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Abstract

In this article, the performance of cognitive transmission under quality of service (QoS) constraints and interference
limitations is studied. Cognitive secondary users are assumed to initially perform sensing over multiple frequency
bands (or equivalently channels) to detect the activities of primary users. Subsequently, they perform transmission in a
single channel at variable power and rates depending on the channel sensing decisions and the fading environment.
A state transition model is constructed to model this cognitive operation. Statistical limitations on the buffer lengths
are imposed to take into account the QoS constraints of the cognitive secondary users. Under such QoS constraints
and limitations on the interference caused to the primary users, the maximum throughput is identified by finding the
effective capacity of the cognitive radio channel. Optimal power allocation strategies are obtained and the optimal
channel selection criterion is identified. The intricate interplay between effective capacity, interference and QoS
constraints, channel sensing parameters and reliability, fading, and the number of available frequency bands is
investigated through numerical results.

Keywords: Channel sensing, Cognitive transmission, Effective capacity, Energy detection, Interference constraints,
Power adaptation, Quality of service constraints

Introduction
Recent years have witnessed much interest in cognitive
radio systems due to their promise as a technology that
enables systems to utilize the available spectrum much
more effectively. This interest has resulted in a spur of
research activity in the area. Asghari and Aissa [1], under
constraints on the average interference caused at the
licensed user over Rayleigh fading channels, studied two
adaptation policies at the secondary user’s transmitter in
a cognitive radio system one of which is variable power
and the other is variable rate and power. They maximized
the achievable rates under the above constraints and the
bit error rate requirement in MQAM modulation. The
authors of [2] derived the fading channel capacity of a
secondary user subject to both average and peak received-
power constraints at the primary receiver. In addition,
they obtained optimum power allocation schemes for
three different capacity notions, namely, ergodic, outage,
and minimum-rate. Ghasemi and Sousa [3] studied the
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performance of spectrum-sensing radios under channel
fading. They showed that due to uncertainty resulting
from fading, local signal processing alone may not be
adequate to meet the performance requirements. There-
fore, to remedy this uncertainty they also focused on
the cooperation among secondary users and the trade-
off between local processing and cooperation in order
to maximize the spectrum utilization. Furthermore, the
authors of [4] focused on the problem of designing the
sensing duration to maximize the achievable throughput
for the secondary network under the constraint that the
primary users are sufficiently protected. They formulated
the sensing-throughput tradeoff problem mathematically,
and use energy detection sensing scheme to prove that the
formulated problem indeed has one optimal sensing time
which yields the highest throughput for the secondary
network. Moreover, Quan et al. [5] introduced a novel
wideband spectrum sensing technique, called multiband
joint detection, which jointly detects the signal energy lev-
els over multiple frequency bands rather than considering
one band at a time.
In many wireless systems, it is very important to provide

reliable communications while sustaining a certain level
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of quality of service (QoS) under time-varying channel
conditions. For instance, in wireless multimedia trans-
missions, stringent delay QoS requirements need to be
satisfied in order to provide acceptable performance lev-
els. In cognitive radio systems, challenges in providing
QoS assurances increase due to the fact that secondary
users should operate under constraints on the interfer-
ence levels that they inflict on the primary users. For
the secondary users, these interference constraints lead to
variations in transmit power levels and channel accesses.
For instance, intermittent access to the channels due to the
activity of primary users make it difficult for the secondary
users to satisfy their own QoS limitations.
These considerations have led to studies that investigate

the cognitive radio performance under QoS constraints.
Musavian and Aissa [6] considered variable-rate, variable-
power MQAM modulation employed under delay QoS
constraints over spectrum-sharing channels. As a perfor-
mance metric, they used the effective capacity to charac-
terize the maximum throughput under QoS constraints.
They assumed that two users sharing the spectrum with
one of them having a primary access to the band. The
other, known as secondary user, is constrained by inter-
ference limitations imposed by the primary user. Con-
sidering two modulation schemes, continuous MQAM
and discrete MQAM with restricted constellations, they
obtained the effective capacity of the secondary user’s
link, and derived the optimum power allocation scheme
that maximizes the effective capacity in each case. In
addition, in [7], they proposed a QoS constrained power
and rate allocation scheme for spectrum sharing sys-
tems in which the secondary users are allowed to use
the spectrum under an interference constraint by which
a minimum-rate of transmission is guaranteed to the
primary user for a certain percentage of time. More-
over, applying an average interference power constraint
which is required to be fulfilled by the secondary user,
they obtained the maximum arrival-rate supported by a
Rayleigh block-fading channel subject to satisfying a given
statistical delay QoS constraint. We note that in these
studies on the performance under QoS limitations, chan-
nel sensing is not incorporated into the system model. As
a result, adaptation of the cognitive transmission accord-
ing to the presence or absence of the primary users is
not considered.
In this article, we study the effective capacity of cog-

nitive radio channels where the cognitive radio detects
the activity of primary users in a multiband environment
and then performs the data transmission in one of the
transmission channels. Both the secondary receiver and
the secondary transmitter know the fading coefficients
of their own channel, and of the channel between the
secondary transmitter and the primary receiver. The cog-
nitive radio has two power allocation policies depending

on the activities of the primary users and the sensing deci-
sions. More specifically, the contributions of this article
are the following:

1. We consider a scenario in which the cognitive
system employs multi-channel sensing and uses one
channel for data transmission thereby decreasing the
probability of interference to the primary users.

2. We identify a state-transition model for cognitive
radio transmission in which we compare the
transmission rates with instantaneous channel
capacities, and also incorporate the results of channel
sensing.

3. We determine the effective capacity of the cognitive
channel under limitations on the average interference
power experienced by the primary receiver.

4. We identify the optimal criterion to select the
transmission channel out of the available channels
and obtain the optimal power adaptation policies
that maximize the effective capacity.

5. We analyze the interactions between the effective
capacity, QoS constraints, channel sensing duration,
channel detection threshold, detection, and false
alarm probabilities through numerical techniques.

