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ABSTRACT 

BIOAVAILABLE IRON IN EQUATORIAL PACIFIC OCEAN 

AEROSOL SAMPLES 

by 

Hsiang T. Teng 

July 2017 

 

Oceanic iron (Fe) fertilization experiments performed in remote regions have 

established that Fe additions draw carbon into the ocean, at least over the months-long 

time frame of the experiments.  However, the mechanisms that control Fe speciation in 

atmospheric aerosol particles before and after deposition into the surface ocean remain 

largely unknown.  This is in part due to the analytical challenge of quantifying Fe at 

environmentally significant sub-nano molar levels. The flow injection analysis method 

combined with the luminol chemiluminescence analytical system allows us to explore 

the near-real time determination of pico-molar levels of both Fe(II) and H2O2 produced 

from real marine aerosol particles collected over the Equatorial Pacific Ocean, as a 

function of both sunlight and electron donors (EDs) such as dimethyl sulfide and organic 

acids. Detection limits were as low as 40 pM Fe(II) and 100 pM H2O2. Fe(II) in aerosol 

concentration was found to be 0.29 ± 1.48 pg m-3 in large, 19.14 ± 18.31 pg m-3 in 
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coarse, 38.80 ± 37.87 pg m-3 in fine, and 43.61 ± 42.93 pg m-3 in ultrafine size aerosol 

samples. A typical analysis of photochemical reaction with addition of EDs can be 

performed in five minutes. Results indicate that Fe(III) is reduced in the presence of light 

with ED that are already present in the collected aerosols, the external additions of ED 

have an enhancing effect in some of the samples, and the Fe(II) concentration shows 

positive corrected to non-sea-salt sulfate (NSS-SO4
2-) and some other anions. Fe(II) is 

found to be 3% of total Fe in the aerosols. These results contribute to resolving current 

inconsistencies in chemical models on the speciation of Fe and sulfur cycles in the 

marine atmosphere. 
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CHAPTER I  

INTRODUCTION 

1.1 Carbon Cycle and Fe Fertilization of Ocean 

Phytoplankton are microscopic plant-like organisms that efficiently produce high 

biomass yields and promote organic matter fluxes into sedimentary deposits. In this 

process, phytoplankton absorb about half the global CO2 via photosynthesis into the 

deep ocean, which becomes the world’s largest carbon sink (Field, 1998). Although this 

oceanic biogeochemical cycle involving phytoplankton is hypothesized as playing a key 

role in the regulation of global temperatures (Behrenfeld, 2001), many scientific aspects 

of this process remain unanswered.  

Many researchers have shown that iron (Fe) is an important co-factor that is 

essential for marine photosynthetic organisms, assisting in the cell’s ability to grow, 

multiply (Geider and la Roche, 1994; Semeniuk et al., 2015), photosynthesize, and fix 

nitrogen (Morel, 2003). However, Fe(III), the most prevalent form, has very low 

solubility under oxidizing seawater conditions above a pH of 4 (Liu and Millero, 2002), 

but has been found to be able to accentuate the growth of phytoplankton in high-

nutrient, low chlorophyll (HNLC) regions.  

Three open ocean areas have been identified as HNLC regions, including the 

subarctic Pacific, the equatorial Pacific, and the Southern Ocean (Cullen, 1991; Coale et 

al., 1996; de Barr, 2005; Boyd et al., 2007). In these regions, primary productivity of 
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marine organisms is limited by Fe bioavailability (Martin and Fitzwater, 1988). Since 

1993, twelve small scale Fe fertilization experiments, some conducted over months-long 

time frames (Behrenfeld et al., 1996; Boyd et al., 2007), were performed in HNLC 

regions and established data to prove that Fe additions indeed do promote 

phytoplankton blooming and withdraw atmospheric CO2 into the ocean. Specifically, in 

one of the experiments performed in the sub-Antarctic Southern Ocean, the carbon flux 

within the Fe fertilized patch was found to be two to three times larger compared to the 

carbon fluxes from adjacent non-Fe fertilized HNLC areas (Pollard et al., 2009).   

1.2 Atmospheric Deposition of Fe 

It is not well understood how phytoplankton in remote regions receive their 

limited supply of the micronutrient Fe. Under natural circumstances, the open ocean 

receives little riverine inputs of Fe, more particularly in HNLC regions in which trace Fe is 

supplied either by upwelling of nutrient rich water or the deposition of Fe containing 

atmospheric particles (Martin and Fizwater, 1988; Mahowald et al., 2007). Fe supply is 

hypothesized to be limited to the deposition of atmospherically derived Fe-bearing 

crustal aerosols originating from continental land masses (Ginoux et al., 2001; 

Mahowald, 2003; Tegen et al., 2004; Jickells, 2005b). Evidence also shows that eolian 

dust is the potential control factor of Fe fertilization in HNLC regions (Watson, 2001; 

Boyd and Doney, 2003). One has to consider that atmospheric transport of soil dust 

could be the main source of Fe to the remote ocean (Jickells et al., 2005).  
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Atmospheric dust contains significant concentrations of aerosol particles as high 

as 107 to 108 particles per cm3, and the diameters of these particles span from a few 

nanometers to 100 micrometers. That is, the mass of a 10 µm diameter particle is 

equivalent to the mass of one billion, 10 nm particles. The distribution of these particles 

in the atmosphere is determined by many factors, such as the removal process of the 

particles which are dry and wet deposition, condensation from, or evaporation to the 

vapor phase, and coagulation aerosol phase chemistry. Another important factor for the 

aerosol distribution is the distance from the source of the primary emission (Carslaw et 

al., 2013; Croft et al., 2014). The source of dust determines particle sizes. For example, 

automobile exhaust particles can be as small as a few nanometers, whereas wind-blown 

dust or sea salt are generally larger than one micrometer.  While these atmospheric 

aerosols travel great distances, the dry or wet deposition of dust to the ocean is highly 

variable in both space and time (Jickells et al., 2005). Considering the marine aerosols 

distribution over HNLC regions, the size of these particles, as well as their physical and 

chemical properties, are important factors which affect their lifetime in the atmosphere 

(Baker and Jickells, 2006).                 
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Figure 1.1 Aerosol distribution is plotted using the particle numbers vs. the particle size. 

 

Figure 1.2 Deposition velocity versus particle diameter  
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1.3 Aerosol Fe Solubility in Seawater 

Fe in mineral dust must dissolve into the ocean to become bioavailable Fe; 

however, the process of dissolution remains a key uncertainty in our understanding of 

the marine Fe cycle. In a dissolved Fe simulation study, mineral dust deposition was 

found to provide ~ 0.26 Tera grams (Tg) (1 Tg= 1012 g) of dissolved Fe into global oceanic 

regions per year (Johnson and Meskhidze, 2013) and it has been estimated that 

bioavailable Fe is 1-5% of total Fe that is present in the marine environment (Sunda, 

2001; Johansen and Hoffmann, 2003; Shaked, Kustka, and Morel, 2005).   

Numerous studies have been performed to increase our understanding of the 

factors that influence Fe solubility in both the atmosphere and ocean. Many of  the 

factors include, aerosol source (Journet et al., 2008; Sholkovitz et al., 2012), aerosol size 

(Johansen, Siefert, and Hoffmann, 2000; Buck, Landing, and Resing, 2010), oceanic pH/ 

atmospheric processing (Solmon et al., 2009; Shi et al., 2012), photochemical processing 

(Johansen and Key, 2006; Fu et al., 2010), Fe binding ligand compounds (Buck, Selph, 

and Barbeau, 2010; Boyd, Mackie, and Hunter, 2010; Hassler et al., 2010), and biological 

processing (Boyd et al., 2010; Konhauser, Kappler, and Roden, 2011).  

In the atmosphere, most Fe mass is associated with Fe oxides and hydroxides 

contained in mineral dust aerosols that are emitted from continental sources. Fe oxide 

in atmospheric mineral dust particles is primarily composed of Fe together with O 

and/or OH in the form of oxyhydroxides and hydroxides, such as goethite (α-FeOOH), 

and oxides, such as hematite (α-Fe2O3) and ferric Fe (Fe(III)) as part of aluminosilicates 

(Barrón and Torrent, 1996). Fe speciation ranges from most soluble Fe(II) (Shaked et al, 
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2005) to the most insoluble Fe(III) species (Baker and Croot, 2010). Fe in mineral dust 

tends to be in the form of the thermodynamically stable Fe(III); it also tends to 

hydrolyze or combine to form (1) inorganic Fe oxide species: Fe(III) (hydr)oxide and 

oxyhydroxide complex or (2) organic ligand complexes. The precipitation of Fe(III) 

(hydr)oxide species depends on pH (Kenshi Kuma, Jun Nishioka, and Katsuhiko 

Matsunaga, 1996) and the reduction potential (pE) of the solution (Fig 1.3).  

 

Figure 1.3 Iron pE/pH diagram showing the boundary in between each Fe species.   

As mentioned earlier, not all forms of Fe are bioavailable in the surface waters of 

the ocean and only the soluble forms of Fe are bioavailable (Martin et al., 1994; Coale et 

al., 1996; Sunda, W.G. 2001). Fe speciation defines its biogeochemical characteristics 

thereby determining its role in oceanic Fe cycle and bioavailability (Trapp, Millero, and 

Prospero, 2010). This means that only at the extreme pH values, these compounds 

maintain a very low level of total Fe (FeT) in solution. The solubility of Fe as the function 

of pH can be illustrated by plotting the logarithmic activity of the components of FeT as a 
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function of pH (Fig 1.4), goethite as an example. Above pH 4, most hydrolysis species 

become increasingly stable and move towards higher concentrations than the solubility 

product, i.e. of Fe(OH)3, alone. 

 

Figure 1.4 Activities of single ion species and FeT activity (Darker line) in equilibrium with 

goethite as a function of pH (Cornell, Rochelle and Schwertmann, 2003). 

Fe(III) oxyhydroxide species have very low solubility in seawater forming a 

colloidal Fe pool on the ocean surface (Liu and Millero, 2002). In this regard, the general 

and operational definition of each category of soluble Fe is based on their particle size, 

in which dissolved Fe (Fed) (Fed <0.2 µm) plays an important role as bioavailable Fe. Fed 

includes two sub-categories: small particulate colloidal Fe (Fec) (10 kDa < Fec < 0.2 µm) 

and truly dissolved soluble Fe (Fes) (Fes <10 kDa) size fractions (Fitzsimmons et al., 

2015). Although Fec contributes to most total Fed across the global ocean, very limited 

Fec forms are found to be bioavailable Fe (Hassler et al., 2011). For example, crystalline 
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inorganic Fec is not available to marine phytoplankton directly (Rich and Morel, 1989). 

