
Automated Analysis and Validation of
Chemical Literature

Joseph Andrew Townsend
Corpus Christi College

A dissertation submitted to the University of Cambridge
for the degree of Doctor of Philosophy

Unilever Centre for Molecular Science Informatics

Department of Chemistry

Lensfield Road,

Cambridge, CB2 1EW,

United Kingdom.

August 5, 2007

Disclaimer

This thesis is the result of my own work and includes nothing which is the

outcome of work done in collaboration, except where specifically indicated.

This thesis does not exceed the specified word limit (60000) as defined by

the Chemistry Degree Committee.

This thesis has been typeset in 12pt font using LATEX2ε according to the

specifications defined by the Board of Graduate Studies and the Chemistry

Degree Committee.

Abstract

Methods to automatically extract and validate data from the chemical liter-

ature in legacy formats to machine-understandable forms are examined. The

works focuses of three types of data: analytical data reported in articles,

computational chemistry output files and crystallographic information files

(CIFs).

It is shown that machines are capable of reading and extracting analytical

data from the current legacy formats with high recall and precision. Regular

expressions cannot identify chemical names with high precision or recall but

non-deterministic methods perform significantly better. The lack of machine-

understandable connection tables in the literature has been identified as the

major issue preventing molecule-based data-driven science being performed

in the area.

The extraction of data from computational chemistry output files using

parser-like approaches is shown to be not generally possible although such

methods work well for input files. A hierarchical regular expression based

approach can parse > 99.9% of the output files correctly although significant

human input is required to prepare the templates. CIFs may be parsed with

extremely high recall and precision, contain connection tables and the data

is of high quality.

The comparison of bond lengths calculated by two computational chem-

istry programs show good agreement in general but structures containing spe-

cific moieties cause discrepancies. An initial protocol for the high-throughput

geometry optimisation of molecules extracted from the CIFs is presented and

the refinement of this protocol is discussed. Differences in bond length be-

tween calculated and experimentally determined values from the CIFs of less

than 0.03Å are shown to be expected by random error. The final protocol is

used to find high-quality structures from crystallography which can be reused

for further science.

Acknowledgments

I would like to thank Dr Jonathan Goodman, Dr Peter Murray-Rust, Sam

Adams, Fraser Norton and Chris Waudby for their help and advice on the

OSCAR project. Dr Murray-Rust, Dr Simon“Billy” Tyrrell, Dr Yong “YY”

Zhang and Nick Day are also thanked for their support and cooperation

during the course of my PhD. Dr Charlotte Bolton deserves special mention

for providing the computational support without which this work would not

have been possible. The Pickerel and Helen Clubb also deserve mention for

allowing me to sanity check my ideas and for general support. The Unilever

Centre for Molecular Science Informatics and the Royal Society of Chemistry

are thanked for funding.

iii

Contents

Disclaimer i

Abstract ii

Acknowledgements iii

Table of contents vii

List of tables viii

List of figures xii

Glossary xiii

1 Introduction 1
1.1 Data-Driven Science . 3
1.2 Metadata, Syntax and Semantics 4
1.3 Data Validation . 5
1.4 eScience . 8
1.5 Machine-Understandable Data 11
1.6 Formats for Reporting Chemistry 13
1.7 Compute Processes . 14
1.8 Analysis and Visualisation . 16
1.9 Publication . 17
1.10 eXtensible Markup Language 18

1.10.1 Validation . 19
1.10.2 Namespaces . 19
1.10.3 Data Display . 21

1.11 Chemical Markup Language 21
1.11.1 JUMBO . 25

1.12 Scalable Vector Graphics . 25
1.12.1 SVG Graphing . 27

1.13 Java . 28

iv

1.14 Jmol . 29

2 The Quality of Data in the Chemical Literature 30
2.1 Information Extraction . 32
2.2 The Experimental Data Checker 34

2.2.1 The legacy format of organic chemistry articles 34
2.2.2 Common Chemical Concepts 39
2.2.3 Regular Expressions 42
2.2.4 Structure of the EDC 45

2.3 OSCAR — Blurring the Line Between Authoring Tool and IE
Tool . 45
2.3.1 Information Extraction Tests 53

2.4 OSCAR2 — the Importance of Chemical Names 58
2.4.1 The Importance of Connection Tables 59

2.5 OSCAR3 and OPSIN — Parsing Chemical Names to CTs . . 61
2.6 Conclusions . 65

3 Parsing Program Input — Compilers 67
3.1 Compilers and Classification Techniques 68

3.1.1 The Phases of a Compiler 69
3.1.2 Context-Free Grammars 73
3.1.3 Parse Trees . 74
3.1.4 Predictive Parsers . 75
3.1.5 Lexical analysis . 76
3.1.6 Regular Expressions 77
3.1.7 Non-deterministic parsing 79
3.1.8 Bayesian Classification 80

3.2 JFlex and CUP . 83
3.3 Parsing Program Input . 86

3.3.1 Parsing Program Output 89

4 Parsing Program Output — JUMBOMarker 91
4.1 Design of JUMBOMarker . 94
4.2 JUMBOMarker: Single-Pass, Single-Parse 98
4.3 JUMBOMarker: Two-Pass, Two-Parse 100
4.4 JUMBOMarker: Multi-Pass, Multi-Parse 102
4.5 Conclusions . 105

5 High-Throughput Computing 107
5.1 Condor . 107
5.2 MOPAC and NCI HT Computing 109

5.2.1 InChI . 111
5.2.2 Proteus Molecules . 113

5.3 MOPAC and GAMESS . 115

v

5.4 Results . 124
5.4.1 All Bonds . 129
5.4.2 C–C bonds . 129
5.4.3 C–N bonds . 129
5.4.4 C–O and N–O bonds 132
5.4.5 C–S bonds . 136

5.5 Time . 136
5.6 Conclusions . 144

6 X-Ray Crystallography 147
6.1 Determining the Structure . 147
6.2 Derived Results . 151

6.2.1 β, B and U Parameters 152
6.2.2 Libration . 153
6.2.3 Minor Conformations and Incorrectly Assigned Atoms 155
6.2.4 Atomic Scattering Factors 156

6.3 The CIF Format . 158
6.4 Quality Indicators . 160

7 Creating a Workflow 162
7.1 Existing Workflow Technology 163
7.2 CIF Repositories . 165
7.3 Download . 167
7.4 Create Input . 172
7.5 Run . 173

7.5.1 The Clusters . 173
7.5.2 Schedulers . 175

7.6 Retrieve Results . 177
7.7 Results Repository . 178
7.8 Designing a Robust Analysis Method 179

7.8.1 Altering the File Structure 179
7.8.2 Altering the File . 180

7.9 Creating a Protocol . 180
7.10 Molecule Selection Parameters 181
7.11 Refining the Protocol . 183
7.12 Conclusions . 199

8 Results 201
8.1 Failure Analysis . 201

8.1.1 Insufficient Time . 202
8.1.2 SCF Did Not Converge 205
8.1.3 Bad Delocalised Coordinates Generated 209
8.1.4 Incorrect Charge or Multiplicity 210

8.2 Proteus Molecules . 212

vi

8.3 CIF Analysis . 214
8.4 Bond Lengths . 218

8.4.1 S–X Bonds . 218
8.4.2 All Bonds . 222
8.4.3 C–C Bonds . 224
8.4.4 C–N and C–O Bonds 228
8.4.5 PLATON . 228

8.5 Uiso,bond . 231
8.6 Time . 234
8.7 Applying the Protocol . 236
8.8 Conclusions . 240

A Computational Chemistry 241
A.1 ab initio Calculations . 241

A.1.1 Closed Shell Self Consistent Field Theory 242
A.2 Density Functional Theory . 245
A.3 Semi-Empirical Methods . 246

B Regular Expressions in Java 248

C Backus-Naur Form 254

D JFlex Lexical Rules 257

E GROMACS topology file 260

F Solvents and counter ions 264

G Molecules 268

H Molecule Optimisations 282

I Published Work 289

Bibliography 291

vii

List of Tables

2.1 Comparison of spell checkers 32
2.2 OSCAR results . 56
2.3 Chemical name recall and precision of OSCAR2 58

5.1 Comparison of run times . 121
5.2 Failure rates . 139
5.3 Predicting run times . 146

6.1 Refinement method comparison 157

8.1 Calculation statistics . 202
8.2 Insufficient time . 203
8.3 SCF not converged . 207
8.4 Bad delocalised coordinates generated 209
8.5 Crystal system analysis . 215
8.6 Space group statistics . 216
8.7 R-factor statistics . 217
8.8 GAMESS GAUSSIAN03 comparison 220
8.9 S–X (X=C,N) bond lengths 222
8.10 Run times . 235
8.11 Crystallographic filters . 238

B.1 Regular expression constructs as specified by Java 248

E.1 The topology file . 262
E.2 Intramolecular actions definitions 263

G.1 Final molecules . 268

H.1 The geometry of bv6006molecule3 282
H.2 The geometry of ci6067molecule2 287
H.3 The geometry of rz6070molecule1 288

viii

List of Figures

1.1 Extracting data from different domains 2
1.2 A typical organic synthesis . 3
1.3 Article and thesis structure 5
1.4 Multiple properties associated with a molecule 6
1.5 Comparing different instances of a property 7
1.6 Hexacyclinol . 7
1.7 Validating properties prior to publication 8
1.8 An eScience experiment . 10
1.9 A chemical reaction . 12
1.10 A chemical reaction . 12
1.11 A chemical reaction . 13
1.12 A section of a GROMACS topology file 14
1.13 A section of a MOPAC output file 15
1.14 An example of XML . 19
1.15 XSLT flow . 22

2.1 Typical organic article structure 35
2.2 Typical organic analytical data 36
2.3 Organic synthetic methodology 36
2.4 Chemical discourse . 37
2.5 Narrative discourse . 38
2.6 Aspirin . 39
2.7 The structure of the original EDC 43
2.8 The GUI of the original EDC 44
2.9 The structure of the EDC version 2 46
2.10 Regular expressions . 47
2.11 EDC highlighting data . 48
2.12 EDC expert analysis . 49
2.13 Backus-Naur form of a paragraph from OBC 50
2.14 EDC tabulating data . 51
2.15 OSCAR parsing strategies . 52
2.16 An example of an HNMR spectrum 53
2.17 EDC spectrum plotting . 54
2.18 Synthesis of similar molecules 57

ix

2.19 The OSCAR workflow . 60
2.20 The parse tree of a chemical name 64
2.21 Ambiguous chemical names 65

3.1 Overview of a compiler . 68
3.2 The phases of a compiler . 70
3.3 Compiler assignments . 72
3.4 Compiler structure . 73
3.5 A simple parse tree . 74
3.6 Lexical analyser example . 77
3.7 Producer-consumer pair . 77
3.8 A parse tree generated by Chomskian analysis 82
3.9 Creating a lexical analyser with JFlex 84
3.10 The specifications of a JFlex file 84
3.11 The comment remover pre-processor in JFlex 85
3.12 An example production . 86
3.13 Definitions of terminal and non terminal tokens 86
3.14 GROMACS topology file . 87
3.15 MOPAC output matched by JFlex 90

4.1 Various program designs . 92
4.2 Linking programs with CML 93
4.3 The DTD for JUMBOMarker. 94
4.4 A section of a GAMESS output file 95
4.5 Point groups in MOPAC . 96
4.6 A JUMBOMarker template 97
4.7 Section of MOPAC output . 97
4.8 Section of MOPAC output . 98
4.9 JUMBOMarker: single-pass, single-parse 99
4.10 JUMBOMarker: two-pass, two-parse 101
4.11 JUMBOMarker: multi-pass multi-parse 104

