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ABSTRACT 

 

UPLAND LAND USE AND INTERSITE LITHIC ASSEMBLAGE VARIATION 

ACROSS TWO ROCKSHELTER AND THREE OPEN-AIR ARCHAEOLOGICAL 

SITES IN MOUNT RAINIER NATIONAL PARK 

 

by 

 

Caitlin Paige Limberg 

 

July 2017 

 

Two sites from the Late Holocene period, the Fryingpan and Berkeley 

Rockshelters, are analyzed using an evolutionary archaeology model to test hypotheses 

about site-type expectations. Under the existing theoretical model, rockshelter sites on the 

slopes of Mount Rainier were used for a more limited activity set than some open-air 

sites. Rockshelter sites are thought to be places of short-term occupancy consistent with 

hunting and/or overnight residence activities. Large open-air sites with relatively dense 

and materially diverse lithic artifacts are thought to be longer-term residential base 

camps. Technological and functional paradigmatic lithic classifications are used to 

measure how rockshelter and larger open-air sites vary. The analysis is reduced further to 

focus on how the two rockshelter sites vary independent to each other, compared to the 

open-air Sunrise Ridge Borrow Pit site. Non-random associations of data frequencies 

across technological variables exhibited by the lithic assemblages determined that 

rockshelter lithic assemblages are representative of a truncated range of variability 

compared to open-air site assemblages.  
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CHAPTER I 

INTRODUCTION 

 

Burtchard’s (1998:112-120) archaeological site taxonomy model proposes 

functional, content, and location expectations for archaeological site types found on the 

slopes of Mount Rainier. Rockshelter sites are included among his Limited-task Field or 

Hunting Camps category (Burtchard 1998:113-114), and were used as places of short-

term residence for small hunting groups.  Burtchard suggests that tasks performed at field 

camp sites were limited to direct or indirect associations with hunting or overnight 

residence, including moderate butchering and cooking activities. Lithic assemblages from 

these sites are expected to be dominated by late stage debitage and light tools (e.g., cores, 

bifaces, flake tools, and projectile points). Heavy stone tools (e.g., hammer and grinding 

stones) and early stage reduction of locally available tool stone raw materials may occur 

in low frequency in these settings, while debitage from stone tool maintenance, repair, 

and late stage manufacture would be expected in a higher frequency. Rockshelters may 

have associated hearth features and/or stacked stone walls for windbreaks. Rockshelters 

are generally found in subalpine contexts, their location dictated by local geology. Recent 

analyses indicate Burtchard’s (1998:112-120) predictions for rockshelter sites appear to 

be correct (Andrews et al. 2016). However, it is unclear how rockshelter lithic 

assemblages compare to larger, open-air sites that are not constrained by small spaces.  

Burtchard (1998:112-113) suggests that several large, open-air sites on Mount 

Rainier supported longer-term residential groups, and thus were associated with more 

types of functionally varied activities and longer residence. Lithic assemblages from sites 

he classifies as Multi-task, Mixed Group, Residential Base Camps or Residential Field 
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Camps (Burtchard 1998:112-113) should be diverse; consisting of heavy and light tools, 

a high density of debitage from various stages of manufacture, and high raw material 

variability. Hearth features, and features associated with smaller limited-task sites 

(including rockshelters) and from plant and animal processing locations, also should be 

found at open-air residential base camps (Burtchard 1998:113). These base camp 

locations are expected to be found in upper forest to lower sub-alpine settings, which 

provide the most effective access to upland resources while maintaining more stable and 

predictable weather conditions (Burtchard 1998:113). 

 If limited-task field camps genuinely represent differential use of the upland 

landscape compared to residential base camps, then the organization of technology at 

these contrasting locations also should differ in quantifiable, if subtle, ways. Using 

paradigmatic classification, a high-resolution lithic analysis, I hope to identify these 

differences, if any. By assessing the degree to which lithic assemblage technological and 

functional traits vary between large upland open-air (ostensibly residential base camp) 

sites and rockshelter limited-task field camp sites, this research will contribute towards 

the regional knowledge of how people used upland environments differently in the past.  

Problem 

 

While there has been theoretical development of what we should expect to find in 

the upland archaeological record on Mount Rainier and in the western Washington 

Cascades (e.g., Burtchard 2007), formal analyses of chipped stone tool assemblages 

associated with that record have primarily focused on the characterization of individual 

sites (e.g. Andrews et al. 2008; Andrews et al. 2016; Dampf 2002; Ferry 2015; Lewis 
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2015; Schurke 2011; Vaughn 2010).  There has been little formal comparison focusing on 

differences across Burtchard’s (1998) site types. 

Purpose 

The primary research question for this thesis is: are the selective conditions under 

which past people made and used stone tools different across site types on Mount 

Rainier? This research determines the degree to which rockshelter site assemblages are 

technologically and functionally similar or different when compared to three open-air 

sites (as described in Burtchard 1998:112-120), and if the composition of a rockshelter 

assemblage is unique, or if these assemblages are subsets of larger, open-air site lithic 

assemblages.  

The purpose of this research is to evaluate whether the selective conditions for 

stone tool manufacture and use at Mount Rainier rockshelter sites (Fryingpan [45PI43] 

and Berkeley [45PI303]) were sufficiently different from those at Mount Rainier’s larger 

open-air archaeological sites (Tipsoo Lakes [45PI406], Sunrise Ridge Borrow Pit 

[45PI408], and Forgotten Creek [45PI429]) to be reflected in their respective 

archaeological assemblages. This comparison focuses on the relative frequencies of 

functional and technological lithic artifact traits to determine if limited task field or 

hunting camp rockshelter lithic assemblages represent a truncated range of variability 

compared to multitask residential base or field camp open-air site assemblages, as 

suggested by Burtchard’s (1998:112-120) site type model. This purpose is achieved 

through the following four objectives.  

Objective one uses an existing model of stone tool cost and performance 

(McCutcheon 1997:207-212) that that identifies the variables necessary for describing the 
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selective conditions under which stone tools were manufactured and used at any 

particular location. The selective conditions were those environmental conditions that 

may have influenced assemblage structure, frequency, and distribution. The model as 

adapted for this research asks as its central question whether or not the selective 

conditions that influenced stone tool manufacture and use varied among rockshelter and 

open air sites.  An application of a theoretically-based technological and functional 

classification allows for analytical decision-making to be phrased as a hypothesis, which 

provides a testable and replicable measure of technological and functional variation 

(Dunnell 1978a, 1978b). Limiting comparisons to artifact traits allows for variable 

frequencies of technological and functional traits from different archaeological deposits 

to be used for testing established expectations for the archaeological record on the slopes 

of Mount Rainier.   

Objective two is to generate data for Fryingpan Rockshelter and Berkeley 

Rockshelter by applying the analytical units defined by the cost and performance model, 

and assess for quality control and sample size adequacy. All three of the large open-air 

sites (45PI406, 45PI408, and 45PI429) have been classified by Burtchard (1998:113) as 

residential base camp sites. These three sites were selected for this study due to their 

functional site type classifications. Data from the residential open-air site lithic 

assemblages have been generated in previous studies using the same analytical key used 

in this study, making the data directly comparable. 

A random 10% sample of all artifacts analyzed was checked for quality control by 

the author and her mentor, Dr. Patrick T. McCutcheon. To ensure sample size adequacy, 

a computer-based statistical technique known as resampling was used to compare the 
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shape and characteristics of frequency counts within the resampling curves (after Evans 

2009; Ferry 2015; Lewis 2015; McCutcheon 1997:290; Vaughn 2010). Conclusions 

drawn from representative sample sizes were made with higher levels of confidence than 

unrepresentative ones (following Vaughn 2010). 

Objective three is to statistically analyze the data. All statistical analyses 

performed for this research were performed at a 95% confidence level (α = 0.05).  To 

determine what differences/similarities exist among the sites, a stepwise analytical 

approach was followed. The statistical approach consists of first testing for associations 

among sites using a chi-square test, followed by an analysis of residuals if significant 

non-random associations were found.  Finally, an application of Cramér’s V identifies the 

strength of magnitude of non-random associations. This statistical approach is similar to 

those used in previous research analyzing lithic assemblages (after Evans 2009; Ferry 

2015; Kassa and McCutcheon 2016; Lewis 2015) and is effective for determining the 

differences attributable to differences in selective conditions across time, or in the case of 

this research, across space.  

Objective four will place rockshelter sites 45PI043 and 45PI303 into 

technological and functional contexts compared to large open-air sites 45PI406, 45PI408, 

and 45PI429. Any meaningful associations found from statistical analyses will be 

interpreted with respect to the site-type expectations (as described in Burtchard 

1998:112-120), and the relative robustness versus subtlety of the patterns evaluated.  

Significance 

 

 Although Mount Rainier’s upland landscapes were used for thousands of years 

(Burtchard 2007:3), archaeologists are still refining their understanding of how land use 
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patterns varied across space, how they changed through time; and, importantly, whether 

or not there are unique archaeological signatures left by these various uses. This research 

focuses on contributing towards the goal of improving our understanding of spatial 

variation in pre-contact human land use patterns (sensu Burtchard 1998:147-153).  The 

addition of 45PI034 and 45PI303 into Central Washington University’s Mount Rainier 

lithic database contributes to information generated by previous undergraduate and 

graduate students at the university (Dampf 2002; Ferry 2015; Lewis 2015; Vaughn 2010). 

As more assemblages are analyzed using this protocol, a wealth of information grows that 

is readily comparable for a number of archaeological studies. Additionally, the proposed 

research will benefit cultural resource management by furthering the scientific 

understanding of the spatial data in human land use patterns. Understanding that data will 

allow us to make empirically based judgments about how to preserve and conserve the 

archaeological record. 

 In Chapter 2, the environmental zones, flora, fauna, and geological resources 

surrounding the sites included in this study are explained.  Brief histories of prior 

excavations and analyses of the five sites are provided, as well as the details of the 

assemblage compositions. Chapter 3 provides a literature review that is structured around 

the four research objectives outlined above, including: application of an existing stone 

tool analysis model, data generation and resampling, statistical analysis of the data, and 

interpreting the data as other have done before me. Chapter 4 details the method and 

technique used for generating the two rockshelter lithic datasets, and provides the 

paradigmatic classification keys used in analysis.  
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Chapter 5 provides results and discussion of one permutation of data analysis: 

dividing the five sites into two site types (open-air residential base camps and rockshelter 

limited-task hunting camps), and comparing the collapsed site-type assemblages. Chapter 

6 is a journal manuscript based on a more limited comparison of only three sites, to 

assess the variability of rockshelter lithic assemblages, compared to a well-documented 

open-air residential base camp site. Following this chapter are the comprehensive 

references and appendices containing raw analysis data from this research.  
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CHAPTER II 

 

STUDY AREA 

 

Because of Mount Rainier’s significant altitudinal range, several distinct 

environmental zones characterize its lower to upper slopes. These differences affect the 

abundance and variety of economically valued resources on the mountain. Resource 

availability, for example, is influenced broadly by forest maturity, or seral state, which is 

dictated primarily by elevation and associated snow-load.  

The ecological maturation process of forests can be broken into several seral 

succession stages (Hall et al. 1995), which are more of a continuum than simple linear 

sequence.  Forest associations in the maritime Pacific Northwest tend to mature to a high 

seral stage relative to dryer forest associations further inland. These late seral stage 

maritime habitats typically support more limited and less diverse biota than do places 

where the succession process has been suppressed by mechanisms such as fire, seasonal 

inundation, persistent snow-load, land-slides, and the like.  These differences had 

consequences for precontract human populations which, all else being equal, benefitted 

from the food resource diversity and relative abundance of the more open lower seral 

stage habitats (cf., Burtchard 1998:15-16, 2007-4). 

There are several distinctive climatic-biotic zones represented on the slopes of 

Mount Rainier (Burtchard 1998, 2007; Smith 2006:4; St. John and Warren 1937). Mid to 

early seral stage habitats tend occur in mid to upper elevation subalpine to alpine zones.  

Lower seral stage forest associations dominate the lower slopes. The five sites featured in 

this analysis span two of these zones: the upper fringe of the northwest maritime forest 
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(residential sites 45PI408 and 45PI429), and subalpine parkland (rockshelter sites 

45PI043, 45PI303, plus residential site 45PI406).  

While varying somewhat with wetter windward versus dryer leeward settings, late 

seral stage northwest maritime forest dominates Mount Rainier habitats from about 1070 

m (3500 ft) to about 1370 m (4500 ft) in elevation. In this zone, western white pine, white 

noble fir, silver fir, spruce, Douglas-fir, western red cedar, and western hemlock occur in 

dense stands; although the trees here tend to be smaller than those found at lower 

elevations (Burtchard 1998:20; Smith 2006:5; St. John and Warren 1937:953). Animal 

species common to northwest maritime forests include several species of woodpecker, the 

Stellar jay, brown bat, bobcat, black-tailed deer, elk, black bear, Cooper chipmunk, 

mountain and American beavers, and snowshoe rabbit (Burtchard 1998:20; Smith 

2006:4-5).  

Again, varying by setting, Mount Rainier’s lower seral stage subalpine parklands 

grade from the upper margin of the northwest maritime forest to about 1830 m (6000 ft) 

in elevation. Within this ecological zone, large meadows can be found between hardy 

stands of timber such as the subalpine fir, mountain hemlock, Alaska yellow cedar, 

white-bark pine, and others (Burtchard 1998:20; Smith 2006:5; St. John and Warren 

1937:953-954). Animal species common to subalpine communities include the golden 

eagle, saw-whet owl, calliope hummingbird, western sparrow, red fox, hoary and 

whistling marmots, mantled ground squirrel, pika, coyote, black bear, mountain lion, elk, 

and black-tailed deer, as well as mountain goats, alpine grouse and ptarmigan (Burtchard 

1998:28; Smith 2006:5).  
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While faunal variation does not seem readily apparent across these two ecological 

zones, overall diversity is greater in the subalpine community, and importantly, there is a 

substantially higher abundance of larger and fatter animals seasonally at higher elevations 

(Burtchard 1998:28). 

Treeless alpine tundra ranges from about 1830 m (6000 ft) to about 2320 m (7600 

ft). While rising with climatic warming, the landscape above this elevation is dominated 

by permanent snowpack. Mountain glaciers extend down major valleys into alpine and 

subalpine habitats below. 

Lower alpine, subalpine, upper forest ecozones are of particular interest here, 

because of their tendency to support a higher density and diversity of economically useful 

plant and animal species relative to more barren habitats above, and denser forest 

associations below (Burtchard 2007:4). The open to patchy quality of these places (at 

least for alpine and subalpine zones) on Mount Rainier is due to persistent, late-melting 

snow.  In the subalpine parklands, the valleys and slopes tend to be covered with snow 

for approximately eight to nine months of the year. However, when the snowpack melts 

in early summer, the meadows bloom with Mount Rainier’s famously picturesque 

mountain flowers.  

Rapid-growth plants provide the best forage for ungulates, smaller mammals, and 

birds, and the maturity suppressing effect of heavy snowpack and a short growing season 

enhance the productivity of the subalpine meadow (Burtchard 1998:25). Huckleberries 

and alpine lilies found in the subalpine parkland produce directly consumable plants, 

which also have been important resources. Emphasizing the resource qualities, large 

scale, and interconnected quality of subalpine to low alpine habitats on Mount Rainer, 
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Burtchard (1998:28; 2007:4) suggests that they have been the focus of human foraging 

and collecting practices throughout much of human prehistory in the region.  

Open forest-tundra habitats may have become established at low to mid-elevation 

landscapes on Mount Rainier as early as 12,000 14C years B.P. (Burtchard 2007:16). 

Currently, the oldest known archaeological site on Mount Rainier is the Buck Lake site 

(45PI438), which contains lithic artifacts dating to 7173 ± 49 14C years B.P. from a pre-

Mazama stratigraphic context (Burtchard 2007:17).  Burtchard believes that persistent 

glacial ice probably precludes earliest human use of upper elevation landscapes on the 

mountain before about 9,000 14C years B.P., though new environmental data may set this 

time frame back even further (Burtchard 2007:17; personal communication 2014).   

 

Geology and Volcanism 

 

Mount Rainier has been built over millions of years by the subduction of the Juan 

de Fuca Plate beneath the North American Plate off the western coast of the Pacific 

Northwest (United States Geological Survey 2013). Two different deposits were created 

between 25 and 30 million years ago, these being the Fifes Peak Formation, a bed of 

basalt and andesite (Fiske et al. 1963:30), and the Stevens Ridge Formation, which 

consisted of welded tuff and pumice flows (Crandell 1969:7; Fiske et al. 1963:21). 

Additional eruptions intruded granodiorite flows, which cooled and remained 

underground primarily, but also spread to the surface, where it remains as one of the most 

conspicuous rocks in Mount Rainier National Park, with a distinctive salt-and-pepper 

appearance, known today as the Tatoosh pluton (Crandell 1969:8-9, Fiske et al. 1963:42-

46).  
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 Throughout the Pliocene and Pleistocene, the Cascade Range went through 

several periods of uplift and erosion, as well as repeated events of glaciation. According 

to Crandell and Miller (1974:3), the area’s last major glaciation ended about 10,000 years 

ago. Since that time, several large rock and debris flows have occurred on Mount Rainier; 

the most notable being the Osceola Lahar, responsible for the destruction of Mount 

Rainier’s previous summit approximately 5,800 years ago (Crandell 1969:36-38). 

Holocene volcanism resulted in widespread, thin, surface deposits of pumice and 

pyroclastic material around Mount Rainier and twenty-two well stratified tephra layers 

have been identified across the park; tephra layers represent eleven eruptive sequences 

from Mount Rainier, ten from Mount St. Helens, and one from prehistoric Mount 

Mazama (Mullineaux 1974).  

Eruptions of the central vent at Mount Rainier’s summit 2340 ± 200 14C years 

B.P. are likely those that formed the present summit cone of the volcano (Mullineaux 

1974:18), known today as the Columbia Crest (Graham 2005:20). This later sequence of 

eruptive events is known as the Mount Rainier-C (“MR-C”) tephra. Because the deposits 

are relatively conspicuous and widespread (Mullineaux 1974:23-26), they are useful for 

archaeologists when establishing the relative ages of artifacts found within the tephra 

layers. The MR-C tephra has been used to broadly split artifact assemblages associated 

with precontact occupation of Mount Rainier’s flanks into two coarse components, the 

later “above MR-C” component, and the older, underlying “below MR-C” component. 

