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Maximum entropy formalism for the analytic continuation of matrix-valued Green’s functions
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We present a generalization of the maximum entropy method to the analytic continuation of matrix-valued
Green’s functions. To treat off-diagonal elements correctly based on Bayesian probability theory, the entropy
term has to be extended for spectral functions that are possibly negative in some frequency ranges. In that way,
all matrix elements of the Green’s function matrix can be analytically continued; we introduce a computationally
cheap element-wise method for this purpose. However, this method cannot ensure important constraints on the
mathematical properties of the resulting spectral functions, namely positive semidefiniteness and Hermiticity.
To improve on this, we present a full matrix formalism, where all matrix elements are treated simultaneously.
We show the capabilities of these methods using insulating and metallic dynamical mean-field theory (DMFT)
Green’s functions as test cases. Finally, we apply the methods to realistic material calculations for LaTiO3, where
off-diagonal matrix elements in the Green’s function appear due to the distorted crystal structure.
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I. INTRODUCTION

In condensed matter physics, response functions are often
calculated in imaginary-time formulation, especially when
electronic correlations are taken into account. This is not
only true for numerical approaches like quantum Monte
Carlo [1–3], but also for perturbative techniques such as the
random phase approximation [4–6]. However, these quantities
cannot be directly related to measurable quantities in real
frequency. Quite generally, the Wick rotation iτ → t , where τ

is the imaginary-time argument and t is the real-time argument
(or equivalently iωn → ω, with the nth fermionic Matsubara
frequency ωn = (2n + 1)π/β and the real frequency ω), trans-
forms the calculated quantities to real frequencies. In practice,
this analytic continuation (AC) is not possible straightfor-
wardly, since the kernel of this mapping is ill-conditioned
when going from imaginary times to real frequencies. As a
result of the kernel being ill-conditioned, small changes of the
input will correspond to largely different outputs, rendering
the inversion of this problem highly unstable due to numerical
noise, where even an error at the level of machine precision
can lead to nonsensical results in practice.

This fact has lead to the development of a plethora of
different methods trying to efficiently perform the AC. Among
them are series expansions (e.g., the Padé method [7–9]),
information-theoretical approaches such as the maximum
entropy method (MEM) [10–13], and stochastic methods [14–
18]. Other algorithms based on singular value decomposition
(SVD) [19], machine learning [20], or sparse modeling [21]
tackling the AC have also been presented. Despite all those
interesting other developments, the workhorse method for the
AC of noisy Monte Carlo data is the MEM.

The methods based on the MEM are well established
for the diagonal elements of the Green’s function, where
the corresponding spectral function can be interpreted as a
probability distribution (non-negative normalizable function).
There are several freely available codes performing this task,
such as �MAXENT [22] and the MAXENT code by Levy
et al. [23].

*aichhorn@tugraz.at

Nowadays, numerical algorithms do also provide
imaginary-time solutions for off-diagonal Green’s functions,
e.g., in the multiorbital DFT + DMFT [24–26] context relevant
for real-material applications. However, due to the lack of
reliable methods for performing the AC of the whole Green’s
function matrix, still the off-diagonal elements are often
neglected on different levels of the calculation. One strategy is
to transform the impurity problem to some local basis, where
the Hamiltonian and hybridization functions are as diagonal
as possible and to neglect the off-diagonal elements in the
solution of the impurity problem [27]. However, this is an
uncontrolled approximation because it is impossible to check
the accuracy of this approximation without actually taking the
off-diagonal elements into account.

Particularly important is a proper AC for the self-
energy. The full matrix form of the self-energy on the real
axis is required in the Dyson equation to calculate lattice
(k-dependent) quantities of interest. Without ensuring analytic
properties such as positive semidefiniteness of this matrix,
the results for quantities such as the k-dependent spectral
function A(k,ω) or derived quantities (e.g., transport, optics)
are physically questionable. We will present a method to
remedy this problem.

For certain cases, the AC of off-diagonal Green’s functions
has been tackled before: In general, it is possible to construct
an auxiliary Green’s function by adding a (possibly frequency-
dependent) shift to the off-diagonal elements of the spectral
function so that their positivity is ensured. Then, they can
be treated with the MEM [28–30]. An example of a work
where off-diagonal elements of the impurity spectral function
are calculated are the DFT+DMFT calculations of the two
perovskites LaVO3 and YVO3 [31]. Additionally, a stochastic
regularization method also suitable for off-diagonal elements
has been proposed [32]. However, these methods cannot ensure
important matrix properties, e.g., positive semidefiniteness
and Hermiticity of the spectral function. Additionally, given
the probability theoretical background of the MEM [33],
it is unclear how the shift method fits into this theoretical
framework.

In other disciplines, such as astronomy and nuclear mag-
netic resonance (NMR), the MEM has been successfully
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extended to extract data without the constraint of non-
negativity [34–38]. This generalization is not straightforward,
as non-negative functions cannot be directly interpreted as
probability distributions.

But even with this generalization, important matrix prop-
erties are not respected. The purpose of this paper is, thus,
to introduce a consistent matrix formulation of the MEM
completely from probability theory. Using the full matrix
enables us to consistently formulate the constraint that the
resulting spectral functions are indeed positive semidefinite
and Hermitian.

The paper is organized as follows: First, we present the
probability theoretical background of the continuation of
matrix-valued Green’s functions and some computational and
implementation details in Sec. II. In Sec. III, we perform a
benchmark of the MEM and discuss some practical consider-
ations using a DMFT calculation for a model system. Finally,
in Sec. IV, we apply the introduced methodology within
the framework of DFT+DMFT to the strongly correlated
perovskite LaTiO3.

II. METHODOLOGY AND THEORY

A. Basic principles of the maximum entropy method

The retarded one-electron Green’s function G(ω + i0+)
and the Matsubara Green’s function G(iωn) are related through
the analyticity of G(z) in the whole complex plane with the
exception of the poles below the real axis. This connection is
explicit by writing the Green’s function G(z) in terms of the
spectral function A(ω) as

Gab(z) =
∫

dω
Aab(ω)

z − ω
. (1)

In general, both G(z) and A(ω) are matrix-valued (with indices
a, b), but Eq. (1) is valid for each matrix element separately.
For a given Gab(ω + i0+), the matrix-valued Aab(ω) can be
obtained as

Aab(ω) = i

2π
[Gab(ω + i0+) − G∗

ba(ω + i0+)]. (2)

Note that for matrices, the spectral function is not proportional
to the element-wise imaginary part of the Green’s function.

A drawback of expression (1) is that the real and imaginary
parts of G and A are coupled due to the fact that z is
complex-valued. This is avoided by Fourier-transforming
G(z = iωn) to the imaginary time Green’s function G(τ ) at
inverse temperature β;

Gab(τ ) =
∫

dω
e−ωτ

1 + e−ωβ
Aab(ω). (3)

The real part of the spectral function is only connected to the
real part of G(τ ), and analogously for the imaginary part. In
the following, we will first recapitulate the maximum entropy
theory for a real-valued single-orbital problem as presented in
Ref. [11] and later generalize to matrix-valued problems.

In order to handle this problem numerically, the functions
G(τ ) and A(ω) in Eq. (3) can be discretized to vectors Gn =
G(τn) and Am = A(ωm); then, Eq. (3) can be formulated as

G = KA, (4)

where the matrix

Knm = e−ωmτn

1 + e−ωmβ
�ωm (5)

is the kernel of the transformation. Calculating G(τ ) from A(ω)
is straightforward, but the inversion of the matrix equation (4),
i.e., calculating A via A = K−1G, is an ill-posed problem. To
be more specific, the condition number of K is very large due
to the exponential decay of Knm with ωm and τn, so that the
direct inversion of K is numerically not feasible by standard
techniques.

The task of the AC is to find an approximate spectral
function A whose reconstructed Green’s function Grec = KA
reproduces the main features of the given data G, but does
not follow the noise (note that here and in the following we
use G and A for the numerical quantities to keep the notation
simple). However, a bare minimization of the misfit χ2(A) =
(KA − G)T C−1(KA − G), with the covariance matrix C,
leads to an uncontrollable error [9].

One efficient way to regularize this ill-posed problem is to
add an entropic term S(A). This leads to the maximum entropy
method (MEM), where one does not minimize χ2(A), but

Qα(A) = 1
2χ2(A) − αS(A). (6)

The prefactor of the entropy, usually denoted α, is a hyperpa-
rameter that is introduced ad hoc and needs to be specified.
The way to choose α marks various flavors of the maximum
entropy approach and will be discussed later (Sec. II B). This
regularization with an entropy has been put on a rigorous
probabilistic footing by Skilling in 1989, using Bayesian
methods [33]. He showed that the only consistent way to
choose the entropy for a non-negative function A(ω) is

S(A) =
∫

dω

[
A(ω) − D(ω) − A(ω) log

A(ω)

D(ω)

]
, (7)

where D(ω) is the default model. The default model influences
the result in two ways (see Appendix A for details): First, it
defines the maximum of the prior distribution, which means
that in the limit of large α one has A(ω) → D(ω). Second,
it is also related to the width of the distribution, since the
variance of the prior distribution is proportional to D(ω).
Unless otherwise specified (see, especially, Sec. II E), we use
a flat D(ω), corresponding to no prior knowledge.

B. Hyperparameter α

The simplest way to determine α is to choose it such that
χ2 equals the number of τ points [12,39], which is today
known as the historic MEM. Usually, it tends to underfit the
data [40]. Other, more sophisticated ways are delivered by
the probabilistic picture of Skilling and Gull [33,41], which
are recapitulated in Appendix A. Two frequently used flavors
are the classical MEM [41] and the Bryan MEM [42]. A
disadvantage is that these probabilistic methods tend to overfit
the data as the probability is only evaluated approximately in
practice (see Appendix A) [43,44]. Furthermore, all methods
presented so far strongly depend on the provided covariance
matrix C. If the statistical error of Monte Carlo measurements,
for example, is not estimated accurately, the data could be over-
or underfitted.
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A rather heuristic approach to overcome these problems
is not to consider probabilities, but rather the quality of the
reconstruction as a function of α. One way to quantify this is
to detect the characteristic kink in the function log χ2(log α),
which indicates the boundary between the noise-fitting and
information-fitting regimes [22]. In the noise-fitting region,
log χ2(log α) is essentially constant, while in the information-
fitting region, it behaves linearly. In this approach, the
optimal α is at the crossover of these regimes, which can be
detected, e.g., through the maximum of the second derivative
∂2 log χ2/∂(log α)2, as implemented the �MAXENT code [22].