On the other hand, most forms of Fes are readily accessible to marine organisms (Chen 

et al., 2003; Wang and Dei, 2003), these include Fe(II) and Fe(III) organic ligand 

complexes. Complexation of Fe(III) with ligands (FeL) also plays a significant role in the 

open ocean Fe cycle. The existence of strong and weak FeL pools has been determined 

by using electrochemical methods (Rue and Bruland, 1995), where siderophore-like 

molecules seemed to be the most stable binding ligands (Gledhill et al., 2004). However, 

their concentrations are typically very low relative to the total FeL concentration pool 

(Mawji et al., 2008). It was found that low-molecular-weight (LMW) organic ligands are 

more abundant (Gerringa et al., 2006) because of the accumulation of organic matter 

such as extracellular polymeric substances (Hassler et al., 2011) and cellular debris 

(Hutchins et al., 1999) from marine microorganisms. Significant evidence exists that 

supports the understanding that FeL increases Fe solubility on the ocean surface waters. 

(Gledhill and Buck, 2012; Lannuzel et al., 2015).  

1.4 Fe Dissolution (Fed) Chemistry 

Three main physical and chemical mechanisms that promote dissolution Fe have 

been reviewed (M.S. Johnson and N. Meskhidze, 2013): (i) proton promoted Fe(III) 

dissolution, ligand-promoted Fe(III) dissolution, and reductive of Fe(III) dissolution. 

Proton-promoted mechanism is the result of the breakage of Fe-oxygen (Fe-O) bonds by 

protonation of oxygen atoms and/or hydroxyl groups at the mineral surface which form 

[(Fe(OH)(3-n)] n+ (Stumm and Furrer, 1987). Fe-O bonds are normally seen in crystal lattice 

structures as FeOOH. This reaction happens specifically at the surface of the OH group. 
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The Fe-O bond is weakened by the proton adsorption on the OH groups, leading to the 

detachment of Fe atoms from the surface of the crystal lattice. It is a very slow process 

relying on low pH (< 1) and, on the contrary, the stable form of Fe crystal lattice is 

regenerated when pH is raised (> 2) (Samson and Egglestion, 1998).  Since oceanic pH 

values are generally high (> 8) due to the large buffering capacity of CaCO3, proton-

promoted dissolution could be considered as a minor process of Fe(II) contribution.           

Ligand-promoted Fe dissolution may follow an analogous mechanism by 

weakening the Fe-O bond. Some anions (e.g. Cl-, SO4
2- ) or organic compounds (e.g. 

oxalate) have better affinity than protons and can form ligands at the surface of Fe 

oxides to replace the OH groups (Cornell et al., 1976). Unlike proton adsorption, ligand 

adsorption to form complexes of organic and inorganic ligands at the surface of Fe 

oxides is generally weaker than covalent bonds. These ligand complexes may accelerate, 

decrease, or terminate the ligand-promoted dissolution process depending the level of 

pH. The dissolution process may be promoted by adsorption or complexation with Fe 

(FeIII L aq) in the solution (Salfity et al. 2000). The overall reaction is as below.  

≡ 𝐹𝑒𝐼𝐼𝐼 − 𝑂𝐻 + 𝐿−
1
→ ≡  𝐹𝑒𝐼𝐼𝐼𝐿 + 𝑂𝐻−  

2
→ 𝐹𝑒𝐼𝐼𝐼𝐿𝑎𝑞 + 𝑂𝐻

−
3
→≡ 𝐹𝑒𝐼𝐼𝐼 − 𝑂𝐻 + 𝐻+ 

Where ≡FeIII is the hydrolyzed Fe at the outside surface of the Fe particle, L- is the 

deprotonated ligand. Step 2 leaves a fresh ≡FeIII exposed and to be hydrolyzed by H2O 

forming ≡FeIII -OH.  The rate of ligand-promoted dissolution varies with the pH of the 

solution and type of ligands present, i.e. number of bonds. In general, optimal acidity for 

ligand-promoted dissolution is higher than proton promoted dissolution. For example, 
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the rate of Fe dissolution from hematite in oxalic and citric acid was maximized at pH 4-

5 (Zhang et al., 1985). As seen in Step 3, when pH falls, there is a reversed Fe dissolution 

and Fe oxide reforms (Stumm and Furrer, 1987).  

Reductive dissolution involves reductants and electron transfer which may be 

the most complex and important Fe dissolution mechanism in marine environments. 

The kinetic study of reductants reacting with Fe oxide species aids to understand the 

complexities of the reductive dissolution process. The classical concept of reductive 

dissolution of Fe oxide has been assumed to start at reversing surface complexation in 

which a dissolved reductant (A-) is adsorbed to the oxide’s surface (Faovre, 2016). The 

tendency of reductants to deprotonate in natural systems has been investigated and 

reviewed, such as ascorbic acid, cysteine, hydroquinone, H2S, methanesulfinic acid 

(MSA), oxalic acid, etc. (Cornell, Rochelle and Schwertmann, 2003).  

≡ 𝐹𝑒(𝐼𝐼𝐼) − 𝑂𝐻 + 𝐴− → ≡  𝐹𝑒(𝐼𝐼𝐼) − 𝐴 + 𝑂𝐻− 

This reaction is followed by an electron transfer from the ligand to Fe(III), ligand-to-

metal charge transfer (LMCT) (Miller et al, 1995) and an oxidized radical is produced.  

≡ 𝐹𝑒(𝐼𝐼𝐼) − 𝐴 + 𝑂𝐻− → ≡ 𝐹𝑒(𝐼𝐼) − 𝑂𝐻 + 𝐴•− 

The radical reacts with another OH group at the surface of Fe-O and the Fe(II) is 

detached.  

≡ 𝐹𝑒(𝐼𝐼𝐼) − 𝑂𝐻 + 𝐴•− →≡ 𝐹𝑒(𝐼𝐼𝐼) + 𝐹𝑒(𝑎𝑞)
2+ + 𝑂𝐻− 
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Organic ligands also play a role as ED to the reductive dissolution. For example, oxalate 

organic complexation in the addition of Fe(II) to the system would promote electron 

transfer via a surface complex and accelerate dissolution (Paris, Desboeufs and Journet, 

2011).  

≡ 𝐹𝑒(𝐼𝐼𝐼) − 𝐶2𝑂4
2− ↔≡ 𝐹𝑒(𝐼𝐼) − 𝐶2𝑂4

 – 

2[≡ 𝐹𝑒(𝐼𝐼) − 𝐶2𝑂4
 –] + 2𝐻+ → 2𝐹𝑒(𝑎𝑞)

2+ + 2𝐶𝑂2 + 𝐶2𝑂4
2− + 𝐻2 

1.4.1 Photochemical Reduction 

Photochemical electron transfer on surface Fe(III)-organic ligand complexes 

provide an additional pathway for dissolution. Much evidence shows that the presence 

of organic Fe-complexing ligands and UV/visible radiation promote higher fractions of 

Fed in seawater (Cornell, Rochelle and Schwertmann, 2003).  

≡ 𝐹𝑒𝑂𝑂𝐻 + 𝐿− →≡ 𝐹𝑒(𝐼𝐼𝐼)𝐿
ℎ𝑣
→  𝐹𝑒(𝑎𝑞)

2+ + 𝐿−  → 𝐹𝑒(𝐼𝐼)𝐿  

In natural waters it is well known that the carboxylate group [RC(O)O-] is one of the 

most common functional groups found in the dissolved organic compounds (Thurman, 

1985; Perdue and Gjessing, 1990) such as the dicarboxylic acids (e.g., oxalate, malonate, 

and citrate) forming strong complexes with Fe3+ which absorbs a wide range of 

wavelengths that proceeds the photochemical reactions in sunlight (Duckworth and 

Martin, 2001). Other organic ligands such as formate, acetate, and methanesulphinic 

acid (MSIA) play an important role in promoting the photo-reductive dissolution of Fe 

(Johansen and Key, 2006). 
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  Organic ligands involve both “ligand-promoted Fe dissolution” and “reductive 

dissolution” processes to distinguish them in the context of the reduction of structural 

FeL in a surface FeL complex followed by Fe(II) detachment and the formation of a 

soluble Fe (III) ligand (aq) complex followed by its reduction in solution. It may be that 

the two processes are kinetically equivalent (Borghi et al, 1991). 

1.5 Role of Organic Electron Donor (ED) and Hydrogen Peroxide 

Under natural circumstances, Fe(II) released from an aerosol particle into 

seawater, upon deposition, would be rapidly hydrolyzed and precipitated into an Fe(III) 

oxidation state with the reaction having been promoted by photochemically generated 

H2O2. In a kinetics study the reduction of Fe(III) by peroxide was not observed in the pH 

range 7-8 (Moffett and Zika, 1987). In general, Fe(II) has higher solubility than Fe(III) in 

seawater. This low concentration of Fe(III) could be the reason for the presence of 

different levels of hydrogen peroxide and organic compounds that act as the main 

factors of Fed levels in atmospheric aerosols and cloud droplets in the case of light-

induced photochemical redox of Fe (Chen and Siefert, 2003; Fu et al., 2010). For 

instance, this photochemical reductive dissolution is associated with MSA and the 

production of H2O2. The chemical equation is as follows. (Johansen and Key, 2006)  

𝐹𝑒(𝐼𝐼𝐼) − (𝑂𝑂𝑆𝐶𝐻3)
− +

1

2
 𝑂2 + 𝐻2𝑂

ℎ𝑣
→ 𝐹𝑒(𝐼𝐼)(𝑎𝑞) +(𝐶𝐻3𝑆𝑂𝑂𝑂)

− +
1

2
𝐻2𝑂2 + 𝐻

+ 

Fe(II) can be consumed during the subsequent production of H2O2, and the H2O2 

produced is capable of further oxidation of Fe(II) in what is known as the Fenton 

reaction (Zepp et al., 1992; Arakaki and Faust, 1988; White, Vaughan and Zepp, 2003). 
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𝐹𝑒(𝐼𝐼) + 𝐻2𝑂2 → 𝑂𝐻
• + 𝑂𝐻− + 𝐹𝑒(𝐼𝐼𝐼) 

Since the production of H2O2 will oxidize Fe(II), Fed concentration levels are 

hypothesized to be stabilized by other organic components. In the current study’s 

model, organic aerosol components seem to play an important role on aerosol Fe 

solubility (Smoydzin and von Glasow, 2007; Aumann and Tabazadeh, 2008). However, 

more measurements of organic surfactants, in particular their concentrations, is 

required to draw any specific conclusions. Above the surface of seawater, a feedback 

mechanism is hypothesized between phytoplankton induced organic substance 

emissions and Fe starvation. Organic substances such as DMS and isoprene, or its 

oxidation products - MSIA and oxalic acid, may play a significant role in generating 

bioavailable Fe(II) and oxidative H2O2 (Johansen and Key, 2006).      

