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Abstract

Anisotropic material with inextensible fibers introduce constraints in the mathematical
formulations. This is always the case when fibers with high stiffness in a certain
direction are present and a relatively weak matrix material is supporting these fibers. In
numerical solution methods like the finite element method the presence of
constraints—in this case associated to a possible fiber inextensibility compared to a
matrix—lead to so called locking-phenomena. This can be overcome by special
interpolation schemes as has been discussed extensively for volume constraints like
incompressibility as well as contact constraints. For anisotropic material behaviour the
most severe case is related to inextensible fibers. In this paper a mixed method is
developed that can handle anisotropic materials with inextensible fibers that can be
relaxed to extensible fiber behaviour. For this purpose a classical ansatz, known from
the modeling of volume constraint is adopted leading stable elements that can be
used in the finite strain regime.
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Background
Many different approaches were developed over the last decade to formulate finite ele-
ments for anisotropic material with inextensible fibers. The problem is the high stiffness
ratio between fiber andmatrixmaterial with the limit case of inextensible fibers where this
ratio tends to infinity. This is physically related to the exact fulfilment of the kinematic
constraint associated with the inextensibility of fibers in certain directions.
Generally the method of Lagrange multipliers provides a possibility to fulfil such con-

straints for small andfinite deformations. In this paper the Lagrangemultiplier approach is
employed tomodel anisotropicmaterial behaviour at finite strains. Furthermore a relaxed
version, i.e., the perturbed Lagrangian formulation, is used to model extensible fibers as
well. Boundary value problems that incorporate extreme constraints cannot be solved
using the finite element method with standard displacement interpolations. This leads to
well known locking phenomena.
The main source of locking problems is that the mathematical formulation has to deal

with constraints or is set up such that constraints are fulfilled approximately, like in penalty
or other relatedmethods. These problems arewell-analyzed for geometrically linear prob-
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lems in the case of volume constraints, see e.g. [4,13,28,30]. They were investigated in
the mathematical community quite early, see [3,7], and are now well understood lead-
ing to the Babuska–Brezzi (BB) condition. It can be employed to investigate the stability
behaviour of mixed finite elements in the linear range. Within nonlinear problems the BB
condition can only be used at certain stages of the analysis, see e.g. [9].
Different strategies were pursued in computational mechanics over the last years in

order to circumvent locking effects. It became evident that element ansatz functions
that interpolate the deformation or displacement field within an element with first order
shape functions (bi- or tri-linear interpolation) do not converge properly when applied to
problems with constraints like incompressibility or distinct anisotropic material behav-
iour. Thus different variational formulations were explored in order to construct finite
elements that can be used for problems with constraints. Approaches include reduced
integration and stabilization, see e.g. [31] for the linear case. Many variants can be found
in the literature. It was shown that the reduced integration has to be used together with
stabilization and can be extended to nonlinear problems, see e.g. [6,17] leading to elements
that are in general locking free for incompressibie deformations. Additionally these ele-
ments are very efficient due to reduced integration. However stabilized elements rely on
artificial stabilization parameters and thus the numerical solution can depend on theses
parameters in certain cases.
Formulations, based on themixed variational principle ofHu-Washizu, were developed,

e.g. see Simo and co-workers who introduced the enhanced strain elements first for the
geometrically linear, e.g. see [24] and then for large deformations, [22,23]. However, these
elements depict non-physical instabilities at certain deformation states.
Othermixed finite element formulations, that are stable, performwell in the framework

of small deformations and isotropy, e.g. see [5,8]. Extensions to problems undergoing
finite deformations are discussed in [1,2] for the case of incompressibility. For finite strain
anisotropicmaterial behavior it is evenmore complex to find good finite element formula-
tions. Many classical approaches that were designed for fiber-reinforced materials depict
non-physical behavior, see e.g. [12,27]. Discussions related to the correct formulations
of the mathematical model for anisotropic behaviour can be found in e.g. [11,18]. These
authors state that all fiber-related terms have to be provided in the energy by the complete
deformation tensor and not by its isochoric part.
Reduced integration schemes using a special stabilization have been successfully applied