We propose another way, which is to fit a piecewise linear
function to log χ2(log α), consisting of two straight lines: one
for the noise-fitting region (with slope zero) and one for the
information-fitting region. The intersection of the two lines,
and hence the optimal α, is determined such that the overall
fit residual is minimized. This way of determining the optimal
α is used throughout the rest of this paper, as it turns out
to be stable even in difficult cases where the curvature of
log χ2(log α) shows multiple local maxima.

C. Positive-negative MEM

For the case of non-matrix-valued or diagonal spectral
functions, the MEM described so far became a standard tool
used in many different contexts. However, this ordinary MEM
is only rigorous for non-negative, additive functions [33].
Nonzero off-diagonal elements of spectral functions clearly
violate the non-negativity since their norm∫

dωAab(ω) = δab (8)

is zero (this follows directly from the Lehmann representation
of the spectral function and the anticommutation relations
of fermionic operators). Keeping the additivity, one could
imagine that the off-diagonal spectral functions originate
from a subtraction of two artificial positive functions, i.e.,
A(ω) = A+(ω) − A−(ω). Assuming independence of A+(ω)
and A−(ω), the resulting entropy is the sum of the respective
entropies

S(A+(ω),A−(ω)) = S(A+(ω)) + S(A−(ω)), (9)

which was first used for the analysis of NMR spectra [34,35].
To illustrate the plausibility of this entropy, we use the analogy
of the horde of monkeys, which has a long tradition in the field
of Bayesian methods. The conventional entropy can be ex-
plained by monkeys randomly throwing balls into slots which
correspond to different frequencies ωi on a grid [33]. Then, the
number of balls in each slot, related to A(ωi), obeys a Poisson
distribution with a mean value given beforehand, related to
the default model D(ωi). From now on, the ωi dependence
of A and D is dropped for simplicity. The subtraction of two
positive functions A = A+ − A− can be understood with two
different hordes of monkeys, one throwing “positive” balls and
one throwing “negative” balls. Individually, both the number of
positive (∼A+) and negative (∼A−) balls again obey a Poisson
distribution. The total number of balls in each slot, however,
follows a Skellam distribution, which is the convolution of two
Poisson distributions. The entropy S describing this process
depends on both A+ and A− [see Eq. (9)]. Due to the

independence of A+ and A−, S(A+) and S(A−) follow the
same functional form as the conventional entropy, Eq. (7), that
stems from the Poisson distribution. Thus,

S(A+,A−) =
∫

dω

[
A+ − D+ − A+ log

A+

D+

+A− − D− − A− log
A−

D−

]
. (10)

The fact that two default models (D+ and D−) enter will be
discussed later. Several configurations of positive and negative
balls give the same net number of balls (∼A), since only their
difference A+ − A− matters. Hence, an additional superfluous
degree of freedom is present once two hordes are acting. Just
as the two Poisson distributions of the respective balls lead
to a Skellam distribution by integrating out the additional
degree of freedom, a reduction of the parameter space from
A+ and A− to A = A+ − A− leads to an entropy S±(A)
that differs from the conventional entropy in Eq. (7). The
derivation of S±(A) was first carried out in the context of
cosmic microwave background radiation [36–38]; an available
software package providing this entropy is MEMSYS5 [45].
This framework is recapitulated here in the context of spectral
functions.

The main objective of the MEM is to minimize Qα as given
by Eq. (6), but the entropy S depends now on both A+ and A−
as shown in Eq. (10). The minimum of

Qα(A+,A−) = 1
2χ2(A = A+ − A−) − αS(A+,A−) (11)

has to be found with respect to both A+ and A−. The misfit χ2

only depends on the difference A = A+ − A−. For any fixed
A, the minimum of Qα(A,A+) is, therefore, realized for the
particular choice of A+ and A− that maximizes the entropy
under the constraint that A = A+ − A−. Expressing A− in
terms of A via A− = A+ − A, the minimum of Qα(A,A+)
with respect to A+ is given by

A+ =
√

A2 + 4D+D− + A

2
, (12)

A− =
√

A2 + 4D+D− − A

2
. (13)

A new entropy for functions that can be both positive
and negative is then obtained by S±(A) = S(A+(A),A−(A)),
which we call positive-negative entropy and which reads [38]

S±(A) =
∫

dω

[√
A2 + 4D+D− − D+ − D−

−A log

√
A2 + 4D+D− + A

2D+

]
. (14)

The Bayesian probabilistic interpretation of this entropy is
described in Appendix A. In the special case D− = 0, the limit
of purely positive functions is recovered since then S±(A) =
S(A) [the latter being the conventional entropy from Eq. (7)].

Next, we want to compare the conventional entropy, Eq. (7),
to the positive-negative entropy, Eq. (14). This comparison can
be performed on the level of the integrand of the expression
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FIG. 1. Comparison of the “entropy density” of non-negative
spectral functions s(A) compatible to Eq. (7) and of positive and
negative spectral functions s±(A) compatible to Eq. (14). The entropy
is related to the entropy density via S(A) = ∫

dω s(A(ω)). Here,
D+ = D− = D was assumed.

for the entropy, which we refer to as the entropy density
s(A(ω)). At a particular frequency value ωi , the entropy
density depends only on the function value of the spectral
function A(ωi) and the default model D(ωi). We therefore
plot the entropy density s depending on the function value
A at any given ωi in Fig. 1. The ordinary entropy density
s(A) (blue line) is just defined for positive A. Within this
definition space, it is concave with a maximum at A = D. The
variance of the prior distribution around this maximum is also
proportional to D (see Appendix A). In the case of S±, two
default models D+ and D− are needed, each determining the
maximum of the respective spectral functions A+ and A− as
well as the accompanying variances. Usually, no additional
knowledge about A is available and, therefore, one has to
choose D+ = D− = D for symmetry reasons (green line in
Fig. 1). This is the case for the off-diagonal elements of the
spectral functions studied in this work; however, the general
case is discussed in Appendix A. For D+ = D− = D, the
maximum of the entropy is at A = 0, with a prior variance
proportional to D. This demonstrates a fundamental difference
of the role of the default model in the conventional and in the
positive-negative entropy; in the former, the default model
defines both the maximum and the variance of the entropy
density, while for the latter it only punishes large values of
|A|/D. This also means that for α → ∞ the minimization
of Qα(A) gives A = 0 for the positive-negative entropy, in
contrast to A = D for the conventional entropy.

We note in passing that off-diagonal elements of the spectral
function can, of course, be complex-valued. Then, the real and
imaginary part of A(ω) and, correspondingly, G(τ ) can (in
principle) be treated separately. The misfit χ2 and the entropy
S for a complex function can therefore be just summed up
to a total χ2 and S. This straightforward generalization of
the method is applicable to this and the following sections,
but for simplicity we limit ourselves to real-valued spectral
functions.

D. Reduction of the parameter space

In Ref. [42], Bryan presents an algorithm that works in the
space of the singular values of K , by means of the singular

value decomposition (SVD)1

K = U�V T . (15)

When the problem is discretized with Nτ points on the τ axis
and Nω points on the ω axis, the kernel K is a Nτ × Nω

matrix (we use 684 × 200) which gets decomposed into the
singular-vector matrices U of dimension Nτ × N� and V of
dimension Nω × N� as well as the diagonal matrix � of the
singular values. In principle, the number N� of singular values
is given by min(Nτ ,Nω); however, many singular values are
on the order of machine precision. Therefore, in practice all
singular values below a small threshold (10−14 for the results
in this paper) can be discarded. This also means that the full
vector space of A, where Ai = A(ωi), is larger than necessary
(for our calculations, Nω = 200, while N� = 45).

One important ingredient for each MEM is the optimization
of Qα , Eq. (6), for a given value of α. In Bryan’s framework,
the stationarity condition ∂Qα/∂A = 0 for the conventional
entropy reads

−2α log
A
D

= KT ∂χ2

∂(KA)
, (16)

suggesting that a simple way to parametrize A in the much
smaller singular value basis is

A = DeV u, (17)

where u is the new parameter vector of the same dimension as
the number of kept singular values. With this parametrization,
condition (16) becomes

−2αu = �UT ∂χ2

∂(KA)
= �UT ∂χ2

∂(KDeV u)
. (18)

The optimization of Qα has thus been reformulated to the
problem of finding the vector u that solves Eq. (18), which
does not explicitly depend on A anymore. This allows us to
carry out the numerical solution in the (smaller) space of u
instead of A.

Ansatz (17) ensures the positivity of A, so for the positive-
negative approach a different parametrization has to be found
in order to use the advantages of the smaller singular space. By
doing a similar derivation for S± as the one presented above
for the conventional entropy, one realizes that due to

∂S±

∂Ai

= − log
Ai +

√
A2

i + 4D+
i D−

i

2D+
i

= − log
A+

i

D+
i

(19)

it is easier to express the equations in terms of A+ rather than
A. This is possible because of relation (12). Given Eq. (19), a

1We would like to point out that the use of SVD in Bryan’s algorithm
in the MEM is just for the purpose of choosing a convenient basis
for finding the minimum of Qα . This is fundamentally different from
methods where the SVD with a cutoff is used directly for the AC
without a regularization by an entropy term (see, e.g., Ref. [19]) or
in conjunction with a L1 regularization to achieve sparseness in the
SVD space, as in Ref. [21].
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suitable parametrization is given by

A+ = D+eV u, (20)

A− = D−e−V u, (21)

A = D+eV u − D−e−V u. (22)

With this, the condition ∂Qα/∂A = 0 becomes

−2αu = �UT ∂χ2

∂(KA)
= �UT ∂χ2

∂(K(D+eV u − D−e−V u))
.