5.1 NCI MOPAC workflow . 110
5.2 MOPAC mismatches . 111
5.3 InChI example . 112
5.4 Proteus molecule example . 113
5.5 Proteus molecule example . 114
5.6 Cross-checking MOPAC . 115
5.7 GAMESS input . 117
5.8 Protocol development cycle 119
5.9 Unusual behaviour shown by the Z-matrix 122
5.10 QQ plot C–Cl . 123
5.11 QQ plot N–N . 125
5.12 QQ plot C–C . 126

x

5.13 X-Y plot C–C bonds . 127
5.14 QQ plot all bonds . 128
5.15 C–C major outlier . 129
5.16 X-Y plot C–CFn containing molecules 130
5.17 QQ plot C–N . 131
5.18 QQ plot C–O . 133
5.19 QQ plot N–O . 134
5.20 Density plots for C–O and N–O 135
5.21 Molecular fragments . 137
5.22 QQ plot C–S . 138
5.23 Mean calculation step time . 140
5.24 Basis functions against number of atoms 142
5.25 Total time against non-hydrogen atoms 143
5.26 s against the mean time per non-hydrogen atom 144

6.1 Structures in the CCDC by year 148
6.2 Crystal structure determination workflow 149
6.3 Riding motion . 154

7.1 A simple workflow . 163
7.2 High-level calculation workflow 164
7.3 Organisation of supplementary data 166
7.4 The data structure for downloaded files 168
7.5 The data structure for downloaded files 169
7.6 The data structure for downloaded files 171
7.7 Retrieve results workflow . 176
7.8 X-Y plot all bonds . 184
7.9 QQ plot all bonds . 186
7.10 QQ plot no solvents . 187
7.11 QQ plot no solvent/ion/guest molecules and no possible hy-

drogen bonds . 189
7.12 QQ plot R-factor 6 0.05 . 190
7.13 QQ plot no constrained bonds 191
7.14 QQ plot no constrained molecules 192
7.15 QQ plot only specified atoms 193
7.16 QQ plot manual removal . 195
7.17 QQ plot cyclic . 196
7.18 QQ plot cyclic . 197
7.19 X-Y plot cyclic . 198

8.1 Energy profile . 206
8.2 Incorrect CT . 212
8.3 InChI in a CML document . 213
8.4 R-factor over time . 217

xi

8.5 Histogram of bond length esds 219
8.6 Long bonds to sulphur . 221
8.7 QQ plot all bonds . 223
8.8 QQ plot C–C cyclic bonds . 225
8.9 Loss of H-bonding . 226
8.10 QQ plot C–N cyclic bonds . 227
8.11 QQ plot C–O cyclic bonds . 229
8.12 Uiso,bond against Temperature 230
8.13 Displacement Ellipsoids . 232
8.14 Uiso,bond against Temperature 233
8.15 CIF GAMESS times . 234
8.16 Filters . 237
8.17 Maximum torsion angle . 239
8.18 Torsion angles of toluene . 239

xii

Glossary

BNF Backus-Naur form

CAS Chemical Abstracts Service

CCDC Cambridge Crystallographic Data Centre

CIF Crystallographic Information File

CML Chemical Markup Language

CNMR Carbon Nuclear Magnetic Resonance

CSD Cambridge Structural Database

CSS Cascading Style Sheet

CT Connection Table

DFT Density Functional Theory

DOM Document Object Model

DTD Document Type Definition

EDC Experimental Data Checker

GTO Gaussian Type Orbital

HT High-Throughput

HNMR Proton Nuclear Magnetic Resonance

HRMS High Resolution Mass Spectroscopy

HTML Hyper Text Markup Language

IAM Independent Atom Model

IE Information Extraction

IUCr International Union of Crystallography

IUPAC International Union of Pure and Applied Chemistry

mu Unified Atomic Mass Unit 1.6605× 10−27 kg

MP2 Møller-Plesset perturbation theory, second order

xiii

NCI National Cancer Institute

NMR Nuclear Magnetic Resonance

OBC Organic & Biomolecular Chemistry

OOP Object-Orientated Programming

OSCAR Open Source Chemistry Analysis Routines

QQ Quantile-Quantile

RSC Royal Society of Chemistry

SCF Self Consistent Field

SGML Standard Generalised Markup Language

STO Slater Type Orbital

SVG Scalable Vector Graphics

UCC Unilever Centre for Molecular Science Informatics

W3C World Wide Web Consortium

WS WebService

XML eXtensible Markup Language

XSL eXtensible Style Language

XSLT eXtensible Style Language Transformations

x The arithmetic mean of the data type x, given by

x =
1

n

n∑
i=1

xi (1)

s The standard deviation of a sample of n instances of data type x, given by

s =

√√√√ 1

n− 1

n∑
i=1

(xi − x)2 (2)

xiv

ρ Spearman’s rank correlation coefficient, given by

ρ = 1− 6
∑

d2
i

n(n2 − 1)
(3)

where di is the difference between each rank of corresponding values of
x and y

W The test statistic for the Shapiro-Wilk normality test given by

W =

(∑
n
i=1aix(i)

)2

∑
n
i=1 (xi − x)2 (4)

where x(i) is the ith order statistic, i.e. the ith-smallest number in the
sample and the constants ai are given by

(ai, . . . , an) =
mT V −1

√
(mT V −1V −1m)

(5)

where
m = (m1, . . . , mn)T (6)

and mi are the expected values of the order statistics of independent
and identically-distributed random variables sampled from the stan-
dard normal distribution and V is the covariance matrix of those order
statistics.

xv

Chapter 1

Introduction

The volume of scientific data∗ being produced is exploding and phrases such

as data deluge, data avalanche and digital deluge are now commonly seen in

the literature [1]. As an illustration of the scale of the current problem Lesk

estimates that the Bible requires 5 × 106 bytes of storage [2] whereas the

annual production of refereed journal literature is estimated by Hey et al. to

require 1×1012 bytes [1]. The volume of data produced in the fields of astron-

omy and bioscience are doubling in 12 and 9 months respectively [3]. This is

faster than the measured rate of increase in performance of computer chips

(Moore’s Law), which doubles every 18 months. However, modern analysis

methods are also much faster which should result in an ideal situation.

The information explosion is causing problems for many scientific commu-

nities because the data production and data analysis processes are currently

disconnected [4]. That is, the data is not available in suitable formats for

re-use, often as a result of the publication process. Data is seen as an integral

part of any scientific discipline and the ability to view and analyse another

scientist’s data is essential. The current reliance on paper publishing pre-

vents much of the data produced during an experiment ever being published.

It is now common to see phrases such as

. . . one hundred and five optimised geometries had been obtained

∗The word data is used frequently in this thesis as a synonym for a collection of infor-
mation and as the plural of datum — the meaning should be apparent from context.

1

Figure 1.1: Data from different domains can be extracted (and combined) to
a more usable form.

in the present work. Reporting all of these optimised geometries

is nonsense [5]

in an article and it is estimated that ca. 80% of crystal structures determined

are never published [6, 7]. The publication of thesis present similar problems

— approximately 60 gigabytes of analysis, programs and most importantly

data were created as a part of this thesis. It would be possible to include

this as supplementary data by requesting that a CD is included as part of

the thesis — although to include all the data would actually require nearly

100 CDs [8].

The publication process forces the decoupling of the interpretation and

analysis (which is published) from data (which often is not published in

full). There is a desire amongst the community to improve this situation,

enabling more rapid publication and dissemination processes. In future, it is

hoped that everything can be captured and published [10]; Hagdorn’s recent

thesis is an example of how theses may appear in the future [9]. However,

solving this problem will increase the information overload.

2

4-Acetoxy-6-hydroxymethyl-3-methyl-5-
propyl-1H-pyridin-2-one (26). NaBH4 (0.127 g,
3.36 mmol) was added to a solution of aldehyde 24
(0.662 g, 2.79 mmol) in EtOH (18 mL) at 0 ◦C and
the mixture was stirred for 2.5 h at rt. After
addition of sat. NH4Cl solution (10 mL), the
mixture was concentrated in vacuo and then
extracted with EtOAc (5× 25 mL). The combined
organic phases were dried over Na2SO4, then filtered
and concentrated in vacuo. The residue was
recrystalized from EtOAc to yield 0.58 g (87 %) of
alcohol 26 as colorless crystals. — 1H NMR (250
MHz, CDCl3): δ 0.92 (t, 3J = 7.2 Hz, 3 H), 1.41
(mc, 2 H), 1.91 (s, 3 H), 2.22 (t, 3J = 7.4 Hz, 2 H),
2.34 (s, 3 H), 4.65 (s, 2 H).

Figure 1.2: A typical paragraph from the supplemental data of an article in
Journal of Organic Chemistry [14].

1.1 Data-Driven Science

To allow data-driven science (and further re-use), methods to extract data in

legacy formats to more usable forms are required and the sheer volume of data

requires that any process to do this must be automated. This work considers

possible approaches for the creation of such transformation processes and

their applicability with the premise that

. . . the current scientific literature, were it to be presented in se-

mantically accessible form, contains huge amounts of undiscov-

ered science. [11]

The data deluge is not confined to any one scientific domain therefore mul-

tiple tools may be required to extract it to a reusable form (figure 1.1).

A human is clearly not capable of performing an analysis of all the annual

journal literature unaided, or even just that of the chemical literature —

Chemical Abstracts Service reported over 1 million articles in 2006 and now

3

contains the abstracts of over 25 million articles [12, 13]. A typical article

in the Journal of Organic Chemistry (ca. 8 pages) frequently has supporting

supplemental data (which may not be refereed). The volume of the supple-

mentary data is often five to ten times that of the original article, further

exacerbating the problem. However, once the data is in the relevant form a

computer can be used to help analyse it, allowing humans to interpret ab-

normalities, trends and other features of interest. This is a prime motivation

for representing the data in a machine-understandable† form.

1.2 Metadata, Syntax and Semantics

Metadata‡ is essential for both the automation of the extraction process

and the subsequent machine-understandability. Metadata such as those de-

veloped by the Dublin Core Metadata Initiative allow the providence and

reusability of data to be interpreted by a machine [16].

For extraction to be possible, the semantics and syntax of the legacy for-

mat must be understood — semantics refer to the meaning and syntax to

the structure of the data. The chemical field (especially organic chemistry)

contains-well understood semantics and syntax which have been stable for a

long time and can be represented in a machine-understandable format using

Chemistry Markup Language. There is also a large legacy corpus. As a result

organic chemistry represents an attractive area for data extraction.

The most semantically and syntactically rich area of organic chemistry is

the synthesis of a molecule and the associated analytical data; an example

of such data is shown in figure 1.2. The legacy corpus consists of two major

document types: journal articles and theses. The structure of the two types

differs but the data is expected to be recoverable using natural language

techniques (figure 1.3). Whilst significant progress was made in this area —

†The term machine-understandable is explained in section 1.5
‡Metadata is commonly defined as data that is used to describe other data, this might

range from who authored the data to the fact that the document conforms to a particular
DTD [15].

4

Figure 1.3: The general structure of journal articles and theses differ but
should both be amenable to natural language parsing techniques.

including the development of ideas applicable to other scientific fields — the

extraction did not prove to be as tractable as expected.

1.3 Data Validation

Chemistry is based on the synthesis, structure and properties of molecules;

it is therefore vital that a molecule can be uniquely and globally identified.

IUPAC’s International Chemical Identifier (InChI) provides an ideal solu-

tion [17]. There are often multiple instances of a particular molecule and

properties§ associated with it reported in the literature. By using unique

identifiers and appropriate metadata all the instances can be combined to

give an overall picture (figure 1.4).

In general, the ideal value of a property associated with a molecule can

never be known. However, properties can be observed or calculated and the

agreement between multiple instances of this property reinforces the belief

§A property in this case refers to physical quantities relating to that molecule, such as
the melting point or chemical formula.