Wewould like to note that, in [8,9], we have also studied
the performance of cognitive radio systems in the pres-
ence of QoS constraints. However, there are significant
differences in the models and the analysis between this
article and [8,9]. In [8,9], channel sensing is done only
in one channel. In this article, we consider multi-channel
sensing and also identify an efficient rule to decide on
which channel to use for transmission among multi-
ple channels. In the previous study, channel conditions
between the secondary and primary users are assumed to
be unknown. Consequently, interference constraints have
a simpler structure. Indeed, in [9], the secondary trans-
mitter does not even know its own channel and sends
the information at a fixed rate and power. The secondary
receiver only has imperfect knowledge obtained through
channel estimation. The performance in such a challeng-
ing environment can be regarded as lower bounds on
what can be attained in practice. In this article, in order
to complete the picture, we consider the flip side of the
coin and assume that the secondary transmitter knows
the conditions in both its own channel and the chan-
nel between itself and the primary receiver. Equipped
with such knowledge, the secondary transmitter performs
power control in order to achieve improved performance.
Power control schemes also take into account the average
interference constraints, and more effectively limit the
interference inflicted on the primary users. The results
obtained under such assumptions can be used to iden-
tify the performance gains and interference reductions
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achieved in the presence of channel knowledge when
compared with those of [8,9].
The rest of the article is organized as follows: In “Cog-

nitive channel model and channel sensing” section, we
discuss the channel model and analyze multi-channel
sensing. We describe the channel state transition model
in “State transition model” section under the assumption
that the secondary users have perfect CSI and send the
data at rates equal to the instantaneous channel capac-
ity values. In “Interference power constraints” section, we
analyze the received interference power at the primary
receiver and apply this as a power constraint on the sec-
ondary users. In “Effective capacity” section, we define the
effective capacity and find the optimal power distribution
and show the criterion to choose the best channel. Numer-
ical results are shown in “Numerical results” section, and
conclusions are provided in “Conclusion” section.

Cognitive channel model and channel sensing
In this article, we consider a cognitive radio system in
which secondary users senseM channels. Since the trans-
mission strategies of the cognitive radios depend on the
activities of the primary users, it is desirable to have
the cognitive radios sense multiple channels to improve
the performance and more easily control the interference
inflicted on the primary users. These available channels
might be the white space television bands or the Indus-
trial, Scientific and Medical (ISM) radio bands. In our
model, we further assume that even if multiple channels
are sensed, only one channel is always selected for trans-
mission. Basically, we suppose that the cognitive radio
employs narrowband transmission techniques.
We assume that channel sensing and data transmission

are conducted in frames of duration T seconds. In each
frame, N seconds is allocated for channel sensing while
data transmission occurs in the remaining T −N seconds.
Transmission power and rate levels depend on the pri-
mary users’ activities. If all of the channels are detected as
busy, transmitter selects one channel with a certain crite-
rion, and sets the transmission power and rate to Pk,1(i)
and rk,1(i), respectively, where k ∈ {1, 2, . . . ,M} is the
index of the selected channel and i = 1, 2, . . . denotes
the time index. Note that if Pk,1(i) = 0, transmitter stops
sending information when it detects primary users in all
channels. If at least one channel is sensed to be idle,
data transmission is performed with power Pk,2(i) and at
rate rk,2(i). If multiple channels are detected as idle, then
one idle channel is selected again considering a certain
criterion.
The discrete-time channel input–output relation

between the secondary transmitter and receiver in the ith
symbol duration in the kth channel is given by

yk(i) = hk(i)xk(i) + nk(i) i = 1, 2, . . . , (1)

if the primary users are absent. On the other hand, if
primary users are present in the channel, we have

yk(i) = hk(i)xk(i) + sk,p(i) + nk(i) i = 1, 2, . . . , (2)

where xk(i) and yk(i) denote the complex-valued chan-
nel input and output, respectively. In (1) and (2), hk(i) is
the channel fading coefficient between the cognitive trans-
mitter and the receiver. We assume that hk(i) has a finite
variance, i.e., σ 2

hk < ∞, but otherwise has an arbitrary
distribution. We define zk(i) = |hk(i)|2. We consider a
block-fading channel model and assume that the fading
coefficients stay constant for a block of durationT seconds
and change from one block to another independently in
each channel. In (2), sk,p(i) represents the active primary
user’s faded signal arriving at the secondary receiver in the
kth channel, and has a variance σ 2

sk,p(i). nk(i) models the
additive thermal noise at the receiver, and is a zero-mean,
circularly symmetric, complex Gaussian random variable
with variance E{|nk(i)|2} = σ 2

nk for all i. We assume that
the bandwidth of the k channel is Bk .
In the absence of detailed information on primary users’

transmission policies, energy-based detection methods
are favorable for channel sensing. Knowing that wide-
band channels exhibit frequency selective features, we can
divide the band into channels and estimate each received
signal through its discrete Fourier transform [5]. The
channel sensing can be formulated as a hypothesis test-
ing problem between the noise nk(i) and the signal sk,p(i)
in noise. Noting that there are NBk complex symbols in
a duration of N seconds in each channel with bandwidth
Bk , the hypothesis test in channel k can mathematically be
expressed as follows

Hk,0 : yk(i) = nk(i), i = 1, . . . ,NBk (3)
Hk,1 : yk(i) = sk,p(i) + nk(i), i = 1, . . . ,NBk .