1.6 Flow Inject Analysis with Chemiluminescence  

The measurement of unfavored, thermodynamically unstable Fe(II) in seawater 

has become important evidence in showing the Fe dissolution process in seawater, 

however difficult to achieve. The detection limit (DL) of Fe(II) present as the primary 

challenge of photochemistry of organic Fe(III) complexing ligands study since Fe 

chemistry is largely controlled by the extremely low solubility of all 

Fe(III)oxy(hydr)oxides. To better understand the Fe redox cycle over seawater, it is 

necessary to measure Fe(II), which is limited to pico- to sub-nanomolar concentrations 

in surface ocean. However, most studies have been limited to measuring Fe 

concentrations in micromolar (µM) or nanomolar (nM). Here, experiments were 
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performed using flow-injection analysis with a chemiluminescence detection (FIA-CL) 

method. An FIA-CL instrument has been developed (FeLume – Waterville Analytical, 

Waterville, ME) to determine sub-nanomolar concentrations of Fe(II) in the different 

types of natural waters (Emmenegger et al., 1998). One of the advantages of using FIA 

measurements is being able to develop a simultaneous measurement with optimized 

methods of chemical reaction, carried out under flow conditions (Trojanowicz and 

Kołacińska, 2016). When the Fe is free from organic matter in the sample, the 

relationship between chemiluminescence and Fe(II) is approximately linear. However, it 

has been suggested that the chemiluminescence of Fe(II) results from CL analysis of 

freshwater samples will be impacted by the interferences of reagent with dissolved 

organic carbon (DOC) in the solution (Pullin and Cabaniss, 2001; Rose and Waite, 2001).  

1.7 Goals of This Work 

Current studies focus on understanding the formation of Fed from mineral dust 

during the transport from land to ocean in the air. Multiple factors account for the 

changing rates of dissolution of Fe oxides in the marine system: the system itself 

(temperature, UV light), the composition of the solution (pH, redox potential, acid, 

reductant and complexing agents), and the properties of the oxide (surface area, 

stoichiometry, crystal chemistry). Most Fe dissolution kinetics data has been obtained 

from laboratory studies; however, an experimental model that can reestablish a 

comprehensive natural system and mimic the chemical mechanisms of the open ocean 

is not yet available. More specifically, the recent studies on the photochemical Fe redox 
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cycle in seawater has been reviewed by Barbeau K. (Barbeau, 2006). Improvements and 

challenges of this type of study were pointed out. Most of work was done in Fe- and 

dissolved organic matter (DOM)-enriched coastal or estuarine environments or in Fe 

fertilized water. The high concentration of organic compounds preexisting in the analyte 

must be considered. These chemicals are counted as factors in the Fe redox chemical 

cycle which should be excluded as much as possible to better understand the role of 

organic compounds in the Fe dissolution process, for two reasons. DOM could affect the 

sensitivity of the analytic results, and preexisting DOM is promoting Fe(III) dissolution 

thus initial Fe(II) concentration is difficult to obtain. Other than the consideration of the 

analyte, much of evidence shows the potential importance of colloidal size class as an 

important contributor of Fe(III)-binding ligands in some marine environments (Wu, 

2001). To investigate this, a stimulated study using a low Fe concentration sample, such 

as open ocean as background, will be necessitated.  

To summarize, much work of this research aimed to fulfill the short pieces of 

evidence in the study of photochemical Fe redox cycle in seawater. That is, to determine 

the reductive photochemical dissolution of Fe in real marine atmospheric particles. The 

availability of highly sensitive FIA-CL techniques for measurement of analytes brings 

increased potential for studies of Fe photo-reduction in systems reflective to neutral pH 

conditions. Although to achieve Fe dissolution by kinetic study in the laboratory, it is 

important to mirror the natural pH of seawater to reach a reasonable reaction rate due 

to the consideration that the majority of electrons are contributed from the metabolic 

oxidation of organic compounds of ecosystems near the ocean’s surface with a reliable 
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average pH of 8.2. However, the matrix effect of seawater would also influence the 

sensitivity of the CL luminol method. Pure water of near neutral pH was necessary to 

use in this study. A photochemical Fe dissolution reaction was mimicked in the clean 

laboratory: analyte samples were collected from HNLC regions where the matrix effect 

was minimized and the products Fe(II) and H2O2 were measured via an FIA-CL method to 

quantify both chemicals at sub-nanomolar concentrations in pure water to avoid the 

DOM effect. Results from this model helped us better understand the chemistry of 

aerosol Fe solubility and also to describe the complex systems involved in many of these 

factors.  
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CHAPTER II 

 EXPERIMENTAL METHODS 

2.1 Experimental Design Overview  

The objective of this research is to determine the reductive photochemical 

dissolution of iron in real marine atmospheric particles under environmental conditions 

mimicking surface ocean water. In addition, the relative importance of various ED is 

investigated, as well as the production of H2O2. The most challenging aspect of this work 

is the analytical component, as environmental concentrations of Fe(II) and H2O2 are at 

sub-nanmolar and nanomolar levels, respectively, which require state-of-the-art 

instrumentation and clean environments. To accomplish this, a low concentration 

seawater condition had to be mimicked. The flow injection analysis system with 

chemiluminescence detection (FIA- CL) provided the necessary analytical sensitivity, 

while working in the clean lab in a laminar flow hood assured a low background working 

environment. Our methods are based on those developed and optimized by D.W King et 

al., (1995) and are based on the chemiluminescence of Luminol with Fe(II) and 

Acridinium Ester (AE) with H2O2 (D. W King et al., 2007). This analytical system provides 

an essential advantage to the study of oceanic low concentration seawater samples by 

being faster and far more accurate than other methods. This improved speed and 

accuracy aided in determining the effects of various ED in dark and irradiated seawater 

samples on the production of Fe(II) and H2O2 concentrations in sub-nanomolar 

concentrations every 0.33 seconds during dissolution experiments. It is imperative that 
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these experiments were carried out at such low and representative concentrations as 

otherwise Fe(III) would be largely controlled by its low solubility. 

 First, we investigated the DL of the chemiluminescence reactions of both the 

Fe(II)/ luminol and H2O2 /AE systems using the FIA-CL setup, and consistent results were 

obtained. Real aerosol samples with synthetic seawater were tested. Results from these 

experiments aided us in designing further experiments with real field marine aerosols in 

real seawater that had been stored at 4°C from past cruises.  

In our setup, it was found that the matrix effect from both artificial and real 

seawater significantly reduced detection signals, which made analysis of real samples 

very difficult. In the end, to obtain detectable and reproducible signals, we analyzed all 

aerosol samples in pure water. Throughout the dissolution experiments of the aerosol 

sample, Fe(II) and H2O2 were analyzed in dark and light as well as after addition of 

various potential ED including dimethyl sulfide (DMS), isoprene, methanesulfinic acid 

(MSIA), and oxalic acid.  

The general experimental setup consisted of extracting a previously collected 

marine aerosol sample into pure water to mimic the deposition of aerosol onto 

seawater at environmentally realistic concentrations. A 50.0 mL Teflon container was 

used as the reactor vessel. Sample aliquots were removed semi-continuously 

throughout the 285 second experiment and pumped directly into the dual channel (FIA 

Fe(II) and H2O2 analysis - see section 2.3.2 and section 2.3.3). The sample was allowed to 
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react in the dark, under simulated sunlight, and with ED. Following are detailed 

descriptions of the source of the samples, the analytical methods, and data analysis. 

2.2 Samples and Sample Processing  

2.2.1 Aerosol Samples 

Field sampling was carried out by Lindsey Shank, a former MS. Student, and took 

place over the tropical north and equatorial Pacific Ocean between Honolulu, Hawaii, 

and Rabaul, Papua New Guinea. The cruise track is traced in yellow color (Fig 2.1). The 

two-month long cruise started in Honolulu, Aug. 17, 2006, and continued west along the 

Equator toward the Bismarck Sea, where it looped around and stopped in Rabaul on 

Oct. 1, 2006, for a few days and then transected back to Honolulu, on Oct. 17, 2006.   

A high-volume collector (ChemVol 2400, Thermo Fisher Scientific Inc., Waltham, 

MA) (Fig 2.2) was operated at an average flow rate of 9.6 mL min-1
, fractionating 

aerosols into four size fractions. For the purpose of the present study, the following 

definitions for the individual size fractions were employed: large particles with 

aerodynamic diameter (da) ≥ 10 μm; coarse, 1 μm ≤ da < 10 μm; fine, 0.1 μm ≤ da < 1 μm, 

and ultrafine particles (UFP), da < 0.1 μm (Fig 2.3). The large, coarse, and fine size 

fractions were collected by impaction onto polyurethane foam (PUF) substrates, and the 

ultrafine size fraction were collected in the final filtration step onto polypropylene 

filters. The collector was set up on the top deck above the bridge and the vacuum pump 

was controlled via a relay box and data logger (CR1000, Campbell Scientific Inc., Logan, 

UT) so that the pump would stop when either (i) the wind speed dropped below 0.5    
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ms-1, (ii) the wind direction was unfavorable (i.e., 60° off either side of the bow, to 

prevent contamination from the ship’s engine plume), or (iii) during precipitation 

episodes. The 38 sets of samples were collected over the entire two-month cruise. Each 

sample set consisted of one large, one coarse, one fine, and one ultrafine substrate. In 

addition, five field blanks of each substrate were used for blank subtractions. These field 

blanks had been processed in the same way as the samples but without collection. 

Samples were labeled with the date and year of the initial sampling day (DDDYY) in 

coordinated universal time. The 38 collected sample sets were divided into three 

regions: including samples 23206-23506, 28306-28806 at North region (11), 23606-

26706 at Central region (13) and 26806-28106_2 at West region (11) (Fig 2.1). 

All tools and equipment used in the sampling and analysis process were acid 

cleaned. Substrate changing and handling took place in a portable, clean, laminar flow 

hood with HEPA (High Efficiency Particulate Air) filtration (Air Control Inc., Henderson, 

NC). Trace-metal clean techniques were employed at all times. After collection and until 

analyses in the CWU clean laboratory, samples were stored at −20 °C in Petri dishes 

sealed with Teflon tape and double-bagged in two acid-cleaned plastic bags. 
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Figure 2.1 Based on the chemical characterization of the aerosols, the complete cruise 

track was divided into three different regions: North, Central and West. 

 

Figure 2.2 High-volume collector with regulated pump. 

West region 

North region 

Central region 
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Figure 2.3 Four impaction and filtration substrates: large, coarse, fine and ultrafine 

(white filter). 