5

Figure 1.4: A molecule may have multiple properties associated with it;
repeated instances of a particular property may be reported independently.

that the ideal value is being approached. Conversely disagreement between

the values can lead to improvements of the measurement method or calcula-

tion (figure 1.5). Stewart found significant errors in the literature pertaining

to experimentally-determined enthalpies of formation which were detected

by comparison with calculated values [18]. In his own words

. . . the accuracy of experimental enthalpies of formation can be

investigated by using semiempirical methods. Where agreement

between calculated and reported enthalpies of formation exists,

it is reasonable to assume that the experimental value is, indeed,

accurate. Where there is a large difference, the error is likely to

be either in the computational method or in the experiment; the

probability of both being equally incorrect is small. [18]

More recently, the structure of hexacyclinol (figure 1.6) has been the mat-

ter of debate. Gräfe proposed a structure for the molecule in 2002 [19].

Following a total synthesis, La Clair confirmed this structure [20]. Rych-

6

Figure 1.5: The agreement between different instances of a property can
reinforce the belief that the value is approaching the ideal value. Conversely,
differences between the values can lead to refinement of the calculation or
experimental processes so a more accurate value can be found.

Figure 1.6: The structures of hexacyclinol proposed by Gräfe (left) and Rych-
novsky (right).

7

Figure 1.7: The increased availability of computational resources will hope-
fully lead to the validation of both calculated and observed properties prior
to publication.

novsky simulated the compound’s CNMR spectrum to see if it agreed with

that reported and came to the conclusion that

. . . the original structure assignment doesn’t fit the data. [21]

Using the same computational method, a revised structure was proposed [21].

It is expected that the increased availability and speed of computing resources

will in future allow such a validation to become a matter of course, leading

to the situation shown in figure 1.7. For such a situation to arise requires

the computational chemistry output to be machine-understandable.

1.4 eScience

The UK eScience program, launched by John Taylor (Director General of

Research Councils), is designed to

. . . develop advances in scientific data curation and analysis and

to be a primary source of top quality systems and repositories that

enable management, sharing and best use of research data. [22]

8

eScience builds upon accessible structured knowledge resources and infor-

mation, which is a severe limitation in eChemistry. This work examines meth-

ods to allow large volumes of chemical information to be converted rapidly to

structured data by automated methods, requiring ideally no human interven-

tion, thereby making it machine-readable and machine-understandable. One

of the goals of the community is to create a Semantic Web of data, described

in 2001 Tim Berners-Lee as:

. . . an extension of the current web in which information is given

well-defined meaning, better enabling computers and people to

work in cooperation. [23]

The critical part of the above quotation is that information is given well-

defined meaning. In relation to chemistry, this means that a computer must

understand the concept of a solvent, for example, which requires the devel-

opment of an ontology (a full description of the properties applicable to, and

relationships between, each term). This is the difference between machine-

readable and machine-understandable data. With these technologies in place,

proponents of the Semantic Web assert that this will allow computers to rea-

son [24, 25, 26].

The outline of a typical eScience experiment is shown in figure 1.8 in the

most general terms possible; this form of experiment is commonly referred to

as a workflow. It is important to note that it is not always necessary for all of

the processes to be present for an experiment to take place — for instance if

the data is already in an appropriate form then no translation process would

be required.

eScience experiments often deal with large quantities of data (especially

before the cleaning process) with the volume likely to increase in future,

therefore, automation of the various processes (and methods of connecting

them) is becoming increasingly necessary. This work examines all the compo-

nents of such an experiment but in essence attempts to answer the question

9

Figure 1.8: An outline of a typical eScience experiment — it is expected that
many refinement cycles occur before the final publication.

can a machine read the scientific literature as it is currently pre-

sented and re-use it for scientific research?

It should be noted that the final publication process does not necessarily

indicate that an article in a journal will be the result. To illustrate a possible

experiment imagine a chemist trying to answer the question;

what percentage of the molecules with a reported synthesis pub-

lished in the last year in Organic & Biomolecular Chemistry con-

tained a non-conjugated ketone?

The collection of the data involves the automated reading of all the journal

articles from the relevant year, the transformation and cleaning might require

converting all the articles into a machine-understandable form and remov-

ing all those compounds that do not have a reported synthesis, the compute

process would determine (perhaps by examining the molecular structure or

infra-red spectrum) which of these contained a non-conjugated ketone, the

10

analysis simply converts the counts of the molecules of each type to a per-

centage which is finally relayed to the chemist in a suitable manner.

Each process in the workflow can be thought of as a workflow in its own

right, with a very similar structure to the overall experiment. In effect each

process must consider

• how the data comes in

• how it can be translated to a usable form

• a transform of some sort is performed

• analysis of the transform occurs (for example, did the transform work)

• how should the data be emitted

1.5 Machine-Understandable Data

It is important to clarify what is meant by machine-understandable data and

this can be done most easily by example. Figure 1.9 shows a picture of an

organic reaction — this is human-readable and understandable (at least for

someone acquainted with basic organic chemistry). Whilst it is machine-

readable — a program has determined that the binary file holding the data

should be rendered as a picture on screen — the data contained in the picture

is not machine-understandable — the picture could be anything and would be

treated the same way. To extract structured data from such a representation

is difficult and methods for this are not considered in this work.

Figure 1.10 shows the same reaction in a text-based representation which

is still human-readable, human-understandable and machine-readable. The

data is still not machine-understandable in that the text could still be any-

thing, but it is now in a more accessible form because text can be more easily

manipulated and searched than the pictorial representation.

11

Figure 1.9: A chemical reaction represented pictorially.

Figure 1.10: A chemical reaction represented in a text based form.

Figure 1.11 again shows the same reaction and again the representation is

text-based but now contains XML elements that are used to markup the data.

This representation is probably the least human-friendly. It contains a lot of

information that the reader already knows which makes it difficult to read but

it is still human-understandable. It is this (human-redundant) information

which allows this representation to be machine-understandable, although it

should be noted that simply marking up the data does not mean that the

data is machine-understandable. However, if the syntax and semantics used

to mark up the data are predefined then a chemically aware program can

implicity understand that a reaction is occurring between the two reagents

to form the two products.

Chemical Markup Langauge (CML) provides the set of elements and se-

mantics required to hold most chemical data. Holding the data in this form

also has the advantage that it is relatively easy to convert the data in this

form to other forms — details of how this might be achieved and further

background on XML and CML are given in section 1.10. The translation

process shown in figure 1.8 therefore represents the conversion of data from

12

Figure 1.11: A chemical reaction represented using structured text.

another form into CML, a process commonly referred to as parsing. The

other forms of data representation are considered below.

1.6 Formats for Reporting Chemistry

Chemistry is reported in a variety of formats ranging from highly struc-

tured documents with well-defined fields to narrative discourse. One of the

goals of this study is to explore the feasibility of extraction of data into

a semantically-rich and thereby machine-understandable form. In general,

documents with more structure are simpler to parse because there are fewer

ambiguities and many of the underlying semantics are given explicitly. The

formats covered in this thesis fall into two main categories: human-authored

data and data relating to computational chemistry programs which is usually

machine-authored. An example of human-authored data has already been

encountered in figure 1.2. The techniques developed to parse data in this

form are examined in chapter 2.

The data relating to computational chemistry programs can be split into

a further two categories: program input and program output. Input data (fig-

ure 1.12) is inherently machine-readable and must be machine-understandable,

albeit only by the specific program. Techniques adapted from compiler

theory allow such data to be transformed into more generally machine-

13

[atoms]
; nr type resnr resid atom cgnr charge

1 O 1 DRG O8 1 0.000

2 CB 1 DRG C3 1 0.000

.

.

.

8 H 1 DRG HAB 1 0.280

[bonds]
;ai aj fu c0 c1

1 2 1 0.123 502080.0 0.123 502080.0 ; O8 C3

.

.

.

7 8 1 0.100 374468.0 0.100 374468.0 ; N4 HAB

Figure 1.12: A section of a GROMACS topology file, representing data in a
machine-readable and machine-understandable form.

understandable forms (see chapter 3). Program output (figure 1.13) is gener-

ated by a machine and thus consists of a finite vocabulary. Typically this has

well-defined structure but error messages may appear at any point making

perfect parsing almost impossible. It is designed to be human-readable and

human-understandable but not necessarily machine-understandable. Parsing

data in this form required the development of new methods, the details of

which are given in chapter 4.

1.7 Compute Processes

There are two compute processes involved in this work reflecting the two

major sources of data considered. The first process involves checking that the

analytical data reported for a molecule is self-consistent and reasonable, the

second uses computational chemistry programs to find an optimised structure

of a molecule and requires a little more introduction.

Quantum chemistry has emerged as an important tool for investigating a

wide range of problems in chemistry. With the development of computational

14

 ** MOPAC2002 (c) Fujitsu **

 * MOPAC2002 Version 1.01 CALC.’D. Mon May 19 01:25:16 2001

 * PM5 - THE PM5 HAMILTONIAN TO BE USED

 �46

 ATOM CHEMICAL BOND LENGTH BOND ANGLE TWIST ANGLE

 NUMBER SYMBOL (ANGSTROMS) (DEGREES) (DEGREES)

 1 Cl 0.000000 0.000000 0.000000

 2 N 5.069306 * 0.000000 0.000000 1

 �46

 48 H 1.090015 * 109.466551 * 54.661165 * 23 22 18

 EMPIRICAL FORMULA: C18 H24 N3 Cl3

 MOLECULAR POINT GROUP : C1

 SIGMA BONDS 49

 LONE PAIRS 12

 FINAL HEAT OF FORMATION = -0.90975 KCAL = -3.80639 KJ

 ELECTRONIC ENERGY = -30264.46015 EV POINT GROUP: C1

 CORE-CORE REPULSION = 26026.82711 EV

 MOLECULAR WEIGHT = 388.767

Figure 1.13: A section of a MOPAC output file.

methods and the availability of more powerful computers, it has become pos-

sible to solve chemical problems that until relatively recently were impossible.

Quantum-mechanical methods are now routinely applied to problems related

to molecular structure and reactivity [27].

There are three common approaches to computational chemistry: ab initio

methods, semi-empirical methods and density functional theory (DFT). As

described in section A.1, ab initio methods are 100% mathematical, meaning

that all of the information generated about an atom, molecule or reaction

comes from the fundamental quantum mechanical calculations (specifically,

the Schrödinger equation). This requires significant computing resources,

hence most calculations are limited to small molecules, typically those con-

sisting of less than 100 atoms. Semi-empirical methods provide a way to

study larger molecules. As the name suggests, semiempirical methods are

a combination of ab initio methods coupled with the use of data from em-

pirical studies — they are based on the Hartree-Fock formalism but make

many approximations and obtain some parameters from empirical data rather

than from theoretical principles. DFT is often considered to be an ab initio

method for determining molecular electronic structure, despite the fact that

15

most of the common functionals use parameters derived from empirical data.

It is usual for the limiting factor in calculations to be the amount of time

available for the calculation to run. It is therefore important to be able to

predict how long a particular calculation will take. The ability to do this

becomes increasingly important if the process is to be automated. The back-

ground and mathematical forms (where appropriate) of the three methods

are given in appendix A. From equation A.25 it is seen that basic ab ini-

tio methods require a four-way integration over all the basis functions to be

performed; such methods are expected to scale as n4 where n is the number

of basis functions. Improvements to the basic theory such as second or-

der Møller-Plesset perturbation theory (MP2) or coupled cluster single and

double excitation calculations (CCSD) scale to higher powers (n5 and n7 re-

spectively). DFT implementing a standard coulomb integral scales as n4,

but only as n3 when using an auxiliary basis. However, in the limit of a large

molecule, the pairwise interaction dominates (which scales quadratically) and

the overall behaviour typically scales as n2.2. Semi-empirical methods tend

to scale as n2 [28]. The use of these scaling relationships in predicting calcu-

lation times is shown in sections 5.5 and 8.6.