For the above detection problem, the optimal Neyman-
Pearson detector is given by [10]

Yk = 1
NBk

NBk∑
i=1

|yk(i)|2 ≷Hk,1
Hk,0

γk . (4)

We assume that sk,p(i) has a circularly symmetric com-
plex Gaussian distribution with zero-mean and variance
σ 2
sk,p . Assuming further that {sk,p(i)} are i.i.d., we can

immediately conclude that the test statistic Yk is chi-
square distributed with 2NBk degrees of freedom. In this
case, the probabilities of false alarm and detection can be
established as follows

Pk,f = Pr(Yk > γk|Hk,0) = 1−P
(
NBkγk

σ 2
nk

,NBk

)
, (5)
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Pk,d = Pr(Yk > γk|Hk,1) = 1 − P
(

NBkγk
σ 2
nk + σ 2

sk,p
,NBk

)
,

(6)

where P(x, a) denotes the regularized lower gamma func-
tion and is defined as P(x, a) = γ (x,a)

�(a) where γ (x, a) is the
lower incomplete gamma function and�(a) is the Gamma
function. In Figure 1, the probability of detection, Pd, and
the probability of false alarm, Pf , are plotted as a function
of the energy detection threshold, γ , for different values
of channel detection duration. Note that the bandwidth
is B = 10 kHz and the block duration is T = 0.1 s. We
can see that when the detection threshold is low, Pd and
Pf tend to be 1, which means that the secondary user,
always assuming the existence of an active primary user,
transmits with power P1(i) and rate r1(i). On the other
hand, when the detection threshold is high, Pd and Pf are
close to zero, which means that the secondary user, being
unable to detect the activity of the primary users, always
transmits with power P2(i) and rate r2(i), possibly caus-
ing significant interference. The main purpose is to keep
Pd as close to 1 as possible and Pf as close to 0 as possi-
ble. Therefore, we have to keep the detection threshold in
a reasonable interval. Note that the duration of detection
is also important since increasing the number of channel
samples used for sensing improves the quality of channel
detection.
In the hypothesis testing problem in (3), another

approach is to consider Yk as Gaussian distributed, which
is accurate if NBk is large [4]. In this case, the detection

and false alarm probabilities can be expressed in terms of
Gaussian Q-functions. We would like to note the rest of
the analysis in the article does not depend on the specific
expressions of the false alarm and detection probabilities.
However, numerical results are obtained using (5) and (6).

State transitionmodel
In this article, we assume that both the secondary receiver
and transmitter have perfect channel side information,
and hence perfectly know the realizations of the fading
coefficients {hk(i)}. We further assume that the wideband
channel is divided into channels, each with bandwidth
that is equal to the coherence bandwidth Bc. Therefore,
we henceforth have Bk = Bc. With this assumption, we
can suppose that independent flat fading is experienced in
each channel. In order to further simplify the setting, we
consider a symmetric model in which fading coefficients
are identically distributed in different channels. Moreover,
we assume that the background noise and primary users’
signals are also identically distributed in different chan-
nels and hence their variances σ 2

n and σ 2
sp do not depend

on k, and the prior probabilities of each channel being
occupied by the primary users are the same and equal
to ρ. In channel sensing, the same energy threshold, γ , is
applied in each channel. Finally, in this symmetric model,
the transmission power and rate policies when the chan-
nels are idle or busy are the same for each channel. Due to
the consideration of a symmetric model, we in the subse-
quent analysis drop the subscript k in the expressions for
the sake of brevity.
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Figure 1 Probability of detection Pd and false alarm Pf versus energy detection threshold.
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First, note that we have the following four possible sce-
narios considering the correct detections and errors in
channel sensing:

Scenario 1: All channels are detected as busy, and chan-
nel used for transmission is actually busy.
Scenario 2: All channels are detected as busy, and chan-

nel used for transmission is actually idle.
Scenario 3: At least one channel is detected as idle, and

channel used for transmission is actually busy.
Scenario 4: At least one channel is detected as idle, and

channel used for transmission is actually idle.

In each scenario, we have one state, namely either
ON or OFF, depending on whether or not the instanta-
neous transmission rate exceeds the instantaneous chan-
nel capacity. Considering the interference sp(i) caused by
the primary users as additional Gaussian noise, we can
express the instantaneous channel capacities in the above
four scenarios as follows:

Scenario 1: C1(i) = Bc log2(1 + SNR1(i)).
Scenario 2: C2(i) = Bc log2(1 + SNR2(i)).
Scenario 3: C3(i) = Bc log2(1 + SNR3(i)).
Scenario 4: C4(i) = Bc log2(1 + SNR4(i)).

Above, we have defined

SNR1(i) = P1(i)z(i)

Bc
(
σ 2
n + σ 2

sp

) , SNR2(i) = P1(i)z(i)
Bcσ 2

n
,

SNR3(i) = P2(i)z(i)

Bc
(
σ 2
n + σ 2

sp

) , SNR4(i) = P2(i)z(i)
Bcσ 2

n
. (7)

Note that z(i) = |h(i)|2 denotes the fading power. In
scenarios 1 and 2, the secondary transmitter detects all
channels as busy and transmits the information at rate

r1(i) = Bc log2 (1 + SNR1(i)) . (8)

On the other hand, in scenarios 3 and 4, at least one
channel is sensed as idle and the transmission rate is

r2(i) = Bc log2 (1 + SNR4(i)) , (9)

since the transmitter, assuming the channel as idle, sets
the power level to P2(i) and expects that no interference
from the primary transmissions will be experienced at the
secondary receiver (as seen by the absence of σ 2

sp in the
denominator of SNR4).
In scenarios 1 and 2, transmission rate is less than or

equal to the instantaneous channel capacity. Hence, reli-
able transmission at rate r1(i) is attained and channel is
in the ON state. Similarly, the channel is in the ON state
in scenario 4 in which the transmission rate is r2(i). On
the other hand, in scenario 3, transmission rate exceeds
the instantaneous channel capacity (i.e., r2(i) > C3(i))
due to miss-detection. In this case, reliable communica-
tion cannot be established, and the channel is assumed to
be in the OFF state. Note that the effective transmission
rate in this state is zero, and therefore information needs
to be retransmitted. We assume that this is accomplished
through a simple ARQ mechanism.
For this cognitive transmission model, we initially con-

struct a state transition model. While the ensuing discus-
sion describes this model, Figure 2 provides a depiction.
As seen in Figure 2, there are (M + 1) ON states and 1
OFF state. The single OFF state is the one experienced in
scenario 3. The first ON state, which is the top leftmost
state in Figure 2, is a combined version of the ON states in

Figure 2 State transitionmodel for the cognitive radio channel. The numbered label for each state is given on the lower-right corner of the box
representing the state.