For each of the 38 sample sets, every size fraction was analyzed independently 

and in the following sequence: fine, coarse, large and ultrafine fractions. Samples were 

retrieved under a dust free environment. Tools for processing samples were acid 

washed and stored inside the fume hood prior to use. For analyzing samples and 

avoiding contamination, the outer bag of the double-bagged petri dishes was removed 

outside the clean hood. Thereafter, petri dishes were set into the laminar flow fume 

hood with the second layer of bagging that had not touched any surface outside the 

hood. Then, petri dishes were moved from the bag and set indirectly on an ice bath with 

a layer of acid washed plastic bag in between the dishes and ice (Fig 2.4). To avoid 

exposure of samples to air for prolonged times, the Teflon tape was removed from the 

petri dishes immediately before the analysis and a 1/6 of the fraction of the sample 

substrate was cut with ceramic scissors for analysis. The sample piece was transferred 

into a syringe (Norm-Ject, 10 mL) with Teflon forceps. 
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2.2.3 Sample Extraction 

To prevent the potential bias in the experimental outcome due to the differing 

size and material of sample substrates, the samples were extracted before analysis and 

the substrate discarded. This was accomplished by adding 10 mL of extracting solution 

to the syringe containing the sample substrate fraction and pushing it into the reactor 

vessel thereby squeezing the sample substrate. This process was repeated four more 

times to make a total 50.0 mL of aerosol sample solution [1] (Fig 2.5). As mentioned 

above three types of extracted solutions were tested: real seawater, synthesized 

seawater and pure water. Immediately after squeezing the 5th 10 ml of solution through 

and out of the sample, which took about one minute, collection of data commenced. 

Each sample was analyzed in 4 stages. As shown in Table 2.1, stage 1 consisted of the 

dark reaction between time 0-20 seconds, stage 2 consisted of the light reaction, for 

which the solar simulator was turned on at time 21 seconds (it remained on until the 

end of the experiment), at stage 3 the pump was stopped for about 10 seconds for the 

addition of the DMS and isoprene mixture, and at stage 4 the pump was stopped again 

for the addition of the MSIA and oxalic acid ED mixture. During the 285 second, of one 

entire experiment, 855 data points were collected for Fe(II) and H2O2 each. Due to the 

fact that the FIA continues collecting data in between each step, even when the pump 

was stopped, approximately 30 seconds of data were removed when the pump was 

stopped for ED addition. Control experiments and field blanks were running samples to 

establish a true background signal.  
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Table 2.1 Timeline of steps in extraction experiment (0-285 seconds) 

Stages 

 1 2 N/A 3 N/A 4 

  Dark Light  (pump stopped) 
 

1st addition 
data 

(pump stopped) 
 

2nd addition 
data 

Time 
(seconds) 

0-20 20-75 Data 75-105  
85: 1st ED 
addition 

105-180 Data 180-210  
190: 2nd ED 

addition 

210-285 

 

2.2.4 Electron Donors 

As described above, after 75 seconds of leaching and analysis (more details on 

this in section 2.3), several potential ED were manually added in sequence into the 

aerosol sample solution. The chosen ED were biologically derived molecules DMS and 

isoprene as well as two of their oxidation products that have shown to photochemically 

reduce Fe(III) to the more soluble Fe(II) namely MSIA and oxalic acid (Johansen and Key, 

2006). To accomplish this, concentrated ED solutions were prepared and kept stored in 

the refrigerator (≤ 4C°) for up to four weeks. During the experiments, bottles of these 

solutions were kept capped on an ice bath in the fume hood until the addition into the 

sample. Acid washed pipette tips were used to transfer solutions. Twice (Table 3.4), the 

pump was stopped and concentrated solution was added to the reactor vessel; first 

DMS and isoprene were added, then MSIA and oxalic acid were added. Due to the 

limited amount of sample material, ED was added in sequence to the same sample 

instead of running a separate experiment. The effective concentration of the ED was 

calculated based on the volume of the remaining sample solution, which was 

approximately 38 ml at time 75 seconds, and 21 ml at time 180 seconds. The ED 
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concentration was chosen based on average concentrations of these chemicals found in 

the surface ocean: 5.0 nM DMS (Watanabe, Yamamoto and Tsunogai, 1995) (Alfa Aesar, 

99+ %); 150.0 pM isoprene (Yoko Yokouchi et al., 1999) (Alfa Aesar, 99%); 5.0 nM MSIA 

(Alfa Aesar, 95%); 34.5 nM oxalic acid (Fluka, ACS; ≥99.5%). The four-concentrated stock 

solutions were prepared in different concentrations to make the desired concentration 

while adding into the solutions. In the sample, 70 µL of DMS (2.70 mM) and 10 µL of 

Isoprene (0.57 nM) was added first and 75 µL of MSIA (1.40 mM) and oxalic acid (9.66 

mM) were added second. 

 

Figure 2.4 Both samples and ED used in the experiments were kept on ice.  

2.3 Experimental Setup and Calibration 

2.3.1 Apparatus 

The photochemical FIA-CL analytical experimental setup is shown in Fig 2.5. 

During the 285 seconds experiment, data points were set to collect every 0.33 second 

by the RS-232 interface (Waterville Analytical) for both Fe(II) and H2O2 on Window XP.   

Samples 

substrates named 

by the collected 

date, and 

particles size: L-

Large, C- Coarse, 

F-Fine and U-

Ultrafine. 

Electrons donors 

were prepared in 

ice cold water 

and stored in ice 

bath during the 

experiments.  
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Figure 2.5 The photochemical FIA-CL analytical experimental setup. 

Two small holes in the Teflon reactor vessel (Fig 2.6) (3) provide access for 

continuous withdrawal of extractant solution that is pumped with a peristaltic pump 

into the analytical system. The photo-simulator (1) provided the power density of 1353 

W m-2 of energy representative of sunlight at the equatorial region, to the reaction 

vessel with a 90° mirror (2). The dual-reagent and continuous flow injection hardware 

setup is described as follows: A sample or standard was placed in the reaction vessel (3); 

the pump (4) (Dynamax) distributed both reagents and samples at a flow rate of 9.6 mL 

min-1 with a 0.3 mm id Teflon tubing (Idex) to the reactor cells (8,9); luminol reagent (7) 

was loaded through a reagent flow stream to mix with a sample solution in the Fe(II) 

reactor cell (8); the carbonate buffer (6) was combined with the H2O2 sample flow 

stream and mixed with the AE reagent (5)  flow stream in the H2O2 reactor cell (9). 

Photons emitted in the flow cells were counted by two photon multiplier tubes (PMT) 

(Fig 2.9) and the signal was sent to the computer for recording and processing. 
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Figure 2.6 Reaction vessel 

A 50.0 mL Teflon flask container was fitted with a quartz lid as the cover to allow 

the solar simulated light to penetrate into the water sample solution. A few centimeters 

from the bottom of the flask, two small holes provided access for two identical Teflon 

tubes of 0.3 mm diameter through which sample solution was pulled with a peristaltic 

pump for Fe(II) and H2O2 analysis.  

2.3.2 FIA-CL System for Fe(II) Analysis 

The FeLume (II) (Waterville Analytical) (Fig 2.7) was used as an automated flow 

injection analysis (FIA) system for the determination of Fe(II) by detection with luminol 

chemiluminescence reaction. Instead of directly determining the Fe(II) concentrations, 

FeLume (II) measures radicals produced during the oxidation of Fe(II) at a high pH 

(≥11.0). Fe(II) is oxidized by dissolved molecular oxygen to produce superoxide and 

subsequently the peroxycarbonate radical. These species oxidize luminol in two steps to 

produce N2 gas and light emission at 440 nm (Al-Gailani, Greenway and Mccreedy, 

2007). The system includes a glass spiral flow cell (FC) (Fig 2.8) and a PMT detector 

(Hamamatsu H9319) (Fig 2.9). Inside the FC, the Fe(II) standard or aerosol sample 

Two Teflon 

tubing access 

water solution. Quartz lid 
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solution and luminol reagent are mixed. The PMT detector is set perpendicular to 

measure the chemiluminescence reaction inside the FC. Both the PMT and FC are 

housed in a block (Fig 2.7 (d)) to prevent stray light from impacting the signal.  

 

Figure 2.7 FeLume (II) system: (a) Input voltage is adjustable by using the RS-232 

interface (Waterville Analytical) and controlled with a PC. The energy impacted by 

photons is passed to an interface module and converted to a readable format (b) that is 

sent to the PC. The peristaltic pump (c) provides consistent flow rate to distribute both 

Fe(II) solution/samples solutions and luminol reagent into the reactor cell (d) with 

Teflon tubes.  

 

 

 

Reactor cell (d): 

includes Flow 

cell and PMT. 

Pump (c) 

Signals is sent to 

analog/digital 

converter (b) then 

sent to PC, running 

with XP. 

Voltage supply (a) 
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Figure 2.8 Flow Cell: An optical glass T-cell is housed inside a block with the PMT. Flow 

channels are 1 mm deep and 2 mm wide to provide uniform sample flow. 

 

Figure 2.9 PMT:  An integrated PMT module incorporating PMT detector, high-voltage 

supply, and photon counting circuitry. The PMT is vertically housed above of the flow 

cell to observe the light from the chemiluminescence reaction inside a box. The PMT 

module provides count linearity within a range of ±1% at 20 X 106 s-1 which is able to be 

controlled directly by an external computer through an RS-232 interface.  

 

 

Fe(II) standards/ 

Aerosol Sample 

loaded 

Luminol 

Reagent loaded 

Waste 
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2.3.2.1 Luminol Reagent  

A 0.1 mM luminol solution (Sigma-Aldrich, luminol 98%) was prepared in 1.0 M 

NH3OH (Fisher Scientific, AR grade) based on a literature review (King et al. 1995) this 

solution needed to equilibrate for 24 hours and heated at 60°C for 16 hours in amber 

polypropylene brown bottles (Fisher Scientific). After the solution cooled to room 

temperature, the bottle needed to be uncapped and allowed to equilibrate with the 

atmosphere for 24 hours. In a final step, the pH was adjusted to 11.0 with concentrated 

NH3OH (TraceMetalTM Grade, Fisher Scientific). This process provided the best stability 

and results. The solution was remade in anticipation of when it would be necessary.  

2.3.2.2 Fe(II) Standard and Calibration 

Three Fe(II) stock solutions, 4 mM, 40 µM, and 0.1 µM were prepared with 

ammonium iron(II) sulfate hexahydrate (Sigma-Aldrich, ≥99.9% trace metals basis) in 

Nitrogen (N2) purged Milli-Q water acidified to pH 2.2-2.5 with concentrated HCl (Fisher 

Scientific, trace metals basis). Prepared 4 mM Fe(II) solution was stored for a month, 40 

µM was stored for one week, and the 0.1 µM Fe(II) solution had to be prepared freshly 

daily before using. The 0.1 µM Fe(II) solution was used to prepare standard solutions 10 

pM- 2000 pM (Fig 2.9). Throughout the entire preparation process acid washed Teflon 

flasks or containers were used that were constantly rinsed with Milli-Q water between 

uses. A typical calibration curve is shown in Fig 2.10.  
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Figure 2.10 Photon counts as a function of the standard Fe(II) from 10pM – 2000pM, DL 

is 40 pM. The secondary order of equation is due to the chemical mechanism of the 

chemiluminescence reaction.  

