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Two-dimensional crossover and strong coupling of plasmon excitations in arrays
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Dimensional crossover is of high relevance to understanding real-world quasi-one-dimensional (1D) systems.
Here we study the collective excitations, measured as plasmon dispersions in an electron energy loss experiment,
in a tunable family of model systems, namely, Au chains on stepped Si(hhk) substrates, that allow variations of
chain widths and interchain spacings. We indeed observe 1D-like dispersions, but with a significant influence of
higher dimensions. Surprisingly, we find that it is not the interchain coupling but the width of the conduction
channel, as confirmed by tunneling spectroscopy, that dominates the excitations.
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One-dimensional (1D) electronic systems have highly
attractive properties such as quantization of conductance,
extremes of electronic correlation manifested by spin-charge
separation, charge and spin density waves [1,2], triplet su-
perconductivity, and Luttinger liquid behavior [3–5]. Due
to their inherent instability, however, structural embedding
and understanding of the coupling to other dimensions is of
supreme importance. Indeed, many 1D properties can still
be observed in these quasi-1D systems [6–10]. In addition,
these systems host a variety of instabilities with a wealth
of associated phase transitions [11]. On the other hand, the
excitation spectra of these systems and their dynamics are still
largely unexplored, which is particularly true for collectively
excited plasmonic states.

Apart from these fundamental aspects, plasmons play an
important role, e.g., in sensor technology [12], improvement
of quantum efficiency in photovoltaic devices [13], and even in
cancer research [14]. A new field of plasmon research has been
opened recently by collective excitations of low-dimensional
electron gases, called sheet plasmons [15,16], which have
wavelengths that are typically three orders of magnitude
shorter compared to photons of the same frequency. Thus THz
plasmonics on the scale of a few nanometers becomes feasible.

One-dimensional (1D) metallic wires and their plasmonic
excitations would be ideal for directed energy transport on the
nanoscale, since quasilinear dispersion is predicted, at least
in the long wavelength limit [17], for these 1D plasmons.
Such dispersions have indeed been found for regular arrays
of atomic wires on insulating substrates [18–20]. Moreover,
confinement effects in these metallic subunits on the surface
lead to the formation of intersubband excitations [19–21].

Before realizing such visions, several fundamental proper-
ties of these quasi-1D plasmons need to be clarified, compris-
ing, in particular, the question of dimensional crossover, but
also the correct treatment of many-body effects, electronic
correlations, and Coulomb screening [22–24]. These open
topics led to a partly unsatisfactory description of experimental
results in the past [18,19,25].

*pfnuer@fkp.uni-hannover.de

To address such fundamental aspects for 1D and 2D sys-
tems, the growth of various metals in the submonolayer regime
on semiconducting surfaces provides a superb approach. The
adsorbate induced band structure is generally electronically
decoupled from the bulk bands of the host material. In
particular, Au chains on regularly stepped Si(111) surfaces
at various tilt angles towards the [1̄1̄2] direction offer a unique
opportunity to modify physical properties in a controlled
fashion, not provided by other atomic wire systems [26,27].
Depending on coverage and vicinality, the widths of the
Au chains and their interwire spacing can be tuned, while
their electronic band structures are still very similar. So, 0.2
monolayers (ML) of Au on Si(557), e.g., result in the growth
of single atom Au chains and a row of Si adatoms on each
miniterrace with an interwire spacing of 19.2 Å [27,28]. In
contrast, Si(553) and Si(775)-Au host double Au chains in
the center of the terrace [26,29]. The interwire spacing is
14.8 Å for Si(553) and 21.3 Å for Si(775) [8,27,30]. For
double Au chains, nominal coverages of 0.48 ML on Si(553)
and of 0.32 ML on Si(775) result. Common to all these
structures is a graphitic Si honeycomb chain located at the step
edges [8,27,30], which—under certain circumstances—can
host ordered chains of local magnetic moments [8,9,26].