to the simulationof composite reinforcedmaterial, seeHamila andBoisse [10].Also special
interpolations eliminated locking behaviour for composite materials, see ten Thjie and
Akkerman [26]. Still many researchers use Hu-Washizu-based displacement, dilatation
and pressure formulations, early introduced for incompressible materials by [25], for
nearly incompressible materials with highly stiff fibers (like in arterial walls), see [29] and
the references therein. However for strongly anisotropic material with inextensible fibers
these approaches have limited performance, especially at finite strains.
A new formulation was presented in [21] who introduced a novel finite element

formulation that is developed especially for anisotropic materials, based on isotropic
tensor functions as discussed in [19,20]. There the constraints, associated with the
anisotropy, are controlled by an additional deformation measure. A second-order ten-
sorial Lagrange-multiplier was introduced via a discontinous ansatz. This approach
offers the opportunity to reduce the interpolation order of the anisotropic part and
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thus is able to relax the constraints due to anisotropy. This formulation leads to a sta-
ble methods for the solution of problems with anisotropic materials undergoing large
strains.
In this paper a different approach is followed. Here the constraint of inextensibility in

fiber directions is formulated as a constraint and also as a limiting case. For this purpose
a constraint equation is introduced within a Lagrange multiplier scheme. This allows
to select ansatz functions as well for the displacement field in fiber direction as for the
fiber forces. Additionally a perturbed Lagrangian formulation is introduced to relax the
constraint condition and to be able to introduce real fiber stiffnesses. Since it can happen
that fibers buckle locally when subjected to a compressive force a special form of the
constraint is introduced that acts only for tension states. Furthermore this formulation
can be used to enforce strain states in fiber direction that can be associatedwith e.g.muscle
contractions in biomechanics applications or specific piezoelectric effects in fibers.
The performance of the developed element formulations is compared to existing for-

mulations using benchmark problems. All numerical results were obtained with the
AceGen/AceFEM system developed in [14–16].

Anisotropic material with inextensible fibers behaviour at large strain
In this section a summary of the continuum mechanics background is provided for the
formulation of problems exhibiting anisotropic response in finite elasticity. The formu-
lation is reduced to the necessary equations that are needed to formulate the problem in
AceGen. This omits many derivations since automatic differentiation is used. All formu-
lations are presented with respect to the initial configuration. The formulation accounts
for transversely isotropic material behaviour by using a mixed approach. It is assumed
that the material is not extendable in the given fiber direction a.

Continuummechanics

Let us introduce the deformation ϕ(X, t) which maps points of the initial configuration
to the current or deformed configuration. This deformation can be computed using the
coordinates of the initial configuration and the displacement field: ϕ(X, t) = X + u(X, t).
Using this deformation map, the deformation gradient can be computed as

F = Gradϕ(X, t) = Grad (X + u(X, t)) = 1 + H, (1)

where H = Gradu(X, t). Note that the volume change J is defined as the determinant of
the deformation gradient: J = det F.
Based on the deformation gradient the Cauchy-Green tensor can be formulated as

C = FT F. (2)

Based on these kinematical quantities one can formulate a strain energy function for
hyperelastic materials. The following isotropic strain energy functionWiso can be used to
describe the behaviour of the isotropic part of the material:

Wiso(u) = μ

2
( trC − 3 − 2 log J ) + λ

4
( J2 − 1 − 2 log J ), (3)

where μ and λ are the Lame constants, see e.g. [28]. Any other strain energy function that
describes hyperelastic material behaviour can be selected as well.
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Kinematical anisotropic constraint

The enforcement of the constraint that ensures that the material does not extend in the
direction a leads to the following condition

a · E a = 0, (4)

where E is the Green-Lagrangian strain tensor

E = 1
2
(FTF − 1) = 1

2
(C − 1). (5)

Since it is simpler to work with the right Cauchy Green tensor C = FTF this constraint
can be written as

2 a · E a = a · (C − 1) a = a · Ca − 1 for ‖a‖ = 1 (6)

Furthermore we can write, by substituting the structural tensorM,

a · Ca = C · M = tr[CM ] with M = a ⊗ a. (7)

It is easy to show that tr[CM ] yields the stretch in direction of a. Thus
λ2c = tr[CM ] (8)

which in case of a fiber constraint in the direction of a leads to λ2c = 1.