2.3.3 FIA-CL System for H2O2 Analysis 

The FeLume (II) (Waterville Analytical) (Fig 2.7) was also used as an automated 

FIA system for the determination of H2O2 by detecting radicals released from the H2O2 

with AE chemiluminescence reaction. Instead of directly determining the H2O2 

concentrations, FeLume (II) measures radicals produced during the oxidation of AE 

which decays yielding N-methylacridone and light at pH ≥10.6. AE is stable in acidic 

solution but will rapidly hydrolyze in a base and in the presence of the peroxide anion; 

AE forms an unstable dioxetane compound, which decays yielding N-methylacridone 

and light at a wavelength of 470 nm (King et al., 2007). The system works in the same 

way as described in the previous section for Fe(II) (2.3.2). To measure the H2O2 in 
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natural water, a second set of flow cell and detector were used for H2O2 analysis. The 

voltage was set at 900V for optimal signal and concentration ratio.  

2.3.3.1 AE and Carbonate Buffer 

To prepare the AE reagent solution, chemical AE (F.W. = 314.36) Reagent (Fig 2.5 

[3]) had to be dissolved into Milli-Q water that had been treated with 3.0 mg L-1 catalase 

(Sigma- from bovine liver) for at least 30 minutes in order to remove preexisting 

hydrogen peroxide in water. A stock 1.00 µM AE solution acidified with HCl to pH = 3.13 

was prepared and kept in the fume hood. A diluted 80.0 nM AE reagent was prepared 

freshly to conduct the experiments each day.   

Sodium carbonate buffer (Na2CO3) at pH= 11.0 (Fig 2.5 (4)) optimizes the 

detection sensitivity of the AE reaction with hydrogen peroxide. Buffer solution with 

both AE reagent and hydrogen peroxide should have a pH of around 10.6 for ideal 

results. The concentration of buffer depends on the type of sample. Here we used a 0.01 

M Na2CO3 (Fluka, TraceSELECT ≥ 99.9%) solution that was prepared freshly before use. 

For the detection of hydrogen peroxide in pure water samples, a diluted buffer with 0.8 

µM was used. For the detection of hydrogen peroxide in artificial seawater samples, a 

diluted buffer with 8.0 µM was used. For seawater samples, the 0.8 µM buffer was used 

and an additional 0.01 M HCl was used as a rinse agent for five minutes in between each 

experiment. 
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2.3.3.2 H2O2 Standards and Calibration 

Three dilution series of stock H2O2 solutions, 0.1 mM, 5.0 µM, and 0.25 µM, were 

prepared freshly from Hydrogen Peroxide, 30% (Certified ACS, Fisher Chemical). The 

0.25 µM H2O2 solution was used to prepare standard solutions 0.05 nM - 3.7 nM. A 

representative calibration curve is shown in Fig 2.12. All solution preparations were 

carried out using acid washed Teflon flasks/containers which were constantly rinsed 

with Milli-Q water prior to use and kept in the clean lab fume hood.  

 

Figure 2.11 Photon counts as a function of the standard H2O2 from 0.05 nM - 3.7 nM. DL 

is 0.1 nM. 

2.4 Solar Simulator 

Sunlight was simulated with a 1000 W Xenon (Xe) O3 free lamp in a fan-cooled 

housing (Thermo Oriel, Product Number 66921). The light was focused by a 2-inch 

diameter condensing lens inside the lamp housing that passed through a water-cooled 
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circulating IR chamber to remove excess heat. The light was then passed through two 

sequential air mass filters (AM 0+ AM1), which simulate the solar spectrum (Fig 2.8) at 

ground level of the equator when the sun is directly overhead. The beam turner, 

attached to the filter holder, directed the simulated sunlight at a 90° angle onto the 

reactor vessel. Experiments were carried out in a 50-mL Teflon flask with a quartz lid (Fig 

2.6) as the cover.  

 

Figure 2.12 Path length in units of Air Mass, changes with the zenith angle. (Introduction 

to solar radiation, Newport) 

2.5 Fe(II) concentration in Sampled Air Volume and Four Size Fractions  

To obtain concentrations of soluble Fe in the air, photon counts were first 

converted to concentration (pM) by applying the Fe(II) calibration equation from the 

calibration curve (Eqn 3.1); this number Fe(pM) was the corrected for sample volume 

substrate fraction and air volume sampled (Fig 2.10). This resulted in a Fe(II) in air (ng m-

3).  
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Eqn 3.1 

𝐹𝑒(𝑝𝑀) = −14.31 +
−𝑏 + √14.312 − 4(−0.008)(Raw signal subract blank)

2 ∗ (−0.008)
 

Eqn 3.2  

𝑇𝑜𝑡𝑎𝑙 𝐹𝑒(𝑛𝑔 𝑚−3) =
𝐹𝑒(𝑝𝑀)

1000(
𝑛𝑔
𝑝𝑔
)
∗ 50 (𝑚𝑙) ∗

55.85(
𝑔
𝑚𝑜𝑙

)

1000(
𝑚𝐿
𝐿
)
∗
1 /𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒

𝐴𝑖𝑟 𝑉𝑜𝑙𝑢𝑚𝑒 𝐹𝑖𝑙𝑡𝑒𝑟𝑒𝑑 (𝑚3)
 

 

Figure. 2.13 Air volume (m3) pumped through each sample. 

2.6 Volume Weighted Averages 

North, central, and west - three distinct regions could be identified based on air 

mass back-trajectories (AMBTs). Volume weighted averaged concentrations for each 

region and overall in the following manner were computed. 

𝐹𝑒(𝐼𝐼) (𝑉𝑊𝐴) =
∑ [𝐹𝑒]𝑖 ∗ 𝑣𝑖𝑖  

∑ 𝑣𝑖𝑖
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CHAPTER III  

RESULTS 

In this chapter results from leaching experiments are presented. Raw data and 

absolute concentrations of Fe(II) are presented first, followed by the effect of added EDs 

in terms of rate of change in raw data and concentration of Fe(II). Subsequently, the 

initial Fe(II) released is compared to the preexisting concentration of EDs, which were 

determined by another graduate student (Lindsey Shank) in the past. Finally, the 

percentage of Fe(II) in total Fe is shown at the end of the results. In general, results for 

individual samples are presented first, then regional averages are computed and 

compared, and more detailed results are shown in the Appendix.  

Hydrogen peroxide (H2O2) measurements showed all results to be below the 

detection limit (BDL) therefore they are not further discussed. Using the FIA-CL method, 

the DL of our method for H2O2 was 100 pM (Fig 2.10), which is lower than the currently 

reported H2O2 concentration in Pacific Ocean surface water of 10 to more than 250 nM 

(Yuan and Shiller, 2005). However, there were no significantly detectable signals of H2O2 

during any of the simulation experiments. 

3.1 Raw Fe(II) Data as a Function of Time 

 Raw Fe(II) results from two example leaching experiments are shown in (Fig 3.1). 

Photon counts were recorded every 0.33 seconds throughout the 285 second 

experiment. Each experiment includes five different stages as described in the method 
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section (Table 2.1). The 285 seconds of data collection was set to maximize the solution 

that could pass through the reactor cell while assuring completion of reaction, under the 

constraints of sample and reactor flask sizes and pump flow rate. Due to limited 

material, duplicate experiments could not be performed. Field blank data are subtracted 

from presented data. Note that light was turned on at 20 seconds, and that the 

observed effect of increased Fe(II) lags approximately by 25 seconds, as observed by the 

signal rise at about 45 seconds. This delay is representative of the time it takes for the 

solution to be pumped from the reactor vessel to the detector. A continued increase in 

signal was generally seen until the end of the experiment which included two ED 

additions. In general, the ultrafine size fraction displayed the highest signals (blue 

marker in Fig 3.1), while the large size fraction showed the lowest signals and generally 

no increasing trend (gray marker in Fig 3.1). The coarse and fine size fraction (yellow and 

orange markers in Fig 3.1) showed increased signals trend below the ultrafine and above 

the large size fraction.   
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Figure. 3.1 Raw real-time results of photon counts for Fe(II) production of two example 

time sample sets as a function of time. Sample ID 23906 is at the top and 27006 is at the 

bottom. Red arrows point to the various stages as outlined in Table 2.1 [stage, time(s)].  
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3.2 Fe(II) Concentration in Sampled Air Volume and Four Size Fractions 

The 38 samples were collected from three regions along the equatorial Pacific 

Ocean. In each sample, the Fe(II) concentration of each size fraction was determined in 

pico-molar (pM) and converted to nano-gram per meter cube of air volume collected 

(ng m-3) (See methods section 2.3.2.3). The concentration was determined at the end of 

the five stages as indicated by the red vertical lines in Fig 3.1. For reference, Fe(II) 

concentrations ranged from the DL (40 pM) to a maximum of 1.97 nM for all samples. 

Fe(II) concentrations in each sample and size fraction are presented in stacked bar 

graphs in Fig 3.2. From the top of the bar to bottom Fe(II) is contained in the large, 

coarse, fine and ultrafine size fractions. Of the 152 possible samples (38 samples X 4 

substrates =152), the following were missing or BDL: In the large fraction, 6 substrates 

were missing and 8 substrates were BDL; in the coarse fraction, 3 substrates were BDL; 

in the fine fraction, 4 substrates were missing; and in the ultrafine fraction, 5 substrates 

were missing. Thus, of the 152 substrates, data for 15 samples were missing and for an 

additional 11 samples, results were BDL, representing 17% of samples. Results from 

each stage of extraction are presented in separate plots, Figs 3.2, A through E. In 

general, Fe(II) increased at every one of the five stages of the experiment, the large size 

fraction showed only small contributions throughout the five stages, and the ultrafine 

and fine fractions contributed the largest amounts. 

Analogous but less obvious with the results from trace metal and ion analysis 

previously performed by other students, the data is divided into three distinct 
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geographical regions: the northern, the central, and the western part of the cruise, as 

characterized by AMBTs. These are shown separated by vertical lines in Figs 3.2, A 

through E. Samples 23606-26706 fall into the central region, 26806-28106_2 into the 

west region, and 23206-23506; 28206-28806 into the north region. 

 

Figures 3.2 (A) Initial stage: Stacked bar plots of Fe(II) concentrations for each size 

fraction and sample at times 0 second. Fe(II) concentrations were determined in nano-

gram per meter cube for each size fraction. Asterisk (*) notation, next to the sample ID 

indicates the size of fraction missing.  
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Figures 3.2 (B) Dark stage: Stacked bar plots of Fe(II) concentrations for each size 

fraction and sample at times 20 seconds.  

 

Figures 3.2 (C) Light stage: Stacked bar plots of Fe(II) concentrations for each size 

fraction and sample at times 75 seconds.  
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Figures 3.2 (D) ED 1st stage: Stacked bar plots of Fe(II) concentrations for each size 

fraction and sample at times 180 seconds.  