 Recent analysis of the observed stratigraphy and depositional context at the large 

Sunrise Borrow Pit site 45PI408 indicates that using the broad “above and below” MR-C 

stratigraphic layer to interpret depositional history appears to be valid means to 
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distinguish between pre-and post- MR-C cultural events. The above MR-C component, 

consisting of the MR-C tephra, the Mount Saint Helens-W tephra, and the buried soils 

between and above them, appears to be reliably recorded in field observations according 

to pH, grain-size and elemental analyses (Stcherbinine and McCutcheon 2017).  

Toolstone 

 Toolstone found in the Park consists of locally derived fine-grained volcanic 

stone cobbles (primarily andesite), as well as cryptocrystalline silicate rock (Burtchard 

1998:92-93). The presence of raw material sources on the slopes and in river gravels 

around Mount Rainier suggests that local materials were used for expedient tools. 

However, imported materials such as obsidian and exotic cherts also are common 

components of lithic assemblages in the Park. Several potential lithic raw material source 

locations have been noted in the Park, including crypto and mesocrystalline silicates 

found in granodiorite outcrops in Mystic Park on the mountain’s northwest quadrant, and 

other places in the geologically older Tatoosh pluton flanking the edifice of Mount 

Rainier, which contains precipitate pockets of chert (McCutcheon and Dampf 2002:37; 

Bergland 1988:15). Tool stone has also been reported trailside at Berkeley Park and the 

Mount Fremont Lookout on the north, as well as the Pyramid Peak Quarry Site, located 

on the northwestern side of the park near Pyramid Mountain (Burtchard et al. 2007). 

 

Site Descriptions and Previous Research 

This research focuses on five archaeological sites found in Mount Rainier 

National Park (Figure 1); two rockshelter sites, Fryingpan Rockshelter (45PI043) and 
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Berkeley Rockshelter (45PI303) will be compared to the larger, open-air Tipsoo Lakes 

(45PI406), Sunrise Ridge Borrow Pit (45PI408) and Forgotten Creek (45PI429). 

 

Figure 1: Map of archaeological sites included in study (created by the author from ESRI 

basemap). 

 

Fryingpan Rockshelter (45PI043) 

The Fryingpan Rockshelter site (45PI043) covers an area of 36 m2, and contains a 

single small overhang, about 11 m wide by 4 m deep, with a roof about 5 m from the 

floor (Rice 1965:3; Lubinski and Burtchard 2005:35). The north-facing shelter is set into 

an andesite cliff at 1646 m (5400 ft) elevation above sea level providing shelter from 

south and southwest storms, and hosting a panoptic view of Fryingpan Creek, which is 

fed by the Fryingpan Glacier (Rice 1965:1-2; Burtchard and Hamilton 1998:9-10). The 

shelter itself is located roughly 30 m above the valley floor and 70 m south of Fryingpan 

Creek, and was once bisected by a large Pacific silver fir tree that grew at its approximate 

center (Rice 1965:2; Burtchard and Hamilton 1998:10; Lubinski and Burtchard 2005:35), 

but has since been removed to preserve site context.  
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45PI043 was recorded initially during the first formal archaeological resource 

survey of the Park in 1963 (Daugherty 1963; Burtchard 1998:51).  The site was first 

excavated in 1964 (Rice 1965). In Rice and Nelson’s 1964 excavation, artifacts were 

recovered from one 1.25 x 1.85 m excavation unit that was 40 cm deep (Lubinski and 

Burtchard 2005:36; Rice 1965). Possible looting at the site was noted when the site was 

revisited and tested in 2001.   During the 2001 project, backfill from the original test unit 

was removed and rescreened with 1/8 inch mesh screen; as well as a pile of fill that had 

been removed by possible wrong-doers (Lubinski and Burtchard 2005:36). In addition, 

two new 50 x 60 x 94 cm units were excavated adjacent to the original unit, and the 

original unit was excavated an additional 20 cm to confidently reach the range of 

culturally relevant sediments (Lubinski and Burtchard 2005:36). A calculation of volume 

excavated is approximately 2 cubic meters. All artifacts from 45PI043 were recovered 

above the MR-C tephra layer. Deposits at the site date between 250 ± 40 14C years B.P. 

and 1150 ± 40 14C years B.P. (Lubinski and Burtchard 2005:37). More recent radiocarbon 

assay of charcoal and calcined bone samples from one of two hearth features indicate use 

approximately 529 to 314 cal. B.P. (Chatters et al. 2017) consistent with the previously 

established range. Over 2100 lithic artifacts were recovered from the site, of which 1593 

tools and flakes were 1/8-inch and greater in size and were analyzed for this study.   

 

Berkeley Rockshelter (45PI303) 

The Berkeley Rockshelter site (45PI303) covers approximately 100 m2, and 

contains two double-ended rockshelters formed under three large granodiorite boulders 

resting upon each other in a roughly east-west line (Bergland 1988:3). The westernmost, 
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“upper,” shelter is about 3.5 m wide by 7.6 m deep, with a roof about 2 m from the floor, 

while the easternmost, “lower,” shelter is slightly larger measuring 9.1 m deep by 3.0 

meters wide with a roof height varying from 1.8 to 2.5 m (Bergland 1988:3). 

 The shelters are set in roughly north-south linear orientations at an elevation of 

1719 m (5640 ft) in the upper reaches of the Lodi Creek Valley, 125 m east of Lodi 

Creek; there is no view of Mount Rainier from the site (Bergland 1988:2). 45PI303 was 

first test excavated in 1987; all visible historic and lithic surface artifacts were collected, 

one 1 x 1 m excavation unit was set into the lower shelter, and one 50 x 50 cm unit was 

placed in the upper shelter (Bergland 1998:7).  

In 2002, one constant volume sample (CVS) shovel test unit (after Burtchard and 

Miss 1998:75-79), and an additional 1 x 0.5 m excavation unit was placed in the lower 

shelter (Andrews et al. 2016:169). In total, approximately 1.5 cubic meters have been 

excavated at 45PI303. Radiocarbon samples from 45PI303 site had a ranged between 

1070 ± 90 B.P. (Bergland 1988:33) and the modern ground surface.  Consistent with this 

range, all artifacts were recovered from above the MR-C component. 

The collection of lithic artifacts from 45PI303 consists of 1,709 pieces. This 

assemblage recently was analyzed using a six-stage system developed by Flenniken 

(1981) (Andrews et al. 2016). Andrews et al. (2016:176) focused on only formed tools 

and 585 flakes, which were deemed “technologically diagnostic.” They concluded that 

the lithic assemblage from 45PI303 fits the limited suite of activities associated with a 

field hunting camp. Specifically, Andrews et al. conclude that functions at the rockshelter 

focused primarily around projectile point repair/maintenance and arrow shaft 

creation/maintenance (2016:184).  
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Interesting as it was, the analytical dimensions of the Andrews et al. (2016) study 

were not directly comparable with those used for the analyses of 45PI406, 45PI408, and 

45PI429. In order to answer the research questions posed in this study, I generated a new 

dataset for the Berkeley assemblage by analyzing 1,096 flakes and tools from 45PI303. 

Flakes less than 1/8 inch in size (n=613) were removed from the sample and were not 

analyzed for this study.  

 

Sunrise Ridge Borrow Pit (45PI408) 

Sunrise Ridge Borrow Pit (45PI408) is located on the eastern slope of Mount 

Rainier at an elevation of 1310 m (4300 ft) above sea level. The large site is scattered 

with lithic debitage across most of the bench formation, and contains a borrow pit near 

the middle of the site, associated with construction of the Sunrise Park Road in the 1930s 

(Dampf 2002:11).  The Borrow Pit landform is a natural south-facing mid-slope bench or 

glacial kame terrace (McCutcheon and Dampf 2002:19) overlooking the White River 

canyon.  The site covers 2,550 m2 and is defined by the kame terrace edge and Sunrise 

Park Road skirting the southern edge of the landform (Burtchard and Hamilton 1998:61).  

The site was first recorded by Rick McClure in 1990, and documented again by 

Burtchard and Hamilton in 1995 (see Burtchard 1998:57). Testing and excavation at 

45PI408 has been the focus of research for Central Washington University’s field schools 

directed by Dr. Patrick McCutcheon between 1997 and 2001, and again from 2011 to 

2013.  

Systematic efforts to document the scope of artifacts horizontally and vertically at 

the site began in 1997 with the first of the CWU archaeological field school projects. 
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Over the course of five archaeological field schools, 182 subsurface test pits were 

conducted at the site; test pits were excavated as CVS units and as 50 x 50 cm square 

units (Dampf 2002:15-16; McCutcheon and Dampf 2002:19-20; Lewis 2015:22-23; 

McCutcheon 1999:14).  

From 2011 through 2013, field schools resumed at 45PI408; focusing on data 

recovery in large block excavation. During this time, nineteen 1 x 1 m units were 

excavated by naturally occurring depositional layers (Lewis 2015:23). A total of 14,317 

chipped stone artifacts were recovered over the eight years of investigations at 45PI408, 

and 34.14 cubic meters of sediment was excavated. The site is well-stratified and has 

both above and below MR-C components, and has numerous radiocarbon and 

luminescence dates ranging from 4,086 to 100 cal. years BP (McCutcheon et al. 2017, in 

preparation). A subset of 4,601 of the recovered lithic artifacts from 45PI408 are from 

above the MR-C unit. Analytical data generated for this assemblage has been the focus of 

several research projects and was the undertaking of many students throughout the years 

(Dampf 2002; Davis et al. 2016; Lewis 2015; McCutcheon et al. 2017, in prep; Vaughn 

2010).   

 

Tipsoo Lakes (45PI406) 

The Tipsoo Lakes (45PI406) site covers 4,000 m2 of terrain surrounding and 

connecting several small lakes, a location now used as hiking trails and a paved picnic 

area.  The site is located 1622 m (5320 ft) above sea level, approximately 350 m 

southwest of Chinook Pass, near the eastern edge of the Park boundary (Burtchard and 

Hamilton 1998:53).  
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45PI406 was originally recorded in 1988 (Forrest 1989), and surveyed again in 

1995 (Burtchard and Hamilton 1998:63). Subsurface testing was conducted at the site in 

association with various road, parking lot and visitor service revisions between 1995 and 

2010.  These include testing by park archaeologist Gregg Sullivan ca. 1995-1996, field 

school testing in 2000, and testing by park archaeologists in 2002 and 2007 (Vaughn 

2010 and Burtchard pers. com.) Total excavated volume from these projects is between 

two and four cubic meters extracted from various locations within site boundaries. 

At excavation, the presence of historic artifacts in some units was noted, as well 

as mixed tephra layers due to bioturbation and possibly freeze/thaw action (Vaughn 

2010), which have resulted in an inability to segregate the assemblage into distinct 

temporal components; limiting the collection to whole site comparison. The 45PI406 

analytical lithic data were generated by Vaughn (2010) using the same methods and 

techniques employed here; 770 chipped stone tools and flakes from his analysis are 

included in this research. 

 

Forgotten Creek (45PI429) 

The Forgotten Creek site (45PI429) is a 2700 m2 flat situated between two north 

and south trending ridges on the southwestern slope of the mountain (Burtchard and 

Hamilton 1998:145). Forgotten Creek is located at 1286 m (4220 ft.) elevation. The site 

is on level ground at the top of a small spring in the upper Nisqually River Valley.  

45PI429 was first recorded by Burtchard and Hamilton in 1995. In 2010, 

Burtchard and crew discovered artifacts in nine of eighteen CVS test units excavated 

across the site surface; continued testing in 2011 guided by CVS results yielded lithic 
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debitage from two more CVS units, and from two 1 x 1 m excavation units (Burtchard 

2010 and 2011; Ferry 2015:10). An estimate of volume excavated at 45PI429 is just over 

2 cubic meters. The site consists of both historic and prehistoric artifacts, and 1,104 tools 

and pieces of lithic debitage were analyzed by Joy Ferry (2015). A total of 716 of these 

lithic artifacts were excavated from above the 2,260 cal. years BP MR-C tephra layer and 

were selected to be used in this study.   

 

Table 1. Archaeological Site and Assemblage Information 

Site 
Volume 

Excavated 
Site Size 

Sample 

Size 

Approximate 

Lithic Density 

45PI043 – Fryingpan Rockshelter 2 m3 36 m2 1,593 1050/ m3 

45PI303 – Berkeley Rockshelter 1.5 m3 100 m2 1,096 1139/ m3 

45PI406 – Tipsoo Lakes 2 to 4 m3 4,000 m2 770 256/ m3 

45PI408 – Sunrise Ridge Borrow Pit 34.14 m3 2,550 m2 4,601 419/ m3 

45PI429 – Forgotten Creek 2+ m3 2,700 m2 1,104 501/ m3 

 

 Overall, the approximate lithic density is much higher at the two rockshelter sites 

(45PI043 and 45PI303) than at the three open-air residential sites (45PI406, 45PI408, and 

45PI429) (Table 1). However, it is important to note that the overall area of the 

rockshelter sites (both under 100 m2) is significantly smaller than the area of any of the 

open-air residential sites (all three are over 2,500 m2), which likely inflates the 

approximate calculated lithic density at the rockshelter sites.  The open-air residential 

Sunrise Ridge Borrow Pit site is the most extensively excavated and investigated site 

included in this study: its multiple-temporal component assemblage is comprised of 

almost three times more artifacts than at any of the other comparative sites, and the 

volume excavated is more than eight times that excavated at any other site.  
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 The following chapter reviews relevant literature contextualizing the research 

performed in this study, and establishes the relative location of this research in the 

context of relevant previous studies.   
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CHAPTER III 

LITERATURE REVIEW 

 

The following section will provide literature review for the fundamental ideas and 

context of my research. This section will be structured per the objectives set in Chapter 1, 

and will review relevant previous research setting the context for each objective.  

Objective 1: Application of Existing Models 

 

Burtchard (1998:125) states “dominant cultural patterns at any given point in time 

and place reflect dynamic system states rooted in complex and ongoing feedback 

relationships between humans and the environments within which they strive to survive 

and reproduce (cf. Leonard and Reed 1993:649-650).” It is reasonable to argue that the 

variation in technological and functional traits in the archaeological record on the 

northeastern slopes of Mount Rainier is a result of natural selection acting on people.  

Distinguishing the kind of selection observed in the lithic assemblages may help to 

identify the precise selective conditions responsible for changes in technological and 

functional trait frequency (Ferry 2015; McCutcheon 1997:213) across space. In this 

research context, this distinction will identify how lithic assemblages in rockshelter 

settings are different or similar to assemblages from open-air settings and permit a 

narrative to be written about why those differences, or the lack there of, exist. It is, 

however, possible that selective constraints common to montane environments may 

override, and limit assemblage variability  (Lewis 2015:14). 

Andrefsky (1994) notes a correlation between raw material availability and lithic 

assemblage characteristics such as abundance, quality, location, and knowledge of tool 

stone sources. Where lithic quality and abundance are both high, formal and informal tool 
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production occur; where lithic quality is high but lithic abundance is low, primarily 

formal tool production will take place; where lithic quality is low but lithic abundance is 

high, there will be primarily informal tool production, and likewise, when lithic 

abundance and quality are both low, primarily informal tool production will occur 

(Andrefsky 2005:159).   

Kassa and McCutcheon (2016) evaluate these predictions about lithic raw 

material quality and abundance; as Andrefsky’s (1994) model predicted, the dominant 

local source was a lower quality, as was exhibited by a statistically significant presence 

of random solid inclusions and void inclusions that affect tool-stone quality. The 

presence of these inclusions increases the cost of using these materials by decreasing the 

predictability of fracture (Kassa and McCutcheon 2016: 93). Despite this increased cost, 

local obsidian was predominant, indicating that the nearby location reduced the material 

costs, while materials from nonlocal sources contained almost no inclusions.   

Two kinds of strategies are expected for facilitating human uses of the 

environment: expediency and curation (Nelson 1991:62-64). Curated technologies 

include advanced manufacture, transport, reshaping, and caching or storage, while 

expedient technologies involve planned stockpiles of raw material, availability of time for 

tool manufacture, and a residential base for raw material stockpiling. Artifact forms and 

assemblage composition are outcome of humans implementing expediency and curation 

in different ways, and thus leads to expectations about how humans organized on the 

landscape, or how humans mapped onto resources on that landscape (Binford 1980; 

Dunnell 1978b; Dunnell and Dancey 1983). Nelson (1991) raises the issue that there are 

factors that interact with humans creating lithic assemblages outside of general 
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organizational principles such as source location and the surrounding environment. 

Nelson (1991:81) suggests that there is also an opportunistic element to the organization 

of technology responsive to immediate, unanticipated conditions, producing irregularity.  

While researchers have found utility in modeling past human land use across 

different geographies (e.g., Binford 1980) and time periods (Schalk and Cleveland 1983, 

Burtchard 1998 and 2007), difficulties in applying these units to the archaeological 

record emerge because of a lack of mutual exclusion among the technological 

organizations (Lewis 2015). Sullivan and Rozen (1985) have shown the benefit created 

by mutually exclusive attributes in lithic technological studies, and the issues created by 

their absence. One of the benefits of using an evolutionary approach lies in the adherence 

to variables and units of analysis that are mutually exclusive (Dunnell 1971:71). By using 

mutually exclusive classificatory schema, small differences in lithic assemblage 

characteristics can be identified, and thus the differences in the selective conditions under 

which past people made and used stone tools can also be identified. 

 According to Darwinian evolutionary theory, analyzing the distribution of a 

phenotypic trait allows for one to identify the effects of natural selection on the fitness of 

that particular trait, which can act on both the cost and performance traits of lithic 

technology (McCutcheon 1997:207). Under evolutionary archaeology, lithic artifacts can 

be interpreted as an extension of the human phenotype, and thus fitness of any given trait 

is assessed as replicative success and selective mechanisms can be identified (Leonard 

and Jones 1987).   

 In the context of evolutionary archaeology, there is a mechanism beyond natural 

selection that is also responsible for sorting the variation in artifact traits: cultural 
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transmission (Dunnell 1978a, 1978b; O’Brien and Lyman 2000; Parfitt and McCutcheon 

2017:38). The process of cultural transmission is how ideas are transferred within and 

between populations: ideas can be passed down from generation to generation over time, 

or can blend together from populations existing at the same time (Lipo et al. 2006). When 

variation found in archaeological assemblages does not fit the expected variation driven 

by natural selection, cultural transmission may provide an alternative explanation for the 

occurrence of these ostensibly neutral artifact traits. Selectively neutral variation in 

artifact traits, like ceramic and projectile point styles are sorted by transmission processes 

and have a different distribution across space and through time (Dunnell 1978a; O’Brien 

and Lyman 1999). If culturally diverse groups are using similar environments, neutral 

traits may provide another comparative dimension. 