Akin and Gursoy EURASIP Journal onWireless Communications and Networking 2012, 2012:301 Page 6 of 15
http://jwcn.eurasipjournals.com/content/2012/1/301

scenarios 1 and 2 in both of which the transmission rate is
r1(i) and the transmission power is P1(i). Note that all the
channels are detected as busy in this first ON state. The
remainingON states labeled 2 through (M+1) can be seen
as the expansion of the ON state in scenario 4 in which at
least one channel is detected as idle and the channel cho-
sen for transmission is actually idle. More specifically, the
kth ON state for k = 2, 3, . . . , (M + 1) is the ON state in
which (k−1) channels are detected as idle and the channel
chosen for transmission is idle. Note that the transmission
rate is r2(i) and the transmission power is P2(i) in all ON
states labeled 2 through (M + 1).
Next, we characterize the state transition probabilities.

State transitions occur every T seconds. We can easily
see that the probability of staying in the first ON state, in
which all channels are detected as busy, is expressed as
follows:

p11 = αM (10)

where α = ρPd + (1 − ρ)Pf is the probability that chan-
nel is detected as busy, and Pd and Pf are the probabilities
of detection and false alarm, respectively, as defined in
(6). Recall that ρ denotes the probability that a channel is
busy (i.e., there are active primary users in the channel).
It is important to note that the transition probability in
(10) is obtained under the assumptions that the primary
user activity is independent among the channels and also
from one block to another. Indeed, under the assumption
of independence over the blocks, the state transition prob-
abilities do not depend on the originating statea and hence
we have

p11 = p21 = · · · = p(M+1)1 = p(M+2)1 = αM � p1
(11)

where we have defined p1 = pi1 for all i = 1, 2, . . . ,M + 2.
Similarly, we can obtain for k = 2, 3, . . . ,M + 1,

Now, we can easily observe that the transition probabil-
ities for the OFF state are

p1(M+2) = p2(M+2) = · · · = p(M+1)(M+2) = p(M+2)(M+2)

= 1 −
(M+1)∑
k=1

p1k (16)

=
M∑
k=1

M!
(M − k)! k!

α(M−k) (1 − α)k−1 ρ(1 − Pd)

� p(M+2). (17)

Then, we can easily see that the (M+ 2) × (M+ 2) state
transition probability matrix can be expressed as

R =

⎡
⎢⎢⎢⎣

p1,1 . . p1,(M+2)

. .

. .
p(M+2),1 . . p(M+2),(M+2)

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣
p1 . . p(M+2)

. .

. .
p1 . . p(M+2)

⎤
⎥⎥⎥⎦

Note that R has a rank of 1. Note also that in each frame
duration of T seconds, r1(k)(T − N) bits are transmitted
and received in state 1, and r2(k)(T − N) bits are trans-
mitted and received in states 2 through (M+ 1), while the
transmitted number of bits is assumed to be zero in state
(M + 2).

Interference power constraints
In this section, we consider interference power constraints
to limit the transmission powers of the secondary users
and provide protection to primary users. In particular,
we assume that the transmission power of the secondary
users is constrained in such a way that the average inter-
ference power on the primary receiver is limited.
Note that interference to the primary users is caused

in scenarios 1 and 3. In scenario 1, the channel is busy,
and the secondary user, detecting the channel as busy,

p1k = p2k = · · · = p(M+1)k = p(M+2)k = P
(

(k − 1) out ofM
channels are detected as idle and

the channel chosen for transmission
is actually idle

)
(12)

=
(

M
k − 1

)
α(M−k+1)(1 − α)k−1

︸ ︷︷ ︸
probability that (k − 1) out ofM channels

are detected as idle

× (1 − ρ)(1 − Pf )
1 − α︸ ︷︷ ︸

probability that the channel chosen for
transmission is actually idle

given that it is detected as idle

(13)

= M!
(M − k + 1)! (k − 1)!

α(M−k+1) (1 − α)k−2 (1 − ρ)
(
1 − Pf

)
(14)

� pk (15)
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transmits at power level P1. Consequently, the instanta-
neous interference power experienced by the primary user
is P1zsp where zsp = |hsp(i)|2 is the magnitude-square
of the fading coefficient of the channel between the sec-
ondary transmitter and the primary user. Note also that
the probability of being in scenario 1 (i.e., the probabil-
ity of detecting all channels busy and having the chosen
transmission channel as actually busy) is α(M−1)ρPd, as
can easily be seen through an analysis similar to that
in (13).
In scenario 3, the secondary user, detecting the chan-

nel as idle, transmits at power P2 although the channel is
actually is busy. In this case, the instantaneous interfer-
ence power is P2zsp. Since we consider power adaption,
transmission power levels P1 and P2 in general vary with
zsp and also with z, which is the power of the fading coef-
ficient between the secondary transmitter and secondary
receiver in the chosen transmission channel. Hence, in
both scenarios, the instantaneous interference power lev-
els depend on both zsp and z whose distributions depend
on the criterion with which the transmission channel is
chosen and the number of available channels from which
the selection is performed. For this reason, it is neces-
sary in scenario 3 to separately consider the individual
cases with different number of idle-detected channels. We
have M such cases. For instance, in the kth case for k =
1, 2, . . . ,M, we have k channels detected as idle and the
channel chosen out of these k channels is actually busy.
The probability of the kth case can easily be found to be

M!
(M−k)!k! α

(M−k) (1 − α)k−1 ρ(1 − Pd).
Following the above discussion, we can now express the

average interference constraints as follows:

α(M−1)ρPd︸ ︷︷ ︸
probability of
scenario 1

E
{
P1zsp

}︸ ︷︷ ︸
average interference

in scenario 1

+
M∑
k=1

M!
(M − k)! k!