 

Figures 3.2 (E) ED 2nd stage: Stacked bar plots of Fe(II) concentrations for each size 

fraction and sample at times 285 seconds.  
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Volume weighted average atmospheric Fe(II) concentrations in all size fractions 

of each sample are presented in stacked bar plots which are representations of 

concentrations per region that are then used to determine significant differences 

between region and size fraction. To account for varying sample volumes, volume 

weighted averages are computed. For each region and overall, the average of Fe(II) in 

each fraction size is presented as Figs 3.3 A through D. The Fe(II) contribution from each 

filter size varied in each region. The relative contribution of Fe(II) released at the end of 

the experiments, representing the maximum, is shown in pie charts. UF-Fe has the 

largest average in the central region, 54%, fine Fe(II) is the next largest and relatively 

consistent across regions, compared to the west region, 38%, and North region, 31% (Fig 

3.4). The absolute values of weighted averages for the maximum Fe(II) in each stage 

from fractions are listed in Appendix (Table A1). Observed Fe(II) concentrations were 

0.29 ± 1.48 pg m-3 in large, 19.14 ± 18.31 pg m-3 in coarse, 38.80 ± 37.87 pg m-3 in fine, 

and 43.61 ± 42.93 pg m-3 in ultrafine size fractions – see Appendix (Table A1). Fe(II) 

sorted by regions are listed in Appendix (Table A2). To determine the relative ratios of 

initial, light, and ED stages, and if there are significant differences in between stages, 

regions and size fractions, Student’s t-test were performed. P values are presented in 

Appendix (Table A3).  
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Figures 3.3 (A) Five stages of Fe(II) changes from initial to ED 2nd. In each bar, from top 

to bottom, different colors show maximum Fe(II) found in each size of samples. The 

results show sum of north region. 

 

Figures 3.3 (B) Five stages of Fe(II) changes from initial to ED 2nd. The results show sum 

of central region. 
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Figures 3.3 (C) Five stages of Fe(II) changes from initial to ED 2nd. The results show sum 

of west region. 

 

Figures 3.3 (D) Five stages of Fe(II) changes from initial to ED 2nd. The results show sum 

of all regions. 



46 
 

 

 

Figure 3.4 The volume weight average of Fe(II) in pg per m-3 contributed from each 

fraction of filters, at the end of reaction, are calculated in percentage in each region and 

overall.   

3.3 Effect of ED Addition  

To test the effect of EDs two sections of two fine samples were run - one without 

adding EDs and one with EDs (Fig 3.5). In both cases, it was apparent that after the first 

addition of ED, Fe(II) concentrations were significantly higher than without addition and 

that the second addition did not seem to make much of a difference. The relative 

increase in rate after the first ED addition was by 13.0% and 5.7%, and after the second 
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ED addition, it was by 1.0% and 1.2% for samples F28206 and F28506, respectively. The 

overall signal increase was by 20.9% and 13.8%, respectively, throughout the last 10 

seconds of experiments. Due to limited sample material, we could not study this effect 

further in this way. 

Instead, an attempt was made to find statistically significant changes between (i) 

light and ED1st, and (ii) ED1st and ED2nd stages by determining the slopes in the five 

seconds before and after EDs addition: before ED1 st addition (a’a”), after ED1 st addition 

(b’b”); before ED2 nd addition (c’c”), and after ED2 nd addition (d’d”) (Fig 3.6).   

To visualize the ED effects on the Fe(II) formation rate, the slopes a’- a”, b’- b”, 

c’- c” and d’- d” are presented in Appendix (Figures A1 A-F) for the coarse, fine, and 

ultrafine size fractions. Since Fe(II) in the large size fraction did not show significant 

changes, it is not shown. To compare the rates before and after ED additions, a’a” is 

plotted with b’b”, and c’c” is plotted with d’d”. In general, between light to ED1st the 

reaction rate seemed to decrease while between ED1st to ED2nd the reaction rate 

increased in all size fractions.  

Overall rates are smallest in the ultrafine size fraction and largest in the fine 

fraction. To establish regional patterns, volume weighted averages were computed 

analogously as performed for concentration in the previous section. These are 

presented in Fig 3.7. In general, the rate of changes of Fe(II) is lower during the ED1st but 

larger during the ED2nd in both coarse and fine size fractions, and there is no significant 

difference in between ED1st to ED2nd in ultrafine fraction. Student’s t-test was used to 
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identify significant differences in volume weighted averages between stages and results 

are presented in Table 3.1. In general, there were significant differences between ED1st 

to ED2nd in all size fractions. There were significant differences between light to ED1st in 

coarse and fine size fractions.  

                        

         

Figure 3.5 Photon counts vs. time for fine fraction of samples 28206 (top) and 28506 

(bottom). Dark orange represents data with ED addition, while the light orange is data 
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from a different section of the same sample run without ED addition. The slopes with ED 

are defined as M1ED and M2ED. 

  

Figure 3.6 An example (Fine sample 23806) of slope determination at the various stages: 

the last 5 seconds of the light reaction (a’-a”), first and last 5 seconds of ED1st (b’- b”; c’- 

c”) and first 5 seconds of ED2nd (d’- d”) reaction.  
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Figure 3.7 Regional and overall average of Fe(II) production rate changes with P value 

for significant differences before vs. after addition of ED1st (gray) and ED2nd (black). 

 

Table 3.1 T-test of deviation from slope to slope using two-sample, assume equal 

variance in 0.5 (pmol per second).  

Mean of slopes (pmol/s) 

Size of fraction  
(# samples) 

a'-a''  b'-b'' 
p value 

c'-c'' d'-d'' 
p value 

coarse (36) 4.75 1.90 * -0.29 5.65 *** 
fine (34) 5.08 1.92 * 0.76 5.08 *** 
ultrafine (32) 1.28 1.10 p > 0.05 -2.10 0.83 ** 

*significant at p < 0.05; ** significant at p < 0.005; *** significant at p < 0.001 
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3.4 Initial Fe(II) Concentrations in Relation to Naturally Present EDs 

Presented above are results for Fe(II) production in context of added EDs. Here, 

the initial Fe(II) concentrations are compared to EDs that were already present on the 

substrates. These had been determined by previous graduate student, Lindsey Shank. 

This is done to investigate whether pre-existing EDs or products thereof had a significant 

impact on Fe(II) formation in the initial stage. To that end, initial Fe(II) concentrations 

are compared with detected EDs, including oxalate and malonate. EDs oxidation 

products, including MSA and NSS-sulfate, and as well as total Fe are also included in the 

analysis. EDs were analyzed with ion chromatograph (IC) and total Fe with inductively 

coupled plasma mass spectrometry (ICP-MS). Correlation matrices and linear regression 

plots were investigated by region. Due to the complex nature of these sample, 

correlation coefficients of R2 > 0.2 were deemed significant enough to investigate 

further in a multivariate linear regression analysis. Relationships were found most 

pronounced between Fe(II)-dark with NSS-sulfate, and Fe(II)-light with malonate and 

total Fe. The strongest correlations are presented in regression plots for visual 

inspection in the Appendix (Figures A2 A-L) and the result is summarized in the 

Appendix (Table A4). 

The approach for modeling the relationship between Fe(II) concentration and 

EDs was attempted using multivariable linear regression analysis on the entire data set 

with SPSS software to try and predict the value of the dependent variable, i.e. FIA Fe(II). 

Independent variables were selected based on the positive correlations found with Fe(II) 
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which included Fetot, malonate, oxalate, MSA and NSS-SO42-. The following equation was 

used to generate coefficients, in addition to parameters (P and R2 values), that describe 

the validity of the data with our hypothesized model. 

Eqn 3.1      [𝐹𝑒(𝐼𝐼)] = 𝑎[𝐹𝑒𝑡𝑜𝑡] + 𝑏 [𝑀𝑆𝐴] + 𝑐[𝑀𝑎𝑙] + 𝑑[𝑂𝑥𝑎] + 𝑒[𝑛𝑠𝑠 − 𝑆𝑂4
2−] + 𝑓 

Standardized coefficients are presented in bars in Fig 3.8. This value provides a measure 

of the normalized magnitude that each coefficient contributes to Fe(II). The value of R2 

is a measure of the percent variance in the data that the model describes and 

significance is how well the overall analysis describes the dependent variable, 

significantly smaller than 0.08 is good in this case. Each parameter also has a P value 

cited with it that describes how significant its contribution is. When that P value is 

smaller than 0.08, the associated box is outlined in red. Note that ultrafine samples are 

not shown on the graph due to insufficient IC data. In general, NSS-SO4
2- seemed to 

contribute positively to Fe(II) formation while malonate and MSA played a negative roll 

with Fe(II). In addition, total Fe contributed positively in the fine and coarse fractions 

and consistently negative in the large fraction.   
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Figure 3.8 Results from multivariate regression analysis are presented in bar graph. Each 

bar is the value of the standardized coefficients.  
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3.5 Percent (%) Fe(II)   

To better understand the relationship between Fe(II) and total Fe in surface 

waters, concentrations of both were measured from the same set of samples. From 

previous work (Lindsey Shank), total Fe was determined in each size fraction of all 

samples (Fig 4.2) using the ICP-MS method. The percentage of Fe(II) concentration 

determined with FIA-CL method is calculated and shown in the Appendix (Figures A3 A-

D and Figures A4 A-D).  

3.5.3 Regional and Overall Fe(II) of Total Fe 

It appears that relative Fe(II) released from the fine fraction is the largest when 

compared to large, coarse and ultrafine. To show this distribution and also compare 

between regions, volume weighted average percentages of Fe(II) in respective size 

fractions were determined for each stage and presented in stacked bar plots for all size 

fractions and regions (Fig 3.9). It is apparent that the percentage of Fe(II) in the fine size 

fraction is significantly larger in all regions and overall. Furthermore, light and ED 

addition showed the largest contribution in the north and central regions, while initially 

Fe(II) was the predominant component in the west. This could be explained by the 

larger anthropogenic contribution of organic acids already having processed Fe in the 

western region. Adding all size fractions together, Fe(II) was found in a concentration of 

less than 3% of total Fe. The contribution of each from high to low is in the order of fine, 

coarse, ultrafine, and large. The percentage Fe(II) contribution in fine size fraction by 

region is in the order of north, central and west region. 
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Figure 3.9 Regional and overall % Fe, all size fraction stacked bar graph. % Fe is 

calculated by volume weight average. 
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CHAPTER IV 

DISCUSSION 

The focus of this thesis is to determine the distribution of atmospheric Fe(II) in 

sampled regions over the equatorial Pacific Ocean and to investigate chemical 

mechanisms that control Fe(II) concentrations once deposited into the ocean.  Of 

particular interest are the characteristics of the various aerosol size fractions, the role of 

organic ligands, and the geographical variability across the three different sampled 

regions.       