Lagrangemultiplier formulation

Based on these kinematical relations different constraints and associated forms of a
Lagrange multiplier approach can be formulated:

• One constraint. The Lagrange multiplier term related to the constraint of a material
that is not extendable in the direction a yields with (7)

WtiL(C, σc) = σc (tr[CM ] − 1) (9)

where σc is the Lagrangianmultiplier that physically represents the fiber stress related
to the constraint.

• Several constraints. For more than one constraint direction one can introduce nc
additional directional unit vectors ai and associated structural tensorsMi and refor-
mulate (9)

WtiL(C, σc i) =
nc∑

i=1
σc i (tr[CMi ] − 1) (10)

• Constraints for tensiononly. In case that the response of the fiber systemonly occurs
in tension states (9) can be re-written by using theMacauley bracket: 〈x〉 = 1

2 (x+‖x‖).
This choice yields

WtiL(C, σc) = σc 〈tr[CM ] − 1〉α (11)

where α is a positive integer that can be selected in the range (1, . . . , 4).
• Constraints for a given stretch. If a stretch λ̄c is prescribed in a certain direction a,

then one can formulate, using (8), the constraint

WtiL(C, σc) = σc ( tr[CM ] − λ̄2c ). (12)
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Now one of the four variants ofWtiL(C, σc), discussed above, can be used to formulate
the final form of the strain energy

W (C(u), σ ) = Wiso(C(u)) + WtiL(C(u), σc). (13)

All of the additions WtiL(C, σc) to the strain energy (3) lead to a pure mixed form since
unknowns are the displacement field u and the fiber stresses σc.

Perturbed Lagrangian formulation

Additionally there is the possibility to use a so called perturbed Lagrangian formulation
which can be stated as follows

W (C, σ ) = Wiso(C) + WtipL(C, σ ). (14)

with

WtipL(C, σc) = σc (tr[CM ] − 1) − 1
2Cc

σ 2
c (15)

here again Cc is a penalty parameter. For Cc → ∞ (15) reduces to (13). The perturbed
Lagrangian formulation leads in the continuous version to a penalty method, but for
different ansatz spaces for σC and the displacement field u it can lead to a different finite
element scheme.
The perturbed Lagrangian formulation can also be used to introduce a fiber stiffness that
is related to the physical behaviour of the fiber. In that case Cc has a physical meaning.

Penalty formulation

Penalty methods provide a formulation that can approximate constraint equations by
introducing a penalty term related to the constraint. The associated formulations includes
the constraint (8) in the strain energy as follows

Wp(C) = Wiso(C) + Wpen(C). (16)

with

Wpen(C) = Cc
2

(tr[CM ] − 1)2 (17)

here Cc is a penalty parameter. For Cc → ∞ (15) it can be shown that the constraint is
fulfilled exactly.1 The penalty formulation can also be used to introduce a certain fiber
stiffness that is related to the physical behaviour of the fiber. In that case Cc has a physical
meaning.

Mixed element formulation
For the mixed interpolation tetrahedral and hexahedral elements are selected and com-
pared. For both element formulations a quadratic interpolation for the displacement field
u and a linear interpolation for the mixed variable σc is selected. This choice is motivated
by the classical mixed formulation for the incompressibility constraint. For anisotropic
material with inextensive fiberss the variable σc is the stress component related to the
constraint, e.g. the stress in direction of a.

1It is well known that ill-conditioning can occur when a large penalty parameter Cc is selected. Thus in practise the
penalty formulation is only able to approximately enforce the constraint condition (8).
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Note that in the mixed form for the incompressibility with the constraint (J − 1), that
is related to the determinant of F, a cubic function of the components of the deformation
gradient describes this constraint. In the case of the constraint (9) for anisotropicmaterials
this function is only a quadratic formof the components of the deformation gradient. Thus
it is not obvious that the same choice for the interpolation of σc will be sufficient.2

For the formulation of the mixed finite element we start from Eq. (9). Thus one has to
compute the structural tensorM that depends on the vector a providing the direction of
anisotropy. Vector a is defined as a unit vector

a = {ax, ay, az} /

√
a2x + a2y + a2z . (18)

Now ansatz functions for the displacement field and the Lagrangian multiplier (fiber
stress) σc have to be formulated. The quadratic shape functions that approximate the
displacement field

ue =
nu∑

I=1
NI (ξ , η, ζ )uI (19)

are given below

• for a tetrahedron with 10 nodes (nu = 10)