αM−k (1 − α)k−1 ρ(1 − Pd)︸ ︷︷ ︸
probability of the kth case of scenario 3

× Ek
{
P2zsp

}︸ ︷︷ ︸
average interference

in the kth case
of scenario 3

≤ Iavg (18)

Note from above that Iavg is the constraint on the
interference averaged over the distributions of z and zsp
(through the expectations), and also averaged over the
probabilities of different scenarios and cases. It is impor-
tant to note that the term Ek

{
P2zsp

}
, as discussed above,

depends in general on the number of idle-detected chan-
nels, k. This dependence is indicated through the sub-
script k.

In a system with more strict requirements on the inter-
ference, the following individual interference constraints
can be imposed

E
{
P1zsp

} ≤ I0 and
Ek
{
P2zsp

} ≤ Ik for k = 1, 2, . . . ,M. (19)

If, for instance, I0 = I1 = I2 = · · · = IM, then
interference averaged over fading is limited by the same
constraint regardless of which scenario is being realized.
In the subsequent parts of the article, we assume that an

average interference power constraint in the form given in
(18) is imposed.

Effective capacity
In this section, we identify the maximum throughput
that the cognitive radio channel with the aforementioned
state-transition model can sustain under interference
power constraints and statistical QoS limitations imposed
in the form of buffer or delay violation probabilities.b Wu
and Negi [11] defined the effective capacity as the max-
imum constant arrival rate that can be supported by a
given channel service process while also satisfying a sta-
tistical QoS requirement specified by the QoS exponent
θ . If we define Q as the stationary queue length, then θ

is defined as the decay rate of the tail distribution of the
queue length Q:

lim
q→∞

log Pr(Q ≥ q)
q

= −θ . (20)

Hence, we have the following approximation for the
buffer violation probability for large qmax: Pr(Q ≥ qmax) ≈
e−θqmax . Therefore, larger θ corresponds to more strict
QoS constraints, while the smaller θ implies looser con-
straints. In certain settings, constraints on the queue
length can be linked to limitations on the delay and hence
delay-QoS constraints. It is shown in [12] that Pr{D ≥
dmax} ≤ c

√
Pr{Q ≥ qmax} for constant arrival rates, where

D denotes the steady-state delay experienced in the buffer.
In the above formulation, c is a positive constant, qmax =
admax and a is the source arrival rate. Therefore, effec-
tive capacity provides the maximum arrival rate when the
system is subject to statistical queue length or delay con-
straints in the forms of Pr(Q ≥ qmax) ≤ e−θqmax or
Pr{D ≥ dmax} ≤ c e−θa dmax/2, respectively. Since the aver-
age arrival rate is equal to the average departure rate when
the queue is in steady state [13], effective capacity can also
be seen as the maximum throughput in the presence of
such constraints.
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The effective capacity for a given QoS exponent θ is
given by

− lim
t→∞

1
θ t

loge E{e−θS(t)} = −�(−θ)

θ
(21)

where S(t) = ∑t
k=1 r(k) is the time-accumulated service

process, and {r(k), k = 1, 2, . . .} is defined as the discrete-
time, stationary, and ergodic stochastic service process.
Note that �(θ) is the asymptotic log-moment generating
function of S(t), and is given by

�(θ) = lim
t→∞

1
t
logE

[
eθS(t)

]
. (22)

The service rate according to the model described in
“State transition model” section is r(k) = r1(k)(T − N) if
the cognitive system is in state 1 at time k. Similarly, the
service rate is r(k) = r2(k)(T −N) in the states between 2
and (M+1). In the OFF state, instantaneous transmission
rate exceeds the instantaneous channel capacity and reli-
able communication cannot be achieved. Therefore, the
service rate in this state is effectively zero.
In the next result, we provide the effective capac-

ity for the cognitive radio channel and state transition
model described in the previous section. This result is
obtained by directly making use of the characterization in
([14],Chap. 7, Example 7.2.7), where effective bandwidth
of Markov modulated processes is formulated.

Theorem 1. For the cognitive radio channel with the
state transition model given in “State transition model”
section, the normalized effective capacity (in bits/s/Hz)
under the average interference power constraint (18) is
given by

RE(SNR, θ) = − 1
θTBc

max
α(M−1)ρPdE{P1zsp}

+∑M
k=1 αM−k(1−α)k−1ρ(1−Pd) M!

(M−k)!k! Ek{P2zsp}
≤Iavg

loge
(
p1E

{
e−(T−N)θr1

}
+

M∑
k=1

pk+1Ek
{
e−(T−N)θr2

}
+p(M+2)

)
.

(23)

Above, pk for k = 1, 2, . . . ,M + 2 denote the state tran-
sition probabilities defined in (11), (15), and (17). Note
also that the maximization is with respect to the power
adaptation policies P1 and P2.

Remark: In the effective capacity expression (23),
the expectation E

{
P1zsp

}
in the constraint and

E
{
e−(T−N)θr1

}
are with respect to the joint distribution of

(z, zsp) of the channel selected for transmission when all
channels are detected busy. The expectations Ek

{
P2zsp

}
and Ek

{
e−(T−N)θr2

}
are with respect to the joint distri-

bution of (z, zsp) of the channel selected for transmission
when k channels are detected as idle.

Proof of Theorem 1: In ([14],Chap. 7, Example 7.2.7), it is
shown for Markov modulated processes that

�(θ)

θ
= 1

θ
loge sp(φ(θ)R) (24)

where sp(φ(θ)R) is the spectral radius (i.e., the maxi-
mum of the absolute values of the eigenvalues) of the
matrix φ(θ)R, R is the transition matrix of the underlying
Markov process, and φ(θ) = diag(φ1(θ), . . . ,φ(M+2)(θ))

is a diagonal matrix whose components are the moment
generating functions of the processes in given states. The
rates supported by the cognitive radio channel with the
state transition model described in the previous section
can be seen as a Markov modulated process and hence
the setup considered in [14] can immediately be applied
to our setting. Since the processes in the states are time-
varying transmission rates, we can easily find that φ(θ)=
diag

{
E
{
e(T−N)θr1

}
,E1

{
e(T−N)θr2

}
, . . . ,EM

{
e(T−N)θr2

}
, 1
}
.