(23)

Note that this expression looks nearly identical to Eq. (18).
The difference is that A is parametrized in terms of u by
Eq. (17) in case of non-negative functions and by Eq. (22)
in the generalized case; this enters Eq. (23) via χ2(A) on the
right-hand side.

In principle, the actual search for a vector u that fulfills
Eq. (18) or (23) can be performed using any suitable numerical
procedure; in practice, the Levenberg-Marquardt algorithm is
usually (and also in this work) employed [46]. This program
to minimize Qα can be implemented very similarly for both
the standard non-negative and the here-presented positive-
negative case, the only changes occur due to the generalization
of Eqs. (17) to (22).

E. Poor man’s matrix procedure

As discussed before, Eq. (3) works independently for each
element of the matrices G(τ ) and A(ω). This allows us to
perform the AC separately for each matrix element, using the
conventional entropy, Eq. (7), for diagonal elements and the
modified entropy, Eq. (14), for the off-diagonals.

However, for physical systems, the resulting spectral
function matrix has to be positive semidefinite and Hermitian,
which is usually not the case when performing the AC
separately for each matrix element with a flat default model.
Using a flat default model reflects the total absence of previous
knowledge on the problem. However, we know that a necessary
condition for the positive semidefiniteness of the resulting
spectral function matrix is

|All′ | �
√

AllAl′l′ . (24)

For example, for a problem where all diagonal elements
of the spectral function are zero at a certain frequency ω,
condition (24) implies that also all off-diagonal elements have
to be zero at this ω. Thus, once the diagonal elements have been
analytically continued, this condition constitutes additional
knowledge about the problem which might be incorporated
into the MEM framework by choosing the default model for
the off-diagonal elements Dll′(ω) accordingly,

Dll′(ω) =
√

All(ω)Al′l′(ω) + ε. (25)

Here, ε is a small number to prevent the default model from
becoming zero, so that no division by zero occurs in the entropy
term. We will show in Secs. III and IV that our special choice
of the default model (25) drastically improves the results of the
off-diagonal elements when they are calculated element-wise,
although it does not guarantee a positive semidefinite solution.

This poor man’s matrix approach is especially useful if one
wants to upgrade an existing MEM code by only modifying
the entropy for off-diagonal elements, as setting the default
model is usually a user input.

F. Full matrix formulation

The only way to ensure that the obtained spectral function
is indeed positive semidefinite and Hermitian is by treating the
matrix Aab as a whole. Instead of Eq. (6), the functional to
minimize then reads

Qα(A) =
∑
ab

[
1

2
χ2(Aab) − αS(Aab)

]
. (26)

Here, the ordinary entropy, Eq. (7), is used for the diagonal
elements (a = b), and accordingly the modified entropy,
Eq. (14), is used for off-diagonal elements. One way to
ensure the desired properties of Aab is to introduce an
auxiliary matrix B, where Aab = ∑

c B∗
caBcb. In contrast to the

parametrization of the uncoupled Aab described in Sec. II D,
there is no obvious singular-space parametrization here, since
Aab couples different elements of B. However, as the elements
Bab can be positive and negative for both diagonal and
off-diagonal elements, in the spirit of Sec. II D we choose

Bab = Dab(eV uab − e−V uab ). (27)

Using the resulting parametrization of Aab in terms of the
singular-space vectors u, the stationarity condition for Qα

from Eq. (26) leads to equations which consequently have to be
solved for u (for a more detailed discussion, see Appendix B).
The fact that the expression for Aab now couples the singular-
space parameters u of different matrix elements means that
all matrix elements have to be treated at the same time.
Consequently, the configuration space grows quadratically
with the matrix size d. Concerning the computational cost, the
fundamental difference between the poor man’s and the full
matrix approach is that in the former, one needs to d2 times find
a solution in a configuration space of size N�, while in the lat-
ter, one searches a solution once in a configuration space of size
N� · d2. As typically solver algorithms take disproportionally
longer for larger search spaces, this usually leads to a substan-
tial increase of computational time. Nevertheless, the increased
computational effort is justified, as it gives the possibility to
ensure the desired properties of A, leading to a large improve-
ment of quality. A flat default model is chosen for all matrix
elements when the full matrix method is used in this paper.

G. Analytic continuation of the self-energy

One of the central quantities of many-body theory is the
self-energy �. While some of its properties can be understood
from �(iωn), the analytically continued �(ω + i0+) allows
a more straightforward interpretation and the calculation of
further physical properties.

We will focus our discussion of the AC of the self-energy
on DMFT [26], where the self-energy is approximated to be k

independent and connects the impurity to the lattice problem.
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For a given (in general, matrix-valued) �, the local (matrix-
valued) lattice Green’s function is

Gloc(z) =
∑

k

[z − μ − Hk − �(z)]−1. (28)

The matrix Hk is the k-dependent Hamiltonian of the lattice
and the inversion has to be understood as matrix inversion. The
so-called impurity Weiss field G0(z) is obtained from Dyson’s
equation

G−1
0 (z) = G−1

loc(z) + �(z). (29)

This G0 is the input for the impurity solver to calculate the
self-energy and the interacting impurity Green’s function Gimp;
when inserting � back into Eq. (28), the self-consistency loop
can be closed. The DMFT cycle is iterated until convergence is
reached, i.e., until Gloc = Gimp. The self-energy as a function
of real frequency is needed within the framework of DMFT
to calculate lattice quantities, e.g., Gloc(ω + i0+) as defined
in Eq. (28), k-resolved spectral functions [47,48], Fermi
surfaces [47], or optical properties of strongly correlated
materials [49].

In contrast to Green’s functions, there is no relation equiva-
lent to Eq. (1) for self-energies and, hence, one needs to find an
appropriate method to perform the AC. There are several ways
to do so. One could analytically continue both the DMFT Weiss
field G0(iωn) and the interacting impurity Green’s function
Gimp(iωn) and calculate �(ω + i0+) via the Dyson equation
on the real-frequency axis [50]. However, there are two
independent analytic continuations involved, and hence, the
resulting real-frequency self-energy tends to oscillate heavily
and does usually give poor results (see, e.g., Ref. [50]). Another
approach is to solve for �(ω + i0+) in the expression for the
(analytically continued) Gloc(ω + i0+) [28,51,52].

The most commonly used approach in literature is to
continue an auxiliary quantity Gaux. Overall, this requires
the following five steps: (i) construction of Gaux(iωn) from
the self-energy �(iωn), (ii) inverse Fourier transform2 to
Gaux(τ ), (iii) AC of Gaux(τ ) to Aaux(ω), (iv) construction of
Gaux(ω + i0+) from Aaux(ω) using Eq. (1), and finally (v)
obtaining �(ω + i0+) from Gaux(ω + i0+).

In the following, we give two possible constructions of
Gaux(z). First, one can use

Gaux(z) = �(z) − �(i∞) (30)

where �(i∞) is the constant term of the high-frequency
expansion of �(iωn) [50]. We note here that the resulting
quantity Gaux is, technically speaking, not a Green’s function,
since its off-diagonal elements do not have the correct analytic
high-frequency behavior (they should fall off like ∼1/(ωn)2,
but in Eq. (30) they fall off like ∼1/ωn). Second, there is the
inversion method, e.g., used in Ref. [53],

Gaux(z) = [z + C − �(z)]−1. (31)

2In order to avoid spurious oscillations in the inversely Fourier-
transformed G(τ ), we fit the high Matsubara frequencies of �(iωn)
with its high-frequency expansion in ωn (“tail fit”) and subtract
the resulting tail from Gaux before performing the inverse Fourier
transform. Then we add the analytic inverse Fourier transform of the
tail expansion on the τ axis.

The constant C is usually set to C = �(i∞) + μ with the
chemical potential μ. In this work, we choose to use the
inversion method.

H. Implementation details

We implement a variation of Bryan’s MEM algorithm [42],
allowing arbitrary expressions for the entropy with the ability
to treat the problem in the full matrix formulation. For the
minimum search of Qα we use the Levenberg-Marquardt
minimization algorithm [46]. The expressions for the step
length and the convergence criterion are chosen as in Ref. [42].
The spectral function is parametrized in singular space as laid
out in Secs. II D and II F and the value of the hyperparameter
α is chosen using the piecewise linear fit of log χ2(log α) (see
Sec. II B). In general, the frequency mesh on which A(ω)
is discretized can be freely chosen. In this work, we use a
hyperbolic grid, which asymptotically becomes a linear grid
for high frequencies but is denser around ω = 0. This allows
the use of a smaller overall number of ω points, which speeds
up the calculation. However, when calculating the full Green’s
function from the spectral function according to Eq. (1), a small
broadening (i0+) has to be used. As the hyperbolic grid with a
small number of points is not dense enough (we use Nω = 200
points), this small broadening leads to artifacts, which can be
avoided by first interpolating the spectral function on a much
finer grid (we use a linear mesh with 10 000 points) and then
using 2�ω of the new grid as broadening.

For metallic systems, it is known that the MEM spectra
tend to exhibit spurious cusps around the Fermi level [10].
This can be prevented by using the preblur formalism [54],
where the so-called “hidden spectral function” is blurred via a
convolution with a Gaussian function. Within this algorithm,
the hidden spectral function is used to calculate the entropy
S, but the misfit χ2 is evaluated from the blurred spectral
function. Also, this blurred spectral function is what is taken
in the end as the solution of the problem.

The width b of the Gaussian is another hyperparameter that
can be chosen similarly to α, e.g., by searching the maximum
of the probability p(α,b) or by locating the characteristic kink
in log χ2(log α, log b). In accordance to the route employed
for determining α, first we determine one value of α for every
value of b using the fit method described at the end of Sec. II B.
Then, we take the curves of log χ2 at that value of α for the
different values of b and fit once more to determine b.