Each of these systems is characterized by metallic bands
that are well known from angle-resolved photoemission spec-
troscopy (ARPES) measurements [27]. They only disperse
along the chain direction k‖, and have their minima at the
zone boundary. Thus, also the (equilibrium) electron density
available for plasmonic excitations is well known.

In fact, these systems locally form the narrowest possible
1D objects that can be realized, namely, chains that are one
or two atoms wide. Therefore, we address here the question
of local confinement and dimensionality both for the ground
state close to the Fermi level and for the collective excited
plasmon state with emphasis on the plasmons. We compare
the collective excitations in Si(553)-Au and Si(775)-Au, which
have the same structural motif of the double gold chain, with
the Si(557)-Au system with only a single gold chain. Since
the same substrate (Si) is used, we are thus able to concentrate
on the influence of structural elements on dispersion and to
compare pairs of either identical structural motifs (double gold
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chains) on terraces of a different lateral width, or pairs with a
different structural motif (single versus douÂ-ble chains) on
terraces with almost identical width.

Although purely 1D dispersion along the chain direction
is found, the lateral extension of the charge distribution turns
out to explicitly influence the slope of the measured plasmon
dispersion curves. In other words, this crossover into the
second (or third) dimension is crucial for this quasi-1D phe-
nomenon, whereas the plasmonic coupling between the wires
in the ordered arrays, which is another aspect of dimensional
crossover, can in fact be treated as a correction [31,32].

All experiments were performed in two different ultra-
high vacuum chambers operating at a base pressure of
5 × 10−11 mbar. One system hosts a high resolution spot
profile analysis low-energy electron diffractometer (SPA-
LEED) to investigate and control the sample quality, and a
combination of an electron energy loss spectrometer with a
LEED diffractometer providing high resolution both in energy
and momentum [33] in order to determine plasmon dispersion
relations. The overall sample quality was checked by a SPA-
LEED. The vicinal Si substrates (ρ ≈ 0.01 � cm, n type) were
annealed at 1250 ◦C for a few seconds, followed by a rapid
cooldown. The appropriate coverages of 0.48 ML for Si(553)-
Au and 0.32 ML for Si(775)-Au were evaporated from a gold
pearl on a tungsten filament by direct current heating, or from
a crucible at a substrate temperature of 630 ◦C. The coverage
has been controlled and calibrated by quartz microbalances
placed at the position of the samples [34]. After Au deposition
and cooling to room temperature, the samples were quickly
annealed to 930 ◦C for <1 s, followed by instantaneous cooling
to room temperature. The loss measurements were carried out
directly after this postannealing step in order to avoid any
influence of residual gas on the surface and electronic structure.
The scanning tunneling microscopy (STM) measurements
were performed at 77 K in the second chamber using a
low-temperature STM manufactured by Omicron. The overall
sample quality here was checked with an optical LEED.

Here, we demonstrate the close structural similarities
between the Si(553)-Au and Si(775)-Au systems which
complement and fit to the very similar electronic structures
mentioned above. The LEED patterns right after preparation
are shown in Fig. 1(a). These patterns are characteristic for
regularly stepped (553) and (775) surfaces. They consist of
(111)-oriented terraces and steps of double atomic height (d =
3.14 Å). From the spot splitting of 22% surface Brillouin zone
(SBZ) for Si(553)-Au and 15.6% SBZ for Si(775) we derive
average terrace widths of 14.8 Å for the Si(553) and of 21.3 Å
for the Si(775) surface. Thus, the adsorption of 0.48 ML of Au
on Si(553)—0.32 ML on Si(775)—leaves the periodic array
of double steps with sharp spots and ×2 streaks unchanged,
indicating high quality 1D order. This is in agreement with
STM, exemplarily shown for the (775) system in Fig. 1(c). A
narrow distribution of terrace widths can be concluded from
(k||,k⊥) plots in LEED (not shown) and from STM.