Objective 2: Data Generation and Resampling 

 

The variables developed in previous Mount Rainier research (Dampf 2002; Ferry 

2015; Lewis 2015; Vaughn 2010) are useful to achieving my research goals here as they 

are already operationalized into units of analysis (paradigmatic classifications) that can 

be used to compare across sites. This method and technique, developed by McCutcheon 

(1997), outlines the relationships between the variables cost and performance in stone 

tool manufacture and use.  

This cost-performance model (Figure 2) will be used to answer the research 

question: are the selective conditions under which past people made and used stone tools 

different across site types on Mount Rainier? 
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Figure 2. Cost-Performance Model, adapted to an upland context (Ferry 2015:16; Lewis 

2015: 6; McCutcheon 1997:208; Vaughn 2010:34).  

 

 Because they were used previously in analyses of lithic assemblages from within 

Mount Rainier National Park (Dampf 2002; Ferry 2015; Lewis 2015; Vaughn 2010), the 

same three paradigmatic classifications will be used in this analysis: technological, rock 

physical properties, and wear attributes. Data generated from the analysis of 45PI43 and 

45PI303 will be comparable to these previous analyses, aiding in a direct comparison at a 

much higher resolution than in previous comparative studies to compare trait frequency 

across archaeological and microenvironmental contexts.   

Once generated, rockshelter site 45PI043 and 45PI303 data will be joined with the 

above MR-C assemblage data from larger open-air sites 45PI406, 45PI408, and 45PI429. 
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Diversity will be measured in terms of richness, the number of functional and 

technological classes represented in the assemblages; and evenness, the manner in which 

artifacts are distributed among the technological and functional classes (Evans 2009:83; 

Leonard and Jones 1989:2).  

To determine whether the richness and evenness of the samples are representative 

of a population, a technique called resampling, based in the statistical strategy of 

bootstrapping (Efron and Tibshirani 1993) is used. The computer program Resampler 

(Mohr et al. n.d.), has been used in similar archaeological studies (see Evans 2009; Ferry 

2015; Lewis 2015; McCutcheon 1997; Vaughn 2010) to assess sample size adequacy. 

Resampler generates sampling curve graphs based on frequency data of assemblage 

dimensions. Rank 1 curves represent data that is rich with even class distributions (Figure 

3). Rank 2 curves are generated for data that is rich with uneven distributions (Figure 4). 

Rank 3 curves represent data with very uneven distribution regardless of richness (Figure 

5) (see Evans 2009:84-86; Ferry 2015:21-22, 52-53; Lewis 2015:62-65; McCutcheon 

1997:289-290; Vaughn 2010:56-60). Samples falling into Rank 1 or 2 curves are 

considered representative, and the data is sufficient for intersite assemblage comparisons 

accurately. Rank 3 curves are considered insufficient for accurately performing intersite 

comparisons (see Ferry 2015:52; Lewis 2015:62-65; Vaughn 2010:59).   
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Figure 3. Hypothetical resampling curve generated by the Resampler program of a Rank 

1 curve. Reaches asymptote before 75% of sample size is reached. Included bar graph 

indicates the richness and evenness characteristic of datasets generating this shape of 

curve. Error bars depict standard deviation. Modified from Vaughn 2010:57. 

 

 
Figure 4. Hypothetical resampling curve generated by the Resampler program of a Rank 

2 curve. Asymptote, but not before 75% of sample size. Included bar graph indicates the 

richness and evenness characteristic of datasets generating this shape of curve. Error bars 

depict standard deviation. Modified from Vaughn 2010:57. 

 

 

Figure 5. Hypothetical resampling curve generated by the Resampler program of a Rank 

3 curve. Asymptote never reached. Included bar graph indicates the richness and 

evenness characteristic of datasets generating this shape of curve. Error bars depict 

standard deviation. Modified from Vaughn 2010:57. 
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Objective 3: Statistical Analysis 

In order to detect randomness in the sample, a traditional Chi-square (χ2) test will 

be used; Chi-square is used to compare observed frequencies with expected frequencies 

to test for association between one or more variables (Fletcher and Lock 2005:129). 

When the difference between the observed and expected frequencies is too great to be 

random, Chi-square can reject a null hypothesis (Zar 1974:46). Chi-squared calculations 

are made through the use of contingency tables, which utilize the expected and observed 

frequencies of a dataset, compared to a statistical critical value using the degree of 

freedom (df), or number of independent categories being compared, and an alpha level of 

0.05 (Table 2) (Lewis 2015:77-79). When the chi-square value is greater than the critical 

value, the occurrence of differences is so unlikely to be due to random sampling, a firm 

rejection of the null hypothesis is determined (Zar 1998:464). Similarly, Log-likelihood 

ratio (G-value) will be calculated when Chi-square is insufficient because of sample size 

(Lewis 2015:78; Vaughn 2010:60).  To calculate the G-value, the observed frequencies 

are used to calculate a test statistic that measures the distance of the actual data from the 

null expected frequencies; Chi-square distribution is then used to estimate the probability 

of actually obtaining the value of the test statistic (McDonald 2014:54).  

Differences between observed and expected data identified through Chi-square 

are expressed in the form of residuals, or leftover variation (Drennan 1996:220). These 

residuals are adjusted for sample size, and the adjusted residuals identify the modes with 

the most variance from expectations, which are the largest contributors to the rejection of 

the null hypothesis. Any cell that generates an adjusted residual greater than the critical 

value for the 0.05 alpha level (± 1.96) is identified as a mode that contributes 



 

30 

significantly to the variation in the assemblage. To measure how strong relationships are 

between variables, Cramér’s V is calculated. This statistic is based on the chi-square 

result, and provides a value of magnitude between 0.00 and 1.00 (Cramér 1946:443; 

Shennan 1997:115). Values closer to 0.00 mean the associations between variables are 

weaker relationships, values near 0.25 are considered moderately strong, and any value 

above a 0.40 signifies extremely strong associations between variables (Lewis 2015:81).  

 

Table 2. Equations Used for Statistical Tests (Lewis 2015:79). 

Test Equation Variables 

Chi-Square 
𝜒2 =

∑(𝐹𝑜 − 𝐹𝑒)2

𝐹𝑒
 

χ2 – Chi-Square 

∑ - Sum 

Fo – Frequency Observed 

Fe – Frequency Expected 

 

 

Cramér’s V 

 

𝑉 = √
𝜒2

𝑛(𝑘 − 1)
 

V – Cramér’s V 
χ2 – Chi-Square 

n – Grand Total 

k – the total number or rows or 

the total number of columns 

(whichever is fewer)  

Log-Likelihood  

(G-value) 
𝐺 = 2 (∑𝐹𝑜 ∙ ln (

𝐹𝑜

𝐹𝑒
) ) 

 

G – Log-likelihood (G-value) 

ln - Natural Log 

 

 

Degree of Freedom 
 

𝑑𝑓 = (𝑟 − 1) ∙ (𝑐 − 1) 
df – Degree of Freedom 

r – number of rows 

c – number of columns 

 

Adjusted Residual 
𝑅 =

(𝐹𝑜 − 𝐹𝑒)

√𝐹𝑒 ∙ (1 − 𝑅𝑃) ∙ (1 − 𝐶𝑃)
 

R – Residual 

RP- Row Proportion 

CP – Column Proportion 

 
 

Objective 4: Interpretations 

 To interpret rockshelter and open-air site technological and functional diversity, 

expectations can be generated and compared to the archaeological record (see Burtchard 

1998:112-120).  This will identify how lithic assemblages in rockshelter settings are 
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different or similar to assemblages from open-air settings and permit a narrative to be 

written about why those differences, or the lack there of, exist. 

 Other researchers have generated and tested hypotheses about precontact land use 

in the region. Vaughn (2010) compared lithic technology and function across 

environmental zones at six sites in the southern Washington Cascades. While he notes 

significant diversity across and within environmental zones, Vaughn (2010) identifies a 

shift towards bifacial technologies in higher elevation assemblages, particularly in the 

45PI406 (Tipsoo Lakes) assemblage (Vaughn 2010:86-87). In addition, Vaughn 

(2010:89) classifies the 45PI406 and 45PI408 assemblages as Tool Manufacture 

locations, following Sullivan and Rozen (1985).  

Ferry (2015) investigated four sites from the slopes of Mount Rainier, making 

synchronic and diachronic comparisons above and below the Mount Saint Helens Y 

(MSH-Y) tephra layer. Ferry (2015:54-55) placed the above MSH-Y components of 

45PI429 and 45PI408, and the whole site of 45PI406 into the Tool Manufacture 

classification. She also found an increase in heat-treated materials after 4400 cal years 

B.P. at 45PI429, and after 3000 cal years B.P. at 45PI408.  

Lewis (2015:143) found that lithic variation at 45PI408 is related to 

environmental selective conditions, rather than a shift in settlement or subsistence 

strategy. He also found an increase in heat-treated artifacts and artifacts with evidence of 

high-temperature alteration throughout time (Lewis 2015:142).  
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CHAPTER IV 

METHODS AND TECHNIQUE 

 

 I assume, like others (McCutcheon 1997; Kassa and McCutcheon 2016), that the 

selective conditions (e.g., lithic raw material source availability [Andrefsky 2009; Teltser 

1991] and limited activities [Burtchard 1998:112-120; Andrews et al. 2016]) will 

determine largely the structure of a lithic assemblage; and that if different activities from 

open-air residential sites were being carried out at rockshelter limited-task sites, the lithic 

assemblages will reflect those differences. The cost of stone tool manufacture refers to 

the relative amount of energy needed to produce an artifact. Four sub-variables, material 

acquisition, material preparation, tool manufacture, and tool durability, allow for the 

interpretation of lithic assemblage variation (McCutcheon 1997:209-211).  These 

elements are measured by reference to the form and abundance of raw materials, the 

distance between areas of lithic material procurement and places of lithic manufacture 

and use, and the amount of energy expended in the manufacture and use of tools. With all 

else being equal, lower cost materials will have a selective differential in pre-contact use 

over that of higher cost materials. 

 The performance level of the produced tool can offset the cost of producing lithic 

technology. Performance refers to the use of a stone tool, or the work done by an object 

as it interacts in its environment (McCutcheon 1997:211-213). The performance of a tool 

can be measured by three sub-variables: rock physical properties, tool requirements, and 

technology. The interrelationships between these sub-variables can greatly affect the 

durability, manufacture, and use of a stone tool, as different functional requirements 

influence the technologies and materials utilized (Dunnell and Campbell 1977). 
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The technological paradigm used in this thesis (Table 3) consists of eight 

mutually exclusive dimensions of analysis. The dimensions that will be recorded for each 

artifact are object type, amount of cortex, presence of wear, other modification, material 

type, platform type (Vaughn 2010; Lewis 2015), completeness (Sullivan & Rozen 

1985:758), thermal alteration (McCutcheon 1997), complexity of dorsal surface, and 

reduction class. 

Table 3. Technological Paradigm (modified from Dampf 2002:68-69, Lewis 2015:51-53, 

and McCutcheon 1997:255-261). 

 
I. Object Type  

0. Biface: two-sided rock exhibiting negative flake scars only, which were principally initiated from 

the edge of the rock. 

1. Flake/Flake Fragment: rock exhibiting attributes of conchoidal fracture, especially positive flake 

scars, bulb of percussion, eraillure scars, and/or point of impact. 

2. Chunk: rock exhibits noncortical surfaces but does not exhibit attributes of conchoidal fracture. 

3. Cobble: rock that exhibits unbroken, cortical surfaces. 

4. Core: rock exhibiting noncortical surfaces with attributes of conchoidal fracture with only negative 

flake scars initiated from a variety of directions. 

5. Spall: “flake” shaped chunk that exhibits evidence of thermal shock (e.g., potlidding, crazing, 

crenulation, etc.). 

6. Gastrolith: rock that exhibits a smooth lustrous surface and rounded edges 

II. Amount of Cortex: cortex is that part of a rock that is the outer layer that forms as a transition zone 

between the chert body and its bedrock matrix (Luedtke 1992:150). 

1. Primary: covers external surface (or dorsal side in the case of flake/flake fragments) of rock (with 

exception of point of impact, in the case of a flake). 

2. Secondary: external surface has mixed cortical and noncortical surfaces. 

3. Tertiary: no cortex present on any surface except point or area of impact. 

4. None: no cortex present on any surface. 

III. Wear: damage to an object’s surface as a result of use. 

1. Absent: no evidence of wear on any surface. 

2. Present: wear present on at least one surface. 

IV. Other Modification: additional technological manipulations to rock fragments that may be related to 

other trajectories (bone tools) or additional steps in stone tool maufacture. 

1. None: no attrition other than that explained by wear. 

2. Flaking: fragment removed by conchoidal fracture. 

3. Grinding: surfaces smoothed by abrasion. 

4. Pecking: irregular or regular patterns of attrition due to dynamic nonconchoidal fracture. 

5. Incising: linear grinding. 

6. Other: types of modification not described above. 

V. Material Type—Lewis Types 

1. Black Opaque and Translucent 

2. Solid White Opaque and Translucent 

3. Mottled White Opaque and Translucent 

4. White and Grey Opaque 

5. Light Brown Mottled opaque and translucent 
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Table 3 Continued 
 

6. Light Brown Translucent 

7. Grey Mottled Opaque and Translucent 

8. Brown Translucent 

9. Brown Mottled Translucent  

10. Red Brown/Black Opaque 

11. Red Mottled Translucent 

12. Red/Brown Translucent and Opaque 

13. Dark Grey Translucent and Opaque 

14. Orange/Brown Translucent 

15. Orange Mottled Translucent and Opaque  

16. Pink Mottled 

17. Yellow 

18. Blue/Brown Translucent 

19. Clear Translucent 

20. Quartz Crystal 

21. Obsidian 

22. Light Grey/Black Opaque 

23. Purple 

24. Light Brownish White  

25. Light Pink (Mottled) 

26. Metasediment 

27. Petrified Wood 

28. Unknown Material 

29. Green 

VI. Platform Type: area struck to cause flake removal. 

1. Cortex: refers to cortical platforms. 

2. Simple: platform with only one flake scar. 

3. Faceted: platform with more than one flake scar. 

4. Bifacial unfinished: platform is bifacially flaked, exhibiting a single stratum of flake scars. 

5. Bifacial unfinished, wear present: platform is bifacially flaked, exhibiting wear superimposed 

over a single stratum of flake scars. 

6. Bifacial finished: platform bifacially flaked, exhibiting several strata of flake scars. 

7. Bifacial finished, wear present: platform bifacially flaked, exhibiting wear superimposed over 

several strata of flake scars. 

8. Potlids: typically small, round flakes with convex side; point of force located at apex of convex 

side. 

9. Fragmentary: platform is absent; “missing data.” 

10. Not applicable: (e.g., bifaces, cores, etc.). 

11. Pressure flakes: platform is very thin, bulb of percussion is intact but very diffuse; this platform 

occurs on small flakes. 

12. Technologically absent: results from indirect percussion where a precursor focuses the force such 

that as the flake is detached, an additional flake from the ventral side removes the bulb of percussion. 

VII. Completeness 

1. Whole flake: discernable interior surface and point of force apparent; all margins are intact; no 

broken edges. 

2. Broken flake: discernable interior surface and point of force apparent; margins of flake exhibit step 

fractures (> 60°). 

3. Flake fragment: interior surface discernable, but point of force is not apparent. 

4. Debris: interior surfaces not discernable. 

5. Other: (e.g., bifaces, cores, etc.). 

VIII. Thermal Alteration: physical act of heating rock to make it more workable into a stone tool. 

Thermal alteration leaves color changes, lustrous flake scars, crenulated surfaces, crazing, and 

potlidding. The division of modes 1 and 2 below provides the means to separate those heat-treated 

objects that have had all of their post-heating surfaces removed from those objects that have not. 
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Table 3 Continued 
 

0. No Heating: no attributes of thermal alteration exhibited. 

1. Lustrous/Non-lustrous Flake Scars: object exhibits lustrous flake scars either intersecting or 

juxtaposed to non-lustrous flake scars. 

2. Lustrous Flake Scars: lustrous flake scars only, where the luster is equivalent to that exhibited on 

objects exhibiting mode 1 above. 

3. High-Temperature Alteration: object exhibits potlidding, crazing, and/or crenulated surfaces (as 

defined in Purdy 1974). 

IX. Complexity of Dorsal Surface 

1. Simple: surface exhibits few arrises from prior flaking and all are of the same scale. 

2. Complex: surface exhibits 2 or more arrises and displays two or more scales of prior flaking. 

3.  Not Applicable: not a flake (e.g. core, chunk). 

X. Reduction Class Key 

1.Initial: Presence of cortex on dorsal surface. 

2. Intermediate: Absence of cortex on dorsal surface, absence of complex dorsal surface. 

3. Terminal: no lipped platform, presence of complex dorsal surface. 

4. Bifacial Reduction/Thinning: Presence of lipped platform, no wear on platform. 

5. Bifacial Resharpening: presence of lipped platform, presence of wear on platform. 

6. Not Applicable 

 
 

 The rock physical property paradigm (Table 4) pertains to how rocks break, 

which in turn affects the reductive strategy in stone tool manufacture. The dimensions of 

this classification focus on the macroscopic properties of tool stone that affect the 

mechanics of fracture (McCutcheon and Dunnell 1998). The dimensions consist of rock 

ground mass, solid inclusions, void inclusions, and the distribution of those inclusions. 

Identifying tool stone raw material variability helps us understand subtle differences in 

lithic assemblages from different contexts.   

 The macroscopic wear paradigmatic classification (Dancey 1973:48-58; Dunnell 

and Lewarch 1974; McCutcheon 1997:238) (Table 5) focuses on macroscopic use wear 

attributes. Four dimensions of observable phenomenon are measured: kind of wear, 

location of wear, shape of worn area, and orientation of wear. Use wear analysis is used 

in an attempt to determine the function of stone tools by observing direct evidence in the 

form of wear on tool surfaces (Andrefsky 2005:5) and thus, data generated by this 

analysis provides information on functional traits of the lithic assemblage. This is a 
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coarse-grained method of identifying object function (McCutcheon 1997:264) by 

presence without making assumptions about the nature of the function performed.    