4.1 Bioavailable Fe Concentrations in Aerosols and in Simulated Surface Water over the 

Equatorial Pacific Ocean                                                                                               

The concentrations of Fe(II) in aerosols were determined in samples collected in 

a triangular region southwest and southeast of the Hawaiian Islands in the equatorial 

Pacific Ocean, where the Hawaiian Islands are the apex of the triangle.  Observed Fe(II) 

concentrations were 0.29 ± 1.48 pg m-3 in large, 19.14 ± 18.31 pg m-3 in coarse, 38.80 ± 

37.87 pg m-3 in fine, and 43.61 ± 42.93 pg m-3 in ultrafine size fractions, see Appendix 

(Table A1). Dissolved Fe(II) in the atmosphere has been measured over several oceanic 

regions, including the Indian, Atlantic, Pacific and Southern Oceans (Table 4.1). 

However, there is little data on dissolved Fe(II) concentrations from aerosols in the 

equatorial Pacific Ocean. Results from this study were generally comparable to those of 

other marine environments, especially the analysis conducted over remote ocean 

regions. In accordance with our prediction, the highest total dissolved Fe(II) 
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concentrations found through our research were lower than other similar studies, such 

as over the Northwest Pacific Ocean, where there were large amounts of dust highly 

contaminated with anthropogenic air pollutants. 

Table 4.1 Comparison of Fe(II) and total Fe (Fetot) atmospheric aerosol concentrations in 

different regions. 

Locations Fe(II) (ng m-3) Fetot (ng m-3) Citations 

Northwest Pacific 0.05–5.3 0.28–86 Buck et al. (2006) 

East China Sea  1.7–120 Hsu et al. (2009) 

North Atlantic 
2.5 ± 1.8  

(0.63–8.2) 

12 ± 8.4  

(2.8–33) 
Zhu et al. (1997)  

North Atlantic 0.19–1.2 0.35–20 Chen and Siefert (2004) 

North Atlantic  4.5–12 Sedwick et al. (2007) 

North Atlantic 4.28 ± 3.42 840 ± 610 
(Hoffmann, Siefert and 

Johansen, 2000) 

North Indian Ocean 0.13± 0.017 
9.8 ± 3.4 

(3.9 - 17.2) 

(Hoffmann and 

Johansen, 2003) 

Coastal East Antarctic 
0.53 ± 0.38 

(0.18–1.3) 

1.2 ± 1.1 

(0.23–3.3) 
Gao et al. (2013) 

US Northeast Coast 

Newark 

2.1  

(1.2–4.2) 

2.4  

(1.3–4.9) 
Xu and Yuan Gao (2017) 

Equatorial Pacific 

Ocean 

0.29E-3 ± 

1.48E-3 ~ 

36.67 ± 82.49 

 

This study; 

(Lindsey Shank) 
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0.043 ± 0.042 

4.2 Fe(II) Distribution as a Function of Aerosol Size and Region 

Aeolian Fe deposition is the major source of Fe(II) in the remote regions of the 

ocean studied, and evidence shows that the bulk of atmospherically derived dissolved 

Fe is most commonly found in the form of colloidal (0.02-0.4 µm) pools and not truly 

dissolved (<0.02 µm) pools (Bergquist, Wu and Boyle, 2007). The results from 

experiments on the dissolution of aerosol Fe in seawater leaching (Aguilar-Islas et al., 

2010) confirmed the colloidal size which contributed most dissolved Fe to the ocean’s 

surface. Samples analyzed in the Aguilar-Islas’ study were collected alongside the 

samples used in the present study.   

When looking at the relative distribution of the maximum extractable Fe(II) 

(after ED2nd) amongst the four aerosol size fractions, the ultrafine fraction (da < 0.1 μm) 

contributed 31-54%, the fine fraction (0.1 μm ≤ da < 1 μm) contributed 36-41% of Fe(II), 

and the coarse fraction (1 μm ≤ da < 10 μm) contributed 10-28% of Fe(II). Fe(II) in the 

large fraction was below 1% (Fig 3.4). The percentage of Fe(II) to total Fe, followed a 

similar pattern: 2.15% in the fine, 0.63% in the coarse, 0.52% in the ultrafine, and 

0.002% in the large fraction (Fig 3.9).  

Each size fraction seems to be behaving differently in terms of Fe(II) 

concentrations when compared to the total available Fe.  In the ultrafine, significant 

amounts of total Fe were not reduced, even after the addition of light and ED, as 

compared to the other size fractions.  This may indicate a refractory fraction of Fe that is 
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solely present in nanometer sized particles.  In addition, organic anions detected with 

the IC and known to promote reductive Fe dissolution, were not as concentrated in 

ultrafine size fraction compared to the other size fractions (Fig 4.1)  

 

 

Figure 4.1 Organic anions, oxalate and NSS-SO4
2- detected with the IC analyzing the 

same set of samples. 
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Fe(II) concentration in the ultrafine fraction from the central region showed 

there were significant differences (p value < 0.05) comparing with the ultrafine sample 

from the north region in initial, light, and ED2nd stages, see Appendix (Table A3, 

bottom). However, while comparing Fe(II) production rate in both ED1st and ED2nd 

stages showed no significant changes from ultrafine fraction in both north and central 

regions (Fig 3.7). That is, EDs addition to ultrafine fraction was not showing significant 

impacts to alter Fe(II) production rates in the stimulation experiment. Since the Fe(II) 

concentrations showed significant difference in the three stages, it can be concluded 

that there were different chemical components compared to the north and central 

regions’ samples. Initially, the central region seemed to contain double the amount of 

Fe(II) compared to the north (2 fold); however, after the light stage, samples from the 

north released more Fe(II) than those from the central region (1.2 fold) – Also see 

Appendix (Table A3, top).  This could be attributed to the larger presence of organic 

acids in samples from the north. After ED2nd, the central region contained more Fe(II) 

again (2 fold). It proved that there were Fe(III) species preexisting in an ultrafine size 

fraction. This Fe(III) species was less likely to be photolyzed but could form Fe(III) ligands 

with EDs, such as oxalate or MSIA. Since from our data analysis, Fe(II) production rates 

were not showing significant differences through the ED1st to the end which indicates 

that the possible preexisting Fe (III) species were found in very few samples collected in 

ultrafine fraction in the central region.  

There was significant difference between the north to west regions in fine 

fraction but only in the initial stage, and Fe(II) concentration was about doubled in the 
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western region - See Appendix (Table A3).  The significant difference of Fe(II) 

concentrations was not seen in any other stages since samples from the western region 

contained the most anthropogenic air pollutants in the fine fraction which already 

reduce Fe(III) in the aerosol sample before the simulation experiment was performed.  

 There was a significant difference between the central to west region in coarse 

fraction in light and ED2nd stages. Fe(II) concentration was approximately double in the 

west region at light stage but 2.62-fold in central after ED2nd - See Appendix (Table A3).  

This indicates that there was little Fe(II) in the coarse particles in the central region, but 

significant Fe(III) that was then able to be reduced when exposed to ED2nd (Fig 3.7, 

central). 

4.3 Chemistry of Fe(II) Dissolution 

4.3.1 Photochemical Dissolution  

The reduction and oxidation of Fe can occur through a number of processes. 

These processes include direct mediation through the photochemical reduction of 

colloidal iron (Waite & Morel, 1984) or Fe(III)-organic ligand complexes (Barbeau et al., 

2001, 2003). Except for large size fraction (p> 0.05), all fractions showed significant 

increased Fe(II) concentrations in the light stage (Fig 3.1). This could be a consequence 

of the existence of Fe(III) species and/or organic compounds promoting photochemical 

dissolution due to their pre-existence in the fine, coarse, and ultrafine size particles 

where there is lower percentages of Fe(III) ligands in the large fraction.  



62 
 

4.3.2 Electron Donors Impact on Fe Reduction 

ED1st - DMS and Isoprene: So far there is no direct evidence of the impact of 

DMS or isoprene to photochemical Fe dissolution, and the roles of both are still unclear. 

Much research has found isoprene as having a positive correlation of measured 

photosynthetic capacity in ocean surface water and suggested isoprene production 

(~4.8 Tg C per year) is closely related to phytoplankton activity (Srikanta Dani et al., 

2017). The importance of isoprene was supported by high concentrations of isoprene 

over the remote marine atmosphere found to be up to 280 parts per trillion by volume 

over the Southern ocean (Yokouchi et al., 1999). However, it was found that isoprene 

appears to be an insignificant source of organic carbon in the remote marine 

atmosphere, contributing only about 2% of organic aerosol yield (Arnold et al., 2009). 

Our results indicate the rate of Fe(II) production was not increased significantly due to 

the addition of DMS and isoprene (Table 3.1).  However, in the two sample sections 

where both the addition and absence of ED1st were compared, the immediate results 

seemed to be that of an enhanced production of Fe(II) (Fig 3.5).   

ED2nd - MSIA and Oxalate acid: A positive linear correlation between Fe solubility 

and oxalate concentration was found (Paris, Desboeufs and Journet, 2011) in the same 

study, where soluble Fe concentrations increased from 0.0025% ± 0.0005% to 0.26% ± 

0.01% of total Fe with the presence of aeolian dust sources and also with oxalate 

concentrations ranging from 0 to 8 µM from the aerosols collected over the Atlantic 

Ocean (Paris, Desboeufs and Journet, 2011). In a module-predicted calculation, oxalate-
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promoted Fe dissolution led to ~75% increase in Fed deposition to the ocean (Johnson 

and Meskhidze, 2013). In our results, MSIA and oxalate acid addition was found to 

promote the Fe dissolution rate in coarse, fine, and ultrafine size fraction (Fig 3.5 

c’c”/d’d”; Table 3.1), likely through the formation of organic ligands and promoting Fe 

dissolution (Johansen and Key, 2006). While compared with ED1st, the addition of ED2nd, 

MSIA and oxalate, promoted Fe(II) concentrations in both coarse and fine fractions 

sample by 7.64 to 11.91 %, respectively (Fig 3.7).  

4.4 Fe(II) Dissolution as Function of Naturally Present EDs 

In our study, initial Fe(II) concentrations were found to have positive linear 

correlation to both oxalate (west region, all size fractions) and malonate (central region, 

coarse; west region, fine). However, after being exposed to light, a positive linear 

correlation also arose with oxalate (central region, coarse) and malonate (west region, 

ultrafine). Initial Fe(II) concentrations were also found to have a positive linear 

correlation to NSS-SO4
2- (central region, fine); and total Fe (north region, coarse). After 

exposure to light, Fe(II) concentration increased and had a positive linear correlation to 

NSS-SO4
2- (north region, fine; central region, fine), MSA (north region, fine; central 

region, coarse) and total Fe (north region, ultrafine) – See all in Appendix (Figures A2 A-

L). It also suggests that these preexisting organic compounds possibly promote Fe(III) 

dissolution. However, with the above findings, that organic matter correlated with Fe(II) 

concentrations, we took further steps to investigate using a multivariable linear 

regression to try and describe the Fe(II) concentrations (Fig 3.8).  The results showed 
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some different correlations, that only oxalate, NSS-SO4
2- and the total Fe showed 

significant positive contributions to the Fe(II), and MSA and malonate showed significant 

negative contributions to the Fe(II). Although we showed the case of positively 

correlating results in the Appendix (Figures A2 A-L), there are also negatively correlated 

results not presented here. 