High resolution STM, shown in Fig. 1(b) for the Si(775)-Au
system, reveals details of the atomic arrangement [for an
extended set of STM data on Si(553)-Au, see Ref. [9]]. Each
terrace hosts three structural motifs. Their origin could be
disentangled by a detailed analysis via STM and density
functional theory, which is published elsewhere [26]. However,

FIG. 1. (a) LEED patterns of the chain structures of Si(553)-Au
and Si(775)-Au. (b) STM image of the Si(775)-Au chain structure
(tunneling conditions U = −1.25 V, I = 300 pA): α,β,γ mark the Si
terrace edge, a row of Si adatoms accompanied by Si restatoms, and
a Au double chain with ×2 period doubling, respectively [26]. STM
experiments were performed at 77 K, and LEED at 300 K. Bright
protrusion could be identified as an adatom defect [26].

we will list our results here: The motif denoted by α could be
ascribed to the Si honeycomb chain at the step edge. Chain β

is formed by a Si adatom row accompanied by Si restatoms
(i.e., unpassivated Si atoms). Motif γ , most important for this
work, could be identified as a double Au strand [26], similar
to what was found in Si(553)-Au [8,9,29].

Most importantly, the chain structures show a 2a = 7.7 Å
periodicity along the wire direction. Correspondingly, LEED
reveals modulated ×2 diffraction streaks. The streaks along the
[1̄1̄2] direction are indicative for only short-range correlations
between the double periodicity along the chains on the different
terraces. For Si(553)-Au, only the Au chains show the ×2
periodicity. Therefore, the modulation and intensity of the ×2
diffractions streaks there are weaker.

On these well ordered arrays of 1D atomic chains, angle-
resolved electron energy loss spectroscopy measurements
were performed. Figure 2(a) shows sequences of loss spectra
on a semilog scale as a function of increasing k‖ for Si(553)-
Au. A similar plot for the orthogonal direction is shown in
Fig. 2(b). Corresponding spectra for Si(775)-Au are shown in
the Supplemental Material [35]. Close to k = 0 the spectra
are structureless, apart from a small nondispersing feature that
dies out quickly with increasing k⊥ [dashed line in Fig. 2(b)].
The exponentially decaying loss intensity as a function of loss
energy elastic peak, known as the Drude tail, is the typical sig-
nature of the continuum of low-energy excitations in metallic
systems [36], i.e., both systems are metallic, in agreement with
findings from ARPES for the Si(553)-Au [27], STM [9], and
theory [8]. However, it is at variance with the ARPES data for
the Si(775)-Au [27] for reasons still to be explored.

In the direction along the wires, clear loss features are
observed, which shift to higher loss energies with increasing
scattering angles, i.e., with increasing k‖. In the k⊥ direction,
however, i.e., in the direction across the wires, no dispersing
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FIG. 2. Electron energy loss spectra (primary energy 20 eV) of
Au chains grown on Si(553) as a function of k parallel and normal to
the wires, as indicated.

mode is seen [see Fig. 2(b)]. These findings are indicative of
the existence of 1D plasmons.

Each spectrum was accurately fitted by parametrizing the
elastically scattered peak, the actual plasmon loss, and the
Drude background, and by applying the same fitting routine
to all spectra. Details about the fitting procedure can be found
in the Supplemental Material and are also elaborated in the
Appendix of Ref. [36].

We note that special care has to be taken to eliminate water
and hydrogen from the background gas. Under suboptimal
vacuum conditions, disorder was observed in the system,
increasing with time. The result is the (electronic) breakup
of the Au chains, as is evident from the appearance of losses
at finite energy and small k‖ whose loss energies increase
with time. Such confined states were seen recently also for
Ag/Si(557) [36,37].