Table 4. Rock Physical Property Paradigm (Dampf 2002; Ferry 2015; Lewis 2015:54-55; 

McCutcheon 1997:208; Vaughn 2010) 

 
I. Groundmass 

1. Uniform: a consistent and unvarying structure, where the distribution of color, texture, or luster is 

even. 

2. Bedding Planes: linear striae superimposed upon and parallel to one another. Individual stria can 

be distinct in color and/or texture. 

3. Concentric Banding: concentric layers of different color and/or texture. 

4. Mottled: abrupt and uneven variations (e.g., swirled or clouded) in color or texture. 

5. Granular: a consistent structure composed of many individual grains. 

6. Oolitic: the matrix is composed of small round or ovoid shaped grains. 

II. Solid Inclusions 

1. Present: particles present that are distinct from the rock body (e.g., oolites, sand grains, filled  

Table 4 Continued 
 

cracks, grains, fossils, minerals). 

2. Absent: particles are absent from the rock body at 40X magnification or lower (unaided eye). 

III. Void Inclusions 

1. Present: areas devoid of any material are present in the rock body (e.g., vugs, fossil and mineral 

casts, unfilled cracks). 

2. Absent: areas devoid of any material are absent from the rock body at 40X magnification or lower 

(unaided eye). 

IV. Distribution of Solid Inclusions 

1. Random: the distribution of inclusions is irregular and not patterned in any fashion. 

2. Uniform: the distribution of inclusions is unvarying and even throughout the rock body. 

3. Structured: the distribution of inclusions is patterned or isolated within the rock body. 

4. None: inclusions are absent from the rock body at 40X or lower magnification (unaided eye). 

V. Distribution of Void 

1. Random: the distribution of inclusions is irregular and not patterned in any fashion. 

2. Uniform: the distribution of inclusions is unvarying and even throughout the rock body. 

3. Structured: the distribution of inclusions is patterned or isolated within the rock body. 

4. None: inclusions are absent from the rock body at 40X or lower magnification (unaided eye). 

 

 There are some challenges to interpreting tool wear because post-depositional 

wear and trampling, and excavation and curation wear, can damage artifacts with 

chipping-type damage (Andfresky 2005:197; McCutcheon 1997:264). To minimize 

recording false presence of wear caused by post-depositional damage, chipping wear was 

recorded only when 5 or more overlapping flake scars were present (per McCutcheon 

1997:264).  
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Table 5. Macroscopic Wear Paradigm (McCutcheon 1997; Dampf 2002; Ferry 2015; 

Lewis 2015; Vaughn 2010) 

 
I. Kind of Wear 

1. Chipping: small conchoidal fragments broken from edge; a series of flake scars. 

2. Abrasion: striations and/or gloss or polish on edge or point or surface. 

3. Crushing: irregular fragments removed from object leaving pitted surface. 

4. Polishing (as in Witthoft 1967). 

5. None - no wear is visible. 

II. Location of Wear 

1. Angular Point: intersection of three or more planes at a point, including the point. 

2. Angular Edge: intersections of two planes including the line of intersection. 

3. Angular Plane: a single planar surface. 

4. Curvilinear Point: a three-dimensional parabola or hyperbola. 

5. Curvilinear Edge: a curved plane bent significantly in only one axis (two-dimensional parabola or 

hyperbola). 

6. Curvilinear Plane: a curved plane with spherical or elliptical distortion of large radius. 

7. Non-localized: a closed curve. 

8. None: wear absent. 

III. Shape or Plan or Worn Area 

1. Convex: an arc with a curve away from a flat surface. 

2. Concave: an arc with a curve toward a flat surface. 

3. Straight: a straight or flat surface. 

4. Point: a point. 

5. Oblique notch: two lines whose intersection forms an oblique angle. 

6. Acute notch: two lines whose intersection forms an acute angle. 

7. None: wear absent. 

IV. Orientation of Wear: this dimension describes the linear orientation of the wear itself relative to the 

Y-plane of the object. The Y-plane will be taken to be a plane that is perpendicular to a line or plane 

connecting the wear to the body of the tool (X-axis or -plane). For example, if the object is a flake and is 

placed on a horizontal surface, ventral side down, the Y-plane is parallell to the horizontal surface for all 

edge damage (e.g., chipping, crushing, etc.). 

1. Perpendicular to Y-plane: mainly pitting, edge-on crushing, etc. 

2. Oblique to the Y-plane: a single direction is noted (e.g., unifacial chipping). 

3. Variable to the Y-plane: a number of different orientations, all linear, turning from a left oblique 

through perpendicular to right oblique (e.g., bifacial chipping, crushing, pounding, etc.). 

4. Parallel to the Y-plane: precludes most percussive wear. 

5. No orientation: non-linear wear (e.g., heating). 

6. None: wear absent. 

 

 A fourth analytical key is used to classify projectile points assigning them to 

morphological point types. Carter (2002) has produced a practical, morphology-based 

typological key for identifying projectile points from the central Columbia Basin (cf. 

Lohse 1985). Several metric attributes of complete formed tools must be recorded: haft 

length, maximum length, maximum basal width, shoulder length, maximum width, neck 

width, and maximum thickness (Carter 2002). Based on these metrics and visible non-
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metric characteristics, the dichotomous key divides the tools into five major categories: 

shouldered or notched, side-notched, corner-notched, basal notched, or shouldered or 

stemmed (Carter 2010:7).  

 According to Sullivan and Rozen (1985:762-766), lithic assemblages can be 

classified into four technological groups that are based on how object types are 

represented in an assemblage. By looking at the proportion of complete flakes, broken 

flakes, flake fragments, debris, cores, and retouched pieces, an assemblage is assigned a 

technological group. Group IA types focus on unintensive core reduction, Group II types 

focus on tool manufacture, Group IB1 types focus on core reduction and tool 

manufacture, and Group IB2 types focus on intensive core reduction (Table 6) (Sullivan 

and Rozen 1985).  

Table 6. Technological Groups from Sullivan and Rozen (1985:763).  

Technological Group 

Artifact Category IA IB1 IB2 II 

Complete Flakes 53.4 32.9 30.2 21.0 

Broken Flakes 6.7 13.4 8.1 16.8 

Flake Fragments 16.0 35.3 34.7 51.3 

Debris 6.1 7.9 23.0 7.3 

Cores 14.7 2.8 2.0 0.6 

Retouched Pieces 3.1 7.5 2.0 3.1 

 

 While eighteen dimensions of lithic technology, function, and rock physical 

properties were recorded for each artifact, not all of these dimensions can be utilized for 

comparison of the archaeological record. In this study, expectations for the rockshelter 

and open-air sites derive from four dimensions: object type, reduction class, platform 

type, and thermal alteration. Expectations about functional traits of the assemblages can 

be assessed by focusing on the number of filled functional codes at each site. 
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Because rockshelter sites are expected to be limited-task field or hunting camps, it 

is expected that light tool object types such as bifaces and a low frequency of cores 

should be highly represented (Burtchard 1998:113). Open-air, residential field camp 

assemblages, are expected to be varied with both light and heavy tools, with a high 

density of debitage (Burtchard 1998:113). 

Only flakes that retain their original point of impact (whole and broken flakes) 

can be placed into a reduction class. Because open-air site types are expected to be places 

where a wide-range of activities took place, it is expected that a more even distribution 

amongst the stages of reduction will be present in the 45PI408 assemblage. Because the 

activities at rockshelter sites should be limited to only late stage and retouch activities, 

the assemblages should show an overrepresentation of flakes from the terminal, bifacial 

reduction/thinning and bifacial resharpening modes.  

 The platform type dimension focuses on the point of impact which was struck to 

cause flake removal. Only flakes with completely intact platforms can be assigned a 

platform type; flakes that do not retain some or any of their platform are assigned to the 

fragmentary mode, and tools are classified as not applicable. The activities related to 

creating the lithic assemblages found at rockshelters, and other limited-task field camp 

sites, should be focused on tool maintenance, repair, and late stage manufacture 

(Burtchard 1998:113). This should be represented in the platform type dimension of the 

rockshelter assemblages compared to the open-air sites as a higher representation of the 

following modes: faceted platforms, bifacial unfinished platforms, bifacial unfinished 

platforms with wear present, bifacial finished platforms, bifacial finished platforms with 

wear present, and pressure flake platforms. Open-air sites should thus show an 
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underrepresentation of the above modes, and may show a higher representation in the 

other modes of the platform type dimension: cortex platforms, simple platforms, potlids, 

fragmentary, not applicable, and technologically absent. 

The thermal alteration of many rocks improves the “workability” (McCutcheon 

1997:1) of the material as toolstone by aiding in more predictable, intergranular crack 

propagation (McCutcheon 1997). While not all rocks are affected the same way by 

heating processes, the results of heat treatment can be identified as post-heating flake-

scar surfaces that are smooth, and more lustrous than scars removed prior to thermal 

alteration (McCutcheon 1997). Over-heated break unpredictably because of large, 

thermally induced such as crenulation, crazing, and potlidding. At open-air sites, it is 

reasonable to assume that one of the many residential camp activities performed could be 

heat-treatment of tool stone. Untreated objects and over-heat-treated objects may be 

greater represented at open-air sites than the rockshelter sites. Objects at the rockshelter 

sites should display lustrous/non-lustrous flake scars and lustrous only flake scars in 

considerable amounts.  It is not expected that there will be as many unheated or high 

temperature alteration (over-heating) objects at the rockshelter sites as only a limited 

toolkit is expected to be brought to these locations. Where studied previously (Vaughn 

2010; Ferry 2015; Lewis 2015), stone tool heat treatment evidence occurs in intermediate 

reduction.  Later reduction efforts on heat-treated stone tools are identified analytically as 

heat treated.  The absence or low frequency rock shelter sites of unheated and over-

heated objects are expected as they have less predictable failure behavior than those 

materials that were heat-treated effectively. 
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While it is hard to draw specific expectations about use wear at rockshelter and 

open-air site types without making assumptions about the specific functions performed 

by the tools, it is reasonable to expect that there will be more filled functional classes at 

open-air sites than at rockshelter sites. The limited-activity use of a rockshelter site 

should mean that there are fewer overall uses of tools at these locations, and this should 

be represented as fewer filled functional classes in the assemblage data from rockshelter 

sites.    
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CHAPTER V 

RESULTS AND CONCLUSION 

All object frequencies were analyzed with the statistical protocol in three 

permutations: across site type, within site type, and across all individual assemblages. 

Object frequency data for all sites and site types is located in Appendix A. The data from 

45PI043 and 45PI303 were collapsed together as the “rockshelter sites,” while the data 

from 45PI406, 45PI408, and 45PI429 were collapsed together as the “open-air sites.” 

Doing so allowed for maximizing the sample size from each site type.  

Ideally, comparison of each site type assemblage would determine whether such an 

aggregation effort was justified.  Here I do it only as an exercise in maximizing disparate 

sample sizes and to establish the analytical protocols I use below.  Given the overlap in 

my approach to that of others cited above, this approach makes my results comparable to 

those, which I will return to in the interpretation of my results. 

In this chapter, I discuss the results of comparing the two “rockshelter sites” to the 

three “open-air sites.” Following this discussion are some conclusions and a transition to 

a journal manuscript based on a more limited comparison. Results of these analyses are 

provided in the following chapter.  

Resampling Results 

The resampling curves for all dimensions of analysis are located in Appendix B, 

and summarized below in Table 7. A majority of dimensions in the technological and 

rock physical properties classifications were sufficient for intersite comparisons across all 

sites, generating mostly Rank 1 or 2 curves. The functional classification data was found 
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to be generally unrepresentative in all assemblages, and insufficient for intersite 

comparisons, generating mostly Rank 3 curves.  

Table 7. Ranking of Resampling Curves for All Dimensions of All Assemblages 

Dimension of Analysis 45PI043 45PI303 45PI406 45PI408 45PI429 

Fragment Type 1 2 3 3 1 

Amount of Cortex 1 1 1 1 2 

Presence of Wear 1 1 1 1 1 

Other Modification 1 1 2 3 1 

Material Types 1 1 1 1 1 

Platform Types 1 2 3 1 3 

Completeness 1 1 1 1 1 

Thermal Alteration 1 1 1 1 1 

Complexity of Dorsal Surface 1 1 1 1 1 

Reduction Class 1 1 1 1 1 

        

Kind of Wear 3 3 3 3 1 

Location of Wear 3 1 3 3 3 

Wear Shape 1 1 3 3 3 

Orientation of Wear 1 1 3 3 1 

            

Groundmass 1 1 1 3 1 

Solid Inclusions 1 1 1 1 1 

Void Inclusions 1 1 1 1 1 

Distribution of Solid 1 1 1 1 2 

Distribution of Void 1 1 3 1 3 

 

Collapsed Site Type Results 

Focusing on the dimensions related directly to the site type expectations, the 

general trends of the rockshelter versus open-air site type analyses support the Burtchard 

(1998) site type expectations (Tables 8 and 9). The frequency differences between open-

air and rockshelter sites for biface and flake/flake fragment modes of the object type 

dimension were insignificant, or random differences. Cores were significantly 

overrepresented at open-air sites and significantly underrepresented at rockshelter sites. 

The high representation of cores found here is what would be expected at a repeatedly 

used basecamp setting (open-air site). The low representation of cores found at the 
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rockshelter sites is what would be expected with the restricted tool kit used on short-term 

forays to limited-task field or hunting camps (rockshelter sites). 

Table 8. Rockshelter vs. Open-Air Comparisons where H0 is Rejected   

 

 

 

 

 

Table 9. Collapsed Site Type Frequencies and Adjusted Residuals Where H0 is Rejected  

Dimension Mode 
Rockshelter Sites Open-Air Sites  

Count Residuals Count Residuals 

Object Type 

Bifaces 58 1.59 92 -1.59 

Flakes/Flake Fragments 2574 0.69 5296 -0.69 

Cores 5 -3.86 52 3.86a 

Completeness 

Whole Flake 643 29.75 212 -29.75 

Broken Flake 884 7.03 1557 -7.03 

Flake Fragment 925 -19.38 3459 19.38 

Debris 168 2.60 298 -2.60 

Other 69 -11.11 560 11.11 

Reduction 

Class 

Initial 42 3.03 23 -3.03 

Intermediate 179 -9.44 439 9.44 

Terminal 1029 0.80 1181 -0.80 

Bifacial Reduction/Thinning 262 9.20 123 -9.20 

Bifacial Resharpening 33 -0.47 43 0.47 

Platform Type 

Simple 149 -13.21 497 13.21 

Faceted 321 -1.24 405 1.24 

Bifacial Unfinished 177 7.81 77 -7.81 

Bifacial Unfinished, w/ Wear 11 -1.49 22 1.49 

Bifacial Finished 86 4.85 42 -4.85 

Bifacial Finished, w/ Wear 23 -0.03 27 0.03 

Pressure Flakes  726 5.87 666 -5.87 

Thermal 

Alteration 

No Heating 85 -14.64 820 14.64 

Lustrous/Non-Lustrous 553 20.92 354 -20.92 

Lustrous Only 1664 2.13 3619 -2.13 

High Temperature Alteration 387 -7.52 1293 7.52 

 a 
Values in bold are statistically significant contributors towards rejection of null hypothesis 

Dimension df 
Critical 

Value 
χ2.05 (p) 

Collapsed Site Type Comparisons  

Chi-

Square 

(χ2) 

Cramér's 

V 

Actual 

p-value 
Rejects H0? 

Object Type 2 5.99 17.26 0.05 < 0.01 Yes 

Completeness 4 9.49 1143.33 0.35 < 0.01 Yes 

Reduction Class 4 9.49 157.09 0.22 < 0.01 Yes 

Platform Type 6 12.49 241.33 0.28 < 0.01 Yes 

Thermal Alteration 3 7.82 632.36 0.27 < 0.01 Yes 
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All differences in representation of the modes in the completeness dimension 

were statistically significant, or non-random differences (Table 9, complete statistics in 

Appendix C). Whole flakes, broken flakes, and debris are overrepresented at the 

rockshelter sites, and underrepresented at the open-air sites. Flake fragments and “other” 

types (e.g. bifaces, cores, etc.) were underrepresented at the rockshelter sites and 

overrepresented at the open-air sites. Using the proportions of modes from the 

completeness dimensions, the upper components of open-air sites 45PI406, 45PI408, and 

45PI429 were classified as assemblages representative of the technological organization 

Group II, or tool manufacture, by Ferry (2015) (per Sullivan and Rozen 1985). When the 

proportions from 45PI043 and 45PI303 are collapsed together as the rockshelter 

assemblage, the proportions closely resemble Group II, tool manufacture (Sullivan and 

Rozen 1985).  

Differences between the frequencies of the dimension reduction class modes of 

terminal and bifacial resharpening were random (Table 9). Differences between the initial 

mode and bifacial reduction/thinning mode at each site type were significant; both two 

reduction classes were overrepresented at the rockshelter sites, and underrepresented at 

the open-air sites. The intermediate reduction class was significantly underrepresented at 

rockshelter sites and significantly overrepresented at open-air sites. The high 

representation of bifacial reduction and thinning reduction class flakes at the rockshelter 

sites suggests a focus on late stage reduction of lithic materials. The high representation 

of initial reduction class flakes could be due to expedient use of locally available 

materials, as the initial reduction class means there is cortex on the dorsal surface, and no 

scaling of negative flake scars on dorsal surface. The high representation of intermediate 
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flakes found at the open-air sites can be explained by the more intensive core reduction 

which is expected to take place at these locations, and is supported by the 

overrepresentation of the object type of cores at these sites, as well.   

Three of the modes from the platform type dimension (Table 9) showed only 

random differences: faceted, bifacial unfinished with wear, and bifacial finished with 

wear. The simple platform type was significantly underrepresented at the rockshelter sites 

and significantly overrepresented at the open-air sites. Bifacial unfinished, bifacial 

finished, and pressure flake platform types were all significantly overrepresented at the 

rockshelter sites and significantly underrepresented at the open-air sites. These 

differences suggest that there was, as predicted, more of a focus on late stage reduction of 

lithic materials and tool maintenance at the rockshelter sites compared to the open-air 

sites. 