Recent research compared the photoreactivities of Fe(III)-Oxalato and Fe(III)-

Malonate complexes in a UV/Fe(III) system and found that although both oxalate and 

malonate were able to form Fe(III) ligands leading to the photochemical reduction of 

Fe(II), the Fe(III)-malonate complex generated relatively low Fe(II) concentrations 

through photolysis compared to the well-known reactivity of oxalate complexes (Xiao et 

al., 2014). In this study, the concentration of organic compounds were investigated at 

different magnitudes and compared with Xiao’s study (pM vs. µM). Our work, at this 

stage, agrees with the results from Xiao, suggesting that preexisting organic compounds, 

oxalate, potentially promote the forming of Fe(III) complexes and then proceed to Fe 

dissolution and have the opposite effect with malonate. The negative standard 

coefficient in Fig 3.8 of MSA and malonate could also be caused by preexisting organic 

matter reacting with luminol radicals and thereby suppressing the photo count signal 

results (Pullin and Cabaniss, 2001; Rose and Waite, 2001). This result could be supported 

using Gaussian ® 09 program to calculate the thermodynamic stability of the chemical 

system. In this case, the energy difference of reduction of Fe(III)-Oxalato and Fe(III)-

Malonate ligand complexes to Fe(II) ligand complexes were computed. The 
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results (Communication with Dr. Yingbin Ge) showed that the reduction of Fe(III) to 

Fe(II) is more favored thermodynamically by 20 kJ/mol if oxalate is the ligand. 

4.5 Percentage of Fe(II) to Total Fe  

In the remote ocean’s surface, the data of the percentage of Fe(II) to total Fe 

was investigated and reported in many studies. In a recent study, aerosol solubility in 

the same ocean areas was investigated through collected aerosol samples; the median 

fractional solubility of aerosol Fe was 9.2% in ultrapure water and 6.4% in seawater. On 

average, 0.195 pg m-3 of Fe(II) which accounted for 1.7% of the total aerosol Fe and 

26.2% of the seawater soluble aerosol Fe (Buck, Landing and Resing, 2013).  Aerosol Fe 

dissolution in the Northern Pacific oceanic waters was determined with batch-leaching 

methods. Seawater-dissolvable labile aerosol Fe was found at 5.7 ± 2.0% of total Fe 

(Aguilar-Islas et al., 2010). Over the equatorial Pacific Ocean, the percentage of Fe(II) of 

total Fe (Fig 4.2) was investigated in this study. The percentage of Fe was found from 

1.58-2.81% and 2.15% in average in fine size fraction; 0.02-0.99% and 0.63 % in average 

in coarse fraction; 0.10-0.93% and 0.52% in average in ultrafine fraction (Fig 3.9).  
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Figure 4.2 Total Fe from each fraction using ICP-MS. 
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CHAPTER V 

CONCLUSION 

Fe(II) in aerosols was generally found in coarse, fine, and ultrafine size but very 

small amounts in the large. The concentrations of Fe(II) in aerosols of the various size 

fractions were found to be: 0.29 ± 1.48 pg m-3 in large, 19.14 ± 18.31 pg m-3 in coarse, 

38.80 ± 37.87 pg m-3 in fine, and 43.61 ± 42.93 pg m-3 in ultrafine samples. Fe(II) 

distribution from varying regions shows significant differences likely due to the source 

of the aerosol iron and the different chemical components. The percentage of Fe(II) in 

the fine size fraction is significantly greater in all regions. Light and ED addition showed 

the largest contribution in samples from the north and central regions, while the initial 

Fe(II) was the predominant component in the western region. In all size fractions 

together, the Fe(II) concentration in total Fe was less than 3%. 

Photochemically induced Fe dissolution was confirmed in coarse, fine, and 

ultrafine size fractions. There was a significant increase with DMS and isoprene in the 

two sample sections used; however, the change in Fe(II) production rate was not 

significant.  MSIA and oxalic acid showed significant increase in Fe(II) dissolution after 

addition.  

Originally present malonate, oxalate, and NSS-SO4
2- were found to have positive 

correlations with Fe(II) concentrations in both the dark and light stages in the 

experiments. However, in the multivariable linear regression analysis, in general, oxalate 

and NSS-SO4
2- seemed to contribute positively to Fe(II) formation while malonate and 
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MSA had a negative impact on Fe(II) formation. In addition, total Fe contributed 

positively in the fine and coarse fractions and consistently negative in the large fraction. 

 In conducting this research our methods, at the time, differed from others due 

to the equipment utilized, namely the FIA-CL detection, which allowed us to lower the 

detection limits to pico-molar concentrations in a neutral medium which was not a 

common method applied to such investigations. Necessary advances in analysis 

equipment will further help develop the understanding of Fe(II) dissolution in seawater. 
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APPENDIX 

Table A1. Size resolved Fe(II) concentrations in the 
equatorial Pacific Ocean region: volume weighted averages, 
standard deviations (SD), medians, ranges, and sample 
numbers (N). P value for Student’s t-test performed between 
pervious stage and current stage (P). Units are Fe (pg m-3). 

Initial (0-0.3 seconds) 

Particle Size Fraction   
Ave SD Median N 

Large   0.81 1.03 0.69 32 

Coarse   5.37 6.77 4.95 38 

Fine   12.66 10.08 11.96 34 

UF   14.04 16.37 14.02 33 

Dark (0.3-20 seconds) 

Particle Size Fraction   
Ave SD Median P 

Large   0.19 0.50 0.00 0.00 

Coarse   5.34 6.46 4.64 0.99 

Fine   13.43 11.23 12.64 0.73 

UF   18.16 19.24 18.40 0.29 

Light (20-75 seconds) 

Particle Size Fraction   
Ave SD Median P 

Large   0.36 0.89 0.00 0.22 

Coarse   14.63 12.46 11.64 0.00 

Fine   23.94 24.39 22.07 0.02 

UF   30.34 29.66 30.52 0.02 

            

ED 1 st (75-180 seconds) 

Particle Size Fraction   
Ave SD Median P 

Large   0.16 0.63 0.00 0.15 

Coarse   17.78 17.16 13.28 0.33 

Fine   34.67 37.09 25.46 0.16 

UF   35.13 32.59 34.11 0.46 

ED 2nd (180-285 seconds) 

Particle Size Fraction   

Ave SD Median P 
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Large   0.29 1.48 0.00 0.62 

Coarse   19.14 18.31 15.13 0.72 

Fine   38.80 37.87 28.83 0.65 

UF   43.61 42.93 40.82 0.28 
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Table A2. Size resolved atmospheric iron concentrations in 
the equatorial Pacific Ocean region: volume weighted 
averages, standard deviations (SD), medians. 

North Equatorial Pacific Ocean Region 

Particle Size Fraction   
Ave SD Median  

Fe(II) (pg m-3) 

Large   0.000 0.000 0.000  

Coarse   26.443 27.888 23.721  

Fine   38.293 25.189 29.539  

UF   28.849 25.189 32.557  

            

Central Equatorial Pacific Ocean Region 

Particle Size Fraction   
Ave SD Median  

Fe(II) (pg m-3) 

Large   0.501 1.910 0.000  

Coarse   10.085 8.006 8.470  

Fine   38.184 41.389 24.928  

UF   56.437 43.334 40.822  
            

West Equatorial Pacific Ocean Region 

Particle Size Fraction   
Ave SD Median  

Fe(II) (pg m-3) 

Large   0.239 0.648 0.000  

Coarse   26.411 24.173 23.255  

Fine   38.491 34.533 26.669  

UF   40.359 25.543 47.194  
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Table A3. Volume weighted average Fe(II) concentration in various size fractions, 

stages, and regions were compared using Student’s t-test. Ratios of the respective 

number are shown in the table (A/B) (top) and those with p-values (bottom) smaller 

than 0.05 are marked red to indicate significant differences. Number in red indicate 

those that displayed a significant difference which were primarily seen from dark to light 

in the coarse, fine, and ultrafine size fractions by the ratio of 2.74, 1.78 and 1.67.  

2A Coarse Fine Ultrafine 

 Central North Central North Central North 

B Ratio of volume weighted average  

In
it

ia
l 

West 

R
at

io
 o

f 
vo

lu
m

e 
w

ei
gh

te
d

 a
ve

ra
ge

  0.692 0.908 0.667 0.570 1.403 0.704 

Central   1.311   0.856   0.502 

Li
gh

t West 0.588 0.812 0.840 0.746 1.295 0.618 

Central   1.383   0.840   1.294 

ED
2

n
d
 

West 2.620 1.000 1.000 0.990 0.715 0.715 

Central   2.632   1.010   0.511 

 

 Coarse Fine Ultrafine 

 Central North Central North Central North 

 P values 

In
it

ia
l 

West 

P
 v

al
u

es
 

0.263 0.532 0.082 0.017 0.194 0.172 

Central  0.446  0.527  0.023 

Li
gh

t West 0.029 0.489 0.499 0.166 0.266 0.110 

Central  0.392  0.715  0.009 

ED
2

n
d
 

West 0.002 0.997 0.977 0.984 0.198 0.357 

Central  0.080  0.993  0.040 
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Table A4: Summary of Fe(II) correlation to anions. The same size fraction/stage are 

marked with the same color. 

 
North  Central West 

Malonate Coarse, Dark Fe Fine, Dark Fe     
Ultrafine, Light Fe 

 

Oxalate Coarse, Light Fe All fractions, Dark Fe 
 

nss-SO42- Fine, Dark Fe;  
Fine, Light Fe 

 
Fine, Light Fe 

MSA Coarse, Light Fe 
 

Fine, Light Fe 

Fe total 
  

Coarse, Dark Fe; 
Ultrafine, Light Fe 
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Figs A1 (A-F). Rate of Fe(II) change for each sample sorted by size fraction. For samples 

with missing data the sample ID is not shown.        
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 Figures A2 (A-L). Fe(II) concentrations vs. various anions and total Fe (in ng m-3). Only 

results with correlation coefficient of R2 > 0.2 are shown. 
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Figures A3 (A-D). Fe(II) contribution from first three stages in each sample. The 

percentage of Fe(II) contribution of total Fe from stage to stage before ED. 
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Figures 4 (A-D). The percentage of Fe(II) contribution of total Fe from stage to stage 

after ED. 
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