Then, we have

φ(θ)R =

⎡
⎢⎢⎢⎣

φ1(θ)p1 . . φ1(θ)p(M+2)

. .

. .
φ(M+2)(θ)p1 . . φ(M+2)(θ)p(M+2)

⎤
⎥⎥⎥⎦ .

Since φ(θ)R is a matrix with unit rank, we can readily
find that

sp(φ(θ)R) = trace (φ(θ)R) = φ1(θ)p1 + φ2(θ)p2 + · · ·
+ φ(M+1)(θ)p(M+1) + φ(M+2)(θ)p(M+2) (25)

= p1E
{
e(T−N)θr1

}
+ p2E1

{
e(T−N)θr2

}
+ · · · + p(M+1)EM

{
e(T−N)θr2

}
+ p(M+2).

(26)

Then, combining (26) with (24) and (21), normalizing
the expression with TBc in order to have the effective
capacity in the units of bits/s/Hz, and considering the
maximization over power adaptation policies, we reach to
the effective capacity formula given in (23).
We note that one of the key steps in obtaining the effec-

tive capacity expression above is the observation that the
matrix R is of unit rank, which is due to independent state
transitions, and consequently φ(θ)R has only one non-
zero eigenvalue. When the channel fading coefficients are
assumed to be correlated, we will have a practically more
appealing model. In such cases, state transition probabil-
ities will depend on the originating states and the rank
of the state-transition matrix R will increase. At the same
time, the effective capacity will still be formulated in terms
of sp(φ(θ)R), the maximum of the absolute values of the
eigenvalues of the matrix φ(θ)R.
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We would like to also note that the effective capacity
expression in (23) is obtained for a given sensing duration
N , detection threshold γ , and QoS exponent θ . In the next
section, we investigate the impact of these parameters on
the effective capacity through numerical analysis. Before
the numerical analysis, we first identify below the optimal
power adaptation policies that the secondary users should
employ.

Theorem 2. The optimal power adaptations for the
secondary users under the constraint given in (18) are

P1 =

⎧⎪⎪⎨
⎪⎪⎩

μ1
z

[(
z

zspβ1λ

) 1
c+1 − 1

]
,

z
zsp

≥ β1λ

0, otherwise

, (27)

and

P2 =

⎧⎪⎪⎨
⎪⎪⎩

μ2
z

[(
z

zspβ2λ

) 1
c+1 − 1

]
,

z
zsp

≥ β2λ

0, otherwise

, (28)

where μ1 = Bc(σ 2
n + σ 2

sp), μ2 = σ 2
nBc, c = Bc(T −

N)θ/ loge 2, β1 = μ1ρPd
cα and β2 = ρ(1−Pd)μ2

c(1−ρ)(1−Pf ) . λ is
a parameter whose value can be found numerically by
satisfying the constraint (18) with equality.

Proof. Since logarithm is a monotonic function, the
optimal power adaptation policies can also be obtained
from the following minimization problem:

min
α(M−1)ρPdE{P1zsp}

+∑M
k=1 αM−k(1−α)k−1ρ(1−Pd) M!

(M−k)!k!Ek{P2zsp}
≤Iavg

p1E
{
e−(T−N)θr1

}
+

M∑
k=1

pk+1Ek
{
e−(T−N)θr2

}
(29)

It is clear that the objective function in (29) is strictly
convex and the constraint function in (18) is linear with
respect to P1 and P2.c Then, forming the Lagrangian func-
tion and setting the derivatives of the Lagrangian with
respect to P1 and P2 equal to zero, we obtain[

λρPdzsp
α

− cz
μ1

(
1 + zP1

μ1

)−c−1
]

αMf(z, zsp) = 0 (30)
[
λρ(1 − Pd)zsp − c(1 − ρ)(1 − Pf )z

μ2

(
1 + zP2

μ2

)−c−1
]

×
M∑
k=1

αM−k(1 − α)k−1 M!
(M − k)! k!

fk(z, zsp) = 0 (31)

where λ is the Lagrangemultiplier. Above, f(z, zsp) denotes
the joint distribution of (z, zsp) of the channel selected for
transmission when all channels are detected busy. Hence,
in this case, the transmission channel is chosen amongM
channels. Similarly, fk(z, zsp) denotes the joint distribution
when k channels are detected idle, and the transmission
channel is selected out of these k channels. Defining β1 =
μ1ρPd
cα and β2 = ρ(1−Pd)μ2

c(1−ρ)(1−Pf ) , and solving (30) and (31), we
obtain the optimal power policies given in (27) and (28).
Now, using the optimal transmission policies given in

(27) and (28), we can express the effective capacity as
follows

RE(SNR, θ) = − 1
θTBc

loge

(
p1Eβ1λ

{(
z

zspβ1λ

)− c
c+1
}

+
M∑
k=1

pk+1Ek,β2λ

{(
z

zspβ2λ

)− c
c+1
}

+ p(M+2)

)
.

(32)

Above, the subscripts β1λ and β2λ in the expec-
tations denote that the lower limits of the integrals
are equal these values and not to zero. For instance,

Eβ1λ

{(
z

zspβ1λ

)− c
c+1
}

= ∫∞
β1λ

(
x

β1λ

)− c
c+1 f z

zsp
(x) dx.