The dimension of thermal alteration showed statistically significant differences 

across all modes at the rockshelter and open-air sites. The no heating and high-

temperature alteration modes were underrepresented in the rockshelter assemblages and 

overrepresented in the open-air assemblages. The lustrous/non-lustrous flake scar and 

lustrous flake scar only modes were overrepresented in the rockshelter site assemblages 

and underrepresented in the open-air site assemblages. It is reasonable to assume that one 

of the many residential camp activities performed at the open-air sites could be heat-

treatment of tool stone which could be an explanation for why untreated objects and over-

heat treated objects are more highly represented at the open-air sites assemblage than the 

rockshelter sites assemblage. Results from the analysis of another dimension, reduction 

class, can be used to aid in the interpretation of thermal alteration at these sites. It is 
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likely that heat treatment would occur to material after the cortex has been removed. 

These heat-treated intermediate flakes can then be worked more easily, and transported as 

a prepared material. This could explain the increase in lustrous only and lustrous/non-

lustrous flake scars at the rockshelter sites, which also lacked cores as discussed above.  

The functional paradigm yielded the least representative samples from both site 

types; indicating that the data are insufficient for performing statistically significant 

intersite comparisons, however by looking at the number of filled functional classes at 

each site typeone can gain a general understanding of how lithics were used. There are 

nearly three times as many filled functional classes the residential open-air sites than at 

the rockshelter sites; indicating that there was less limit to the activities, or function, at 

the open-air sites, as expected. 

Comparisons of Un-Collapsed Site Assemblages 

The assemblages were also compared amongst their site type; Fryingpan 

Rockshelter site 45PI043 was compared to Berkeley Rockshelter site 45PI303; and 

Tipsoo Lake site 45PI406, Sunrise Ridge Borrow Pit site 45PI408, and Forgotten Creek 

site 45PI429 were compared to each other to determine the validity of assemblage data 

collapse by site type (Appendix C).  

When the two rockshelter sites were compared to each other, the null hypothesis 

was rejected for ten of the possible eighteen dimensions analyzed. That is, there were 

only random differences between eight of the dimensions between the two rockshelter 

assemblages, while the differences between the rockshelter assemblages were non-

random for ten of the dimensions. These statistically significant non-random differences 

between the two rockshelter sites imply that despite sharing similarities across some 
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dimensions of analysis, significant difference exists between the sites classified as 

limited-task hunting or field camps. 

When all five sites were compared to each other as unique assemblages, 

rockshelter sites 45PI043 and 45PI303 were similarly over- or under-represented together 

in a total of seventy-eight of the ninety-two modes represented in the assemblages. Fifty 

of these modes with shared directionality (similar over- or under-representation) were 

statistically significant, and twenty-eight of them had mixed statistical significance while 

still trending the same direction (similarly over- or under-represented). The null 

hypothesis was rejected in all eighteen dimensions for the comparison across all five 

assemblages. These significant differences between the open-air sites could be due to 

extraneous variables about each site, incorporating variables that cannot be accounted for 

in this analysis and therefore make the assemblages appear unique. Tipsoo Lake site 

45PI406, for example; is a stratigraphically mixed site, and may include artifacts from a 

period before the MR-C event. 45PI429 is located on the western flank of Rainier, and 

may have been exposed to different environmental or functional variables.  

Further discussion of un-collapsed site assemblages continues in the journal 

manuscript in the following chapter. 

 

Discussion and Recommendations 

Some elements of this analysis were not able to be achieved, or were limited due 

to uncontrollable factors. A closer investigation into cost and performance could be made 

with a more thorough understanding of material type distribution among the assemblages, 

and of local toolstone geology. This topic and others are discussed below, as well as in 



 

49 

the following journal article manuscript, and recommendations are made for future 

research. 

Material type has been analyzed at all five sites in a very coarse-grained fashion 

(Figure 6). All five sites are dominated by chert, and have a small presence of igneous 

materials. 45PI406 and 45PI408 have both obsidian and other materials present in their 

collections. This overall greater variability at the open-air type sites does fit expectations. 

There was no obsidian found at either rockshelter site, and none found in the assemblage 

of the open-air 45PI429 site. There is, however, obsidian in the open-air 45PI429 below 

MR-C component, which is not included in this study, however its presence is of note. 

 

Figure 6. Distribution of material type. Coarse-grained classification at rockshelter sites 

(45PI043 and 45PI303) and open-air residential sites (45PI406, 45PI408, and 45PI429).  

 

An attempt has been made to create a finer-grained material classification to 

examine the variability in chert present in upland lithic assemblages (Lewis 2015:138). 

This twenty-eight mode material type dimension, the Lewis Type, assumes that rocks that 

resemble each other in groundmass, color, and opacity, came from similar geological 
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contexts (Lewis 2015:50, 138). An additional mode, green, was added during this 

analysis. Looking solely at the frequency of Lewis Types at rockshelter sites 45PI043 and 

45PI303 (Figure 7) indicates a much larger representation of modes 9 and 10, brown 

mottled translucent, and red brown/black opaque, at 45PI043. Lewis Type is distributed 

more evenly at 45PI303, the most unique representation at 45PI303 is mode 19, clear 

translucent (Table 10).  

 

Figure 7. Distribution of Lewis Types at 45PI043 and 45PI303. 

 

Table 10. Lewis Type Key 
1. Black Opaque and Translucent 16. Pink Mottled 

2. Solid White Opaque and Translucent 17. Yellow 

3. Mottled White Opaque and Translucent 18. Blue/Brown Translucent 

4. White and Grey Opaque 19. Clear Translucent 

5. Light Brown Mottled opaque and translucent 20. Quartz Crystal 

6. Light Brown Translucent 21. Obsidian 

7. Grey Mottled Opaque and Translucent 22. Light Grey/Black Opaque 

8. Brown Translucent 23. Purple 

9. Brown Mottled Translucent  24. Light Brownish White  

10. Red Brown/Black Opaque 25. Light Pink (Mottled) 

11. Red Mottled Translucent 26. Metasediment 

12. Red/Brown Translucent and Opaque 27. Petrified Wood 

13. Dark Grey Translucent and Opaque 28. Unknown Material 

14. Orange/Brown Translucent 29. Green 

15. Orange Mottled Translucent and Opaque   
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The Lewis Type was not recorded consistently or in a fashion that permits direct 

comparison for artifacts from the 45PI406 and 45PI429 assemblages. The rock physical 

property characteristics needed to record a Lewis Type were recorded for these sites, and 

could be systematically converted. The Lewis Type is recorded for only a portion of the 

45PI408 collection (n=832). Unfortunately, a data recording and entry error in the 

45PI408 assemblage has created issues that affect the operationalization of this 

dimension for looking closely at chert variability across site types. Fortunately, the error 

appears to be systematic and should be confidently resolvable.  

To look more closely at chert variability across upland lithic assemblages, I 

recommend that an attempt be made to classify or correct the 45PI406, 45PI408, and 

45PI429 assemblages into Lewis Types. Doing so would allow for not only a finer 

resolution of analysis across material type, but would allow for an analysis of intersecting 

variables based on this fine resolution material dimension. This could be helpful for 

looking at object type such as bifaces, or platform types. In addition, I, like Lewis 

(2015:145), recommend effort be taken to develop more of an understanding of lithic 

material source characteristics and locations that surround Mount Rainier. 

In addition, it should be noted that potential bias in this study may have been 

introduced by minimum limits of the scale used to weigh artifacts. In the assemblages 

from 45PI043 and 45PI303, flakes recorded as 0.01 grams were actually less than or 

equal to 0.01 grams, to avoid recording flakes less than 0.01 grams as having no weight. 

It is also possible that these less than 0.01 gram flakes when recorded as simple platform 

types, could actually be pressure flakes. Furthermore, in an effort to prevent sampling 

bias, many flakes that were less than 1/8th inch in maximum dimension were removed 
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from the sample of 45PI043 and 45PI303 assemblages using geological nested screens. 

The density of lithic debitage is another analytical focus that could be investigated 

productively. A bivariate plot of artifact frequency and artifact density could show 

potential relationships or trends between these variables.  

Lastly, all results are limited by sample size. Further excavation at 45PI429, as 

recommended by Ferry (2015:80), might be helpful in assessing the technological and 

functional traits of open-air sites. In addition to 45PI429, there are other high-elevation 

sites in the Park and Washington Cascades that could be investigated to learn more about 

upland land use. I recommend that any further artifacts be analyzed using the 

paradigmatic lithic classification used here to generate replicable and comparable 

dimensions of analysis. Following the statistical protocol used here, rather than focusing 

solely on observed frequencies of lithic traits, can help to mitigate issues associated with 

smaller sample sizes (Lewis 2015:134).  

In summary, this thesis has been successful in attempting to determine the context 

of rockshelter site type assemblages within the greater scheme of upland lithic technology 

and function. Through this, it has been possible to determine that the composition of a 

rockshelter assemblage is not the result of a unique adaptation, but rather are subsets of 

larger, open-air site lithic assemblages; in other words, a limited suite of the same types 

of activities going on at open-air sites were performed at the rockshelter sites. Further 

research into lithic technology and function across space and site type could reveal more 

about the selective conditions under which this lithic industry was created.  

The results of these analyses suggest that while the two rockshelter sites (45PI043 

and 45PI303) are not similar in all respects, they are not entirely dissimilar from each 
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other when compared to open-air sites 45PI406, 45PI408, and 45PI429, or in other 

words, significant variation exists between the sites classified as limited-task hunting or 

field camps. This called for a finer-grained focus to investigate how the two rockshelter-

type site assemblages vary when compared to an assemblage from a nearby, 

contemporaneous, open-air site type (45PI408, the Sunrise Ridge Borrow Pit). This 

meant removing Forgotten Creek site (45PI429) located furthest from the others, and 

Tipsoo Lake site (45PI406) with mixed stratigraphic integrity. Frequencies were then 

compared in two independent permutations: the 45PI043 assemblage to the above MR-C 

component of 45PI408, and the 45PI303 assemblage to the above MR-C component of 

45PI408. Discussion and results of this more restricted analysis are included in the 

following chapter, which is a manuscript that will be submitted for publication. 
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CHAPTER VI 

ARTICLE 

INVESTIGATING ROCKSHELTER LITHIC TECHNOLOGY AND FUNCTION USING 

PARADIGMATIC CLASSIFICATION ON THE SLOPES OF MOUNT RAINIER 

 

This manuscript will be submitted to Journal of Northwest Anthropology for 

publication after acceptance by the CWU School of Graduate Studies and Research. It 

was coauthored by Caitlin Limberg, committee chair Patrick McCutcheon, and 

committee member Greg Burtchard. The final manuscript, if accepted, may result in 

differences after editorial and peer-review commentary. The manuscript of the article 

begins on the following page.  
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INVESTIGATING ROCKSHELTER LITHIC TECHNOLOGY AND FUNCTION USING 

PARADIGMATIC CLASSIFICATION ON THE SLOPES OF MOUNT RAINIER 

 

Caitlin Limberg, Patrick T. McCutcheon, and Greg Burtchard 

 

ABSTRACT 

 Two sites from the Late Holocene period, the Fryingpan and 

Berkeley Rockshelters, are analyzed to test Burtchard’s prediction that 

rockshelter sites on the slopes of Mount Rainier were used for a more 

limited activity set than some larger open-air sites. Rockshelter sites are 

thought to be places of short-term occupancy consistent with hunting and/or 

overnight residence activities. Large open-air sites with relatively dense and 

materially diverse lithic artifacts are thought to be longer-term residential 

base camps. Technological and functional paradigmatic lithic 

classifications are used to measure how the two rockshelter sites vary and 

compare to the larger, open-air Sunrise Ridge Borrow Pit site. Non-random 

associations of data frequencies across technological variables exhibited by 

the lithic assemblages determined that rockshelter lithic assemblages are 

representative of a truncated range of variability compared to an open-air 

site assemblage.  

Introduction 

Burtchard’s (1998:112-120) archaeological site taxonomy model proposes 

functional, content, and location expectations for archaeological site types found on the 

slopes of Mount Rainier. Rockshelter site types are included among his Limited-task 

Field or Hunting Camps category (Burtchard 1998:113-114), and were used as places of 

short-term residence for small hunting groups.  Burtchard suggest that tasks performed at 

field camp sites were limited to direct or indirect associations with hunting or overnight 

residence, including moderate butchering and cooking activities. Late stage debitage and 

light tools (e.g., cores, bifaces, flake tools, and projectile points) are expected to dominate 

rockshelter site type lithic assemblages. Heavy stone tools (e.g., hammer and grinding 

stones) and early stage reduction of locally available tool stone raw materials may occur 
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in low frequency in these site types, while debitage from stone tool maintenance, repair, 

and late stage manufacture would be expected in a higher frequency. Rockshelter site 

types may have associated features like fire hearths and/or stacked stone walls for 

windbreaks. Rockshelter site types are found generally in subalpine contexts, where their 

formation is dictated by geology. Recent analyses indicate Burtchard’s (1998:112-120) 

predictions for rockshelter sites appear to be correct (Andrews et al. 2016). However, it is 

not yet known how rockshelter site type lithic assemblages compare to larger, open-air 

site types that are not constrained by small spaces.  

Burtchard (1998:112-113) suggests that several large open-air sites on Mount 

Rainier supported longer-term residential groups, and thus were associated with more 

types of functionally varied activities. Lithic assemblages from sites classified as Multi-

task, Mixed Group, Residential Base Camps or Residential Field Camps (Burtchard 

1998:112-113) should be diverse; consisting of heavy and light tools, a high density of 

debitage from various stages of manufacture, and high raw material variability. Hearth 

features, and features associated with smaller limited-task sites (including rockshelters), 

and from plant and animal processing locations also should be found at open-air 

residential base camps (Burtchard 1998). These base camp locations are expected to be 

found in upper forest to lower sub-alpine settings, which provide the most effective 

access to upland resources while maintaining more stable and predictable weather 

conditions (Burtchard 1998:113). 

 If limited-task field camps genuinely represent differential use of the upland 

landscape than residential base camps, then the organization of technology at these 

contrasting locations also should differ in quantifiable, if subtle, ways. Using 



 

57 

paradigmatic classification, a high-resolution lithic analysis, these subtle differences can 

be hopefully be identified. By assessing the degree to which lithic assemblage 

technological and functional traits vary between large upland open-air (ostensibly 

residential base camp) sites and rockshelter limited-task field camp sites, this research 

will contribute towards the regional knowledge of how people used upland environments 

differently in the past.  

Study Sites  

 This research focuses on three archaeological sites found in the northeast quadrant 

of Mount Rainier National Park (Figure 1; Table 1); two rockshelter sites, Fryingpan 

Rockshelter (45PI043) and Berkeley Rockshelter (45PI303) will be compared to the 

open-air Sunrise Ridge Borrow Pit site (45PI408).  

 

 

 

Figure 1. Location of archaeological sites within Mount Rainier National Park, 

Washington State (base map provided by ESRI).   
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TABLE 1. ARCHAEOLOGICAL SITE AND ASSEMBLAGE INFORMATION 

Site 
Volume 

Excavated (m3) 

Site Size 

(m2) 

Sample 

Size 
Site Age 

45PI043 – Fryingpan Rockshelter 2 36 1,593 250 to 1150 B.P. a 

45PI303 – Berkeley Rockshelter 1.5 100 1,096 290 to 1070 B.P. b 

45PI408 – Sunrise Ridge Borrow Pit 34.14 2,550 4,601 100 to 4,086 cal. B.P. c 
a From Lubinski and Burtchard 2005 
b From Bergland 1988 
c From McCutcheon et al. 2017 (in prep) 

 

Fryingpan Rockshelter (45PI043) 

The Fryingpan Rockshelter site (45PI043) is a single north-facing overhang set 

into an andesite cliff at 1646 m (5400 ft) elevation above sea level (Rice 1965:1-3; 

Burtchard and Hamilton 1998:9-10; Lubinski and Burtchard 2005:35).  

45PI043 was located during the first formal archaeological resource survey of the 

Park in 1963 (Burtchard 1998:51; Daugherty 1963) and first excavated in 1964 (Rice 

1965). In Rice and Nelson’s 1964 excavation, artifacts were recovered from one 1.25 x 

1.85 m excavation unit that was 40 cm deep (Lubinski and Burtchard 2005:36; Rice 

1965). Possible looting at the site was noted when the site was revisited and tested in 

2001. During the 2001 project, backfill from the original test unit was removed and 

rescreened with 1/8-inch mesh screen; as well as a pile of fill that had been removed by 

possible wrong-doers (Lubinski and Burtchard 2005:36). In addition, two new 50 x 60 x 

94 cm units were excavated adjacent to the original unit, and the original unit was 

excavated an additional 20 cm to confidently reach the range of culturally relevant 

sediments (Lubinski and Burtchard 2005:36). A calculation of volume excavated is 

approximately 2 cubic meters. All artifacts from 45PI043 were recovered above the MR-

C tephra layer. Deposits at the site date between 250 ± 40 14C years B.P. and 1150 ± 40 

14C years B.P. (Lubinski and Burtchard 2005:37). More recent radiocarbon assay of 
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charcoal and calcined bone samples from one of two hearth features indicate use  

approximately 529 to 314 cal. B.P. (Chatters et al. 2017) consistent with the previously 

established range. Over 1,900 lithic artifacts were recovered from the site, of which 1,593 

chipped stone tools and flakes were 1/8-inch and greater in size and were analyzed for 

this study.   

 

Berkeley Rockshelter (45PI303) 

The Berkeley Rockshelter site (45PI303) contains two double-ended rockshelters 

formed under three large granodiorite boulders at an elevation of 1719 m (5640 ft) 

(Bergland 1988:3). 45PI303 was excavated in 1987; and all visible historic and lithic 

surface artifacts were collected. One 1 x 1 m excavation unit was set into the lower 

shelter, and one 50 x 50 cm unit was placed in the upper shelter (Bergland 1998:7). In 

2002, one constant volume sample (CVS) test unit (after Burtchard and Miss 1998), and 

an additional 1 x 0.5 m excavation unit was placed in the lower shelter (Andrews et al. 

2016). Radiocarbon samples from 45PI303 show multiple discrete occupations, dating to 

as early as 1070 ± 90 B.P.  (Bergland 1988:33), and all artifacts were recovered from 

above the MR-C volcanic layer. In total, approximately 1.5 cubic meters have been 

excavated at 45PI303. 

1,709 lithic artifacts were collected from 45PI303. A subsample of the collection 

of lithic artifacts was recently analyzed using a six-stage system developed by Jeffrey 

Flenniken (1981) (Andrews et al. 2016). Andrews et al. (2016:176) focused on only 

formed tools and 585 flakes, which were deemed to be “technologically diagnostic.” 