1.8 Analysis and Visualisation

The process of analysing the data in an eScience experiment can vary greatly

in complexity and in some cases can be almost trivial. For instance, the

analysis process in chapter 2 only requires the list of problems found in the

analytical data to be sorted in order of decreasing severity. It is often the

case that the type of analysis required will depend largely on the visualisation

and the manner of publication. There have been two approaches taken in

this work and these are discussed separately below.

The Experimental Data Checker (EDC) and OSCAR programs were orig-

inally designed to aid chemists and editors finding mistakes in the analytical

data; the intention was to create a system where possible errors in the data

16

were highlighted for subsequent human curation. The publication process

therefore involves the reporting of the possible errors to the user. The vi-

sualisation process began as a plain text list of the errors found, although

subsequently, to aid comprehension, these errors were highlighted in differ-

ent colours (reflecting the severity of the perceived error). As the program

evolved, a tool to recreate the various reported spectra was incorporated

into the visualisation process and the user was given the ability to view the

analysed data in various forms. All the various parts of the programs were

written in Java (see section 1.13) and further details are given in chapter 2.

The analysis process in the remaining chapters focuses mainly on compar-

ing the three dimensional structures of molecules before and after a geome-

try optimisation calculation, thereby allowing the refinement of the cleaning

process. The geometries are compared primarily by examining the change in

bond length, angle and torsion between the two structures, usually by using

graphs to detect anomalies and trends. Unfortunately no tools were found

that were able to represent the data in the required manner, hence a graphing

tool was written to allow the appropriate visualisation (see section 1.12.1).

This program allowed each data point to be linked to an external web page

which contained the input and output structures in Jmol applets (see section

1.14). Jmol is a molecular viewer which allows the user to manipulate the

structure in three dimensions (by changing the orientation for example) and

was used to visually compare the molecules. The manipulation of the data

and creation of the web pages was again performed by programs written in

Java and designed to be generally applicable.

1.9 Publication

Clearly the ultimate publication of this work is as a thesis, although, owing

to the constraints of the paper medium, the work will finally be published in

a more interactive format. However, there are multiple publication processes

utilised in chapter 3 onwards, for instance; the inability to parse program out-

put using only compiler theory techniques, is a result. Similarly, the archival

17

of the machine-understandable form of a document (automatically allowing

the re-use of the data) can also be interpreted as part of the publication pro-

cess. These results are seen as byproducts, albeit useful byproducts, of the

final publication which is a set of tools and protocols that allow high quality

data to be extracted and reused for research.

An introduction to the underlying tools and technologies that are used

throughout this work for holding, manipulating, visualising and analysing

the data is given below.

1.10 eXtensible Markup Language

eXtensible Markup Language (XML) [29] is based on Standard Generalised

Markup Language (SGML) [30], the international standard for defining the

descriptions of the structure and content of different types of electronic con-

tent (standardised in ISO-8879:1986). SGML was created by Goldfarb in the

1970s and is a very powerful metalanguage whose primary purpose is to create

other markup languages, such as HyperText Markup Language (HTML) [31].

A markup language defined using SGML or XML has a specified vocabulary

(the labels for elements and attributes) and a declared syntax (the grammar

defining the hierarchy and other features). XML first appeared in 1996 with

the first World Wide Web Consortium (W3C) recommendation published in

1998. The W3C is a vendor-neutral body which

specifies protocols for the Web infrastructure and develops in-

teroperable technologies (specifications, guidelines, software and

tools) to lead the Web to its full potential. [32]

The major advantage of XML over HTML is the ability to define what-

ever elements are necessary to express and support the requirements of the

application (see figure 1.14) as opposed to the elements¶ in HTML which are

¶The tag is the text between the angle brackets, i.e. <tag>, whereas the element
is the start and end tag and all the content between them. The terms are often used
interchangeably and the meaning should be apparent from the context.

18

Figure 1.14: An example of an XML document.

predefined.

1.10.1 Validation

All XML documents must be well-formed‖; they may also be valid. Validation

is performed against a Document Type Definition (DTD) or, more recently,

a XML Schema [34, 35].

A DTD defines which elements are permitted for documents of that type,

what their names are, where they may occur, if they are optional or required,

what types of values they can hold (although this mostly applies to attributes

not elements) and how they are related to each other (for example; parent,

child or sibling). XML Schemas also enable specifications to be placed on

the type of data present in any given element or attribute.

1.10.2 Namespaces

The ability for every author and user of XML to create their own element

names means that tag names may be replicated but the meaning might be

very different in each case. Such ambiguities may not be resolved even if

‖Some browsers allow HTML documents not to be well-formed although this can lead
to ambiguous interpretations; eXtensible HyperText Markup Language (XHTML) must
be well-formed [33].

19

both tags are defined in a DTD. To prevent any collision of DTDs the W3C

has defined a mechanism for namespacing each document definition [36].

This process allows each XML name to be globally unique; this is achieved

by mapping a namespace attribute to a Uniform Resource Identifier (URI).

These URIs exist solely to provide a globally unique string and need not rep-

resent a physical Web address, and furthermore do not require an Internet

connection to function. It is common for URIs to be based on the creator’s

domain name (to provide the necessary uniqueness). This also allows sep-

arate vocabularies and ontology to be defined for each area (for example,

CML or Math Markup Language).

Currently only elements may be namespaced but the use of dictionar-

ies or ontologies — which represent formal descriptions of concepts — has

required the ability to namespace individual attributes. The Scientific Tech-

nical Medical Markup Language (STMML) provides the basic concepts for

creating dictionaries. STMML was conceived by Murray-Rust and Rzepa and

is a domain-independent language designed to manage the infrastructure of

(mainly numeric) disciplines [37].

There are no limits to the number of dictionaries that can be associated

with a given application and references to the dictionaries are identified by

a prefix (e.g. iucr:). The use of dictionaries can greatly improve human

comprehension of the data in a document (once converted to a human read-

able form). This might be realised by showing the reader the corresponding

dictionary entry for a particular data item on mouse over ∗∗.

Data definitions are sometimes referred to as metadata, thus the fact that

an XML document conforms to a specified DTD or Schema might be an

example of metadata. The ability for XML to store metadata (such as how to

handle the corresponding data) allows machines to understand the data and

also makes it inherently easier to retrieve a particular data item. The Dublin

∗∗Mouse over means that an action is initiated when the mouse pointer is held over a
defined area of the screen.

20

Core Metadata Initiative is an organization engaged in the development of

interoperable online metadata standards [16]. The recommendations of this

initiative have been formally endorsed [38, 39] and include the ability to

specify metadata such as the creator of the data, contributors, associated

dates, rights held in and over the data and the location of related data.

There are also numerous entities for describing how the data was collected

and archived.

1.10.3 Data Display

Unlike HTML, in which almost all the elements affect only the presentation

of the document and hence make it more human-readable, XML has been

primarily designed to hold and pass information in a machine-understandable

form. To allow data held in XML to be easily read by humans it is usual

to apply a stylesheet to the document. A stylesheet essentially tells the

computer how each tag, or group of tags, should be processed; multiple

stylesheets can exist for any given document [40].

eXtensible Style Language (XSL) is used to define a set of primitives which

describe a document transformation, conversions using this method usually

refer to XSL transformations (XSLT). XSL provides a versatile and powerful

language for transforming an XML document into something else, using com-

plex transformations and dynamic operations. XSLT are based on pattern

matching: each rule specifies a particular action that is performed when the

associated pattern is encountered in the source document. XSLT can be used

to merge documents, applying various filters to documents, inter-convert be-

tween various XML dialects, and sort a document on its content. Figure 1.15

shows the workflow for a XSLT.

1.11 Chemical Markup Language

Murray-Rust and Rzepa first presented the Chemical Markup Language

(CML) to the world at the 1995 American Chemical Society August Meeting

in Chicago [41, 42]. The following year the W3C began work on the XML

21

Source

tree

XSLT

XML

Result

tree

XML HTML xhtml
text

/ rtf

Figure 1.15: XSLT flow; the XML is read and a corresponding tree structure
created, the XSL transforms are then applied to the tree structure to create
the result tree which is subsequently translated into the required output
format.

22

project and in 1997 CML became the first ever XML DTD. The first version

of the CML (CML 1.0) specification was formally published in 1999 [43].

CML is an extensible base for chemically-aware markup languages.

Historically, CML only focused on molecules (i.e. discrete entities rep-

resentable by a formula and, usually, a connection table). It supported a

hierarchy for molecules as well as reactions and macromolecular structures

or sequences. It allowed for quantities and properties to be specifically at-

tached to molecules, atoms or bonds, but originally it had no support for

physicochemical concepts, reaction schemes, mechanisms, reactive centres,

or spectator molecules.

CML was developed to support both the presentational aspects and se-

mantic content of chemistry. It is designed to be ontologically neutral. This

neutrality is important as most molecular file formats, such as the MDL

molfile [44], contain complex, often implicit, ontologies that are not neces-

sarily convertible into other formats. By keeping CML ontologically neutral,

this problem is minimised and as such, it is possible to convert CML into

other formats. CML also uses abstract data types wherever possible. It can

be seen that a melting point has the same abstract structure as the price

of an item or a person’s age. This data type might be described as a float-

ing point number, with units, allowed range and links to metadata. This

approach greatly widened the applicability, support and tools available for

CML.

CML was designed to be fully compatible with XML and to re-use its

ideas and technologies. As such it captures the content of chemistry rather

than the presentation. CML was originally cast as a DTD, but with the

advancing technologies of XML and XML Schema Language it was decided

that CML needed to be recast in a more tightly modular system. This led

to the creation of CML 2.0 [45]. CML 2.0 also aimed to address additional

aspects that CML 1.0 ignored, e.g. chemical substances, and also to describe

some of the elements in more detail, such as formula and electron, which

23

were not well-described in CML 1.0.

A modular approach has been taken for the language specifications. This

allows subsets of the language to be used independently — for instance

CMLComp represents concepts of computational chemistry. The use of dic-

tionaries allows CML to be extended still further. The following CML mod-

ules are available:

STMML domain-independent specification for general scientific data (in-

cluding units, metadata, dictionaries, data types and data structures)

CMLAll the complete CML language definition.

CMLCore The core part of molecular structure representation.

CMLComp CML for computational chemistry

CMLReact Support for chemical reactions including enzymes

CMLSpect CML for spectra including NMR, MS and infra-red; this inter-

operates, rather than competes, with the more formal industry activi-

ties such as AnIML [46], GAML [47] and SpectroML [48]

CMLSnap CML to describe and handle dynamic (animated) reactions

CMLQuery A query language for chemistry which is currently under de-

velopment

CMLCM condensed matter systems, also under development

CML is generally considered to be the target format for data storage in this

work. In other words we try to translate data into a form that is represented

using the elements, attributes and other data items as specified in CML.

In some cases this is done via the application of stylesheets to intermediate

XML representations.

24

1.11.1 JUMBO

CML does not provide chemical perception; it is only designed to hold data.

JUMBO began as the Java Universal Molecular Browser for Objects but sub-

sequently evolved into a generic name for the software that manages schemas

for CML [49]. The JUMBO package can also be used to check the chemical

validity of the data held in a CML document or data being added to an

existing document. For instance, if a user were to attempt to specify a new

bond in a molecule, JUMBO will check that all the atoms involved in the

bond exist, are part of the molecule and (if desired) whether they are within

reasonable bonding distance.

JUMBO initially implemented the CMLDOM (DOM is a Document Ob-

ject Model [50, 51]) to provide the required restrictions on data and data

types that were unavailable using the CML DTD [52]. Since the introduc-

tion of XML Schemas this is no longer as necessary — the base classes for

JUMBO are now created directly from the CML Schema. JUMBO is struc-

tured such that the data structure is separated from the tools as proposed by

Knuth [53]. The program is Open Source [54] and available on the Source-

Forge repository [55]; this work has used both JUMBO 4.6 and JUMBO

5.3.