III. TWO-BAND MODEL

As a benchmark system for the presented approach, we
investigate an artificial particle-hole symmetric two-band
model with semicircular density of states. We set the half-band
width to D1 = 2 for the first band and to D2 = 1 for the
second band. We choose the interaction term in a simple
Hubbard-type form Hint = ∑

i Uini↑ni↓ with Ui/Di = 3.25.
The chemical potential and the onsite energies are chosen such
that both bands are half-filled. For the chosen interaction, the
system is a Mott insulator with a spectrum consisting of two
distinct Hubbard bands separated by an energy Ui . We treat the
problem with DMFT to obtain an interacting impurity Green’s
function Gimp(τ ) and a self-energy �(iωn) at an inverse
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temperature of βD2 = 40. The simplicity of the problem
allows the use of iterated perturbation theory (IPT) [26,55–58]
as impurity solver. The AC of the IPT results are performed
using Padé approximants [7,9]. Because of the noiseless nature
of the IPT data, the Padé approximants give reliable results for
this specific problem [26]. Additionally we solve our two-band
model using the continuous-time hybridization-expansion
quantum Monte Carlo solver (TRIQS/CTHYB) [59,60], which
is based on the TRIQS package [61], and perform the AC with
the MEM. We perform 8 × 106 CTHYB measurements. Of
course, more measurements would undoubtedly be beneficial
for the AC. Nevertheless, we limit ourselves here to emulate
more complicated situations where higher-quality data can
only be obtained with a substantial increase in computational
effort. Although it would be possible to evaluate the covariance
matrix of the Monte Carlo to take into account the correlations
of the noise of G(τ ) at different values of τ , for simplicity, we
estimate the Monte Carlo noise by manual inspection of the
imaginary-time data (5 × 10−4 in our case), and we assume a
diagonal covariance matrix with a constant noise for these (and
the following) tests. As we determine α by detecting the char-
acteristic kink in log χ2(log α), the procedure is less sensitive
to the given error than, e.g., the classic MEM (see Sec. II B).

In the following, we will compare the curves obtained by
IPT and Padé with those from CTHYB and MEM as two
approaches to tackle this problem. The former suffers from a
systematic error as it is a perturbative technique, but yields
results without statistical error. The latter, on the other hand,
is exact in theory, but will always give noisy Green’s functions
and, thus, uncertainties after AC. In context of multiorbital
DMFT calculations away from half-filling, in many cases
quantum Monte Carlo impurity solvers are the only option,
making it necessary to analytically continue noisy data.

Some tests benchmarking our implementation of the MEM
algorithm and an investigation of the effect of random noise
on the data can be found in Appendix C.

In order to model a system with off-diagonal Green’s
functions and self-energies, we perform a basis transformation
for the Gimp(τ ) and �(iωn), which come out as diagonal
matrices from the impurity solvers. In this work, we simply
use a rotation matrix with an angle φ = 0.4 rad, which is
representative for the results obtained for other angles.

Figure 2 shows the resulting spectral function for the
AC of the rotated Gimp(τ ). Using a flat default model, the
off-diagonal elements of the spectral function feature strong
oscillations (dashed green line). This can be explained by the
relaxation of the positivity constraint: In general, the AC tends
to overfit around ω = 0 and to underfit for large ω, since the
kernel is largest for small ω. For metallic spectral functions,
these artifacts can be cured as explained in Sec. II H. For
insulating spectral functions, the oscillations around A = 0 are
suppressed in the diagonal components, because fluctuations
to negative values are not possible due to their positivity. In
the off-diagonal elements, however, these fluctuations appear.
Additionally, for high frequencies, the solution for the off-
diagonal elements with flat default model does not tend to
zero as in the IPT and Padé solution, but overshoots and goes
to negative values. The violation of the particle-hole symmetry
is due to the stochastic nature of the Monte Carlo data (it is
thus a measure for the quality of the QMC result) and not

FIG. 2. Top: Spectral function of the rotated model in the
insulating regime. Each subplot represents one matrix element,
the two off-diagonal elements A01 and A10 being the same. The
result from IPT and Padé (black) is shown along with the MEM
results. For the latter, we compare the continuation treating the
matrix elements independently with a flat default model (dashed
green) with the poor man’s matrix method, i.e., using a default
model incorporating the information from the diagonal elements
(blue, only for the off-diagonal elements). Furthermore, the result
of the matrix formulation (red) that ensures a positive semidefinite,
Hermitian spectral function is shown. Bottom: The determinant of
the matrix-valued spectral function A as a function of frequency.
Wherever det A(ω) is negative, the matrix is not positive semidefinite.

directly a fault of the MEM (see Appendix C). We refrained
from symmetrizing the resulting G(τ ), because in most models
one does not have this possibility.

Building the information from the diagonal elements into
the default model of the off-diagonal elements (poor man’s
method), as outlined in Sec. II E, improves these issues (blue
line in Fig. 2). It suppresses oscillations of the off-diagonal
elements where the diagonal elements are small, stabilizes a
smooth solution, and improves the high-frequency behavior.
Nevertheless, care has to be taken as this does not mean
that the solution is positive semidefinite, and indeed, at some
frequencies that general property of the spectral function is
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violated (see the plot of det A at the bottom of Fig. 2).
Therefore, we apply the full matrix formulation (Sec. II F)
to the problem (red lines in Fig. 2). This solves the issues one
faces when performing the AC separately for the individual
matrix elements. The spurious oscillations of the off-diagonal
elements of A(ω) are efficiently suppressed even for a flat
default model and the spectral function matrix is positive
semidefinite everywhere.

As a next step, we benchmark the AC of �, using the
inversion method to construct an auxiliary Green’s function
(see Sec. II G) for the off-diagonal model; the obtained
�(ω + i0+) is shown in Fig. 3. The separate AC of the
individual matrix elements using a flat default model leads to
a heavily oscillating self-energy, which is why it is not shown
here. But even performing the poor man’s matrix method
(blue line in Fig. 3) leads to unphysical results. Especially
in the regions where the auxiliary spectral function Aaux is
not positive semidefinite (shaded in gray in Fig. 3), these
problems are evident: there are heavy oscillations when the
curve overshoots whenever the derivative changes quickly,
and for some frequencies even the diagonal elements of the
imaginary part of the self-energy become positive. This shows
that the poor man’s method is not adequate for determining a
matrix-valued �(ω + i0+). The full matrix formulation (red
line in Fig. 3), however, yields physical solutions just as IPT
and Padé; these two solutions are consistent with each other
within the limits of the method. Again, the slight deviation
from the particle-hole-symmetrized result (dashed purple line)
is due to a stochastic violation of that symmetry in the G(τ )
data. This also manifests itself as a spurious peak close to
ω = 0 in the off-diagonal element of �(ω + i0+), which can
be traced back to a slight mismatch of the position of the
poles of Im �(ω + i0+) (that should be at ω = 0) between
different matrix elements. In general models, the particle-hole
symmetry is not present and cannot therefore be exploited
to improve the result. The real part of �(ω + i0+), which is
related to the imaginary part by the Kramers-Kronig relation,
also gives plausible results and the two different methods agree
very well (not shown). Once �(ω + i0+) has been obtained,
other lattice quantities are accessible. However, we do not
further discuss this here, but refer the reader to the example in
the next section (Sec. IV), where we also calculate the local
lattice Green’s function Gloc from �(ω + i0+).

So far, only an insulating solution has been investigated.
However, we also put the method to a test in the metallic regime
of the model (Ui/Di = 1.5), shown in Fig. 4. As discussed in
Sec. II H, it is necessary to use preblurring to avoid cusps
around ω = 0. This is also observed in the generalization of
the method to off-diagonal elements. Not only is the preblurred
spectral function smoother around ω = 0, but also more details
at higher frequencies can be resolved, which can be best seen in
the off-diagonal element. In general, in that regime, the results
from CTHYB and MEM (employing the preblur technique)
and IPT and Padé agree very nicely, similar to what is found
for the insulating case.

IV. APPLICATION: LaTiO3

Finally, we apply the matrix formulations presented above
in Secs. II E and II F to LaTiO3, for which we perform a

FIG. 3. Top: Imaginary part of the self-energy �(ω + i0+) for
the rotated model obtained with the inversion method. Each subplot
represents one matrix element, the two off-diagonal elements �01

and �10 being the same. The result from IPT and Padé (black) is
compared to the curves obtained with CTHYB and the MEM. The
poor man’s matrix method (blue) is presented alongside the full matrix
method (red). For the latter, also the result where the auxiliary spectral
function, Aaux, has been particle-hole symmetrized (phs) is shown
(dashed purple line). Bottom: The determinant of the matrix-valued
auxiliary spectral function Aaux as a function of frequency. Wherever
det Aaux(ω) is negative, the matrix is not positive semidefinite. This
happens only for the poor man’s matrix method. The regions where
the corresponding Aaux is not positive semidefinite are marked by the
gray areas.

one-shot DFT+DMFT calculation. The transition metal oxide
LaTiO3 has a perovskite crystal structure with tilted oxygen
octahedra and distorted lanthanum cages. Because of these
structural distortions, the material features an off-diagonal
hybridization, and thus also an off-diagonal impurity Green’s
function Gimp(τ ). LaTiO3 was already extensively analyzed
in the literature [62–64], where also the nature of the Mott
insulating state was traced back to the tilting and rotation of
the oxygen octahedra and the accompanying lifting of the t2g

degeneracy.
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FIG. 4. Spectral function of the rotated model in the metallic
regime. Each subplot represents one matrix element, the two off-
diagonal elements A01 and A10 being the same. The result from IPT
and Padé (black) is shown along with the full matrix MEM result.
For the latter, we show the result with (cyan) and without (red) using
the preblur method.

Here, we do not further elaborate on the physics, but rather
use LaTiO3 as a benchmark material to prove the following
points: First, we emphasize that the analytic continuation
of off-diagonal elements is a problem often encountered in
real-materials calculations. Second, the calculations presented
here show that the full matrix formalism is feasible for
3 × 3 matrices. Third, we show that the continuation of the
self-energy leads to a local Green’s function Gloc(ω + i0+)
which is comparable to the continuation of Gimp.