Andrews et al. (2016) concluded that the lithic assemblage from 45PI303 does fit the 
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limited suite of activities associated with a field hunting camp. Specifically, Andrews et 

al. (2016:184) conclude that functions at the rockshelter focused primarily around 

projectile point repair/maintenance and arrow shaft creation/maintenance.  

The analytical dimensions of the Andrews et al. (2016) study were not directly 

comparable with those used for this research. In order to answer the research questions 

posed in this study, a new lithic dataset was generated by analyzing 1,096 flakes and 

tools from 45PI303. Flakes less than 1/8 inch in size (n=613) were removed from the 

sample and were not analyzed for this study.  

 

Sunrise Ridge Borrow Pit (45PI408) 

The Sunrise Ridge Borrow Pit (45PI408) is a natural south-facing mid-slope 

bench or glacial kame terrace (McCutcheon and Dampf 2002). Sunrise Ridge Borrow Pit 

is located on the eastern slope of Mount Rainier at an elevation of 1310 m (4300 ft) 

above sea level.  

Most recently, testing and excavation at 45PI408 has been the focus of research 

for Central Washington University’s field schools directed by Dr. Patrick McCutcheon. 

The site was first recorded by Rick McClure in 1990, and documented again by 

Burtchard and Hamilton in 1995 (see Burtchard 1998:57). Systematic efforts to document 

the scope of artifacts horizontally and vertically at the site began in 1997 with the first of 

the CWU archaeological field school projects. Over the course of five archaeological 

field schools, 182 subsurface test pits were conducted at the site; test pits were excavated 

as CVS units and as 50 x 50 cm square units (Dampf 2002:15-16; McCutcheon and 

Dampf 2002:19-20; Lewis 2015:22-23; McCutcheon 1999:14). From 2011 through 2013, 
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field schools resumed at 45PI408, focusing on data recovery in large block excavation. 

During this time, nineteen 1 x 1 m units were excavated by naturally occurring 

depositional layers (Lewis 2015:23). A total of 15,459 chipped stone artifacts were 

recovered over the eight years of investigations at 45PI408, and 34.14 cubic meters of 

sediment was excavated. The site is well-stratified, has both above and below MR-C 

components, and has numerous radiocarbon and luminescence dates ranging from 4,086 

to 100 cal. years BP (McCutcheon et al. 2017, in preparation).  

The Sunrise Ridge Borrow Pit site has been tentatively classified as a multi-task, 

mixed group, residential base camp (Burtchard 1998:113). A subset of 4,601 of the 

recovered lithic artifacts from 45PI408 are from above the MR-C unit. Analytical data 

generated for this assemblage has been the focus of several research projects and was the 

undertaking of many students throughout the years (Dampf 2002; Davis et al. 2016; 

Lewis 2015; McCutcheon et al. 2017, in prep; Vaughn 2010).   

Methods  

This project involved new analysis of lithics from two rockshelter sites (45PI043 

and 45PI303), and comparison of this data to previously-generated data from the Sunrise 

Ridge Borrow Pit Site (45PI408). Analytical data from all three sites was generated using 

the same methodological paradigm; involving recording attributes in a matrix of variables 

organizing the concepts of cost and performance developed by McCutcheon (1997). Here 

we discuss these concepts and the paradigmatic classification employed in this study, 

followed by statistical methods and hypotheses to be tested. 

The cost of stone tool manufacture refers to the amount of energy needed to 

produce an artifact. Four sub-variables of cost, material acquisition, material preparation, 
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tool manufacture, and tool durability, allow for the interpretation of lithic assemblage 

variation (McCutcheon 1997:209-211).  These elements are measured by reference to the 

form and abundance of raw materials, the distance between areas of lithic material 

procurement and places of lithic manufacture and use, and the amount of energy 

expended in the manufacture and use of tools. With all else being equal, lower cost 

materials will have a selective advantage in pre-contact use over that of higher cost 

materials. 

The performance level of the produced tool can offset the cost of producing lithic 

technology. Performance refers to the use of a stone tool, or the work done by an object 

as it interacts in its environment (McCutcheon 1997:211-213). The performance of a tool 

was measured by three sub-variables: rock physical properties, tool requirements, and 

technology. The interrelationships between these sub-variables greatly affects the 

durability, manufacture, and use of a stone tool, as different functional requirements 

influence the technologies and materials utilized (Dunnell and Campbell 1977). When 

variation found in archaeological assemblages does not fit the expected variation driven 

by natural selection, cultural transmission may provide an alternative explanation for the 

occurrence of these traits. This cost-performance model is used to answer the research 

question: are the selective conditions under which past people made and used stone tools 

different across site types on Mount Rainier? (Figure 2). 
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Figure 2. Cost and performance model (adapted from McCutcheon 1997: Figure 60). 

 

The cost and performance model is operationalized into technological, functional, 

and rock physical property lithic analysis paradigms (Table 2). The technology paradigm 

focuses on dimensions that define stone tool technological classes. The functional 

paradigm focuses on macroscopic wear attributes to identify object function (Dancey 

1973; Dunnell and Lewarch 1974; McCutcheon 1997). The dimensions of the rock 

physical properties classification focus on the macroscopic properties of tool stone that 

affect the mechanics of fracture (McCutcheon and Dunnell 1998).  

A fourth paradigmatic classification (Carter 2002) is used to classify complete 

projectile points through a morphology-based dichotomous key.  
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TABLE 2. PARADIGMATIC CLASSIFICATIONS, DIMENSIONS, AND MODES 

Paradigmatic 

Classifications 
Dimensions Modes 

Technology Object Type Biface, Flake/Flake Fragment, Chunk, Cobble, Core, Spall 

 
Amount of Cortex Primary, Secondary, Tertiary, None 

 
Wear Absent, Present 

 
Other Modification None, Flaking, Grinding, Pecking, Incising, Other 

 
Material Type Chert, Obsidian, Igneous, Other 

 

Platform Type Cortex, Simple, Faceted, Bifacial Unfinished, Bifacial 

Unfinished w/ Wear, Bifacial Finished, Bifacial Finished 

w/ Wear, Potlids, Fragmentary, Not Applicable, Pressure 

Flakes, Technologically Absent 

 

Completeness (following 

Sullivan and Rozen 1985) 

Whole Flake, Broken Flake, Flake Fragment, Debris, Other 

 

Thermal Alteration No Heating, Lustrous/Non-Lustrous Flake Scars, Lustrous 

Flake Scars Only, High Temp. Alteration 

 

Complexity of Dorsal 

Surface 

Simple, Complex, Not Applicable 

 

Reduction Class Initial, Intermediate, Terminal, Bifacial 

Reduction/Thinning, Bifacial Resharpening, Not 

Applicable  

Function Kind of Wear Chipping, Abrasion, Crushing, Polishing, None 

 

Location of Wear Angular Point, Angular Edge, Angular Plane, Curvilinear 

Point, Curvilinear Edge, Curvilinear Plane, Non-Localized, 

None 

 

Shape or Plan of Wear Convex, Concave, Straight, Point, Oblique Notch, Acute 

Notch, None 

 

Orientation of Wear Perpendicular to Y-Plane, Oblique to Y-Plane, Variable to 

Y-Plane, Parallel to Y-Plane, No Orientation, None  

Rock Physical 

Properties 

Groundmass Uniform, Bedding Planes, Concentric Banding, Mottled, 

Granular, Oolitic 

 
Solid Inclusions Present, Absent 

 
Void Inclusions Present, Absent 

 

Distribution of Solid 

Inclusions 

Random, Uniform, Structured, None 

 

Distribution of Void 

Inclusions 

Random, Uniform, Structured, None 

 

 Statistical hypothesis testing was used in this study to determine if evidence for 

significant non-random associations were found in the samples from 45PI043, 45PI303 

and 45PI408, across site types. Following  Leonard and Jones (1989:2) diversity was 

measured in terms of richness (the number of functional and technological classes 
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represented in the assemblages); and evenness (the manner in which artifacts are 

distributed among the technological and functional classes).  

To determine whether the richness and evenness of the samples are representative 

of a population, a computer-based statistical technique known as resampling was used to 

compare the shape and characteristics of frequency counts within the resampling curves 

(after McCutcheon 1997:290; Vaughn 2010). To determine what differences/similarities 

exist among the sites, a stepwise analytical approach was followed. The statistical 

approach consists of first testing for associations among sites using a chi-square test, 

followed by an analysis of residuals if significant non-random associations were found.  

Finally, Cramér’s V identifies the strength of non-random associations.  

Site Type Expectation Hypotheses 

While eighteen dimensions of lithic technology, function, and rock physical 

properties were recorded for each artifact, not all of these dimensions can be 

utilized for comparison of the archaeological record. In this study, expectations 

for the lithic assemblages from rockshelter and open-air sites derive from five 

dimensions: object type, completeness and reduction class, platform type, and 

thermal alteration. When a Chi-Square value rejects the null hypothesis, 

indicating significant differences between assemblages, modes can be identified 

that reveal a focus on a particular lithic industry. Expectations about functional 

traits of the assemblages can be assessed by focusing on the number of filled 

functional codes at each site. How these site-type expectations can be determined 

from the dimensions and modes of analysis in this study are outlined below.1. 

Object Type: Because rockshelter sites are expected to be limited-task field or 
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hunting camps, it is expected that light tool object types such as bifaces and a low 

frequency of cores should be highly represented (Burtchard 1998:113). Open-air, 

residential field camp assemblages, 45PI408 in this study, are expected to be 

varied with both light and heavy tools, with a high density of debitage (Burtchard 

1998:113).  

2. Completeness and Reduction Class: The dimension of completeness (following 

Sullivan and Rozen 1985) distributed the assemblages into five modes: whole 

flake, broken flake, flake fragment, debris, and other. Based on the proportion of 

these modes, the assemblages can be classified into technological categories. 

Sullivan and Rozen (1985:763) identify four technological group categories:  un-

intensive core reduction (IA), tool manufacture (II), intensive core reduction (IB2) 

and core reduction and tool manufacture (IB1). 

The completeness dimension is not used to form expectations about site 

types, however it does directly influence the data in the reduction class dimension.  

Only flakes that retain their original point of impact (whole and broken flakes) 

can be placed into a reduction class. Because open-air residential site types are 

expected to be places where a wide-range of activities took place, it is expected 

that a more even distribution amongst the stages of reduction will be present in 

the 45PI408 assemblage. Because the activities at rockshelter sites should be 

limited to only late stage and retouch activities, the assemblages should show an 

overrepresentation of flakes from the terminal, bifacial reduction/thinning and 

bifacial resharpening modes.  
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3. Platform Type: The platform type dimension focuses on the point of impact 

which was struck to cause flake removal. Only flakes with completely intact 

platforms can be assigned a platform type; flakes that do not retain some or any of 

their platform are assigned to the fragmentary mode, and tools are classified as 

not applicable.  

The activities related to creating the lithic assemblages found at 

rockshelters should be focused on tool maintenance, repair, and late stage 

manufacture (Burtchard 1998:113). This should be represented in the platform 

type dimension of the rockshelter assemblages compared to 45PI408 as a higher 

representation of the following modes: faceted platforms, bifacial unfinished 

platforms, bifacial unfinished platforms with wear present, bifacial finished 

platforms, bifacial finished platforms with wear present, and pressure flake 

platforms. 45PI408 should thus show an underrepresentation of the above modes, 

and may show a higher representation in the other modes of the platform type 

dimension: cortex platforms, simple platforms, potlids, fragmentary, not 

applicable, and technologically absent. 

4. Thermal Alteration: Heat treatment of many rocks improves the material as 

toolstone by aiding in more predictable, intergranular crack propagation 

(McCutcheon 1997). While not all rocks are affected the same way, the results of 

heat treatment are flake-scar surfaces that are smooth, and more lustrous than 

scars removed prior to heat treatment (McCutcheon 1997). Over-heated objects 

have incredibly decreased “workability,” and contain large flaws such as 

crenulation, crazing, and potlidding.  
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At 45PI408, it is reasonable to assume that one of the many residential 

camp activities performed could be heat-treatment of tool stone. Untreated objects 

and over-heat treated objects may be greater represented at 45PI408 than the 

rockshelter sites. Objects at the rockshelter sites should be represented highly in 

the lustrous/non-lustrous flake scars mode and the lustrous flake scars mode. It is 

not as likely that there will be as many high temperature alteration (over-heating) 

objects at the rockshelter sites. 

5. Use Wear: There are some challenges to interpreting tool wear because post-

depositional wear and trampling, and excavation and curation wear, can damage 

artifacts with chipping-type damage (Andfresky 2005:197; McCutcheon 

1997:264). To minimize recording false presence of wear caused by post-

depositional damage, chipping wear was recorded only when 5 or more patterned 

overlapping flake scars were present (per McCutcheon 1997:264).  

It is difficult to draw specific expectations about usewear at rockshelter 

and open-air site types without making assumptions about the specific functions 

performed by the tools. Nonetheless, it is reasonable to expect that there will be 

more filled functional classes at 45PI408 than at 45PI043 or 45PI303.   

Results 

When the two rockshelter sites were compared to each other, the null hypothesis 

was rejected for ten of the possible eighteen dimensions analyzed, that is, there were only 

random differences between eight of the dimensions between the two rockshelter 

assemblages, while the differences between the rockshelter assemblages were non-

random for ten of the dimensions. These statistically significant non-random differences 
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between the two rockshelter sites imply that despite sharing similarities across some 

dimensions of analysis, significant variation exists between the sites classified as limited-

task hunting or field camps. 

To investigate how the two rockshelter-type site assemblages vary independent to 

each other, each rockshelter assemblage is compared individually to the same assemblage 

from a relatively nearby, contemporaneous, open-air site type, focusing specifically on 

the dimensions that relate to site type expectations. Lithic frequencies were compared in 

two independent permutations: the 45PI043 assemblage to the above MR-C component 

of open-air site 45PI408, and the 45PI303 assemblage to the above MR-C component of 

45PI408.  

Step 1: Assessing Data for Representativeness 

 Results from resampling indicate that the assemblages from 45PI043, 

45PI303, and 45PI408 were found representative enough (in terms of evenness and 

richness) of a population to be sufficient for intersite assemblage comparisons for most 

recorded dimensions (Table 3).  

Resampling results indicated that the dimension of object type was 

unrepresentative (Rank 3) at 45PI408. The object type dimension was, however, 

representative at 45PI043 (Rank 1) and 45PI303 (Rank 2). While the object types of 

chunks, cobbles, and spalls were also represented in the assemblages, they were not 

included in analysis as they contribute little technological or functional data. Three object 

types were focused upon: bifaces, flakes/flake fragments, and cores. When only these 

three modes of the object type dimension are analyzed for representativeness, all three 

sites generate Rank 1 curves, meaning the data is rich with even class distributions.   
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TABLE 3. RESAMPLING CURVES FOR REPRESENTATIVENESS OF LITHIC 

ASSEMBLAGES  

Classification Dimension 
Curve Ranking 

45PI043 45PI303 45PI408 

Technological  

Object Type 1 2 3 

Platform Types 1 2 1 

Thermal Alteration 1 1 1 

Reduction Class 1 1 1 

Technological Representativeness 100% 100% 80% 

     

Functional 

Kind of Wear 3 3 3 

Location of Wear 3 1 3 

Wear Shape 1 1 3 

Orientation of Wear 1 1 3 

Functional Representativeness       50% 75% 0% 
     Rank 1 and Rank 2 = representative data, Rank 3 = unrepresentative data  

The dimension of reduction class generated Rank 1 curves of representativeness 

for all three sites in this study. Similarly, the assemblages for all three sites were deemed 

acceptable for the dimension of platform type, with rockshelter 45PI043 and open-air 

45PI408 generating Rank 1 curves, and rockshelter 45PI303 generating a Rank 2 curve.  

The dimension of thermal alteration generated Rank 1 curves at all three sites, 

indicating that data was rich and even at all three sites. Because of this, functional 

paradigmatic data will be used to indicate general trends, but interpretations will not be 

made with statistical significance.  

 

Step 2: Detecting Significant Difference 

Statistical tests were run in two independent permutations: the 45PI043 

assemblage to the above MR-C component of open-air site 45PI408, and the 45PI303 

assemblage to the above MR-C component of 45PI408. The detection of meaningful 

differences in the object type, reduction class, platform type, and thermal alteration 
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dimensions allow for an evaluation of results pertaining to site-type expectations from the 

Burtchard (1998) model.  

For all four dimensions, chi-square values generated were higher than the critical 

value from the chi-square distribution table; indicating that differences identified between 

the rockshelters sites and 45PI408 were not random, and thus rejecting the null 

hypothesis (Table 4).  

Cramér’s V values identify the strength of non-random associations between 

variables with a ranking between 0.00 (no relation) and 1.00 (completely related). For the 

dimension of object type, the low value generated in both comparisons indicated a very 

weak relationship between variables. For comparisons across the dimensions of reduction 

class, platform type, and thermal alteration, Cramér’s V values are in the middle range for 

association, indicating that there is a moderate to strong association between variables in 

all three dimensions. 

 

TABLE 4. STATISTICALLY SIGNIFICANT DIFFERENCES PERTAINING TO 

DIMENSIONS RELATED TO SITE TYPE EXPECTATIONS WHERE H0 IS 

REJECTED  

 

Step 3: Identifying Significant Differences 

 Once significant differences were identified by Chi-Squared testing, each 

dimension could be analyzed to identify which modes were driving the meaningful 

Dimension df 
Critical 

Value 
χ2.05 (p) 

45PI043 to 45PI408 45PI303 to 45PI408 

Chi-

Square 

(χ2) 

Cramér's 

V 

Actual 

p-Value 

Chi-

Square 

(χ2) 

Cramér's 

V 

Actual 

p-Value 

Object Type 2 5.99 21.46 0.07 < 0.01 11.37 0.07 < 0.01 

Reduction Class 4 9.49 102.36 0.21 < 0.01 101.97 0.23 < 0.01 

Platform Type 6 12.49 128.49 0.25 < 0.01 115.62 0.26 < 0.01 

Thermal Alteration 3 7.82 567.90 0.30 < 0.01 689.57 0.33 < 0.01 
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differences (Table 5). Any cell that generates an adjusted residual greater than the critical 

value for the 0.05 alpha level (± 1.96) is identified as a mode that contributes 

significantly to the variation in the assemblage. 