N1 = (2ξ − 1)ξ , N2 = (2η − 1)η, N3 = (2ζ − 1)ζ , N4 = (2κ − 1)κ ,

N5 = 4ξη, N6 = 4ηζ , N7 = 4ζ ξ , N8 = 4ξκ , N9 = 4ηκ , N10 = 4ζκ , (20)

with κ = 1 − ξ − η − ζ and
• a hexahedron with 27 nodes (nu = 27)

NI (ξ , η, ζ ) = NI (ξ )NI (η)NI (ζ ) (21)

with I = 1, . . . , 27. NI (s) is given for the vertex nodes by

NI (s) = 1
2
(1 − sI )[s(s − 1)] + 1

2
(1 + sI )[s(s + 1)]

for s being either ξ , η or ζ . Here sI is related to a specific coordinate of a vertex node of
the hexahedron in the space of the reference coordinates (ξ , η, ζ ) with ξI = {−1,+1},
ηI = {−1,+1} and ζI = {−1,+1}, see Fig. 1. For the mid nodes the shape function
NI (s) are given by

NI (s) = (1 − s2)

with ξI = 0, ηI = 0 and ζI = 0.

Furthermore, the linear shape functions for the interpolation of the Lagrangemultiplier
σc are defined for the tetrahedron with respect to the four edge nodes (nσ = 4)

Nσ 1 = ξ , Nσ 2 = η, Nσ 3 = ζ , Nσ 4 = κ (22)

and for the hexahedron with respect ot the eight edge nodes (nσ = 8 and K = 1, . . . , 8) as

Nσ K = 1
8
(1 + ξ ξK )(1 + η ηK )(1 + ζ ζK ) (23)

2In the linear case both conditions, while being different, yield a linear dependence on the components of the displace-
ment gradient. Thus there the choice of using the same ansatz function for the pressure (incompressibility) and the
fiber stress (anisotropy) is justified.
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Fig. 1 Nodes of the quadratic tetraedral and hexahedral element

these will be used to interpolate the Lagrange multiplier (fiber stress) σc related to the
constraint within the element

σc =
nσ∑

K=1
Nσ K (ξ , η, ζ ) σK . (24)

Furthermore we need to define the coordinates within the finite element to formulate the
isoparametric mapping. With ζζζ = (ξ , η, ζ ) it follows

Xe =
nu∑

J=1
NJ (ζζζ )XJ . (25)

Based on this ansatz functions the deformation gradient within an element e is computed
via

Fe = 1 + Gradue =
nu∑

I=1
uI ⊗ J−T

e ∇ζ NI (26)

with the Jacobian of the isoparametric map

Je =
nu∑

I=1
XI ⊗ ∇ζ NI .

Now the Jacobian Je of the deformation gradient Fe is obtained within the element by
Je = det Fe. Furthermore the Cauchy-Green tensor Ce and the trace of Ce M can then be
computed at the element level. The latter quantity is needed to formulate the constraint
(7).
In this contribution we will employ the tool AceGen to produce the finite element code.

With all these kinematic quantities, one of the above strain energies, e.g. in (14) can be
formulated. This is sufficient when AceGen is used to derive the element residual vector
and the tangent matrix. The essential part of the AceGen code, related to the perturbed
Lagrangian formulation is shown in Fig. 2.

Examples
Several numerical examples are considered to show the performance of the new formu-
lation for different loading cases. In these examples the following discretization schemes
are compared:
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Fig. 2 Part of the AceGen code for the mixed element based on a perturbed Lagrangian formulation for
transverely anisotropic material

• Tetrahedral elements for the constraint formulation (9), (10), (11) and (12) with
quadratic ansatz functions (21) for the deformations and linear ansatz, see (23), for
the Lagrangian multiplier σc. These elements are labeled T2-A1 in the following.

• Tetrahedral elements for the perturbed Lagrangian formulation (15) with quadratic
ansatz functions (20) for the deformations and linear ansatz, see (22), for the
Lagrangian multiplier σc. These elements are labeled T2-A1-P in the following.

• Hexahedral elements for the constraint formulation (9), (10), (11) and (12) with
quadratic ansatz functions (20) for the deformations and linear ansatz, see (22), for
the Lagrangian multiplier σc. These elements are labeled H2-A1 in the following.