Our calculations were carried out with WIEN2K [65] and the
TRIQS/DFTTOOLS package [61,66–68]. For the DFT part, we
use the crystal structure from Ref. [69], 40 000 k points in the
full Brillouin zone and employ the standard Perdew-Burke-
Ernzerhof (PBE) [70] generalized gradient approximation
(GGA) for the exchange-correlation functional. From the DFT
Bloch states we construct projective Wannier functions for
the t2g subspace of the Ti-3d states in an energy window
from −1.0 to 1.2 eV around the Fermi level. In DMFT, we
use the Kanamori Hamiltonian with a Coloumb interaction
U = 4.5 eV and a Hund’s coupling J = 0.65 eV similar to the
values used in Ref. [27,64]. We solve the impurity model on
the imaginary axis with the TRIQS/CTHYB solver [59] at an
inverse temperature β = 40 eV−1 and use a total number of
3.2 × 107 measurements. We choose the solver basis such that
the density matrix is diagonal. In the case of LaTiO3, this basis
has the advantage that all matrix elements of Gimp(τ ) are real
if the phases are chosen accordingly.

FIG. 5. Top: Comparison of real (red) and imaginary parts (blue)
of the impurity Green’s function Gimp(ω + i0+) (solid lines) and
the local lattice Green’s function Gloc(ω + i0+) (dashed lines). The
former is obtained by a direct AC, whereas the latter is calculated via
Eq. (28) after the AC of the self-energy. In both cases, the matrix
formulation of the MEM code was used. The subplots represent
different matrix elements of the Green’s function. Bottom: Total
spectral function (i.e., trace over the orbital and spin degrees of
freedom) of the Ti-t2g bands from the Green’s functions shown above
(Gimp, black, and Gloc, red). For Gloc, performing the AC of � using
the poor man’s matrix method is shown as well (blue). Additionally,
we show the spectral function of a local Green’s function where we
have set the off-diagonal elements of the self-energy �(iωn) to zero
before individually continuing its diagonal elements and evaluating
Gloc from the obtained �(ω + i0+) (dashed green).

Having obtained Gimp(τ ) from the DFT+DMFT calcula-
tion, the AC is again performed in two ways: First, with the
full matrix formalism for the full Green’s function matrix
(Sec. II F) and second, by a separate continuation of the

155128-9



KRABERGER, TRIEBL, ZINGL, AND AICHHORN PHYSICAL REVIEW B 96, 155128 (2017)

individual elements with the poor man’s matrix method
introduced in Sec. II E. Furthermore, we analytically continue
�(iωn) by means of the inversion method (see Sec. II G).
We calculate the local Green’s function Gloc(ω + i0+) with
Eq. (28) and compare it to the direct continuation of the
impurity Green’s function Gimp(ω + i0+) in the top graph of
Fig. 5.

Within DMFT, the self-consistency condition requires
Gloc = Gimp, which is well fulfilled on the Matsubara axis.
Nevertheless, the agreement on the real axis shown in Fig. 5
is remarkably good for both the diagonal and the off-diagonal
elements, especially when considering the different magni-
tudes of the individual matrix elements and the fact that the
continuation is performed for different Green’s functions, i.e.,
Gimp(iωn) and Gaux(iωn). This underlines the capabilities of
the presented full matrix method.

Here, we only show the Green’s functions obtained with
the full matrix formalism; however, it should be emphasized
that for LaTiO3 also the poor man’s method gives very similar
results (see the corresponding spectral function in the bottom
graph of Fig. 5). Therefore, here the element-wise continuation
with the poor man’s method constitutes an efficient alternative
to the full matrix method.

Figure 5 does not only prove the concept of the AC for
the full Green’s function, but also shows that the AC of
the self-energy via the construction of an auxiliary Green’s
function is a feasible approach. In contrast, calculating the
spectral function from Gloc(ω + i0+), where we set the off-
diagonal elements of the self-energy �(iωn) to zero (and thus
analytically continue only the diagonal elements), does lead
to a completely wrong, even metallic, spectral function (see
dashed green line in bottom plot of Fig. 5). This clearly shows
that the off-diagonal elements must not be neglected at this
point of the calculation.

In terms of the gap as well as the overall shape and size
of the Hubbard bands, the presented spectra for the Ti-t2g

subspace are in good agreement with calculations available in
the literature [27,62,64].

V. CONCLUSION

In this work, we show how a consistent framework for the
analytic continuation of matrix-valued Green’s functions can
be constructed on a probabilistic footing. In order to enable a
treatment of the off-diagonal elements, we use an entropy that
allows to relax the non-negativity constraint one has to obey in
the usual maximum entropy method. With this generalization,
diagonal and off-diagonal elements can, in principle, be treated
on a similar footing.

The practical use of this method is studied on two examples,
an artificial two-band model and a realistic DFT+DMFT
calculation for the insulating compound LaTiO3. First, we
propose the poor man’s matrix method, where the matrix
elements are treated separately. With this scheme, we find
satisfactory results for some cases (e.g., for LaTiO3), but
also see completely unphysical results in our calculations
for the two-band model, since positive semidefiniteness and
Hermiticity of the spectral functions cannot be guaranteed.

Only the AC in full matrix formulation cures these problems
and produces spectral functions with the correct mathematical

properties, such as positive semidefiniteness and Hermiticity.
Although being computationally more expensive, it should be
employed whenever feasible.

Moreover, these methods for AC introduced here give
access to the matrix-valued self-energy on the real-frequency
axis, which is indispensable for the study of lattice quantities.
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APPENDIX A: PROBABILITIES

1. Conventional entropy

The framework presented here was developed in the
pioneering works by Skilling [33], Gull [41], and Bryan [42],
but we will rephrase it here for completeness. In Ref. [33],
Skilling used the picture of the monkeys presented in Sec. II C
to relate the entropy to a prior probability distribution

P (A|D,α) = 1

ZS

eαS(A,D),

ZS =
∫

dNA∏
i

√
Ai

eαS(A,D). (A1)

Note that the measure in Eq. (A1) is not flat, but
∏

i A
−1/2
i . The

metric of the spectral function space is therefore gij = δij /Ai ,
which is minus the second derivative of the entropy gij =
−∂2S/∂Ai∂Aj [33,73,74]. The prior distribution is maximized
by Ai = Di . When expanding the entropy to second order
around the maximum, the variance is therefore αDi . Thus,
the default model determines both the maximum as well as
the width of the distribution, as expected from the assumed
Poisson process.

Using the likelihood P (G|A) = e−χ2/2/Zχ2 with Zχ2 =∫
dNG e−χ2/2, the minimization of Qα [see Eq. (6)] can be un-

derstood as a maximization of the probability P (G,A|α,D) =
e−Qα/(ZSZχ2 ). This can be used to determine α on a
probabilistic footing since marginalizing over A gives [41]

P (α|G,D) ∝ P (α)
∫

dNA∏
i

√
Ai

e− 1
2 χ2+αS. (A2)

The prior P (α) is usually chosen to be Jeffrey’s prior 1/α.
The most common way to evaluate the integral (A2) is to
expand the exponent up to second order. The final expression
for the probability is [41]

P (α|G,D) ∝ P (α)α
Nτ
2 e−Qα (A∗

α )[det(� + α)]−
1
2 , (A3)

where A∗
α minimizes Qα and � is a matrix with the

elements �ij = 1
2

√
AiAj ∂2χ2/∂Ai∂Aj . The classical MEM

by Gull uses the α that maximizes P (α|G,D) within this
approximation [41], whereas Bryan suggested to calculate the
weighted average Ā = ∫

dαP (α|G,D)Aα [42]. In most cases,
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P (α|G,D) is sharply peaked, and thus, the classical and the
Bryan MEM give very similar results.

2. Positive-negative entropy

Since A+ and A− are assumed to be independent, the entropy
is S(A+,A−) = S(A+) + S(A−) and one has to marginalize
over both A+ and A− in order to find the probability of α:

P (α|G,D) ∝ P (α)
∫

dNA+∏
i

√
A+

i

∫
dNA−∏
i

√
A−

i

× e− 1
2 χ2(A=A+−A−)+αS(A+,A−). (A4)

As in the derivation of S±, one can use the fact that χ2

depends only on the difference A+ − A−, so that the remaining
degree of freedom can be integrated out. Transforming to
A = A+ − A− and some auxiliary A′ = A+ + A−, the integral
over A′ is easily evaluated using a second-order expansion of
the exponent like in the classical MEM, yielding

P (α|G,D) ∝ P (α)
∫

dNA∏
i

4

√
A2

i + 4D+
i D−

i

e− 1
2 χ2+αS±

. (A5)

The same form is also obtained in Ref. [38], using a different
approach to prove it, with the Skellam distribution of the
two monkey hordes as a starting point. Note that either way
Eq. (A5) is an approximation. This expression looks similar
to the case of positive spectral functions (A2), but with a
different entropy given by Eq. (14) instead of the ordinary
entropy (7) and with the measure

∏
i(A

2
i + 4D+

i D−
i )−1/4

instead of
∏

i A
−1/2
i . Interestingly, the metric is given by the

second derivative of the entropy gij = −∂2S/∂Ai∂Aj , just
as in the ordinary case of non-negative spectral functions.
Expanding the exponent of integral (A5) again to second order,
the probability has exactly the same form as in the strictly
positive case (A3), but with a different Qα = 1

2χ2 − αS± due
to the different entropy and with a different matrix �ij =
1
2

4

√
A2

i + 4D+
i D−

i ∂2χ2/∂Ai∂Aj
4

√
A2

j + 4D+
j D−

j due to the

different metric. The prior distribution eαS±(A) is maximized
by Ai = D+

i − D−
i . Expanding the entropy up to second order

around this maximum gives a variance of α(D+
i + D−

i ). Thus,
in the usual case D+

i = D−
i = Di , the default model only

influences the solution via the width of the distribution, not via
the position of the maximum, since this is always at Ai = 0.

APPENDIX B: STATIONARITY CONDITION IN THE FULL
MATRIX FORMALISM

In the full matrix formalism, in practice we formulate the
stationarity condition directly in singular space. Let uab;i be
the ith element of the vector uab, where a, b are the matrix
indices just as in Eq. (27). Then, the stationarity condition
reads ∂Qα/∂uab;i = 0 for all a, b, i. Qα is given by Eq. (26).
Its derivative is

∂Qα

∂uab;i
=

∑
cd;j

[
1

2

∂χ2(Acd )

∂Acd;j
− α

∂S(Acd )

∂Acd;j

]
∂Acd;j

∂uab;i
. (B1)

FIG. 6. Spectral function A(ω) of the first band of the diagonal
two-band model with Ui/Di = 3.25, calculated using Padé approx-
imants for the IPT solution (black) and the MEM for the CTHYB
solution. Different MEM codes (Bryan solution from Levy et al. [23]
in blue, �MAXENT [22] in dashed green, and our code in red) were
used; a flat default model was employed for all three cases.