The dispersion curves along the wires resulting from the
loss maxima of Fig. 2 are shown in Fig. 3. Both systems
seem to be essentially quasi-1D systems, and therefore should
be compared with existing 1D plasmon theory [17,18,25,31].
Common to all theoretical approaches is the use of a nearly
free electron gas and various approximations for correlations,
in the simplest case the random phase approximation (RPA).
With this type of approach, a quantitative fit turned out to be
possible with the model of coupled wires sitting in a periodic
array of square potentials at distance d [31,32]. At small k‖,
the dispersion is given by

E = �

√
4ne2

(1 + ε)ε0m∗a2
k‖a0

×
√√√√K0

(
k‖a

2
√

2

)
+ 2

L∑
l=1

K0(k‖ld) cos(k⊥ld), (1)

where the first term of the product contains the electronic
and structural properties of a single wire, and the second the
intrawire (first term under the square root) and the interwire

FIG. 3. Plasmon dispersion for Au quantum wires grown on
Si(553) and on Si(775). Lines are fits according to Eq. (1). Dashed-
dotted lines: First terms of Eq. (1) for both systems. Dotted line: Same
for Si(557)-Au; fitted data from Ref. [28].

interaction. n is the electron density per unit length, e the
elementary charge, and m� the effective mass. ε is the dielectric
function of Si as partially embedding medium. K0 are modified
Bessel functions of zeroth order and the second kind, and k⊥
is the momentum normal to the wires. If a (the effective wire
width) is set equal to a0 (a constant for normalization), Eq. (1)
corresponds to the original formula given in Refs. [31,32],
which, however, turns out not to describe our findings. The
ratio a0/a accounts both for differences in structural motifs and
effective wire widths of a single wire, and is the only free pa-
rameter in Eq. (1). In the array of square potentials the first term
under the second square root accounts for the self-interaction
of a single wire, whereas the second term describes the
interaction between different wires at multiple distances of d.

n and m� for the present systems were directly derived
from ARPES data [27], i.e., from the occupied band structure
of the Au-modified surface states. We also use their surface
band notation. The systems investigated here are characterized
by two surface bands, an upper S1 and lower S2, crossing the
Fermi level [27,30]. As we see a metallic behavior of the
Si(775)-Au system, we assume its bands also cross the Fermi
level for a clean sample at room temperature. The ratio n/m�

for both bands is identical within error bars. This means that
the plasmons of these bands are degenerate and cannot be
separated experimentally. As a consequence, only a single
dispersion curve is expected to be seen for both systems
with the electron density corresponding to a single band, in
agreement with our findings.

The fits are shown in Fig. 3 together with the data. An
explicit dependence of initial slope and shape of dispersion on
structural motifs and on terrace widths is found, which is not
described by existing 1D theories, as we will now demonstrate
by concentrating on the first term in Eq. (1).
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Comparing first Si(553)-Au and Si(775)-Au, both of which
have the Au double chain but different terrace widths, this first
term of Eq. (1) differs by a factor of 1.4 [after correction for
small differences in the density of states (DOS)], as indicated
by the dashed-dotted lines in Fig. 3, i.e., it scales with the
inverse of the terrace width d (21.3 Å/14.8 Å = 1.43).

Si(775)-Au and Si(557)-Au [28], on the other hand, have the
same terrace widths (within 10%, 19.2 vs 21.3 Å), but double
and single Au chains per terrace, respectively. As seen from
ARPES data [27], the 1D electron density of Si(775)-Au in the
S2 band is higher by 20% than for Si(557)-Au, whereas the
effective masses are virtually the same. However, when fitting
the published data of Ref. [28] for Si(557)-Au to Eq. (1),
it turns out that its first term is a factor of 1.6 larger for
Si(557)-Au than that of Si(775)-Au. Taking the differences in
n and the d dependence from above for the two systems, the
effective width a, as suggested in Eq. (1), has to be reduced
effectively by roughly a factor of 2 for Si(557)-Au compared to
Si(775)-Au. In other words, not only does the periodicity, given
by the wire distances d, influence the dispersion directly, but
also the internal 2D distribution of electron density within each
wire plays an important role in the plasmon dispersion. Since
for these narrow structures and the given kF from ARPES only
the lowest subband of a quantum well is occupied, combined
excitations such as intersubband plasmon excitations can be
ruled out.