• Hexahedral elements for the perturbed Lagragngian formulation (15) with quadratic
ansatz functions (21) for the deformations and linear ansatz, see (23), for the
Lagrangian multiplier σc. These elements are labeled H2-A1-P in the following.

For comparison reasons standard displacement elements were formulated as well as ele-
ments based on the penalty method (16). These elements are

• Tetrahedral elements based on the quadratic ansatz functions (20) for the deforma-
tions. These elements are labeled T2, and the associated penalty ones T2-P.

• Hexahedral elements based on the quadratic ansatz functions (21) for the deforma-
tions. These elements are labeled H2, and the associated penalty ones H2-P.

All examples are subjected to loads that lead to finite deformation strain states.

Cook’s membrane problem

An example that will show a clear anisotropic response is the Cook’s membrane problem
of a tapered cantilever beam, clamped at the left end. The structure is loaded at the right
end by a constant vertical load, as depicted in Fig. 3.
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Fig. 3 Initial configuration of the cantilever beam

The selected dates for the Lame constants are μ = 500 and λ = 1000. The direction of
anisotropy is given by a = 1√

3
{1, 1, 1}. In order to clamp the cantilever beam at its left end

all displacements at X = 0 were set to zero in x-, y- and z-direction. The total distributed
load is p0 = 250. It was applied in different loading steps, as will be discussed later.
Differentmeshdensitieswhere used to compute the solution, see Fig. 4 for the tetrahedra

and Fig. 5 for the hexahedra. The mesh sequence is selected such that the finer meshes
are included in the coarser meshes. This enables convergence studies that will depict
differences of the formulations. The number N denotes the mesh divison, see Table 1.
In a first computation a mesh with N = 16 was used to obtain the load displace-

ment curve for Cook’s membrane problem. The element used for this simulation was the

Fig. 4 Tetrahedral meshes of the cantilever beam with N = 2, 4, 8, 16
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Fig. 5 Hexahedral meshes of the cantilever beam with N = 2, 4, 8, 16

Table 1 Mesh density

N Mesh division

2 2 × 2 × 1

4 4 × 4 × 2

8 8 × 8 × 4

16 16 × 16 × 8

H2-A1-P formulation. The load was applied in 10 even load increments λwith	λ = 0.25.
The parameter for the perturbed formulation was selected as Cc = 106.
For the computation of the load displacement curve the vertical displacement of the

mid node (X, Y, Z) = (48, 52, 5) of the plane at the right end of the cantilever beam is
chosen which is related to the response in the direction of the load p0, see Fig. 3. The load
displacement curve is depicted in Fig. 6. Furthermore the out-of-plane displacement in
z-direction is plotted that shows the out-of-plane deformation of the cantilever beam due
to the anisotropic material.
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Fig. 6 Load displacement curve: λ versus displacement components in y- and z- direction at point (48,52,5)
and deformed shape at final configuration
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The deformed mesh on the right in Fig. 6 was computed with a mesh of 16 × 16 × 8
elements which lead to a total number of 59058 degrees of freedoms. The deforma-
tion at the final configuration clearly depicts the twist in the deformed shape due to
the anisotopic constraint at large deformations. The solution was computed with sev-
eral load steps. In total eight load steps were applied for all discretizations reported in
Fig. 7. The convergence behaviour was robust, six iterations per load step were needed
for all discretizations to obtain convergence. In this solution procedure Newton type
convergence was observed. When using the automatic load stepping scheme of Ace-
FEM the total load can be applied in five load steps which reduces the total number of
iterations to 33 and thus leads to reductions in computing time by a factor of around
1.5.
A convergence study is performed for the fully constraint case, using the Lagrangian

multiplier formulation (9). The element formulations H2-A1 and T2-A1 are compared.
Figure 7 depicts the convergence of the vertical displacement at point (48,60,0).
It can be observed that the hexahedral element performs slightly better for coarse

meshes. Here one has to acknowledge that the coarsest mesh (N = 2) of the triangu-
larization for the tetrahedral elements is not symmetric and thus will have a certain bias.
Nevertheless the displacement for the coarsest mesh is close to the final result, being
approximately only 5% off.
In order to show the dependency of the solution on the penalty or fiber stiffness para-

meter Cc a series of computations were performed. The perturbed formulation (14) was
used and a mesh division of N = 8 selected.
Here it canbeobserved that the anisotropic constraint indirectionofa is not enforced for

a penalty parameterCc ≤ 10. Then there is an intermediate stagewhere the stiffness of the
fiber changes the deformation state. This is related to parameters between 10 ≤ Cc ≤ 105.
Finally from Cc > 105 on there is no further change, thus the parameter is sufficient to
enforce the constraint. Additionally we note, that for Cc > 107 the result is the same as
for the pure Lagrangian multiplier formulation (9).

