-σ constraint
∣∣∣2

(
ζ

(4)
2 − m ζ

(5)
9

)
(N1)0 + 2

(
ζ

(4)
4 − m ζ

(5)
10

)
(N2)0 + m2 ζ

(6)
2 S000

∣∣∣
< 3.6 × 10−22 GeV . (11)

Disregarding the possibility of extremely fine-tuned cancellations 
between the various nonmetricity couplings in the constraint (11), 
we can estimate the following individual bounds:

|ζ (4)
2 (N1)0| < 10−22 GeV , |ζ (4)

4 (N2)0| < 10−22 GeV ,

|ζ (5)
9 (N1)0| < 10−22 , |ζ (5)

10 (N2)0| < 10−22 ,

|ζ (6)
2 S000| < 10−22 GeV−1 . (12)

The above limits represent the primary result of this work. To our 
knowledge, they provide the first measurement of ζ (6)

2 S000 as well 
as the first measurement of any nonmetricity component inside 
matter.

The measurement (9) performed at the NG-6 slow-neutron 
beamline at NIST’s Center for Neutron Research has already ap-
peared in the literature [21]. Neutrons with transverse spin polar-
ization traversed 1 meter of liquid 4He that was kept at a tem-
perature of 4 K in a magnetically shielded cryogenic target. The 
neutron beam’s energy distribution was well approximated by a 
Maxwellian with a maximum close to 3 meV. Paralleling the usual 
light-optics set-up of a crossed polarizer–analyzer pair, the experi-
ment searched for a nonzero rotation in the neutrons’ polarization. 
Further details of this measurement can be found in Refs. [22–27]. 
The result quoted in the above Eq. (9) represents the upper limit 
on the parity-odd neutron-spin rotation angle per unit length in 
liquid helium at 4 K extracted from the measured data.

The usual SM incorporates known parity-violating physics that 
can also lead to neutron spin rotation, for instance via interactions 
with electrons or nucleons. In fact, this phenomenon has been 
measured in heavy nuclei [28–30]. A convincing interpretation of 
the above nonmetricity constraint therefore requires a discussion 
of this SM background. From a theoretical perspective, parity vi-
olation in neutron–electron physics in the SM is well understood. 
In particular, it is suppressed relative to the parity-odd neutron–
nucleon interaction by the weak charge (1 − 4 sin2 θW ) ≈ 0.1. The 
neutron–nucleon parity violation, on the other hand, is induced 
by quark–quark weak interactions. This system also involves the 
strong-coupling limit of QCD, which still evades solid theoretical 
tractability. Nevertheless, nucleon–nucleon weak-interaction ampli-
tudes have been argued to be six to seven orders of magnitude 
below strong-interaction amplitudes at neutron energies relevant 
for our present purposes [31]. Although reliant on phenomenolog-
ical input in the form of nuclear parity-violation data folded into 
a specific model, the value dφP V /dL = −6.5 ± 2.2 × 10−7 rad/m 
for the SM spin rotation in the 4He–neutron system is regarded as 
the most decent theoretical estimate [32]. Our experimental up-
per limit on nonmetricity (11) is larger than this SM-background 
estimate. For this reason, we disregard the remote possibility of a 
cancellation between SM and nonmetricity contributions to neu-
tron spin rotation.

To determine additional limits on in-matter nonmetricity, one 
could also consider using data from other high-precision parity-
violation experiments. One example in the context of neutrons are 
measurements of parity-breaking effects in atoms that are affected 
by the nuclear anapole moment and arise from parity-odd interac-
tions between nucleons [33,34]. An idea for extracting nonmetric-
ity constraints involving electrons could, for example, be based on 
the consistency between the theoretical SM result and the experi-
mental value of the weak charge of the 133Cs atom [35].
Additional nonmetricity components may become experimen-
tally accessible with a set-up in which both the slow-neutron 
beam as well as the nuclear target are polarized: the aligned tar-
get spins would coherently generate large-scale anisotropic com-
ponents of Nαβγ , which were disregarded in our above analysis. 
High-sensitivity studies of this type have received considerable at-
tention for quite some time [36]. The neutron–nucleus scattering 
amplitude exhibits a significant polarization dependence, an effect 
known as nuclear pseudomagnetic precession [37]: the neutron’s 
spin precesses about the nuclear polarization vector as the neutron 
traverses the polarized medium. In the past, this method has been 
employed to determine the spin dependence of neutron–nucleus 
scattering cross sections for a number of nuclei [38]. However, 
the nuclear-pseudomagnetism spin-precession contributions from 
the strong neutron–nucleus interaction to such a measurement are 
substantial and currently evade theoretical treatment from first 
principles. It is therefore expected that the experimental reach re-
garding in-matter anisotropic Nαβγ components would be more 
modest than that in this study.

We finally mention that a high-precision transmission-asymme-
try measurement utilizing transversely polarized 5.9 MeV neutrons 
was performed in a nuclear spin-aligned target of holmium [39]. 
This experiment explored the presence of P-invariant but T-
violating interactions of the neutron. The measurement yielded 
A5 = σP

σ0
= +8.6 ± 7.7(stat. + sys.) × 10−6. Here, A5 denotes the 

transmission asymmetry for neutrons polarized parallel and an-
tiparallel to the normal of the plane spanned by the neutron 
momentum and the spin polarization of the holmium target. An 
open question is whether or not polarized nuclear matter gener-
ates an effective Nαβγ that differs from that of unpolarized nuclear 
matter, and how such a difference would manifest itself in this 
experiment. That said, the neutron energy in this measurement re-
mains nonrelativistic, so our above methodology should continue 
to be applicable.

4. Summary

In this work, we have considered the possibility of nontrivial 
nonmetricity in nature. We have argued that in this context an ef-
fective nonmetricity field could be generated inside a liquid 4He 
target. We have shown that the spin of nonrelativistic neutrons 
traversing such a target would then precess. This prediction, to-
gether with existing data on neutron spin rotation in liquid 4He, 
implies the primary result of this work, namely the bound (11). 
To our knowledge, this is the first experimental limit on in-matter 
nonmetricity.

We have further concluded that it would be difficult to improve 
our bound via higher-precision spin-rotation data due to the con-
ventional SM background arising from quark–quark weak interac-
tions. However, other atomic and nuclear parity-violation tests may 
have the potential to yield complementary limits on nonmetricity 
interactions of neutrons and electrons. Moreover, polarized slow-
neutron transmission measurements through polarized nuclear tar-
gets could be studied with the approach presented in this work 
and may give bounds on additional in-matter Nαβγ components. 
We encourage other researchers to perform further nonmetricity 
searches using the general framework employed in this study with 
the aim to turn nonmetricity tests into a more quantitative exper-
imental science.
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