 

TABLE 5. ADJUSTED RESIDUALS WHERE H0 IS REJECTED 

Dimension Mode 
45PI408 45PI043 to 45PI408 45PI303 to 45PI408 

Count Count Residuals Count Residuals 

Object Type 

Bifaces 76 24  -0.91 34 2.47a 

Flakes/Flake Fragments 3588 1532 3.42 1042 -0.64 

Cores 52 0  -4.53 5 -2.33 

Reduction 

Class 

Initial 15 34 3.72 8 0.47 

Intermediate 272 138 -4.37 41 -7.27 

Terminal 905 620 -3.68 409 1.21 

Bifacial Reduction 73 166  8.61 9 7.86 

Bifacial Resharpening 23 27 1.54 6 -1.14 

Platform 

Type 

Simple 288 103  -7.94 46 -7.51 

Faceted 263 234  1.38 87 -2.71 

Bifacial Unfinished 55 102  5.39 75 6.89 

Bifacial Unfin., wear 17 9  -1.01 2  -1.93 

Bifacial Finished 22 63  5.63 23 2.98 

Bifacial Fin., wear 8 18  4.13 5 0.60 

Pressure Flakes 551 427  -0.62 299  3.82 

Thermal 

Alteration 

No Heating 696 70  -11.22 15  -12.39 

Lustrous/Non-Lustrous 161 282  18.96 271 23.85 

Lustrous Only 2532 1044  7.31 620  0.91 

High Temp. Alteration 1211 197  -11.46 190  -6.21 
aValues in bold indicate statistically significant contributors to rejection of null hypothesis  

 

Object Type 

An analysis of the residual value of each cell indicates that not all cells are 

significant contributors to the rejection of the null hypothesis. While bifaces are 

underrepresented at 45PI043, the amount of difference is random, and not a statistically 

significant value. The overrepresentation of bifaces at 45PI303 is, however, a significant 

contributor to the rejection of the null hypothesis. Flakes and flake fragments were 
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significantly overrepresented at 45PI043 and insignificantly underrepresented at 45PI303. 

Cores were significantly underrepresented at both rockshelter sites.  

 

Reduction Class and Completeness 

 The initial and intermediate reduction classes were overrepresented and 

underrepresented respectively at both 45PI043 and 45PI303. Focusing on the modes that 

relate to site type expectations, the mode which contributes most significantly to the 

rejection of the null hypothesis is the bifacial reduction/thinning class, which is 

overrepresented at both rockshelter sites. Bifacial resharpening flakes were 

overrepresented in the 45PI043 assemblage and underrepresented in the 45PI303 

assemblage, but only randomly, and not with statistical significance. Terminal flakes 

were significantly underrepresented at 45PI043 and randomly overrepresented at 

45PI303.  45PI043 and 45PI303 are similar in three of the five modes of the reduction 

class dimension, though only two of those are both statistically significant contributors to 

the rejection of the null hypothesis.   

 An analysis of the proportions of modes in the completeness dimension placed the 

sites in technological groups (per Sullivan and Rozen 1985). The assemblage from 

45PI408 can be assigned to Group II, indicative of tool manufacture. Completeness 

proportions at the rockshelter sites vary significantly from the technological group model. 

Because of the high percentage of broken flakes and flake fragments, the rockshelter sites 

could tentatively be placed into Group II, however the dominance of whole flakes at 

45PI043 and broken flakes at 45PI303 is not typical to the model.  
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Platform Type 

 The simple platform type was significantly underrepresented at both 45PI043 and 

45PI303. The underrepresentation of faceted flakes at 45PI303 was significant, while the 

overrepresentation of faceted flakes at 45PI043 was insignificant (random). There was a 

significantly high representation of both bifacial unfinished and bifacial finished flakes at 

the rockshelter sites. Bifacial unfinished flakes with wear were underrepresented at the 

rockshelter sites, though not significantly (randomly). At 45PI043, bifacial finished 

flakes with wear are significantly overrepresented and pressure flakes are insignificantly 

(randomly) underrepresented. At 45PI303, bifacial finished flakes with wear are 

insignificantly (randomly) overrepresented, and pressure flakes are significantly 

overrepresented. 45PI043 and 45PI303 are similar in five of the seven modes of the 

platform type dimension; three of these similarities are from cells that are statistically 

significant contributors towards rejecting the null hypothesis at both sites. 

 

 

Thermal Alteration 

 

 Seven of the eight modes of the thermal alteration dimension were statistically 

significant contributors towards the rejection of the null hypothesis. 45PI043 and 

45PI303 had the same general trend in all four modes, however only three contributed 

significantly across both sites. The modes of no heating and high temperature alteration 

were significantly underrepresented at the two rockshelter sites. Lustrous/non-lustrous 

flakes were highly represented at 45PI043 and 45PI303, and lustrous only flakes were 

also highly represented, though only significantly at 45PI043, and randomly at 45PI303.  
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Use Wear 

 The functional paradigm yielded the least representative samples from all three 

sites; indicating that the data are very uneven, regardless of richness, and thus considered 

insufficient for performing intersite comparisons. Because of this, it is not possible to 

draw statistically significant results from this data.  

One way to assess lithic use wear at the sites without following the statistical 

protocol, however, is to look at the functional characteristics of each dataset (Table 6). 

The number of filled functional classes is representative of how lithics were used and 

shows how many combinations of modes are represented in the data. There are nearly 

three times as many filled functional classes at 45PI408 than at 45PI043 or 45PI303; 

indicating there was less limit to the activities, or function, at the open-air site.  Twenty-

seven of the thirty-six functional codes filled at 45PI408 were unique to that site. Only 

five of the codes were found at all three sites. Five unique codes were found only in the 

45PI043 and 45PI303 assemblages, respectively. Three codes were filled at only 45PI043 

and 45PI408, and only one code was shared between just 45PI303 and 45PI408. 

 

TABLE 6. NUMBER OF FILLED FUNCTIONAL CODES BY SITE 

Site Number of filled Functional Codes % of Possible Codes Filled 

45PI043 13 1.54% 

45PI303 11 1.31% 

45PI408 36 4.28% 

Total Possible Functional Codes - 841  

 

 

Discussion and Conclusions 

The evolutionary archaeology model used here identified the manner in which 

rockshelter sites 45PI043 and 45PI303 vary independently of one another compared to 
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the open-air 45PI408. That is, the differences and similarities of each rockshelter 

compared to the open-air 45PI408, derived from two separate statistical permutations, 

were compared to each other. The first goal of this research was to determine the degree 

to which rockshelter site assemblages are technologically and functionally similar or 

different when compared to an open-air assemblage (as described in Burtchard 1998:112-

120). The second goal of this research was to determine if the composition of a 

rockshelter assemblage is unique, or if these assemblages are random samples of larger, 

open-air site lithic assemblages.  

 The characteristics of the two rockshelter sites independently support the current 

site-type interpretation that they were limited task field or hunting camps (Burtchard 

1998) in that their primary lithic reduction activities were focused on late stage reduction 

and the maintenance of stone tools.  This also is congruent with previous interpretations 

of site function at these locations (Andrews et al. 2016; Bergland 1988; Burtchard 1998). 

It is to be noted, however, that while the assemblages from these sites are similar to each 

other when compared to the open-air assemblage, there also is variation between the 

rockshelter site assemblages.  

  Statistically significant similarities between the two rockshelter sites include 

high representations of 1) flakes from the bifacial reduction and thinning reduction class 

mode; 2) flakes with bifacial unfinished and bifacial finished platform type modes; and 3) 

lithics assigned to the lustrous and non-lustrous flake scars mode. Other statistically 

significant similarities at the rockshelter sites are the underrepresentation of cores; flakes 

from the intermediate reduction class; simple platform types; and objects with no heating 

or high temperature thermal alteration.   
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 Random similarities, with mixed significance, include an overrepresentation of 

initial reduction class modes, bifacial finished with wear present platform types, and 

lithics with lustrous flake scars only. This means that one site has a statistically 

significant non-random overrepresentation or underrepresentation, while the similar trend 

seen at the other site is a statistically insignificant random over- or underrepresentation. 

The decrease of bifacial unfinished with wear present platform types was statistically 

insignificant, or random, at both rockshelter sites.  

 The differences between rockshelters sites have mixed statistical significance, 

much like the statistically insignificant similarities. This means that one site has a 

statistically significant non-random over- or underrepresentation, while the opposite 

representation seen at the other site is a random, and not statistically significant.  

These random differences are seen in the data through the object type mode. The 

bifaces mode, for example, is significantly overrepresented at 45PI303, and 

insignificantly underrepresented at 45PI043. 45PI043 also had a significant 

overrepresentation of flake and flake fragment object types, while 45PI303 had an 

insignificant underrepresentation of flakes and flake fragments.  

There also are differences in the platform type dimension. Faceted flakes were 

non-randomly underrepresented at 45PI303, and randomly overrepresented at 45PI043. 

Pressure flakes were randomly underrepresented at 45PI043, and non-randomly 

overrepresented at 45PI303.  

Additionally, the reduction class dimension shows differences between the 

rockshelter sites. The terminal reduction class is significantly underrepresented at 

45PI043, and randomly overrepresented at 45PI303.  
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The bifacial resharpening reduction class is overrepresented at 45PI043 and 

underrepresented at 45PI303.  However, the adjusted residuals for both are below the 

threshold for statistical significance, and thus these differences are random.   

Another noticeable difference between rockshelter sites 45PI043 and 45PI303 is 

found when assigning typology to projectile points from each rockshelter. 45PI043 had 

three points from which the necessary metrics could be measured. Two of the points were 

Columbia Corner-Notched Type B, and one was the smaller Columbia Stemmed variant. 

These point types are both representative of the last 2,000 years of the Columbia Plateau 

archaeological record (Carter 2002; Lohse 1985).  

The two points that could be classified from 45PI303 were both Plateau Side-

Notched types. While overlapping temporally, these points generally are considered to be 

slightly younger, and used only in the last 1,500 years (Carter 2002; Lohse 1985). While 

not all of the biface fragments from the assemblages could be assigned to a typology, 

those recognized did not overlap between rockshelter sites. While all of the point types 

found were from generally the same time period, stylistic variation may reflect 

differences in social groups occupying these areas.  We recognize inferential limitations 

in the dataset, and point them out here only to stimulate discussion. A deeper discussion 

of the projectile point artifacts from 45PI303 can be found in Andrews et al. 2016.  

Addressing the second goal of this research, the data indicate that rockshelter 

assemblages are not unique adaptations, but are subsets samples of larger, open-air site 

lithic assemblages. All three sites tentatively share the same technological organization 

group of tool manufacture (Sullivan and Rozen 1985). This means that the limited 

activities proposed to be happening at rockshelter site types also occur at the open-air 
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sites. The reason for the limitations of activity could be due to restricted space at the 

rockshelter sites; there simply is not enough flat, open space at the rockshelter locations 

to perform many of the tasks that could be performed in the larger, flatter, open-air site 

locations.  

While the functional data generated from this analysis was not entirely 

statistically representative at any of the three sites, the number of filled functional codes 

is indicative of the general function of sites. Fourteen of the filled functional classes at 

45PI043 and 45PI303 are found within the sample at 45PI408. This is to say, eight of the 

thirteen classes represented in the 45PI043 assemblage, and six the eleven classes in the 

45PI303 assemblage were codes represented in the thirty-six filled functional codes at 

45PI408. This indicates that a limited suite of the same types of activities going on at 

open-air sites were performed at the rockshelter sites. Primary differences between 

function at rockshelters versus open-air site 45PI408 include a significant 

overrepresentation of chipping-type wear at 45PI408. 45PI408 also contains more 

functional variation (more filled classes) in location of wear, shape of wear, and 

orientation of wear.  

In short, the technology and function of limited-task field camps and residential 

base camps from Burtchard’s (1998) site type model for Mount Rainier archaeological 

sites is supported by the technological and functional organization of the 45PI043, 

45PI303, and 45PI408 assemblages. There is, however, more variation between 

rockshelter sites than was previously expected. Further research into lithic technology 

and function across space and site type could reveal more about the selective conditions 

under which this lithic industry was created. 
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APPENDIX A. 

Frequency Data  

 

 Table A1. Frequency Counts for Object Type Dimension  

Object Type 45PI043 45PI303 

RSa 

Total 45PI406 45PI408 45PI429 

OAb 

Total 

Biface – 0 24 34 58 4 76 12 92 

Flake/Flake 

Fragment - 1 1532 1042 2574 747 3855 694 5296 

Chunk - 2 28 5 33 6 485 9 500 

Cobble - 3 0 0 0 8 3 0 11 

Core - 4 0 5 5 0 52 0 52 

Spall - 5 9 10 19 4 126 1 131 

Gastrolith - 6 0 0 0 1 4 0 5 

Total 1593 1096 2689 770 4601 716 6087 
a “RS” = collapsed rockshelter sites; b “OA” = collapsed open-air sites 

 

Table A2. Frequency Counts for Amount of Cortex Dimension  
Amount of 

Cortex 45PI043 45PI303 RS Total 45PI406 45PI408 45PI429 OA Total 

Primary - 1 4 1 5 11 16 5 32 

Secondary - 

2 51 26 77 13 75 7 95 

Tertiary - 3 14 12 26 1 2 3 6 

None - 4  1524 1057 2581 745 4508 701 5954 

Total 1593 1096 2689 770 4601 716 6087 

 

Table A3. Frequency Counts for Presence of Wear Dimension  
Presence 

of Wear 45PI043 45PI303 RS Total 45PI406 45PI408 45PI429 OA Total 

Absent - 1 1546 1070 2616 691 2899 692 4282 

Present - 2 47 26 73 79 1702 24 1805 

Total 1593 1096 2689 770 4601 716 6087 

 

Table A4. Frequency Counts for Other Modification Dimension  

Other Modification 45PI043 45PI303 RS Total 45PI406 45PI408 45PI429 OA Total 

None - 1 1566 1031 2597 760 4467 166 5393 

Flaking - 2 27 65 92 9 132 550 691 

Grinding - 3  0 0 0 1 1 0 2 

Pecking - 4  0 0 0 0 1 0 1 

Incising - 5 0 0 0 0 0 0 0 

Other - 6 0 0 0 0 0 0 0 

Total 1593 1096 2689 770 4601 716 6087 
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Table A5. Frequency Counts for Material Type Dimension 

Material Type 45PI043 45PI303 RS Total 45PI406 45PI408 45PI429 OA Total 

Chert - 1 1590 1076 2666 683 4023 705 5411 

Obsidian - 2 0 0 0 36 343 0 379 

Igneous - 3 3 20 23 41 216 11 268 

Other - 4  0 0 0 1 18 0 19 

Total 1593 1096 2689 761 4601 716 6077 

 

 

Table A6. Frequency Counts for Platform Type Dimension 

Platform Type 45PI043 45PI303 RS Total 45PI406 45PI408 45PI429 OA Total 

Cortex – 1 19 9 28 0 7 4 11 

Simple – 2 103 46 149 14 288 195 497 

Faceted – 3 234 87 321 71 263 71 405 

Bifacial unfinished – 4 102 75 177 14 55 8 77 

Bifacial unfinished, 

wear – 5 9 2 11 5 17 0 22 

Bifacial finished – 6 63 23 86 19 22 1 42 

Bifacial finished, wear – 

7 18 5 23 15 8 4 27 

Potlids – 8 10 7 17 9 44 4 57 

Fragmentary – 9 533 498 1031 582 2596 288 3466 

Not applicable – 10 75 45 120 21 737 21 779 

Pressure flakes – 11 427 299 726 19 551 96 666 

Technologically absent - 

12 0 0 0 1 11 24 36 

Total 1593 1096 2689 770 4599 716 6085 

 

 

Table A7. Frequency Counts for Completeness Dimension  

Completeness 45PI043 45PI303 RS Total 45PI406 45PI408 45PI429 OA Total 

Whole Flake - 1 616 27 643 7 175 30 212 

Broken Flake - 2 364 520 884 148 1048 361 1557 

Flake Fragment - 3 513 412 925 590 2589 280 3459 

Debris - 4 72 96 168 9 264 25 298 

Other - 5  28 41 69 16 524 20 560 

Total 1593 1096 2689 770 4600 716 6086 
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Table A8. Frequency Counts for Thermal Alteration Dimension 

Thermal Alteration 45PI043 45PI303 RS Total 45PI406 45PI408 45PI429 OA Total 

No Heating – 0 70 15 85 72 696 52 820 

Lustrous/Non-Lustrous - 

1 282 271 553 12 161 181 354 

Lustrous Only - 2 1044 620 1664 639 2532 448 3619 

High Temp. Alteration - 

3 197 190 387 47 1211 35 1293 

Total 1593 1096 2689 770 4600 716 6086 

 

Table A9. Frequency Counts for Complexity of Dorsal Surface Dimension 
Complexity of Dorsal 

Surface 45PI043 45PI303 RS Total 45PI406 45PI408 45PI429 OA Total 

Simple - 1 348 99 447 50 1653 173 1876 

Complex - 2 1114 861 1975 694 2167 203 3064 

Not Applicable - 3  131 136 267 26 764 340 1130 

Total 1593 1096 2689 770 4584 716 6070 

 

Table A10. Frequency Counts for Reduction Class Dimension  

Reduction Class 45PI043 45PI303 RS Total 45PI406 45PI408 45PI429 OA Total 

Initial – 1 34 8 42 2 15 6 23 

Intermediate – 2 138 41 179 0 272 167 439 

Terminal - 3 620 409 1029 90 905 186 1181 

Bifacial 

Reduction/Thinning - 4 166 96 262 33 73 17 123 

Bifacial Resharpening - 

5 27 6 33 20 23 0 43 

Not Applicable - 6 608 536 1144 625 3311 340 4276 

Total 1593 1096 2689 770 4599 716 6085 

 

 

Table A11. Frequency Counts for Kind of Wear Dimension 

Kind of Wear 45PI043 45PI303 RS Total 45PI406 45PI408 45PI429 OA Total 

Chipping – 1 40 27 67 87 2097 26 2210 

Abrasion – 2 2 1 3 2 3 0 5 

Crushing - 3 3 4 7 2 3 0 5 

Polishing - 4 0 0 0 0 0 0 0 

None - 5 1554 1068 2622 693 2938 690 4321 

Total 1599 1100 2699 784 5041 716 6541 
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Table A12. Frequency Counts for Location of Wear Dimension 

Location of Wear  45PI043 45PI303 RS Total 45PI406 45PI408 45PI429 OA Total 

Angular Point - 1  0 0 0 1 13 5 19 

Angular Edge - 2 37 30 67 88 2080 6 2174 

Angular Plane - 3 3 0 3 2 3 6 11 

Curvilinear Point - 4 1 0 1 0 1 1 2 

Curvilinear Edge - 5 3 0 3 0 4 8 12 

Curvilinear Plane - 6  1 1 2 0 2 0 2 

Non-localized - 7 0 0 0 0 1 0 1 

None - 8 1554 1069 2623 693 2937 690 4320 

Total 1599 1100 2699 784 5041 716 6541 

 