1.12 Scalable Vector Graphics

Scalable Vector Graphics (SVG) is a language for describing two-dimensional

graphics and graphical applications in XML [56]. SVG 1.1 became a W3C

Recommendation in January 2003 and forms the core of the current SVG

developments. Sun Microsystems [57], Adobe [58], Apple [59], IBM [60], and

Kodak [61] are some of the organizations that have been involved in defining

SVG.

Advantages of using SVG over other image formats (such as Joint Pho-

tographic Experts Group (JPEG) and Graphic Interchange Format (GIF))

are:

25

• SVG files can be read and modified by a large range of tools, including

any text editor

• SVG files are smaller and more compressible than JPEG and GIF im-

ages

• SVG images are scalable

• SVG images can be printed with high quality at any resolution

• SVG images are zoomable — any part of the image can be magnified

without degradation

• text in SVG is selectable and searchable

• SVG works with Java technology

• SVG is an open standard

• SVG files are pure XML

• all the attributes of SVG elements can be animated

The main competitor to SVG is Adobe Flash. The biggest advantage SVG

has over this is the compliance with other standards (e.g. XSL and the DOM)

whilst Adobe Flash relies on proprietary technology that is not Open Source.

SVG is an application of XML and as such is compatible with the XML1.0

recommendation; it uses the XML Linking Language (XLink) [62] for URI

referencing and requires support for base URI specifications as defined in

XML Base [63]. The content of an SVG document can be styled using ei-

ther CSS or XSL, where external stylesheets can be referenced [64]. SVG

includes a complete DOM (level 1) and supports or incorporates many of the

facilities described in the DOM level 2 specification including the CSS object

model and event handling. The animation features incorporate and extend

the general-purpose XML animation capabilities described in the SMIL An-

imation specification [65, 66].

26

1.12.1 SVG Graphing

Scientific analysis often involves the creation of graphs to detect trends or

outliers. Whilst graphs can be easily and quickly created using applications

such as R [67] or Microsoft Excel [68], the resultant graphs are neither in-

teractive nor can they be immediately mounted as web pages. To simplify

the analysis process, a program was written to create graphs in SVG. This

application can generate basic x-y plots, histograms, smoothed density plots

and quantile-quantile (QQ) plots.

The primary motivation for the creation of this software was to allow any

data point (or anything on the graph) to be linked to an external document

— in this work this has usually been a web page displaying the 3D represen-

tations of the molecules — which displayed further information about that

point. The user is also permitted to specify associated data for a point, which

can be anything that is representable by a string. This data is displayed when

the mouse pointer is over the area of the graph represented by that point.

The use of SVG to create graphs allows the immediate integration into

web pages — whether or not the interaction functionality is used — as well

as ensuring that there is no loss of quality if a user desires to examine a

particular area of the graph at a larger magnification. The text in any SVG

document is searchable and therefore all the data and metadata contained

in a graph mounted in or as a web page can be indexed by internet search

engines.

The SVG graphing application was designed to be used either from within a

Java programming environment or as a standalone program with a graphical

user interface (GUI). The options available for the presentation of the graph

are based on those provided by R and most are accessible through the GUI.

The application is currently in a functional state and was used to analyse all

the data produced during this work but remains a work in progress, requir-

ing greater CML support (especially CMLTable) and synchronising with the

pelote specification [69].

27

1.13 Java

Java [70, 71] consists of three, equally important parts: the Java language,

the Java Virtual Machine (JVM) and the Java platform. Java is a ‘write

once, run anywhere’ technology, i.e. so long as the destination system has a

JVM, the program will run on that system. This makes Java a very versatile

and portable language.

The Java programming language is object-oriented — object-oriented pro-

gramming (OOP) may be seen as a collection of cooperating objects, as

opposed to a traditional view in which a program may be seen as a list of

instructions to the computer. In OOP, each object is capable of receiving

messages, processing data, and sending messages to other objects. Each ob-

ject can be viewed as an independent little machine with a distinct role or

responsibility.

OOP is intended to promote greater flexibility and maintainability in pro-

gramming, and is widely popular in large-scale software engineering. By

virtue of its strong emphasis on modularity, object-oriented code is intended

to be simpler to develop and easier to understand subsequently, lending itself

to more direct analysis, coding, and understanding of complex situations and

procedures than less modular programming methods.

The developers of Java tried to make the language powerful, but also to

avoid overly complex features that can bog down an object-oriented language.

By keeping the language simple, it is easier to write robust and (hopefully)

bug-free code. The JVM is also known as the Java interpreter. Without

the virtual machine the code will not run on a system, as it is this virtual

machine that interprets and runs the code. The Java platform is important

in that all Java code relies on the set of predefined classes (modules of Java

code that define a data structure and a set of methods that operate on that

data) that comprise the Java platform.

28

Java classes are organised into packages (related groups) and the Java plat-

form defines packages for functionalities such as input/output, networking,

graphics and regular expressions. The most common Java programs written

are applets and applications. Applets are programs that adhere to certain

conventions, allowing the program to run within a Java-enabled browser. An

application is a standalone program that runs directly on the Java platform.

Java is also designed to be a powerful software platform.

Wherever possible, all the tools created as part of this work have been

written in Java and in such a way that they should be reusable in other

applications. There are already several instances of classes and methods

being incorporated into, or used by, programs written for other purposes.

The programs are entirely Open Source and are available to all [54].

1.14 Jmol

Jmol is a free, Open Source, molecule viewer written in Java and available

as both an applet and an application [72]. Jmol is capable of extracting the

3D coordinates of molecules stored in various file formats including CML,

CIF and GAMESS. It also allows the user to export the rendered molecule

to graphical formats including PovRay [73]. All the 3D images of molecules

in this work have been rendered using Jmol to create the PovRay file which

was subsequently stored in the encapsulated postscript format. Jmol applets

were also used throughout the analysis of the data to visually compare the

geometries of molecules.

29

Chapter 2

The Quality of Data in the
Chemical Literature

Languages are used to communicate information; chemistry is a language

without native speakers and has developed as a written rather than spoken

one. This leads to a level of communication that is adequate but not optimal.

The work presented in this chapter examines techniques to extract data from

the literature in its current form into more comprehensible formats for both

humans and machines and to validate and re-use.

The most common method to disseminate results in the chemistry field

is via publication in peer-reviewed journals. This process is designed to al-

low only valid and accurate science and data into the public domain. Some

errors (albeit mostly minor) can, and do, make it through the process and

into the published work. These errors are often trivial typographic mistakes,

but others are more serious and may lead to the work being withdrawn from

publication. In future, the increase in volume of articles taken in conjunc-

tion with human error must result in an increased number of mistakes (and

possibly more serious ones than at present) permeating through the process.

Typographic errors are generally trivial for a human reader to absorb and

correct without actually being aware of them. For example the recent meme

that was found on many blogs and in inboxes

Aoccdrnig to rscheearch at Cmabrigde Uinervtisy, it deos not

30

mttaer in waht oredr the ltteers in a wrod are, the olny iprmoatnt

tihng is taht the frist and lsat ltteer be at the rghit pclae. The rset

can be a total mses and you can sitll raed it wouthit a porbelm.

Tihs is bcuseae the huamn mnid deos not raed ervey lteter by

istlef, but the wrod as a wlohe.

should actually read

According to research at Cambridge University, it does not matter

in what order the letters in a word are, the only important thing

is that the first and last letter be at the right place. The rest can

be a total mess and you can still read it without a problem. This

is because the human mind does not read every letter by itself,

but the word as a whole.

Whilst a human can read and interpret the quotation, a computer will

not in general be able to do so. The original quotation contains 34 unique

spelling mistakes (wrod and taht are both repeated twice). The quotation

was run through the spell checking tools from two different authoring pro-

grams (WinEdt [74] and Microsoft Word [75]). A list of alternatives to the

misspelled word are suggested by both programs. The words at the top of

the list are considered by the program to be more likely alternatives, conse-

quently, the results have been broken down into three categories;

Top The correct word is at the top of the suggested alternatives;

Present The correct word is present in the suggested alternatives, but is

not the most likely;

Absent The correct word does not appear in the suggested alternatives.

The results are presented in table 2.1; whilst both programs correctly identi-

fied the intended word in over 75% of the cases neither program would have

been able to reconstruct the entire sentence correctly.

31

Microsoft Word WinEdt

Top 27 26
Present 1 4
Absent 6 4

Table 2.1: Comparison of spell checking between Microsoft Word and
WinEdt.

The quotation, as originally cited, is not machine-understandable — that

is, it would be impossible for even a natural language processing program

to determine the meaning of the quotation. The increased desire for au-

tomation of the categorisation, searching and interpretation of the published

literature requires that the literature be machine-understandable. Although

it is extremely unlikely that any published literature would contain the kind

of gross errors present in the quotation above, a minor error (for example in

an abstruse chemical name) is far more likely.

2.1 Information Extraction

In computer science, information extraction (IE) or text mining is a type of

information retrieval where the goal is to automatically extract structured

information from unstructured machine-readable documents; an example of

IE can be found in the analysis of gene expression data. An association rule

represents a set of items that are likely to be seen together; for example, the

rule

{cancer} ⇒ {gene A↑, gene B↓, gene C↑}

states that whenever cancer was found, gene A and gene C were highly

expressed, but gene B was highly repressed and all three genes occurred

together [76]. Typical subtasks of IE are:

Named Entity Recognition recognition of entity names (for people and

organizations), place names, temporal expressions, and certain types

of numerical expressions;

32

Coreference identification chains of noun phrases that refer to the same

object. For example, anaphora is a type of coreference;

Terminology extraction finding the relevant terms for a given corpus.

The development of ontologies, and hence text mining, in other spheres

has advanced rapidly, particularly in the biosciences. Bioinformatics has

embraced the concept of literature data mining and much work has been done

in this area ranging from the simple recognition of terms to the extraction of

interaction relationships from complex sentences [77, 78]. This thesis details

how such methods can be applied to chemical documents to create structured,

semantically-rich, machine-understandable versions of the documents as well

as describing the development of various text mining processes and chemical

ontologies.

The extraction of data from legacy formats is simplified by increasing struc-

ture, thus if every chemist were to write articles in XML (with a predefined

DTD or Schema) all the concepts would be immediately recoverable. For

example an infra-red spectrum of butan-2-ol might be represented as;

<spectrum title=‘butan-2-ol’ type=‘infrared’ state=‘gas’ >

...

</spectrum>

However, many synthetic organic chemists use Microsoft Word or a similar

program as their authoring tool. These programs tend to focus on the pre-

sentation of the data, rather than content of the data. Whilst it might be

unreasonable to expect authors to create their documents in XML with fully

integrated CML, the advent of online publication makes a more integrated

version of an article (a datument [79]) more attractive [80]). Even if da-

tuments become the accepted publication method there will still be a huge

legacy corpus which will require extraction.

33

2.2 The Experimental Data Checker

The Royal Society of Chemistry (RSC), recognising this potential prob-

lem, sponsored a project∗ to develop a tool both to improve the quality

of manuscripts submitted to them for publication and to allow reviewers to

detect errors more easily. Initially, two students (F. R. Norton and this au-

thor) were involved for a three month period to develop a proof-of-concept

Experimental Data Checker (EDC).

The brief for the EDC project was to analyse a corpus of typical organic

chemistry articles — both those submitted to the RSC for publication and

those already published — supplied by the RSC, and to determine to what

extent the extraction of data was a tractable problem. A proof-of-concept

cross-platform program that could extract (to a greater or lesser extent) the

data present was to be developed which would enable human reviewers to

detect errors more easily. It was envisaged that this would involve performing

self-validation tests on the data in the analytical data section. The RSC

also requested that a DTD be created to represent the extracted data. The

specifications for the project required that the checking process should not

affect the way in which the author could create the manuscript, and, that

only a minimal amount of extra work would be involved in the checking

process†.