The derivative of the misfit is

∂χ2(Acd )

∂Acd;j
= 2

∑
l

1

σ 2
cd;l

(∑
k

KlkAcd;k − Gcd;l

)
Klj , (B2)

where the data Gcd;l are assumed to have diagonal covariance
matrices with diagonal elements σ 2

cd;l (in practice, a change of
basis to diagonalize the covariance matrix is always possible).
For the diagonal elements, the derivative of the conventional
entropy [Eq. (7)] is

∂S(Acc)

∂Acc;j
= − log

Acc;j

Dcc;j
, (B3)

for the off-diagonal elements it is given by Eq. (19). When
using Acd;j = ∑

e B∗
ec;jBed;j , one obtains

∂Acd;j

∂uab;i
=

∑
e

∂B∗
ec;j

∂uab;i
Bed;j + B∗

ec;j
∂Bed;j

∂uab;i
. (B4)

As we know that ∂Bcd;j /∂uab;i is zero unless a = c and b = d,
the sum over e drops out and one has

∂Acd;j

∂uab;i
= δbc

∂B∗
ab;j

∂uab;i
Bad;j + δbdB

∗
ac;j

∂Bab;j

∂uab;i
, (B5)

where [using Eq. (27)]

∂Bab;j

∂uab;i
= Dab;jVji

(
e
∑

k Vjkuab;k + e− ∑
k Vjkuab;k

)
. (B6)

By plugging these derivatives into Eq. (B1) and setting it to
zero, one obtains an expression for the stationarity condition
that has to be solved for u.

APPENDIX C: IMPLEMENTATION BENCHMARKS

In this appendix, we perform a few tests based on the model
introduced in Sec. III in order to check our implementation of
the MEM in general and to demonstrate the effect of noise on
the AC.

First, we compare the results for our unrotated diagonal
two-band model to those obtained with two freely available

155128-11



KRABERGER, TRIEBL, ZINGL, AND AICHHORN PHYSICAL REVIEW B 96, 155128 (2017)

FIG. 7. Spectral function A(ω) of the two-band model with
Ui/Di = 3.25, calculated using Padé approximants for the IPT
solution. Starting from that solution, a G(τ ) was calculated using
Eq. (4); that G(τ ) was then rotated in accordance to Sec. III. The
rotated IPT and Padé result is shown as the black curve. Gaussian
random noise with a standard deviation of σ was added to that G(τ ),
which was then analytically continued using the full matrix MEM
(blue curve with σ = 10−8, dashed green curve for σ = 5 · 10−4).
This is compared to the result from analytically continuing the G(τ )
obtained by solving the same model with CTHYB (red).

MEM codes: a code recently presented by Levy et al. [23] and
the �MAXENT code [22]. The resulting spectral function for
the first band is shown in Fig. 6. Within the errors of the method
(as discussed, e.g., in Ref. [75]), the three MEM curves are in
good agreement. For the second band, the quality of the AC is
similar (not shown here). The fact that the MEM solution and
the Padé solution do only qualitatively agree is not surprising,
as even a small statistical noise of the Monte Carlo data, in

contrast to the noiseless IPT solution, notably increases the
uncertainty of the AC [75].

In order to assess this influence of statistical noise on the
AC, we take the spectral function A(ω) obtained from IPT and
Padé as starting point; then, we calculate the corresponding
imaginary-time Green’s function G(τ ) by multiplying with
the kernel, as in Eq. (4). In analogy to Sec. III we rotate the
G(τ ) so that it features off-diagonal elements (the rotated IPT
and Padé curve is the black curve in Fig. 7). From that G(τ )
(a very small Gaussian random noise with standard deviation
10−8 has to be added for the MEM to work) an A(ω) can be
obtained once more using AC, which we perform using our
full matrix MEM (blue curve in Fig. 7). As can be clearly seen,
for all matrix elements the original curve is well reproduced by
the MEM, which is further evidence that our implementation
works. However, the curves are smoother than the original data
for larger |ω|; this is a well-known tendency of all MEM as
the entropy term favors the smoothness of the default model
and G(τ ) generally represents the spectral features worse for
higher |ω|.

We now emulate QMC data by adding bigger random
Gaussian noise (with standard deviation 5 × 10−4) to the G(τ )
from the IPT and Padé A(ω). The MEM-analytically continued
curve from that noisy G(τ ) (dashed green curve in Fig. 7)
differs considerably both from the input A(ω) and from the
MEM curve with hardly any noise. One can clearly see how
much information is lost already by noise only of the order of
5 × 10−4. The detailed structure of the Hubbard bands cannot
be resolved and it is replaced by just one broad peak for each
band (in the diagonal elements). In the A00 element, a small
shoulder for low |ω| is observed, reminiscent of a similar
feature in the original data.

Finally, we want to compare the results from our artificially
noisy Green’s function to that of our CTHYB calculation for
the same model. The spectral functions (dashed green and red
curves in Fig. 7) look very similar, especially the off-diagonal
element. As noted before, the CTHYB solution breaks particle-
hole symmetry, which can be nicely seen in the different peak
heights for positive and negative ω in the diagonal elements
(of course, the particular way how this breaking happens will
be different from QMC run to QMC run due to the stochastic
nature of the method). This can already be seen on the level of
G(τ ) (not shown). Thus, we conclude that IPT and Padé gives
results compatible to CTHYB and MEM, for this very specific
model at hand.

[1] J. E. Hirsch and R. M. Fye, Phys. Rev. Lett. 56, 2521 (1986).
[2] W. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal,

Rev. Mod. Phys. 73, 33 (2001).
[3] E. Gull, A. J. Millis, A. I. Lichtenstein, A. N. Rubtsov,

M. Troyer, and P. Werner, Rev. Mod. Phys. 83, 349
(2011).

[4] J. Harl and G. Kresse, Phys. Rev. Lett. 103, 056401 (2009).
[5] M. Kaltak, J. Klimeš, and G. Kresse, Phys. Rev. B 90, 054115

(2014).
[6] P. Liu, M. Kaltak, J. Klimeš, and G. Kresse, Phys. Rev. B 94,

165109 (2016).

[7] A. V. Ferris-Prabhu and D. H. Withers, J. Comput. Phys. 13, 94
(1973).

[8] J. M. Tomczak, M. Casula, T. Miyake, F. Aryasetiawan, and S.
Biermann, Europhys. Lett. 100, 67001 (2012).

[9] K. S. D. Beach, R. J. Gooding, and F. Marsiglio, Phys. Rev. B
61, 5147 (2000).

[10] R. N. Silver, D. S. Sivia, and J. E. Gubernatis, Phys. Rev. B 41,
2380 (1990).

[11] J. E. Gubernatis, M. Jarrell, R. N. Silver, and D. S. Sivia,
Phys. Rev. B 44, 6011 (1991).

[12] S. F. Gull and J. Skilling, IEE Proc.-F 131, 646 (1984).

155128-12

https://doi.org/10.1103/PhysRevLett.56.2521
https://doi.org/10.1103/PhysRevLett.56.2521
https://doi.org/10.1103/PhysRevLett.56.2521
https://doi.org/10.1103/PhysRevLett.56.2521
https://doi.org/10.1103/RevModPhys.73.33
https://doi.org/10.1103/RevModPhys.73.33
https://doi.org/10.1103/RevModPhys.73.33
https://doi.org/10.1103/RevModPhys.73.33
https://doi.org/10.1103/RevModPhys.83.349
https://doi.org/10.1103/RevModPhys.83.349
https://doi.org/10.1103/RevModPhys.83.349
https://doi.org/10.1103/RevModPhys.83.349
https://doi.org/10.1103/PhysRevLett.103.056401
https://doi.org/10.1103/PhysRevLett.103.056401
https://doi.org/10.1103/PhysRevLett.103.056401
https://doi.org/10.1103/PhysRevLett.103.056401
https://doi.org/10.1103/PhysRevB.90.054115
https://doi.org/10.1103/PhysRevB.90.054115
https://doi.org/10.1103/PhysRevB.90.054115
https://doi.org/10.1103/PhysRevB.90.054115
https://doi.org/10.1103/PhysRevB.94.165109
https://doi.org/10.1103/PhysRevB.94.165109
https://doi.org/10.1103/PhysRevB.94.165109
https://doi.org/10.1103/PhysRevB.94.165109
https://doi.org/10.1016/0021-9991(73)90127-7
https://doi.org/10.1016/0021-9991(73)90127-7
https://doi.org/10.1016/0021-9991(73)90127-7
https://doi.org/10.1016/0021-9991(73)90127-7
https://doi.org/10.1209/0295-5075/100/67001
https://doi.org/10.1209/0295-5075/100/67001
https://doi.org/10.1209/0295-5075/100/67001
https://doi.org/10.1209/0295-5075/100/67001
https://doi.org/10.1103/PhysRevB.61.5147
https://doi.org/10.1103/PhysRevB.61.5147
https://doi.org/10.1103/PhysRevB.61.5147
https://doi.org/10.1103/PhysRevB.61.5147
https://doi.org/10.1103/PhysRevB.41.2380
https://doi.org/10.1103/PhysRevB.41.2380
https://doi.org/10.1103/PhysRevB.41.2380
https://doi.org/10.1103/PhysRevB.41.2380
https://doi.org/10.1103/PhysRevB.44.6011
https://doi.org/10.1103/PhysRevB.44.6011
https://doi.org/10.1103/PhysRevB.44.6011
https://doi.org/10.1103/PhysRevB.44.6011
https://doi.org/10.1049/ip-f-1:19840099
https://doi.org/10.1049/ip-f-1:19840099
https://doi.org/10.1049/ip-f-1:19840099
https://doi.org/10.1049/ip-f-1:19840099


MAXIMUM ENTROPY FORMALISM FOR THE ANALYTIC . . . PHYSICAL REVIEW B 96, 155128 (2017)

[13] F. Bao, Y. Tang, M. Summers, G. Zhang, C. Webster, V. Scarola,
and T. A. Maier, Phys. Rev. B 94, 125149 (2016).