 

Table A13. Frequency Counts for Shape or Plan of Worn Area Dimension 
Shape or Plan of Worn 

Area 45PI043 45PI303 RS Total 45PI406 45PI408 45PI429 OA Total 

Convex – 1 6 5 11 3 878 9 890 

Concave – 2 8 10 18 82 397 1 480 

Straight - 3 31 16 47 5 821 12 838 

Point - 4 0 0 0 1 5 4 10 

Oblique notch - 5 0 0 0 0 1 0 1 

Acute notch – 6 0 0 0 0 2 0 2 

None - 7 1554 1069 2623 693 2937 690 4320 

Total 1599 1100 2699 784 5041 716 6541 

 

 

Table A14. Frequency Counts for Orientation of Wear Dimension  

Orientation of Wear 45PI043 45PI303 RS Total 45PI406 45PI408 45PI429 OA Total 

Perpendicular to Y-

Plane - 1 1 0 1 0 1771 0 1771 

Oblique to Y-Plane - 2 30 22 52 84 242 19 345 

Variable to Y-Plane - 3 14 9 23 6 86 7 99 

Parallel to Y-Plane - 4 0 0 0 1 4 0 5 

No Orientation - 5 0 0 0 0 3 0 3 

None - 6  1554 1069 2623 693 2935 690 4318 

Total 1599 1100 2699 784 5041 716 6541 
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Table A15. Frequency Counts for Groundmass Dimension 

Groundmass 45PI043 45PI303 RS Total 45PI406 45PI408 45PI429 OA Total 

Uniform - 1 166 88 254 268 365 275 908 

Bedding Planes - 2 16 5 21 26 36 20 82 

Concentric Banding - 3 0 0 0 0 1 0 1 

Mottled - 4 1395 937 2332 447 4169 379 4995 

Granular - 5 16 66 82 29 26 29 84 

Oolitic - 6 0 0 0 0 5 13 18 

Total 1593 1096 2689 770 4602 716 6088 

 

Table A16. Frequency Counts for Presence of Solid Inclusions Dimension 

Solid Inclusions 45PI043 45PI303 RS Total 45PI406 45PI408 45PI429 OA Total 

Present - 1  820 654 1474 634 3929 389 4952 

Absent - 2 773 442 1215 136 673 327 1136 

Total 1593 1096 2689 770 4602 716 6088 

 

 

Table A17. Frequency Counts for Presence of Void Inclusions Dimension  

Void Inclusions  45PI043 45PI303 RS Total 45PI406 45PI408 45PI429 OA Total 

Present - 1 1309 890 2199 16 1695 48 1759 

Absent - 2 284 206 490 754 2907 668 4329 

Total 1593 1096 2689 770 4602 716 6088 

 

 

Table A18. Frequency Counts for Distribution of Solid Inclusions Dimension 
Distribution of Solid 

Inclusions 45PI043 45PI303 RS Total 45PI406 45PI408 45PI429 OA Total 

Random - 1 820 654 1474 573 3676 376 4625 

Uniform - 2 1 0 1 9 139 4 152 

Structured - 3 0 0 0 53 113 4 170 

None - 4  772 442 1214 135 674 332 1141 

Total 1593 1096 2689 770 4602 716 6088 

 

 

Table A19. Frequency Counts for Distribution of Void Inclusions Dimension 
Distribution of Void 

Inclusions 45PI043 45PI303 RS Total 45PI406 45PI408 45PI429 OA Total 

Random - 1 1308 890 2198 11 1500 40 1551 

Uniform - 2 0 0 0 3 11 4 18 

Structured - 3 2 0 2 3 187 1 191 

None - 4  283 206 489 753 2904 671 4328 

Total 1593 1096 2689 770 4602 716 6088 
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APPENDIX B – Resampling Curves 

 

Individual Site Assemblage Resampling Curves 

  

Type of Fragment/Object Type Resampling Curves 

 
Figure B1. Resampling Curve for 45PI043 Type of Fragment/Object Type Dimension 

 

 
Figure B2. Resampling Curve for 45PI303 Type of Fragment/Object Type Dimension 

 

 
Figure B3. Resampling Curve for 45PI406 Type of Fragment/Object Type Dimension 
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Figure B4. Resampling Curve for 45PI408 Type of Fragment/Object Type Dimension 

 
Figure B5. Resampling Curve for 45PI429 Type of Fragment/Object Type Dimension 

 

 

 

 

Amount of Cortex Resampling Curves 

 

 

 
Figure B6. Resampling Curve for 45PI043 Amount of Cortex Dimension 

 
Figure B7. Resampling Curve for 45PI303 Amount of Cortex Dimension 
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Figure B8. Resampling Curve for 45PI406 Amount of Cortex Dimension 

 
Figure B9. Resampling Curve for 45PI408 Amount of Cortex Dimension 

 
Figure B10. Resampling Curve for 45PI429 Amount of Cortex Dimension 

 

 

 

Presence of Wear Resampling Curves 

 

 

 
Figure B11. Resampling Curve for 45PI043 Presence of Wear Dimension 
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Figure B12. Resampling Curve for 45PI303 Presence of Wear Dimension 

 
Figure B13. Resampling Curve for 45PI406 Presence of Wear Dimension 

 
Figure B14. Resampling Curve for 45PI408 Presence of Wear Dimension 

 
Figure B15. Resampling Curve for 45PI429 Presence of Wear Dimension 

 

 

 

 

Other Modification Resampling Curves 
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Figure B16. Resampling Curve for 45PI043 Other Modification Dimension 

 
Figure B17. Resampling Curve for 45PI303 Other Modification Dimension 

 
Figure B18. Resampling Curve for 45PI406 Other Modification Dimension 

 
Figure B19. Resampling Curve for 45PI408 Other Modification Dimension 
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Figure B20. Resampling Curve for 45PI429 Other Modification Dimension 

 

 

 

 

 

 

 

Material Type Resampling Curves 

 
Figure B21. Resampling Curve for 45PI043 Material Type Dimension 

 
Figure B22. Resampling Curve for 45PI303 Material Type Dimension 

 
Figure B23. Resampling Curve for 45PI406 Material Type Dimension 
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Figure B24. Resampling Curve for 45PI408 Material Type Dimension 

 
Figure B25. Resampling Curve for 45PI429 Material Type Dimension 

 

 

 

 

Platform Type Resampling Curves 

 

 

 
Figure B26. Resampling Curve for 45PI043 Platform Type Dimension 

 
Figure B27. Resampling Curve for 45PI303 Platform Type Dimension 
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Figure B28. Resampling Curve for 45PI406 Platform Type Dimension 

 
Figure B29. Resampling Curve for 45PI408 Platform Type Dimension 

 
Figure B30. Resampling Curve for 45PI429 Platform Type Dimension 

 

 

 

 

Completeness Resampling Curves 

 

 

 
Figure B31. Resampling Curve for 45PI043 Completeness Dimension 
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Figure B32. Resampling Curve for 45PI303 Completeness Dimension 

 
Figure B33. Resampling Curve for 45PI406 Completeness Dimension 

 
Figure B34. Resampling Curve for 45PI408 Completeness Dimension 

 

 
Figure B35. Resampling Curve for 45PI429 Completeness Dimension 

 

 

 

 

Thermal Alteration Resampling Curves 
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Figure B36. Resampling Curve for 45PI043 Thermal Alteration Dimension 

 
Figure B37. Resampling Curve for 45PI303 Thermal Alteration Dimension 

 
Figure B38. Resampling Curve for 45PI406 Thermal Alteration Dimension 

 
Figure B39. Resampling Curve for 45PI408 Thermal Alteration Dimension 



 

107 

 
Figure B40. Resampling Curve for 45PI429 Thermal Alteration Dimension 

 

 

 

 

 

 

 

 

Complexity of Dorsal Surface Resampling Curves 

 

 

 

 
Figure B41. Resampling Curve for 45PI043 Complexity of Dorsal Surface Dimension 

 
Figure B42. Resampling Curve for 45PI303 Complexity of Dorsal Surface Dimension 
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Figure B43. Resampling Curve for 45PI406 Complexity of Dorsal Surface Dimension 

 
Figure B44. Resampling Curve for 45PI408 Complexity of Dorsal Surface Dimension 

 
Figure B45. Resampling Curve for 45PI429 Complexity of Dorsal Surface Dimension 

 

 

 

 

Reduction Class Resampling Curves 

 

 

 
Figure B46. Resampling Curve for 45PI043 Reduction Class Dimension 
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Figure B47. Resampling Curve for 45PI303 Reduction Class Dimension 

 
Figure B48. Resampling Curve for 45PI406 Reduction Class Dimension 

 
Figure B49. Resampling Curve for 45PI408 Reduction Class Dimension 

 
Figure B50. Resampling Curve for 45PI429 Reduction Class Dimension 

 

 

 

 

 

Kind of Wear Resampling Curves 

 

 



 

110 

 
Figure B51. Resampling Curve for 45PI043 Kind of Wear Dimension 

 
Figure B52. Resampling Curve for 45PI303 Kind of Wear Dimension 

 
Figure B53. Resampling Curve for 45PI406 Kind of Wear Dimension 

 
Figure B54. Resampling Curve for 45PI408 Kind of Wear Dimension 
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Figure B55. Resampling Curve for 45PI429 Kind of Wear Dimension 

 

 

 

 

Location of Wear Resampling Curves 

 

 

 
Figure B56. Resampling Curve for 45PI043 Location of Wear Dimension 

 
Figure B57. Resampling Curve for 45PI303 Location of Wear Dimension 

 
Figure B58. Resampling Curve for 45PI406 Location of Wear Dimension 
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Figure B59. Resampling Curve for 45PI408 Location of Wear Dimension 

 
Figure B60. Resampling Curve for 45PI429 Location of Wear Dimension 

 

 

 

 

 

 

 

 

Shape of Plan of Wear Resampling Curves 

 

 

 
Figure B61. Resampling Curve for 45PI043 Shape of Plan of Wear Dimension 
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Figure B62. Resampling Curve for 45PI303 Shape of Plan of Wear Dimension 

 
Figure B63. Resampling Curve for 45PI406 Shape of Plan of Wear Dimension 

 
Figure B64. Resampling Curve for 45PI408 Shape of Plan of Wear Dimension 

 
Figure B65. Resampling Curve for 45PI429 Shape of Plan of Wear Dimension 

 

 

 

 

Orientation of Wear Resampling Curves 
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Figure B66. Resampling Curve for 45PI043 Orientation of Wear Dimension 

 
Figure B67. Resampling Curve for 45PI303 Orientation of Wear Dimension 

 
Figure B68. Resampling Curve for 45PI406 Orientation of Wear Dimension 

 
Figure B69. Resampling Curve for 45PI408 Orientation of Wear Dimension 
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Figure B70. Resampling Curve for 45PI429 Orientation of Wear Dimension 

 

 

 

 

Groundmass Resampling Curves 

 

 

 
Figure B71. Resampling Curve for 45PI043 Groundmass Dimension 

 
Figure B72. Resampling Curve for 45PI303 Groundmass Dimension 

 
Figure B73. Resampling Curve for 45PI406 Groundmass Dimension 
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Figure B74. Resampling Curve for 45PI408 Groundmass Dimension 

 

 
Figure B75. Resampling Curve for 45PI429 Groundmass Dimension 

 

 

 

 

Presence of Solid Inclusions Resampling Curves 

 

 

 
Figure B76. Resampling Curve for 45PI043 Presence of Solid Inclusions Dimension 

 
Figure B77. Resampling Curve for 45PI303 Presence of Solid Inclusions Dimension 
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Figure B78. Resampling Curve for 45PI406 Presence of Solid Inclusions Dimension 

 
Figure B79. Resampling Curve for 45PI408 Presence of Solid Inclusions Dimension 

 
Figure B80. Resampling Curve for 45PI429 Presence of Solid Inclusions Dimension 

 

 

 

 

 

 

 

 

Presence of Void Inclusions Resampling Curves 
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Figure B81. Resampling Curve for 45PI043 Presence of Void Inclusions Dimension 

 
Figure B82. Resampling Curve for 45PI303 Presence of Void Inclusions Dimension 

 
Figure B83. Resampling Curve for 45PI406 Presence of Void Inclusions Dimension 

 
Figure B84. Resampling Curve for 45PI408 Presence of Void Inclusions Dimension 

 
Figure B85. Resampling Curve for 45PI429 Presence of Void Inclusions Dimension 

 

 

 

 

Distribution of Solid Inclusions Resampling Curves 
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Figure B86. Resampling Curve for 45PI043 Distribution of Solid Inclusions Dimension 

 
Figure B87. Resampling Curve for 45PI303 Distribution of Solid Inclusions Dimension 

 
Figure B88. Resampling Curve for 45PI406 Distribution of Solid Inclusions Dimension 

 
Figure B89. Resampling Curve for 45PI408 Distribution of Solid Inclusions Dimension 
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Figure B90. Resampling Curve for 45PI429 Distribution of Solid Inclusions Dimension 

 

 

 

 

Distribution of Void Inclusions Resampling Curves 

 

 

 

 
Figure B91. Resampling Curve for 45PI043 Distribution of Void Inclusions Dimension 

 
Figure B92. Resampling Curve for 45PI303 Distribution of Void Inclusions Dimension 

 
Figure B93. Resampling Curve for 45PI406 Distribution of Void Inclusions Dimension 
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Figure B94. Resampling Curve for 45PI408 Distribution of Void Inclusions Dimension 

 

 
Figure B95. Resampling Curve for 45PI429 Distribution of Void Inclusions Dimension 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Site Type (Combined) Assemblage Resampling Curves  

 

 

Type of Fragment/Object Type Resampling Curves 
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Figure B96. Resampling Curve for Rockshelter Sites Type of Fragment/Object Type Dimension 

 
Figure B97. Resampling Curve for Open-Air Sites Type of Fragment/Object Type Dimension 

 

 

Amount of Cortex Resampling Curves 

 
Figure B98. Resampling Curve for Rockshelter Sites Amount of Cortex Dimension 

 
Figure B99. Resampling Curve for Open-Air Sites Amount of Cortex Dimension 

Presence of Wear Resampling Curves 
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Figure B100. Resampling Curve for Rockshelter Sites Presence of Wear Dimension 

 
Figure B101. Resampling Curve for Open-Air Sites Presence of Wear Dimension 

 

 

 

 

Other Modification Resampling Curves 

 
Figure B102. Resampling Curve for Rockshelter Sites Other Modification Dimension 

 
Figure B103. Resampling Curve for Open-Air Sites Other Modification Dimension 

 

Material Type Resampling Curves 
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Figure B104. Resampling Curve for Rockshelter Sites Material Type Dimension 

 
Figure B105. Resampling Curve for Open-Air Sites Material Type Dimension 

 

 

 

 

Platform Type Resampling Curves 

 
Figure B106. Resampling Curve for Rockshelter Sites Platform Type Dimension 

 

 
Figure B107. Resampling Curve for Open-Air Sites Platform Type Dimension 

 

Completeness Resampling Curves 
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Figure B108. Resampling Curve for Rockshelter Sites Completeness Dimension 

 
Figure B109. Resampling Curve for Open-Air Sites Completeness Dimension 

 

 

 

 

 

Thermal Alteration Resampling Curves 

 
Figure B110. Resampling Curve for Rockshelter Sites Thermal Alteration Dimension 

 
Figure B111. Resampling Curve for Open-Air Sites Thermal Alteration Dimension 

 

Complexity of Dorsal Surface Resampling Curves 
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Figure B112. Resampling Curve for Rockshelter Sites Complexity of Dorsal Surface Dimension 

 
Figure B113. Resampling Curve for Open-Air Sites Complexity of Dorsal Surface Dimension 

 

 

 

 

 

Reduction Class Resampling Curves 

 

 
Figure B114. Resampling Curve for Rockshelter Sites Reduction Class Dimension 

 
Figure B115. Resampling Curve for Open-Air Sites Reduction Class Dimension 

Kind of Wear Resampling Curves 
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Figure B116. Resampling Curve for Rockshelter Sites Kind of Wear Dimension 

 
Figure B117. Resampling Curve for Open-Air Sites Kind of Wear Dimension 

 

 

 

 

 

 

Location of Wear Resampling Curves 

 
Figure B118. Resampling Curve for Rockshelter Sites Location of Wear Dimension 

 
Figure B119. Resampling Curve for Open-Air Sites Location of Wear Dimension 

Shape of Plan of Wear Resampling Curves 
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Figure B120. Resampling Curve for Rockshelter Sites Shape of Plan of Wear Dimension 

 
Figure B121. Resampling Curve for Open-Air Sites Shape of Plan of Wear Dimension 

 

 

 

 

 

 

Orientation of Wear Resampling Curves 

 
Figure B122. Resampling Curve for Rockshelter Sites Orientation of Wear Dimension 

 
Figure B123. Resampling Curve for Open-Air Sites Orientation of Wear Dimension 

Groundmass Resampling Curves 



 

129 

 
Figure B124. Resampling Curve for Rockshelter Sites Groundmass Dimension 

 
Figure B125. Resampling Curve for Open-Air Sites Groundmass Dimension 

 

 

 

 

 

 

Presence of Solid Inclusions Resampling Curves 

 
Figure B126. Resampling Curve for Rockshelter Sites Presence of Solid Inclusions Dimension 

 
Figure B127. Resampling Curve for Open-Air Sites Presence of Solid Inclusions Dimension 

Presence of Void Inclusions Resampling Curves 
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Figure B128. Resampling Curve for Rockshelter Sites Presence of Void Inclusions Dimension 

 
Figure B129. Resampling Curve for Open-Air Sites Presence of Void Inclusions Dimension 

 

 

 

 

 

Distribution of Solid Inclusions Resampling Curves 

 

 
Figure B130. Resampling Curve for Rockshelter Sites Distribution of Solid Inclusions Dimension 

 
Figure B131. Resampling Curve for Open-Air Sites Distribution of Solid Inclusions Dimension 

Distribution of Void Inclusions Resampling Curves 
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Figure B132. Resampling Curve for Rockshelter Site Distribution of Void Inclusions Dimension 

 
Figure B133. Resampling Curve for Open-Air Site Distribution of Void Inclusions Dimension 
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