2.2.1 The legacy format of organic chemistry articles

An analysis of the corpus provided showed that most organic chemistry arti-

cles (and articles for submission in the journal) are divided into well-defined

sections. The published article structure is shown in figure 2.1. The same

sections are found in the unpublished articles but often in a different order.

Examples of each section are given below.

∗The project was collaborative; S. E. Adams, F. R. Norton, C. A. Waudby and this
author have all been involved; overall this author contributed approximately 50% of the
work. Where work was performed by a specific individual this is indicated.

†Such a design brief — that the user should not be expected to do significant further
work — is sometimes referred to as the requirement for a Big Red Button solution.

34

Figure 2.1: The typical structure of an organic chemistry article.

35

. . .Mp 62–65 ◦C. FTIR (NaCl, thin film) 3025 (m), 2952 (s), 2881 (m),
1734 (s), 1707 (s), 1249 (m), 1184 (m), 1132 (m), 1054 (m), 950 (w)
cm−1. 1H NMR (100 MHz, CDCl3) δ 1.10 (m, 1H), 1.25 (m, 6H), 1.33 (s,
3H), 1.61 (m, 6H), 2.07 (dt, J = 13.5, 5.1 Hz, 1H), 2.41 (m, 1H), 2.59,
(dt, J = 14.3, 6.2 Hz, 1H), 2.77 (dd, J = 12.0, 2.8 Hz, 1H), 3.92 (m,
4H), 4.19 (m, 2H). 13C NMR (400 MHz, CDCl3) δ 210.6, 173.2, 112.7,
65.7, 65.3, 61.5, 61.5, 45.3, 42.3, 35.0, 30.8, 29.4, 23.6, 23.0, 17.4, 16.3,
14.6. [α]20

D +11.1 (c, 7.15, CHCl3). Anal. Calcd for C17H26O5: C, 65.78;
H, 8.44. Found: C, 66.07; H, 8.35.

Figure 2.2: An example of typical analytical data found in an organic chem-
istry paper [82].

5’,6’,8a’-Trimethyloctahydro-2’H -spiro[[1,3]dioxolane-2,1’- naphthalene]-
5’-carbaldehyde (20). A CH2Cl2 (10 mL) solution of alcohol 19 (270
mg, 1.01 mmol), 4-methylmorpholine N -oxide (130 mg, 1.10 mmol),
and 4 Å MS (300 mg) was stirred for 10 min. At this time, tetra-n-
propylammonium pyruthenate (17.5 mg, 0.05 mmol) was added in one
portion and the reaction was stirred for 1 h. The reaction was found
complete by TLC, passed through a pad of silica (1 × 20 cm2 with 1:1
hexanes:Et2O), and concentrated to provide aldehyde 20 (260 mg, 98%
yield) as a clear oil.

Figure 2.3: An example of a typical synthetic methodology found in an
organic chemistry paper [82].

Analytical Data

Analytical data (figure 2.2) are physical properties used to determine the

identity of a compound, such as NMR spectra and elemental analysis. When

reported in journals or theses this data is highly formalised. The format is

presentational rather than semantic and may include human-created errors

arising from transcription, omission, spelling mistakes [81], unforeseen mi-

crostructure and vocabulary. Ambiguity is often present; hence recall may

not be perfect. This is an attractive area for consideration because the data

is semi-structured and when extracted would allow error checking (for self-

consistency).

36

Starting from commercially available 3-furaldehyde, we accessed the
known homoallylic alcohol 11 in 82% yield and 93% ee through Brown’s
asymmetric allylboration (Scheme 2). Alternatively, alcohol 11 could be
prepared in 82% ee and 64% yield in a proline oxide-catalyzed asym-
metric addition of trichloroallyl silane into 3-furaldehyde. In either case,
O-alkylation of 11 with 2,3-dibromopropene 12 afforded allylic ether 13
in 75% yield. Lithium-halogen exchange followed by isopropoxy borolane
14 trap provided the pinacol borolane 10, which was carried on to the
borolane fragment 9 through a RCM by using Grubbs second generation
catalyst 15 in 45% overall yield for the two steps. With access to pyran
9, attention was turned toward generating coupling partner 6.

Figure 2.4: An example of a typical chemical discourse found in an organic
chemistry paper [82].

Synthetic Methodology

The synthetic methodology (figure 2.3) comprises a highly formal language

and many stock phrases that may be valuable for tokenising. This format

requires a lexicon to allow entity and microstructure recognition; shallow

parsing and part-of-speech recognition techniques must also be employed.

However, currently CML does not have the required elements or semantics

to describe such data.

This data represents an extremely large resource which, if it can be searched

more effectively (for instance on reaction type), can be made vastly more use-

ful for both eScientists and the more traditional chemist. If the semantics

of this area can be well-defined it should be possible for robots to entirely

reconstruct (and re-perform) the synthesis. Parsing the synthetic methodol-

ogy did not form part of the original EDC project but subsequent work has

shown this area to be somewhat tractable.

Chemical Discourse

Chemical discourse encompasses, for example, the results and discussion sec-

tion of an article (figure 2.4). This requires deep parsing and a substantial

37

The marine sponge metabolite (+)-cacospongionolide B (+)-1 is a mem-
ber of a class of compounds bearing a γ-hydroxybutenolide moiety. This
functionality has been suggested to be important in the inhibition of sev-
eral forms of secretary phospholipase A2 (sPLA2), enzymes involved in
events leading to inflammation. Given the role of chronic inflammation in
diseases such as asthma, psoriasis, cancer, atherosclerosis, and rheuma-
toid arthritis, it is becoming increasingly important to discover and de-
velop more effective agents that can mediate these pro-inflammatory sig-
naling events. With a successful route to cacospongionolide B already in
hand, efforts have turned toward understanding the structural features
of the natural product responsible for inhibiting sPLA2 activity. Our
previous findings indicated that furan 2 possessed comparable sPLA2

inhibitory activity to (+)-1, while the enantiomer of the natural prod-
uct (−)-1 was less active. In addition, several unnatural diastereomers
of the natural product were identified that displayed improved sPLA2

inhibitory activity over (+)-1.

Figure 2.5: An example of a typical narrative discourse found in an organic
chemistry paper [82].

English lexicon as well as a chemical one. There are many reserved words

that may allow parsing but currently this is outside the scope of this work.

Narrative Discourse

Narrative discourse comprises, for example, the introduction section of an

article (figure 2.5). This also requires deep parsing and a complete English

lexicon as well as a chemical one. This is outside the scope of this work.

Chemical Names

Chemical names are often expressed in a formal language and as such should

follow specifications. However these often contain ambiguity and in some

cases allow multiple (and equally valid) names to be given to a species (see

figure 2.6). Systematic chemical names are not designed to be machine-

understandable but may be described by a grammar. Non-deterministic

methods must be used to parse chemical names in general, allowing am-

38

IUPAC name 2-Acetoxy-benzoic acid
CAS Index name Benzoic acid, 2-(acetyloxy)-
Trivial name Salicylic acid
Trivial name Aspirin

Figure 2.6: Various names for the same connection table.

biguities to remain unresolved for as long as possible. The ability to parse

a systematic chemical name is essential as it is often the only way in which

a connection table for the compound can be recovered from a paper. The

identification and parsing of chemical names is explored in section 2.4.

2.2.2 Common Chemical Concepts

The analysis section of each compound were examined and the most common

well-defined concepts identified. These concepts were found to be:

• chemical name

• yield

• boiling point / melting point

• proton nuclear magnetic resonance (HNMR)

• carbon nuclear magnetic resonance (CNMR)

• infra-red spectrometry

39

• (high resolution) mass spectrometry (HRMS)

• elemental analysis

• optical rotation

• refractive index

• Rf value

• ultraviolet spectrometry

• nature (colour, state, modifiers, description, etc.)

and represent what a typical organic chemist is expected to include in a

report to show that they have made the intended substance.

The RSC provides guidelines on how each of the various analytical data

should be displayed [83]. However, they do not insist that these are rigidly

adhered to, which results in multiple (sometimes very similar) representa-

tions. For example, the suggested presentation of High Resolution Mass

Spectroscopy data is:

[Found: C, 63.1; H, 5.4%; M (mass spectrum), 352. C13H13NO4

requires C, 63.2; H, 5.3%; M, 352]

Analysis of the corpus revealed the following representations:

• Calculated for C13H8N5Cl3: m/z 338.98. Found 338.98 HRMS

• (CI mode, CH4): C23H24Si (M); found: m/z 328.1647. Calc.: m/z

328.1647

• [Found: m/z (HRMS-FAB) 359.1993. C21H23N6 requires MH+ 359.1984]

• exact mass 292.0828, C14H14NO6 (M/2 + H+) requires 292.08

• (Found M+, 257.9545. C9H7IO requires 257.9544)

40

• HR-LSIMS (m-nitrobenzyl alcohol) m/z 464.99649 [M(79Br) + H+],

C15H18
79BrN2O8S requires m/z 464.99673

• [MALDI-TOF-MS Calc. for C127H107NNaO38 (M + Na)+: 2276.6.

Found: m/z 2276.9 (M+Na)+]

• HRMS (CI+) C13H16BrO2 requires 283.0334, found 283.0329 (M +

H)+found = 423.1060, C21H25ClO5P requires 423.1128 for the 35Cl iso-

tope

• [M−] m/z 801.0935. Calc. for [C37H33Cl3N2O10P]−: 801.0938

• ESI-MS m/z : 805.44 (M + H)+;anal. calcd for C52H60N4S2: 804.43 m/z

(EI) 414.1660 (M+, 100%. C23H26O7 requires 414.1678), 385 (16.8), 278

(7.1), 217 (6.2), 195 (34.8), 167 (86.5), 135 (66.0), 131 (10.5)

as well as the recommended version. The identification of each type of analyt-

ical data therefore requires various representations to be taken into account.

Regular expressions provide exactly this functionality and are supported by

Java which is a cross-platform language.

Java does not support the Microsoft Word document format but the text

can be entered into a Java text area by using the cut and paste translation

facility. This process results in the complete loss of formatting (other than

new lines) and in some cases special character. For instance, the ‘δ’ character

sometimes is translated as ‘d’ and in other cases is omitted entirely. An infra-

red spectrum such as;

νmax (CHCl3)/cm−12954, 2900, 1655 and 1603 (C=C), 876;

is typically translated to;

max (CHCl3)/cm-12954, 2900, 1655 and 1603 (C=C), 876;

Thus the translation into plain text introduces further variation of represen-

tation, further complicating the extraction process.

41

2.2.3 Regular Expressions

A regular expression is a pattern or template for matching a set of text

strings [84]. The origins of regular expressions lie in mathematics and arose

from finite state automata theory in the 1950s. The mathematical back-

ground of regular expressions is discussed in 3.1.6, however, they rapidly

migrated into early text editors such as qed [85] where they are no longer

regular expressions in the mathematical sense. Many different variations

have occurred in both syntax and semantics; this work has concentrated on

the regular expression package implemented by Java [86].

Regular expressions match a pattern against a subject (a string of char-

acters); most characters in the regular expression stand for themselves. For

example a straight-chain hydrocarbon, with up to ten carbon atoms and one

optional multiple bond, would match against the following regular expression:

chain (locantgroup)? saturation

Where;

• chain is defined as (meth|eth|prop|but|pent|hex|hept|oct|non|dec)

• locantgroup is defined as -number-

• number is defined as (1|2|3|4|5|6|7|8|9)

• saturation is defined as (ane|ene|yne)

The vertical bar means or ; the parentheses are used to group sub-expressions;

the question mark means zero or one instances of and the juxtaposition of the

parenthesised expressions means concatenation. Some common predefined

character classes and boundary matches used in the Java regular expression

package is given in appendix B.