These findings can be summarized by

ωp ∝
√

na2
0

m�a2
,

with a = γ d, where γ < 1 is determined by the internal lateral
distribution of the electron density in each wire. This means
that even in the case of purely 1D plasmonic dispersion, there
is a crossover to 2D, since the width of a wire on the atomic
scale and the internal electronic distribution within the very
wire enter directly the slope of plasmonic dispersion, which
cannot be treated as a correction to 1D properties.

With respect to coupling between the wires, we obtained
the best fit when the sum in Eq. (1) under the square root
is truncated after the second term (L = 2), an indication
of a finite range of interaction. This result may not be
quantitative, since the model of Eq. (1) neglects damping and
dephasing between wires. On the other hand, this analysis
clearly demonstrates that the array of 1D plasmons is coupled.

Our plasmon analysis suggests that the internal modulation
of the relevant electron density within each terrace, i.e., its
finite extension perpendicular to the chain direction, plays
a key role despite the otherwise 1D characteristics of these
chain systems. Although this electronic modulation may not
be exactly the same in the collectively excited state, such a
modulation is indeed seen in scanning tunneling spectroscopy
(STS) close to the Fermi level, using the Si(553)-Au system as
a test system. This corroborates our suggestions from above.
The combination of STM and STS (Fig. 4) not only shows
the modulation, but it demonstrates that the highest density of
states (DOS) is indeed located at the gold chains. The full width
at half maximum (FWHM) of this modulation [see Fig. 4(b)] is
6.5 ± 0.5 Å, i.e., it is close to the geometric width of a double
gold chain on a Si(111) terrace. Although the amplitude of

FIG. 4. (a) Combined image of tunneling microscopy and spec-
troscopy of Au on Si(553). Bottom: Topography image (U = 0.1 V,
50 pA) with Si edge (bright) and period doubled Au chains, very
similar to Si(775)-Au (see Fig. 1). Top: dI/dU map of the same
sample area recorded with the lock-in technique (Umod = 10 mV)
displayed close to EF (Udc = +6.4 meV). The density of states (DOS)
is significantly enhanced at the Au chain position. (b) Line scan
through the dI/dU map from above normal to the steps indicated by
the white dashed line; the fit is given by the red curve.

this modulation is only around 10%, it clearly demonstrates
that also for the plasmon excitation this electronic density
modulation must be relevant. If the plasmon of the lowest
subband is also confined to the gold double chain, a comparable
width is expected. Indeed, using Eq. (1) and setting a0 to the
separation of atomic rows on the Si(111) terraces of 3.32 Å,
best fits of the measured dispersion curves are obtained with
values of a = 7.5 Å for Si(553)-Au, 10.2 Å for Si(775)-Au,
and 5.9 Å for Si(557)-Au. The latter value was obtained by
neglecting coupling between wires in the fit. These values
suggest that confinement of quasi-1D plasmons is related,
but is not simply determined by the geometric width of the
electronic ground state, and that both the structural motif and
the terrace width play a crucial role.

Summarizing, we investigated plasmonic excitations in the
narrowest quasi-1D systems experimentally possible, i.e., in
arrays of atomic metallic wires formed by single and double
Au chains in a vicinal Si(111) surface at various step densities.
While only a 1D dispersing plasmon mode along the wires
was found, the slope of the dispersion explicitly depends
on the charge distribution within each miniterrace and on
distance between wires, even for identical 1D ratios n/m�, thus
superimposing 2D properties onto the 1D dispersion. While
these findings require extensions of 1D plasmon theory, this
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dimensional crossover leads to further possibilities for tuning
1D plasmon dispersions.
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