2 4 6 8 10 12 14 16
20.8

21

21.2

21.4

21.6

21.8

22

Element division

u
y T2-A1

H2-A1

Fig. 7 Convergence study, constraint case
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A convergence study is now performed for the perturbed Lagrangian formulation, see
(14). The results are compared with the penalty formulation (16) for a parameter of
Cc = 106. The results can be found in Fig. 9.
It can be seen that the penalty formulation does not converge to the same solution as the

perturbed Lagragnian formulation. Here a penalty parameter was used that is sufficient
to fulfill the constraint, see Fig. 8. Thus it is clear from Fig. 9 that the penalty formulation
locks. Furthermore it is interesting to observe that for a penalty parameter of Cc > 107

the penalty method for the H2 as well as for the T2 element diverged while the perturbed
Lagrangian formulations H2-A1-P and T2-A1-P are still robust.
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Fig. 8 Influence of the stiffness parameter Cc on the displacement components in y- and z- direction at
point (48,60,5)
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Fig. 9 Convergence study, penalty versus perturbed Lagrangian, Cp = 106
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Shear deformation of a beam

When a clamped beam is subjected to an end load then the beam will usually bend in the
direction of the loading. In case that the axial movement is constraint the beam can only
undergo shear deformations. The beam has a length of 40, a height of 4 and a thickness of
2 (in dimensionless coordinates), see Fig. 10.
The constitutive data are provided for the Lame constants: μ = 500 and λ = 1000.

The direction of anisotropy is given by a = {1, 0, 0} which enforces the constraint in x-
direction. The beam is clamped at the left end using the boundary conditions: ux = 0 for
all nodes at x = 0, uy = 0 for all nodes at x = 0 and y = 0 and uz = 0 for all nodes at
x = 0 and z = 0. The beam is loaded by a constant traction of py = 5 at the right end.
The pure shear state will now be enforced for the beam depicted on the left side of

Fig. 10. The loading is such that a small strain state occurs. This leads to a deformed state
that is reported on the right side of Fig. 10. Here the deformation is scaled by a factor of 20.
The displacement at the right side of the beam is uy = 0.467. Since the length of the beam
is L = 40 this displacement amounts to a shear deformation of γ = uy/L = 0.01168. This
result can easily be checked using the classical beam theory. Here the shear deformation
is

γB = Q
GÂ

with Â = 5
6A, Q = py A, G = μ and A = 2 × 4 = 8 it follows γB = 0, 012 which is very

close to the computed value of γ .
For larger loads local buckling occurs. This is due to the high compressive stresses at the

bottom of the beam. The load deflection curve in Fig. 11 depicts the nonlinear behaviour
and the final deformation of the beam for a mesh with T2-A1-P elements. The deformed

Fig. 10 Undeformed and deformaed configuration of the beam

0 5 10 15 20 25 30

0

2

4

6

8

10

uy

λ T2-A1-P

Fig. 11 Load deflection curve, T2-A1-P, Cc = 106 and deformed beam



Wriggers et al. Adv. Model. and Simul. in Eng. Sci. (2016) 3:25 Page 14 of 18

configuration of the beam (no scaling) shows clearly near the clamping local buckles that
in the end led to the large deflection of the beam. This is related to a bending torsion state
which is triggerd by the local buckling.
It is clear that in reality an internal local buckling of the fibers will occur and thus the

formulation (11) has to be applied. This leads then to a bending of the beam without
local buckling, since fiber buckling due to compressive stresses is not present anymore.
However, since the fibers in tension cannot extend, the deflection related to (11) is smaller
than the deflection of a beam under bending without any constraints.