It is clear that the regular expression given above would match against

both possible and impossible chemical names, for example meth-9-yne. This

limitation that requires that regular expressions only be used to tokenise

data, not to deal with the semantics (see section 3.2).

42

Figure 2.7: The structure of the original EDC.

43

Figure 2.8: The GUI of the original EDC. An experimental paragraph has
been pasted into the upper window and the big red button pressed to produce
the report in the bottom window.

44

2.2.4 Structure of the EDC

The structure of the original EDC and the user interface are shown in figures

2.7 and 2.8 respectively. The two-panel display means that redundant input

information (the unparsed text) is always displayed. Whilst this version of

the EDC fulfilled the project requirements, there were significant weaknesses:

• the design of the code was poor: each of the types of data identified

(melting point, name, HNMR etc.) were held in purpose built classes

and did not utilise interfaces

• there was no separation of function and display

• each paragraph of the experimental section had to be individually cut

and pasted

• the program was only available as an applet

• editing or extending the regular expressions required editing the Java

source code

2.3 OSCAR — Blurring the Line Between

Authoring Tool and IE Tool

The original EDC sufficed to show proof of concept. However, it had weak-

nesses and areas where the implementation and functionality could be im-

proved. The RSC sponsored three further students (S. E. Adams, C. A.

Waudby and this author) to continue the development of the EDC. The fol-

lowing areas were those were identified as those most in need of refactoring:

• separation of function and display

• analysis of entire article at once

• overview of entire article

• creation of an application

45

Figure 2.9: The structure of the EDC version 2.

46

(\(|\[)?(F|f)ound\\s\(%\):.*(C|c)alcd?\.?\s for.*\d{1,2}\.\d{1,2}(\]\.|.;)

[\[\(]?(((?:anal\.?\s+)?found|(?:(?:(?:(?=\w{4,})\b(?x-i:(?:Zr|Zn|Yb|Y|Xe|W|V|Uuu|
Uut|Uus|Uuq|Uup|Uuo|Uuh|Uub|U|Tm|Tl|Ti|Th|Te|Tc|Tb|Ta|Sr|Sn|Sm|Si|Sg|Se|Sc|Sb|S|Ru|Rn|Rh|Rf|Re|Rb|Ra|
Pu|Pt|Pr|Po|Pm|Pd|Pb|Pa|P|Os|O|Np|No|Ni|Ne|Nd|Nb|Na|N|Mt|Mo|Mn|Mg|Md|Lu|Lr|Li|La|Kr|K|Ir|In|I|Hs|Ho|
Hg|Hf|He|H|Ge|Gd|Ga|Fr|Fm|Fe|F|Eu|Es|Er|Dy|Ds|Db|Cu|Cs|Cr|Co|Cm|Cl|Cf|Ce|Cd|Ca|C|Br|Bk|Bi|Bh|Be|Ba|
B|Au|At|As|Ar|Am|Al|Ag|Ac|Me|Et|Pr|Ph|Bn|Bz|Bu|t-?Bu|n-?Bu|Ts|Ms|Tr|D)\d*[--\-\=]?)+
(?:\s*[·.]\s*(?:\d+(?:\/\d+)?\s*)?(?x-i:[A-Z][a-z]?\d*)+)?\b\s*)?
require[sd]?\s*|(?:anal[\.:\s]+)?calcd?\.?(?:\s+for)?\W*(?:(?=\w{4,})\b
(?x-i:(?:Zr|Zn|Yb|Y|Xe|W|V|Uuu|Uut|Uus|Uuq|Uup|Uuo|Uuh|Uub|U|Tm|Tl|Ti|Th|Te|Tc|Tb|Ta|Sr|Sn|Sm|Si|Sg|
Se|Sc|Sb|S|Ru|Rn|Rh|Rf|Re|Rb|Ra|Pu|Pt|Pr|Po|Pm|Pd|Pb|Pa|P|Os|O|Np|No|Ni|Ne|Nd|Nb|Na|N|Mt|Mo|Mn|
Mg|Md|Lu|Lr|Li|La|Kr|K|Ir|In|I|Hs|Ho|Hg|Hf|He|H|Ge|Gd|Ga|Fr|Fm|Fe|F|Eu|Es|Er|Dy|Ds|Db|Cu|Cs|Cr|
Co|Cm|Cl|Cf|Ce|Cd|Ca|C|Br|Bk|Bi|Bh|Be|Ba|B|Au|At|As|Ar|Am|Al|Ag|Ac|Me|Et|Pr|Ph|Bn|Bz|Bu|t-?Bu|n-?Bu|
Ts|Ms|Tr|D)\d*[--\-\=]?)+(?:\s*[·.]\s*(?:\d+(?:\/\d+)?\s*)?(?x-i:[A-Z][a-z]?
\d*)+)?\b\s*)?(?:(?:\((?:[^\(\)]|\((?:[^\(\)]|\([^\(\)]+\))+\))+\))\s*)?|
for\W*)))(?:\W*(?:M\w*)?\W+)?((?:\W*?(?x-i:[A-Z][a-z]?)[\s,:]+\d+(?:\.\d+)?\s*
\%??){2,})%?[;\.\s]*?){2}[\)\]]?

Figure 2.10: Regular expressions to extract the elemental analysis from the
analytical section. The top expression is that used in the EDC, bottom is
that used in OSCAR.

• improve spectrum representation

• improve the regular expressions

A complete rewrite of the code produced the revised program design shown

in figure 2.9. Each of the types of data now implement a DataInterface

and those data representing spectra a SpectrumInterface. The separation

of function and display resulted in OSCAR (Open Source Chemistry Anal-

ysis Routines) and the EDC which is now simply a particular front end for

a user to access OSCAR [87]. Figures 2.11 and 2.12 show the EDC applica-

tion highlighting data and the results of the ‘expert analysis’ routines. An

example of the regular expressions developed for the original EDC and the

improved version for OSCAR are shown in figure 2.10.

In order that an entire article could be parsed at once, the document struc-

ture and paragraph recognition are important. OSCAR firstly identifies the

experimental section of the article and then splits this ReportParagraphs,

where a ReportParagraph is defined in Backus-Naur form (BNF) in figure

47

Figure 2.11: The EDC application v2.4 showing the data identified.

48

Figure 2.12: The EDC application v2.4 showing the results of the expert
analysis routines. Warnings are in the left hand panel — clicking on a warning
brings the relevant explanation up in the right hand column. Items in red
represent serious errors (for example more Hydrogen atoms reported in the
HNMR than there are in the elemental analysis. Blue items are warnings
(for example solids being reported without melting points) and green possible
warnings (for example an infra-red spectrum being reported without the plate
type).

49

ReportParagraph :: = ReportParagraphHeader AnalyticalDataBlock

FULLSTOP ReportParagraphEnd

;

ReportParagraphHeader :: = ChemicalName

| ChemicalNameAndIdentifier
| Identifier
;

ReportParagraphEnd :: = WhiteSpaces

| MaybeWhiteSpaces LINEEND

;

WhiteSpaces :: = WHITESPACE

| WhiteSpaces WHITESPACE

;

MaybeWhiteSpaces :: = BLANK

| WhiteSpaces
;

Figure 2.13: The BNF for paragraph recognition in OBC papers. Terminal
tokens are shown in capitals.

2.13 (for a full explanation of BNF see appendix C). Each of these Report-

Paragraphs is then examined for analytical data. The ability to parse an

entire article at once — rather than individual paragraphs — allows the cre-

ation of a table listing all the compounds identified and the analytical data

for each. This facility is considered particularly useful for chemists authoring

a thesis in the organic chemistry, as a way to ensure that they have included

all the required data [88]. Figure 2.14 shows an example of the tabulation

facility.

The original EDC used regular expressions to identify fine-grained data

immediately (for example matching the HNMR peak types from an entire

paragraph). Such immediate fine-grained parsing is difficult because it is not

easy to differentiate between HNMR and CNMR peak types, for example;

thus the regular expressions are extremely complex. The approach in OSCAR

was to use hierarchical parsing (not coincidentally reflecting the structure of

the target XML output). With reference to HNMR this process would involve

50

Figure 2.14: The EDC application v2.4 showing the tabulation of identified
data. Clicking on a row brings up the relevant paragraph with more detailed
information.

51

Figure 2.15: All-at-once (left) and hierarchical (right) parsing strategies.

52

Figure 2.16: An example of an HNMR spectrum.

the following steps; identifying the block of HNMR data, then the block of

peaks within that, then individual peaks and finally the peak type within

the peak fragment. The two processes are illustrated in figure 2.15.

Organic chemists are familiar with graphical representations of spectra

such as the HNMR spectrum shown in figure 2.16. However one of the

drawback of the current publication system is the destruction of information;

spectra are not given in a graphical form, but in an abbreviated textual

representation as shown in figure 2.2. A system was therefore created that

attempted to recreate a spectrum from the textual form. A mass spectrum is

inherently easier to recreate than an infra-red spectrum as it consists of single

lines of differing height whilst the infra-red spectrum has different width and

shapes of peak. Figure 2.17 shows an example of a recreated spectrum.

2.3.1 Information Extraction Tests

In 2003 the RSC created a new journal, Organic & Biomolecular Chemistry

(OBC), which was formed by the merger of the Journal of the Chemical

53

Figure 2.17: The EDC applet v2.3 displaying a recreated infra-red spectrum.

Society, Perkin Trans 1, Perkin Trans 2 and Natural Product Reports. For-

tunately the regular expressions developed to identify and extract data from

the original corpus proved sufficiently broad (and the structure of the analyt-

ical sections sufficiently rigid) that the desired data could still be extracted

from the new journal. It is interesting to note that OSCAR was run over

organic chemistry articles in German and still correctly identified typically

more than 80% of the data correctly.

To determine the recall and accuracy rates for OSCAR it is necessary to

consider the two types of document for which it is applicable: published

OBC articles and papers received by the RSC for publication in OBC. There

are only minor differences between the two document types, the two most

relevant being structure (order) and format. The first of these should not

present any parsing problems because although the experimental section may

occur in a different position in the two documents, the content is the same in

both. However, the format of the data often changes slightly in the publica-

54

tion process. In general slight errors (such as missing commas or mismatched

brackets) found in the analytical sections of the submitted documents will

be corrected before publication.

The EDC was originally intended to function as an authoring tool; thus

it was decided at the inception of the project that the program should not

make inferences from the data or correct it but that a human must perform

curation functions. Therefore an error such as the mislabelling of a HNMR

spectrum as a CNMR spectrum that would be clear to a chemist reading

the paper because of the assignment of the integrals as protons and the

values of the chemical shifts would be interpreted by OSCAR as a CNMR

spectrum. Errors of this type are usually corrected during the review and

editing process. Hence it was expected that the recall rate would be lower

than the precision rate, (a single missing comma in a spectrum would result

in a false negative) and that tight specifications‡ for a data type would result

in higher recall.

The test set comprised seven articles randomly selected from OBC 2003 [89,

90, 91, 92, 93, 94, 95] and three documents [96, 97, 98] that the RSC had

received for submission to OBC. Because the focus for the current project

is information extraction from published literature the test set was biased

in favour of articles. The recall and accuracy statistics for the classification

(identification) obtained from this sample are given in table 2.2, where:

TP is the number of X that the system correctly identified and were present

in the corpus

FN is the number of X that the system failed to identify

FP is the number of X that were recognised by the system which were not

in the corpus

X is a particular data type

‡A tight specification is one where there is little or no ambiguity possible.