[14] A. W. Sandvik, Phys. Rev. B 57, 10287 (1998).
[15] K. S. D. Beach, arXiv:cond-mat/0403055.
[16] A. S. Mishchenko, N. V. Prokof’ev, A. Sakamoto, and B. V.

Svistunov, Phys. Rev. B 62, 6317 (2000).
[17] S. Fuchs, T. Pruschke, and M. Jarrell, Phys. Rev. E 81, 056701

(2010).
[18] A. W. Sandvik, Phys. Rev. E 94, 063308 (2016).
[19] C. E. Creffield, E. G. Klepfish, E. R. Pike, and S. Sarkar,

Phys. Rev. Lett. 75, 517 (1995).
[20] L.-F. Arsenault, R. Neuberg, L. A. Hannah, and A. J. Millis,

Inverse Problems, doi: 10.1088/1361-6420/aa8d93.
[21] J. Otsuki, M. Ohzeki, H. Shinaoka, and K. Yoshimi, Phys. Rev.

E 95, 061302 (2017).
[22] D. Bergeron and A.-M. S. Tremblay, Phys. Rev. E 94, 023303

(2016).
[23] R. Levy, J. P. F. LeBlanc, and E. Gull, Comput. Phys. Commun.

215, 149 (2017).
[24] W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989).
[25] A. Georges and G. Kotliar, Phys. Rev. B 45, 6479 (1992).
[26] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg,

Rev. Mod. Phys. 68, 13 (1996).
[27] H. T. Dang, X. Ai, A. J. Millis, and C. A. Marianetti, Phys. Rev.

B 90, 125114 (2014).
[28] J. M. Tomczak and S. Biermann, J. Phys.: Condens. Matter 19,

365206 (2007).
[29] M. Jarrell, The maximum entropy method, in Correlated

Electrons: From Models to Materials, edited by E. Pavarini,
E. Koch, F. Anders, and M. Jarrell (Forschungszentrum Jülich,
Jülich, 2012), Chap. 13.

[30] A. Reymbaut, D. Bergeron, and A.-M. S. Tremblay, Phys. Rev.
B 92, 060509 (2015).

[31] M. De Raychaudhury, E. Pavarini, and O. K. Andersen,
Phys. Rev. Lett. 99, 126402 (2007).

[32] I. S. Krivenko and A. N. Rubtsov, arXiv:cond-mat/0612233.
[33] J. Skilling, Classic maximum entropy, in Maximum Entropy

and Bayesian Methods, edited by J. Skilling (Kluwer Academic,
Dortrecht, 1989), p. 45.

[34] E. Laue, J. Skilling, and J. Staunton, J. Magn. Reson. 63, 418
(1985).

[35] S. Sibisi, Quantified Maxent: An NMR Application, in Maxi-
mum Entropy and Bayesian Methods, edited by P. F. Fougère
(Kluwer Academic, Dordrecht, 1990), p. 351.

[36] K. Maisinger, M. P. Hobson, and A. N. Lasenby, Mon. Not. R.
Astron. Soc. 290, 313 (1997).

[37] A. W. Jones, S. Hancock, A. S. Lasenby, R. D. Davies, C. M.
Gutierrez, G. Rocha, R. A. Watson, and R. Rebolo, Mon. Not.
R. Astron. Soc. 294, 582 (1998).

[38] M. P. Hobson and A. N. Lasenby, Mon. Not. R. Astron. Soc.
298, 905 (1998).

[39] S. Gull and G. Daniell, Nature (London) 272, 686 (1978).
[40] D. M. Titterington, Astron. Astrophys. 144, 381 (1985).
[41] S. F. Gull, Developements in maximum entropy data analysis, in

Maximum Entropy and Bayesian Methods, edited by J. Skilling
(Kluwer Academic, Dortrecht, 1989), p. 53.

[42] R. K. Bryan, Solving oversampled data problems by maximum
entropy, in Maximum Entropy and Bayesian Methods, edited by
P. F. Fougère (Kluwer Academic, Dordrecht, 1990), p. 221.

[43] W. von der Linden, R. Preuss, and V. Dose, The prior-predictive
value: A paradigm of nasty multi-dimensional integrals, in
Maximum Entropy and Bayesian Methods, edited by W. von der
Linden, V. Dose, R. Fischer, and R. Preuss (Kluwer Academic,
Dortrecht, 1999), p. 319.

[44] M. Hohenadler, D. Neuber, W. von der Linden, G. Wellein, J.
Loos, and H. Fehske, Phys. Rev. B 71, 245111 (2005).

[45] S. F. Gull and J. Skilling, Quantified Maximum Entropy
MemSys5 Users’ Manual (Maximum Entropy Data Consultants
Ltd., Bury St. Edmunds, 1999).

[46] D. W. Marquardt, J. Soc. Ind. Appl. Math. 11, 431 (1963).
[47] A. Liebsch and A. Lichtenstein, Phys. Rev. Lett. 84, 1591 (2000).
[48] S. Biermann, A. Dallmeyer, C. Carbone, W. Eberhardt, C.

Pampuch, O. Rader, M. I. Katsnelson, and A. I. Lichtenstein,
JETP Lett. 80, 612 (2004).

[49] V. S. Oudovenko, G. Pálsson, S. Y. Savrasov, K. Haule, and G.
Kotliar, Phys. Rev. B 70, 125112 (2004).

[50] X. Wang, E. Gull, L. de’ Medici, M. Capone, and A. J. Millis,
Phys. Rev. B 80, 045101 (2009).

[51] M. Jarrell, J. K. Freericks, and T. Pruschke, Phys. Rev. B 51,
11704 (1995).

[52] V. I. Anisimov, D. E. Kondakov, A. V. Kozhevnikov, I. A.
Nekrasov, Z. V. Pchelkina, J. W. Allen, S.-K. Mo, H.-D. Kim,
P. Metcalf, S. Suga, et al., Phys. Rev. B 71, 125119 (2005).

[53] J. Mravlje and A. Georges, Phys. Rev. Lett. 117, 036401 (2016).
[54] J. Skilling, Fundamentals of MaxEnt in data analysis, in

Maximum Entropy in Action, edited by B. Buck and V. A.
Macaulay (Clarendon Press, Oxford, UK, 1991), p. 19.

[55] K. Yosida and K. Yamada, Prog. Theor. Phys. Suppl. 46, 244
(1970).

[56] K. Yamada, Prog. Theor. Phys. 53, 970 (1975).
[57] K. Yosida and K. Yamada, Prog. Theor. Phys. 53, 1286 (1975).
[58] M. J. Rozenberg, G. Kotliar, and X. Y. Zhang, Phys. Rev. B 49,

10181 (1994).
[59] P. Seth, I. Krivenko, M. Ferrero, and O. Parcollet, Comput. Phys.

Commun. 200, 274 (2016).
[60] P. Werner and A. J. Millis, Phys. Rev. B 74, 155107 (2006).
[61] O. Parcollet, M. Ferrero, T. Ayral, H. Hafermann, I. Krivenko, L.

Messio, and P. Seth, Comput. Phys. Commun. 196, 398 (2015).
[62] E. Pavarini, A. Yamasaki, J. Nuss, and O. K. Andersen, New J.

Phys. 7, 188 (2005).
[63] L. Craco, M. S. Laad, S. Leoni, and E. Müller-Hartmann,

Phys. Rev. B 70, 195116 (2004).
[64] E. Pavarini, S. Biermann, A. Poteryaev, A. I. Lichtenstein, A.

Georges, and O. K. Andersen, Phys. Rev. Lett. 92, 176403
(2004).

[65] P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz,
WIEN2k, An Augmented Plane Wave + Local Orbitals Program
for Calculating Crystal Properties (Karlheinz Schwarz, Techn.
Universität Wien, Austria, 2001).

[66] M. Aichhorn, L. Pourovskii, P. Seth, V. Vildosola, M. Zingl,
O. E. Peil, X. Deng, J. Mravlje, G. J. Kraberger, C. Martins,
M. Ferrero, and O. Parcollet, Comput. Phys. Commun. 204, 200
(2016).

[67] M. Aichhorn, L. Pourovskii, V. Vildosola, M. Ferrero, O.
Parcollet, T. Miyake, A. Georges, and S. Biermann, Phys. Rev.
B 80, 085101 (2009).

[68] M. Aichhorn, L. Pourovskii, and A. Georges, Phys. Rev. B 84,
054529 (2011).