Rolling up of a beam

This example is related to a beam that is subjected to a prescribed stretch on its upper
part. The problem is meshed with the quadratic hexahedra H2-A1-P and the quadratic
tetrahedra T2-A1-P with Cc = 108. A stretch of λ̄c = 1 + β εc with εc = −0.05 is
prescribed in the elements of the thin upper layer. The stretch is increased within 10
equal load increments (β = 1, . . . , 10). The following boundary conditions are imposed
at the left end of the beam in order to clamp the beam at this side: ux = 0 for all nodes at
x = 0, uy = 0 for all nodes at x = 0 and y = 0 and uz = 0 for all nodes at x = 0 and z = 0,
see Fig. 12.
The selected finite element mesh is depicted on the left side of Fig. 13. The final state

of the deformation is shown on the right side of Fig. 13. It is obtained for the load factor
β = 10.
It is clear that large strain states can be imposed by the formulation (12).
The displacements ux and uy are plotted versus the load factor β in Fig. 14. It was

obtained for a mesh with N = 8 and the T2-A1-P element.
It can be conlcuded that the active enforcement of a given stretch using formulation

(12) can be applied to generate arbitray deformation states depending on the selection of
the direction vector a and the magnitude of the prescribed stretch λ̄c.

Fig. 12 Undeformed configuration of the beam for the H2-A1-P element
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Fig. 13 Undeformed and deformed mesh of the beam
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Fig. 14 Load deflection curve for the element T2-A1-P, Cc = 108

Bias extension test

A problem where tension locking can occur is the tensile test where fibers are oriented
in ±45◦ in the initial configuration. This bias-extension test was used in ten Thjie and
Akkerman [26] and Hamila and Boisse [10] to investigate behaviour of standard finite
element formulations and special interpolation techniques to avoid locking. The test is
performed on a rectangular specimen, see Fig. 15 for the finite element mesh in the initial
configuration. The length of the specimen is L = 300, its width is H = 100 and the
thickness of the specimen is T = 10. The specimen is clamped at both ends and pulled
using a constant displacement ūx = 65. In order to obtain a two-dimensional plane stress
state, as it was used in Hamila and Boisse [10], the displacements of all nodes where set
to zero in thickness direction at Z = 0. The material properties of the matrix material are
described by the Lame constants λ = 1 and μ = 1. The fiber stiffness is Cc = 4000.
When the specimen is stretched fromL toL+ūx different in-plane shear zones occur, see

Hamila and Boisse [10]. As depicted also in this paper, the computation using a standard
element formulation, here a pure displacement formulation using T2 elements, yields a
non physical deformation state, see left side of Fig. 16. On the other hand the new T2-A1
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Fig. 15 Undeformed mesh of the specimen

Fig. 16 Deformations states for T2 and T2-A1 element formulations

element yields even with a relatively coarse mesh a correct deformation pattern, which
is depicted on the right side of Fig. 16 and has the same form as described in Hamila
and Boisse [10]. The deformation of the finest mesh, see Fig. 17, actually shows also the
different shear zones.
The plot in Fig. 18 shows the mesh convergence for the T2-A1 element formulation

using N = 4, 8, 16, 32 and 64 elements per side. As can be seen the result is insensitive
with respect to the mesh size. The deviation forN = 4 is related to the fact that the mesh
cannot model the different shear zones, see Fig. 17.
It is worth noting that the final displacement can be reached with the T2-A1 element in

one single load step for all mesh sizes, while the T2 element needs about 25 load steps to
reach the final configuration. Thus the new T2-A1 element is a lot more robust than the
T2 element for such applications.

Conclusions
Finite elements for large strain anisotropic behaviourwere developed in this paper. Special
emphasis was put on a formulation that was able to enforce inextensible fiber extensions

Fig. 17 Different shear zones obtained with a T2-A1 mesh of 40960 elements
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Fig. 18 Mesh convergence of the displacement uy in the midst of the specimen

for anisotropic materials exactly using a constraint formulation. This led to a Lagrange
multiplier method with different ansatz spaces for the deformations and the Lagrangian
multipliers (fiber stresses). The mixed approach shows a robust convergence behaviour
and does not lock. A comparison with standard quadratic elements depicts the locking
behaviour of these elements when the constraint was added via a penalty term. Further-
more themixed approach led to amore robust behaviour in the iterative procedure needed
to solve the associated nonlinear problems.
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