Until now, we have not specified the criterion with
which the transmission channel is selected from a set of
available channels. In (32), we can easily observe that the
effective capacity depends only on the channel power ratio
z
zsp , and is increasing with increasing z

zsp due to the fact

that the terms
(

z
zspβ1λ

)− c
c+1 and

(
z

zspβ2λ

)− c
c+1 are mono-

tonically decreasing functions of z
zsp . Therefore, the crite-

rion for choosing the transmission band among multiple
busy bands unless there is no idle band detected, or among
multiple idle bands if there are idle bands detected should
be based on this ratio of the channel gains. Clearly, the
strategy that maximizes the effective capacity is to choose
the channel (or equivalently the frequency band) with the
highest ratio of z

zsp . This is also intuitively appealing as we
want to maximize z to improve the secondary transmis-
sion and at the same time minimize zsp to diminish the
interference caused to the primary users. Maximizing z

zsp
provides us the right balance in the channel selection.
We define x = maxi∈{1,2,...,M} zi

zsp,i where
zi
zsp,i is the ratio

of the gains in the ith channel. Assuming that these ratios
are independent and identically distributed in different
channels, we can express the pdf of x as

fx(x) = Mf z
zsp

(x)
[
F z

zsp
(x)
](M−1)

, (33)

where f z
zsp

and F z
zsp

are the pdf and cumulative distribu-
tion function (cdf), respectively, of z

zsp , the gain ratio in

one channel. Now, the expectation Eβ1λ

{(
z

zspβ1λ

)− c
c+1
}
,
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which arises under the assumption that all channels are
detected busy and the transmission channel is selected
among theseM channels, can be evaluated with respect to
the distribution in (33).
Similarly, we define xk = maxi∈{1,2,...,k} zi

zsp,i for k =
1, . . . ,M. The pdf of xk can be expressed as follows

fxk (x) = kf z
zsp

(x)
[
F z

zsp
(x)
]k−1

k = 1, 2, . . . ,M. (34)

The expectation Ek,β2λ
{(

z
zspβ2λ

)− c
c+1
}
can be evaluated

using the distribution in (34). Finally, after some calcula-
tions, we can write the effective capacity in integral form
as

RE (SNR, θ) = − 1
θTBc

loge
{
MαM

∫ ∞

β1λ
f z
zsp

(x)
[
F z

zsp
(x)
](M−1)

×
[

β1λ

x

] c
c+1

dx(1 − ρ)(1 − Pf )M

×
∫ ∞

β2λ
f z
zsp

(x)
[
α + (1 − α)F z

zsp
(x)
](M−1)

×
[

β2λ

x

] c
c+1

dx + p(M+2)

}
. (35)

Numerical results
In this section, we present numerical results for the effec-
tive capacity as a function of the channel sensing reliability
(i.e., detection and false alarm probabilities) and the aver-
age interference constraints. Throughout the numerical
results, we assume that QoS parameter is θ = 0.1, block
duration is T = 1 s, channel sensing duration isN = 0.1 s,
and the prior probability of each channel being busy is
ρ = 0.1.
Before the numerical analysis, we first provide expres-

sions for the probabilities of operating in each one of
the four scenarios described in “State transition model”
section. These probabilities are also important metrics in
analyzing the performance. We have

In Figure 3, we plot these probabilities as a function of
the detection probability Pd for two cases in which the
number of channels is M = 1 and M = 10, respectively.
As expected, we observe that PS1 and PS2 decrease with
increasing M. We also see that PS3 and PS4 are assuming
small values when Pd is very close to 1. Note from Figure 1
that as Pd approaches 1, the false alarm probability Pf
increases as well.

Rayleigh fading
The analysis in the preceding sections apply for arbitrary
joint distributions of z and zsp under the mild assumption
that the they have finite means (i.e., fading has finite aver-
age power). In this section, we consider a Rayleigh fading
scenario in which the power gains z and zsp are exponen-
tially distributed. We assume that z and zsp are mutually
independent and each has unit-mean. Then, the pdf and
cdf of z

zsp can be expressed as follows

f z
zsp

(x)= 1
(x + 1)2

x ≥ 0 and F z
zsp

(x)= x
x + 1

x ≥ 0.

(37)

In Figure 4, we plot the effective capacity versus prob-
ability of detection, Pd, for different number of channels
when the average interference power constraint normal-

ized by the noise power is Īavg(dB) = 10 log10
(

Iavg
σ 2
npBc

)
=

0 dB, where σ 2
np is the noise variance at the primary user.

We observe that with increasing Pd, the effective capac-
ity is increasing due to the fact more reliable detection of
the activity primary users leads to fewer miss-detections
and hence the probability of scenario 3 or equivalently
the probability of being in state (M + 2), in which the
transmission rate is effectively zero, diminishes. We also
interestingly see that the highest effective capacity is
attained when M = 1. Hence, secondary users seem to
not benefit from the availability of multiple channels. This

P{secondary system is in scenario 1} = PS1 = α(M−1)ρPd,

P{secondary system is in scenario 2} = PS2 = α(M−1)(1 − ρ)Pf ,

P{secondary system is in scenario 3} = PS3 =
M∑
k=1

(
M
k

)
αM−k(1 − α)k

︸ ︷︷ ︸
probability that at least one channel

is detected as idle

ρ(1 − Pd)
1 − α︸ ︷︷ ︸

probability that the channel chosen
for transmission is actually busy
given that it is detected as idle

= (1 − αM)ρ(1 − Pd)
1 − α

, (36)

P{secondary system is in scenario 4} = PS4 = (1 − αM)(1 − ρ)(1 − Pf )
1 − α

.
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Figure 3 Probability of different scenarios versus probability of detection Pd for different number of channelsM.

is especially pronounced for high values of Pd. Although
several factors and parameters are in play in determin-
ing the value of the effective capacity, one explanation
for this observation is that the probabilities of scenar-
ios 1 and 2, in which the secondary users transmit with
power P1, decrease with increasing M, while the proba-
bilities of scenarios 3 and 4 increase as seen in (36). Note

that in scenario 3, no reliable communication is possible
and transmission rate is effectively zero. In Figure 5, we
display similar results when Īavg = −10 dB. Hence, sec-
ondary users operate under more stringent interference
constraints. In this case, we note that M = 2 gives the
highest throughput while the performance with M = 1 is
strictly suboptimal.
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Figure 4 Effective capacity versus probability of detection Pd for different number of channelsMwhen Īavg = 0dB.
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Figure 5 Effective capacity versus probability of detection Pd for different number of channelsMwhen Īavg = −10dB.