155128-13

https://doi.org/10.1103/PhysRevB.94.125149
https://doi.org/10.1103/PhysRevB.94.125149
https://doi.org/10.1103/PhysRevB.94.125149
https://doi.org/10.1103/PhysRevB.94.125149
https://doi.org/10.1103/PhysRevB.57.10287
https://doi.org/10.1103/PhysRevB.57.10287
https://doi.org/10.1103/PhysRevB.57.10287
https://doi.org/10.1103/PhysRevB.57.10287
http://arxiv.org/abs/arXiv:cond-mat/0403055
https://doi.org/10.1103/PhysRevB.62.6317
https://doi.org/10.1103/PhysRevB.62.6317
https://doi.org/10.1103/PhysRevB.62.6317
https://doi.org/10.1103/PhysRevB.62.6317
https://doi.org/10.1103/PhysRevE.81.056701
https://doi.org/10.1103/PhysRevE.81.056701
https://doi.org/10.1103/PhysRevE.81.056701
https://doi.org/10.1103/PhysRevE.81.056701
https://doi.org/10.1103/PhysRevE.94.063308
https://doi.org/10.1103/PhysRevE.94.063308
https://doi.org/10.1103/PhysRevE.94.063308
https://doi.org/10.1103/PhysRevE.94.063308
https://doi.org/10.1103/PhysRevLett.75.517
https://doi.org/10.1103/PhysRevLett.75.517
https://doi.org/10.1103/PhysRevLett.75.517
https://doi.org/10.1103/PhysRevLett.75.517
https://doi.org/10.1088/1361-6420/aa8d93
https://doi.org/10.1103/PhysRevE.95.061302
https://doi.org/10.1103/PhysRevE.95.061302
https://doi.org/10.1103/PhysRevE.95.061302
https://doi.org/10.1103/PhysRevE.95.061302
https://doi.org/10.1103/PhysRevE.94.023303
https://doi.org/10.1103/PhysRevE.94.023303
https://doi.org/10.1103/PhysRevE.94.023303
https://doi.org/10.1103/PhysRevE.94.023303
https://doi.org/10.1016/j.cpc.2017.01.018
https://doi.org/10.1016/j.cpc.2017.01.018
https://doi.org/10.1016/j.cpc.2017.01.018
https://doi.org/10.1016/j.cpc.2017.01.018
https://doi.org/10.1103/PhysRevLett.62.324
https://doi.org/10.1103/PhysRevLett.62.324
https://doi.org/10.1103/PhysRevLett.62.324
https://doi.org/10.1103/PhysRevLett.62.324
https://doi.org/10.1103/PhysRevB.45.6479
https://doi.org/10.1103/PhysRevB.45.6479
https://doi.org/10.1103/PhysRevB.45.6479
https://doi.org/10.1103/PhysRevB.45.6479
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/PhysRevB.90.125114
https://doi.org/10.1103/PhysRevB.90.125114
https://doi.org/10.1103/PhysRevB.90.125114
https://doi.org/10.1103/PhysRevB.90.125114
https://doi.org/10.1088/0953-8984/19/36/365206
https://doi.org/10.1088/0953-8984/19/36/365206
https://doi.org/10.1088/0953-8984/19/36/365206
https://doi.org/10.1088/0953-8984/19/36/365206
https://doi.org/10.1103/PhysRevB.92.060509
https://doi.org/10.1103/PhysRevB.92.060509
https://doi.org/10.1103/PhysRevB.92.060509
https://doi.org/10.1103/PhysRevB.92.060509
https://doi.org/10.1103/PhysRevLett.99.126402
https://doi.org/10.1103/PhysRevLett.99.126402
https://doi.org/10.1103/PhysRevLett.99.126402
https://doi.org/10.1103/PhysRevLett.99.126402
http://arxiv.org/abs/arXiv:cond-mat/0612233
https://doi.org/10.1016/0022-2364(85)90338-5
https://doi.org/10.1016/0022-2364(85)90338-5
https://doi.org/10.1016/0022-2364(85)90338-5
https://doi.org/10.1016/0022-2364(85)90338-5
https://doi.org/10.1093/mnras/290.2.313
https://doi.org/10.1093/mnras/290.2.313
https://doi.org/10.1093/mnras/290.2.313
https://doi.org/10.1093/mnras/290.2.313
https://doi.org/10.1111/j.1365-8711.1998.01139.x
https://doi.org/10.1111/j.1365-8711.1998.01139.x
https://doi.org/10.1111/j.1365-8711.1998.01139.x
https://doi.org/10.1111/j.1365-8711.1998.01139.x
https://doi.org/10.1046/j.1365-8711.1998.01707.x
https://doi.org/10.1046/j.1365-8711.1998.01707.x
https://doi.org/10.1046/j.1365-8711.1998.01707.x
https://doi.org/10.1046/j.1365-8711.1998.01707.x
https://doi.org/10.1038/272686a0
https://doi.org/10.1038/272686a0
https://doi.org/10.1038/272686a0
https://doi.org/10.1038/272686a0
https://doi.org/10.1103/PhysRevB.71.245111
https://doi.org/10.1103/PhysRevB.71.245111
https://doi.org/10.1103/PhysRevB.71.245111
https://doi.org/10.1103/PhysRevB.71.245111
https://doi.org/10.1137/0111030
https://doi.org/10.1137/0111030
https://doi.org/10.1137/0111030
https://doi.org/10.1137/0111030
https://doi.org/10.1103/PhysRevLett.84.1591
https://doi.org/10.1103/PhysRevLett.84.1591
https://doi.org/10.1103/PhysRevLett.84.1591
https://doi.org/10.1103/PhysRevLett.84.1591
https://doi.org/10.1134/1.1851645
https://doi.org/10.1134/1.1851645
https://doi.org/10.1134/1.1851645
https://doi.org/10.1134/1.1851645
https://doi.org/10.1103/PhysRevB.70.125112
https://doi.org/10.1103/PhysRevB.70.125112
https://doi.org/10.1103/PhysRevB.70.125112
https://doi.org/10.1103/PhysRevB.70.125112
https://doi.org/10.1103/PhysRevB.80.045101
https://doi.org/10.1103/PhysRevB.80.045101
https://doi.org/10.1103/PhysRevB.80.045101
https://doi.org/10.1103/PhysRevB.80.045101
https://doi.org/10.1103/PhysRevB.51.11704
https://doi.org/10.1103/PhysRevB.51.11704
https://doi.org/10.1103/PhysRevB.51.11704
https://doi.org/10.1103/PhysRevB.51.11704
https://doi.org/10.1103/PhysRevB.71.125119
https://doi.org/10.1103/PhysRevB.71.125119
https://doi.org/10.1103/PhysRevB.71.125119
https://doi.org/10.1103/PhysRevB.71.125119
https://doi.org/10.1103/PhysRevLett.117.036401
https://doi.org/10.1103/PhysRevLett.117.036401
https://doi.org/10.1103/PhysRevLett.117.036401
https://doi.org/10.1103/PhysRevLett.117.036401
https://doi.org/10.1143/PTPS.46.244
https://doi.org/10.1143/PTPS.46.244
https://doi.org/10.1143/PTPS.46.244
https://doi.org/10.1143/PTPS.46.244
https://doi.org/10.1143/PTP.53.970
https://doi.org/10.1143/PTP.53.970
https://doi.org/10.1143/PTP.53.970
https://doi.org/10.1143/PTP.53.970
https://doi.org/10.1143/PTP.53.1286
https://doi.org/10.1143/PTP.53.1286
https://doi.org/10.1143/PTP.53.1286
https://doi.org/10.1143/PTP.53.1286
https://doi.org/10.1103/PhysRevB.49.10181
https://doi.org/10.1103/PhysRevB.49.10181
https://doi.org/10.1103/PhysRevB.49.10181
https://doi.org/10.1103/PhysRevB.49.10181
https://doi.org/10.1016/j.cpc.2015.10.023
https://doi.org/10.1016/j.cpc.2015.10.023
https://doi.org/10.1016/j.cpc.2015.10.023
https://doi.org/10.1016/j.cpc.2015.10.023
https://doi.org/10.1103/PhysRevB.74.155107
https://doi.org/10.1103/PhysRevB.74.155107
https://doi.org/10.1103/PhysRevB.74.155107
https://doi.org/10.1103/PhysRevB.74.155107
https://doi.org/10.1016/j.cpc.2015.04.023
https://doi.org/10.1016/j.cpc.2015.04.023
https://doi.org/10.1016/j.cpc.2015.04.023
https://doi.org/10.1016/j.cpc.2015.04.023
https://doi.org/10.1088/1367-2630/7/1/188
https://doi.org/10.1088/1367-2630/7/1/188
https://doi.org/10.1088/1367-2630/7/1/188
https://doi.org/10.1088/1367-2630/7/1/188
https://doi.org/10.1103/PhysRevB.70.195116
https://doi.org/10.1103/PhysRevB.70.195116
https://doi.org/10.1103/PhysRevB.70.195116
https://doi.org/10.1103/PhysRevB.70.195116
https://doi.org/10.1103/PhysRevLett.92.176403
https://doi.org/10.1103/PhysRevLett.92.176403
https://doi.org/10.1103/PhysRevLett.92.176403
https://doi.org/10.1103/PhysRevLett.92.176403
https://doi.org/10.1016/j.cpc.2016.03.014
https://doi.org/10.1016/j.cpc.2016.03.014
https://doi.org/10.1016/j.cpc.2016.03.014
https://doi.org/10.1016/j.cpc.2016.03.014
https://doi.org/10.1103/PhysRevB.80.085101
https://doi.org/10.1103/PhysRevB.80.085101
https://doi.org/10.1103/PhysRevB.80.085101
https://doi.org/10.1103/PhysRevB.80.085101
https://doi.org/10.1103/PhysRevB.84.054529
https://doi.org/10.1103/PhysRevB.84.054529
https://doi.org/10.1103/PhysRevB.84.054529
https://doi.org/10.1103/PhysRevB.84.054529


KRABERGER, TRIEBL, ZINGL, AND AICHHORN PHYSICAL REVIEW B 96, 155128 (2017)

[69] M. Cwik, T. Lorenz, J. Baier, R. Müller, G. André, F. Bourée,
F. Lichtenberg, A. Freimuth, R. Schmitz, E. Müller-Hartmann,
and M. Braden, Phys. Rev. B 68, 060401 (2003).

[70] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,
3865 (1996).

[71] S. van der Walt, S. C. Colbert, and G. Varoquaux, Comput. Sci.
Eng. 13, 22 (2011).

[72] J. D. Hunter, Comput. Sci. Eng. 9, 90 (2007).
[73] R. D. Levine, J. Chem. Phys. 84, 910 (1986).
[74] C. C. Rodriguez, The metrics induced by the Kullback num-

ber, in Maximum Entropy and Bayesian Methods, edited by
J. Skilling (Kluwer Academic, Dortrecht, 1989), p. 415.

[75] O. Gunnarsson, M. W. Haverkort, and G. Sangiovanni,
Phys. Rev. B 82, 165125 (2010).

155128-14

https://doi.org/10.1103/PhysRevB.68.060401
https://doi.org/10.1103/PhysRevB.68.060401
https://doi.org/10.1103/PhysRevB.68.060401
https://doi.org/10.1103/PhysRevB.68.060401
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1063/1.450536
https://doi.org/10.1063/1.450536
https://doi.org/10.1063/1.450536
https://doi.org/10.1063/1.450536
https://doi.org/10.1103/PhysRevB.82.165125
https://doi.org/10.1103/PhysRevB.82.165125
https://doi.org/10.1103/PhysRevB.82.165125
https://doi.org/10.1103/PhysRevB.82.165125