In Figure 6, we show the effective capacities as a func-
tion Īavg (dB) for different values ofM when Pd = 0.9 and
Pf = 0.2. Confirming our previous observation, we notice
that as the interference constraint gets more strict and
hence Īavg becomes smaller, a higher value ofM is needed
to maximize the effective capacity. For instance, M = 10
channels are needed when Īavg < −30 dB. On the other

hand, for approximately Īavg > −6 dB, havingM = 1 gives
the highest throughput.
Above, we have remarked that increasing the number of

available channels from which the transmission channel is
selected provides no benefit or can even degrade the per-
formance of secondary users under certain conditions. On
the other hand, it is important to note that increasing M
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Figure 6 Effective capacity versus Īavg for different values ofMwhen Pd = 0.9 and Pf = 0.2 in the Rayleigh fading channel.
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always brings a benefit to the primary users in the form
of decreased probability of interference. In order to quan-
tify this type of gain, we consider below the probability
that the channel selected for transmission is actually busy
and hence the primary user in this channel experiences
interference

Pint = Pr
(
channel selected
for transmission
is actually busy

)

= Pr
(
channel selected
for transmission
is actually busy

and all channels are
detected as busy

)

+ Pr
(
channel selected
for transmission
is actually busy

and at least one channel
is detected as idle

)
(38)

= PS1 + PS3 (39)

= ρ
1 − αM − Pd + Pdα(M−1)

1 − α
. (40)

Note that Pint depends on Pd and also Pf through α =
ρPd + (1 − ρ)Pf . It can easily be seen that this interfer-
ence probability Pint decreases with increasing M when
Pd > Pf . As M goes to infinity, we have limM→∞ Pint =
ρ
1−Pd
1−α

. Indeed, in this asymptotic regime, Pint becomes
zero with perfect detection (i.e., with Pd = 1). Note that
secondary users transmit (if P1 > 0) even when all chan-
nels are detected as busy. As M → ∞, the probability of
such an event vanishes. Also, having Pd = 1 enables the
secondary users to avoid scenario 3. Hence, interference is
not caused to the primary users.

In Figure 7, we plot Pint vs. the detection probability for
different values ofM. We also display how the false alarm
probability evolves as Pd varies from 0 to 1. It can be easily
seen that while Pint = ρ when M = 1, a smaller Pint is
achieved for higher values of M unless Pd = 1. On the
other hand, as also discussed above, we immediately note
that Pint monotonically decreases to 0 as Pd increases to 1
whenM is unbounded (i.e.,M → ∞).

Nakagami fading
Nakagami fading occurs when multipath scattering with
relatively large delay-time spreads occurs. Therefore, Nak-
agami distribution matches some empirical data better
than many other distributions do. With this motiva-
tion, we also consider Nakagami fading in our numerical
results. The pdf of the Nakagami-m random variable y =
|h| is given by fy(y) = 2

�(m)

(
m
2σ 2

y

)m
y2m−1e

−my2

2σ2y where m

is the number of degrees of freedom. If both zsp and z have
the same number of degrees of freedom, we can express
the pdf of x = z

zsp as follows

fx(x) = �(2m)xm−1

(x + 1)2m�(m)2
. (41)

Note also that Rayleigh fading is a special case of Nak-
agami fading when m = 1. In our experiments, we
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consider the case in which m = 3. Now, we can express
the cdf of x form = 3 as

Fx(x) = 1 + 15
(x + 1)4

− 10
(x + 1)3

− 6
(x + 1)4

. (42)

In Figure 8, we plot effective capacity versus Īavg (dB)
for different values of M when Pd = 0.9 and Pf = 0.2.
Here, we again observe results similar to those in Figure 6.
We obtain higher throughput by sensing more than one
channel in the presence of strict interference constraints
on cognitive radios.

Conclusion
In this article, we have studied the performance of cogni-
tive transmission under QoS constraints and interference
limitations. We have considered a scenario in which sec-
ondary users sense multiple channels and then select a
single channel for transmission with rate and power that
depend on both sensing decisions and fading. We have
constructed a state transition model for this cognitive
operation. We have meticulously identified possible sce-
narios and states in which the secondary users operate.
These states depend on sensing decisions, true nature of
the channels’ being busy or idle, and transmission rates
being smaller or greater than the instantaneous channel
capacity values.We have formulated and imposed an aver-
age interference constraint on the secondary users. Under
such interference constraints and also statistical QoS limi-
tations in the form of buffer constraints, we have obtained
the maximum throughput through the effective capacity
formulation. Therefore, we have effectively analyzed the

performance in a practically appealing setting in which
both the primary and secondary users are provided with
certain service guarantees. We have determined the opti-
mal power adaptation strategies and the optimal chan-
nel selection criterion in the sense of maximizing the
effective capacity. We have had several interesting obser-
vations through our numerical results. We have shown
that improving the reliability of channel sensing expect-
edly increases the throughput. We have noted that sens-
ing multiple channels is beneficial only under relatively
strict interference constraints. At the same time, we have
remarked that sensing multiple channels can decrease the
chances of a primary user being interfered.

Endnotes
aNote that under the block-fading assumption, there is no
memory in the state-transition model and hence the per-
formance will depend on the steady-state probabilities of
each state rather the transition probabilities.
bNote that interference constraints are imposed to pro-
vide a certain level of quality-of-service to the primary
users, while buffer or delay constraints are used to statisti-
cally guarantee a quality-of-service level to the transmis-
sions of the secondary users. Hence, the formulation in
the paper effectively considers service guarantees for both
the primary and secondary users. On the other hand, QoS
constraints throughout the paper refer to buffer/delay
constraints to avoid confusion.
cStrict convexity follows from the strict concavity of r1 and
r2 in (8) and (9) with respect to P1 and P2 respectively,
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Figure 8 Effective capacity versus Īavg for different values ofMwhen Pd = 0.9 and Pf = 0.2 in the Nakagami-m fading channel with
m = 3.
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strict convexity of the exponential function, and the fact
that the nonnegative weighted sum of strictly convex
functions is strictly convex ([15], Section 3.2.1).
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