55

Data type TP FN FP Recall % Precision %

overall 1554 240 96 86.62 94.18
CNMR 187 24 5 93.03 97.40
elemental analysis 103 15 0 87.29 100.00
HNMR 212 23 4 90.21 98.15
HRMS 126 1 0 99.21 100.00
infra-red spectroscopy 186 19 8 90.73 95.88
mass spectroscopy 145 20 0 87.88 100.00
melting point 151 11 2 93.21 98.69
chemical name 171 72 47 70.37 78.44
nature 100 22 21 81.97 82.64
yield 173 43 9 80.09 95.05

Table 2.2: Recall and precision rates for OSCAR.

and recall and precision are defined by

Recall =
TP

TP + FN
(2.1)

Precision =
TP

TP + FP
(2.2)

A partially identified fragment has been classified as a false positive, hence

missing commas or mismatched brackets in a spectrum would lead to a false

positive. It is observed that the recall of the first seven data types is about

90%, but for the final three the recall is significantly lower. It is also noted

that the precision for two of these data types (chemical name and nature) is

also significantly lower than for the other types.

In general it was observed that the reason why the yield was not correctly

identified when multiple yields were quoted in one synthetic paragraph was

because more than one synthetic route to the same compound was attempted,

or the reaction gave a mixture of products, or the same reaction scheme had

been employed on multiple starting compounds (see figure 2.18).

56

Typical procedure for the synthesis of 2-alkoxy-9-benzyl-8-
hydroxyadenine derivatives 7a-e
A solution of 12 (0.24 mmol) in c. HCl was stirred at room temperature
for 4 h. After evaporation, the residue was chromatographed on silica
gel to give 7, which was identified by comparison with a standard sample
synthesized from 6. Yield: 7a (74%); 7b (81%); 7c (82%); 7d (87%); 7e
(84%). [90]

Figure 2.18: A paragraph showing how the synthesis of set of similar com-
pounds is described.

The relatively low recall and precision rates for identification of the chem-

ical names and nature is not surprising. For chemical names an extremely

simple regular expression was used: a match for various starts of chemical

names, various ways of separating names (such as hyphens) and a match for

various ends of chemical names. The nature of a compound is the reported

data type that has the least-controlled vocabulary and hence presents more

problems to parse. Although it would be possible to build up larger lists

to match the state, colour and colour-modifiers of a compound that would

increase the recall, an entirely different approach such as entity recognition

would be preferable.

The semantic and syntactic features that caused the majority of the false

negatives were:

• multiple instances of the same data type reported in the same para-

graph

• inability to recognise the end of the reported data for a compound

The first of these would be simple to correct: OSCAR was designed to search

for only one instance of a particular data type in a particular paragraph,

however the inclusion of a recursive descent call would allow it to identify

multiple instances of the same data type. The second is far more difficult

because the chunking of the article into report-paragraphs (see above) is not

sufficiently accurate.

57

General Experimental
γ Precision % Recall % Precision % Recall %
-2 68.5 94.3 85.9 95.3
-5 72.1 92.5 93.8 95.3
-8 75.0 90.6 96.8 95.4
-11 81.0 88.7 98.4 95.3
-14 80.8 79.2 98.2 87.5

Table 2.3: The effect of the γ parameter on the recall and precision rates of
OSCAR2 for chemical names in the general and experimental sections. The
values in bold font are those representing the optimal value chosen [99].

There are two inherent weaknesses to the method of paragraph recogni-

tion used by OSCAR. The first occurs if the author omitted a full stop at

the end of one analytical report section, which means that all the subsequent

ReportParagraphs will be passed over until a full stop followed by optional

whitespace then a newline is encountered. This produces significant num-

bers of false negatives and also leads to any previously un-encountered data

types present in the subsequent paragraphs being reported for the incorrect

compound. The second weakness is that this construction may also match

sections earlier in the experimental section, giving rise to false positives.

2.4 OSCAR2 — the Importance of Chemical

Names

Waudby continued the development of the OSCAR toolkit, focusing on im-

provements to chemical name recognition and maintaining more of the article

structure§. The version Waudby developed produced documents with inline

XML and separated the chemical name recognition from analytical data iden-

tification. The advantage of using inline XML markup is that it allows the

preservation of the original document structure.

A näıve Baysian based on n-grams and a simple grammar (see section 3.1)

were implemented to determine whether a word, or phrase was likely to be

§OSCAR2 is entirely the work of Waudby.

58

a chemical name. Briefly, this involved breaking words up into three or four

letter tokens and determining which tokens occur more in chemicals. For

example, ybd, eth, alk, yne might all be expected to occur more frequently

in chemical names than in general English. The grammar allows the context

of the word to be taken into account. For example, a word is likely to be a

chemical if it is followed by a quantity:

methanol (10cm3)

Single compounds with space-separated chemical names can also be correctly

identified by context. For example, if a word ends in ‘ic’ is it followed by

‘acid’:

periodic acid, periodic table

The first instance of ‘periodic’ is followed by acid and is therefore assumed

to be a chemical name whereas the second is followed by ‘table’ so is not

identified as a chemical name. The system included a variable parameter γ

that could be tuned to adjust the balance between recall and precision. Table

2.3 shows the recall and precision rates for five values of this parameter. A

more complete explanation of the approach can be found in the article by

Townsend et al. [100] and the various approaches this has built on in the

articles by Vasserman [101]. Figure 2.19 shows the workflow for the OSCAR2

toolkit.

2.4.1 The Importance of Connection Tables

Chemical structures form the basis of most organic chemistry; the two di-

mensional representations of molecules (sometimes with an indication of the

three dimensional structure included) are the form which chemists use when

describing a molecule, or a reaction mechanism. The structure of an organic

molecule, whether two or three dimensional, can usually be described by a

connection table (CT). Systematic chemical names are often avoided (until

the molecule is to be included in a formal report). In common use they

are often in abbreviated forms or non-systematic names because systematic

names are often lengthy, difficult to interpret and less memorable (see figure

2.6).

59

Figure 2.19: The OSCAR workflow.

The identification of chemical names is vital because it is often the only

way that the CT of the molecule can be recovered. The CT forms the basis

of most organic chemistry, whether it be in predicting a reaction pathway

or determining the likely appearance of infra-red, HNMR or CNMR spec-

tra. Data of this type is frequently reported to characterise the molecule. It

would be desirable to use all available data reported in a paper to perform

crosschecks and self-validation. Whilst electronic publications provide the

means to encapsulate a compound’s CT in a document, this is most com-

monly achieved by including an MDL molfile [44] or a ChemDraw file [102]

into a Microsoft Word document (which are rendered to the desired form

when the file is viewed). During the publication process the CT is often con-

verted into a picture, with the associated loss of data, leaving only the name

available as a basis from which to recreate the CT. This is also the case with

older articles where there is no electronic form in existence.

There are good commercial chemical name-to-structure converters avail-

able (for example ChemDraw). However, their analysis techniques are not

published but it is believed that the algorithms are rule-based with no machine-

learning capability. It is instructive to consider why a new approach to chem-

60

ical name-to-structure conversion is useful and why a technique incorporating

some machine-learning aspects should be employed.

2.5 OSCAR3 and OPSIN — Parsing Chemi-

cal Names to CTs

It is now common to use programs to generate the systematic name for a

compound. This has resulted in improved compliance to the IUPAC specifi-

cations and greatly increased quality in the reported names. As computers

are used to generate the names it seems sensible also also use them to perform

the reverse translation.

There have been a significant number of attempts to produce automated

methods to convert a chemical name to a CT. The first use of a computerised

grammar analysis process to convert chemical nomenclature to CTs was by

Elliot in 1969 [103]. Before this Garfield produced a system to calculate

a compound’s molecular formula from its name [104]. This algorithm did

not include a complete grammatical description of chemical nomenclature,

but all the basic facets of such a grammar were examined. Kirby et al.

have been active in this area since 1985, when they presented a program

that could convert an IUPAC systematic name to a chemical structure [105,

106, 107, 108, 109, 110]. The approach taken by this group was to create a

formal grammar from the informal IUPAC rules then subsequently to modify

a Simple Left Right parser generator (SLR) to apply to the context-free

grammar. (A full discussion of how such a parser works and can be created

can be found in section 3.1). The program has since been extended to find,

and automatically correct, errors found in chemical names and to parse some

semi-systematic names. However, in their own words, the work only focused

on

certain classes of compounds of industrial importance, including

some cases of semi-systematic and trivial nomenclature.

61

The areas considered were, perhaps understandably, those that are the most

tractable. The work covered much of the hydrocarbon nomenclature and has

since been extended to recognise many acids, alcohols, aldehydes, ketones

and ethers.

Ultimately, a program is envisaged that can identify (in a paper or thesis) a

chemical name, a synthetic route and the analytical data for this compound.

A CT would be created for the title compound, and all chemicals identified in

the synthesis. Automated validation could be achieved by generating various

chemical properties, using either ab initio or semi-empirical methods. These

would be checked against the reported data and any anomalies reported,

this operation could also remove any ambiguities present in the structure

generated. Calls to an outside program for reaction-prediction could also

be made to verify that the synthetic route reported did, in fact, lead to the

compound reported. It is hoped that such a program will prevent problems

such as that described in section 1.3.

The current methodology approaches the problem from both ends. Lex-

emes are currently being developing to tokenise a chemical name. During

the period of this author’s involvement with the project, only sections A to

C of the IUPAC blue book [111] were considered but eventually the entire

book will be encoded. Methods are also being created to store, join and oth-

erwise manipulate molecular fragments. Methods to deal with brackets were

developed, allowing the program to know which bracket level it is process-

ing. Although a formal grammar to describe the syntax of chemical names

must be fully developed, collaboration with Natural Language Processing

groups have led to the consideration of including machine learning routines

in conjunction with this. With such an implementation it would no longer

be necessary to manually update and improve the lexemes, the grammar or

the library of known fragments.

A combination of lexical and syntactic analysis should be able to process

the characters in the chemical name

62

1,2–dichlorohexane

into the following tokens:

1. The locant 1

2. Comma

3. The locant 2

4. Hyphen

5. The multiplier di

6. The halogen chlor

7. omark

8. The chain hex

9. The saturation ane

The blanks separating the characters of these tokens would normally be elim-

inated during preprocessing. Recursive hierarchical syntactic analysis allows

the construction of the parse tree (see section 3.1) shown in figure 2.20. From

this, the CT of the molecule is immediately recoverable.

Chemists often prefer to have the ability to perform graphical as well as

text searching for complex chemical structures and sub-structures mentioned

in scientific literature. To date this has only been possible if the structure has

been rendered searchable by the inclusion of the appropriate CT or SMILES

[112, 113, 114] string to represent the molecule. If a compound, chemical

name or component has only been mentioned in the document as a text

string it has not been possible to search for these using a graphical search

engine.

63

Figure 2.20: The parse tree of the chemical name 1,2–dichlorohexane.

64

Figure 2.21: Two structures that might be referred to as 2-Chloroethyl ben-
zene

The SciBorg project [115] has focused on improving and implementing

much of the functionality mentioned above with Corbett, Copestake et al.

demonstrating proof of concept, or better, implementations of much of the

technology [116, 117, 118]. This has included taking a non-deterministic

approach toward chemical name parsing. 2-Chloroethyl benzene is an am-

biguous name because insufficient locants have been specified. The name

might be used to describe both the compounds in figure 2.21 (which also

shows a grammatically-correct name for each [119]); both structures can be

reconstructed using non-deterministic approaches.

2.6 Conclusions

The work above shows that it is possible for a machine to read and extract

data from the highly-structured analytical data section in the legacy formats

currently used to publish organic chemistry. The extraction can be per-

formed with very high recall and precision rates using (hierarchical) regular

expressions although the process was more difficult than expected. However,

whilst the recall and precision rates are high (and are being improved by im-

plementing new techniques) they are not currently sufficiently high to allow

65

the full automation of the process. Parsing the synthetic methodology also

proved to be far less tractable than expected.

The work has also shown that chemical names cannot be identified re-

liably solely by using regular expressions. However, other methods do al-

low high rates of both recall and precision. The lack of a CT in machine-

understandable form and the inability to reliably produce the correct CT

from the information available has been highlighted as a major problem

which must be addressed — for molecule-based data-driven science to be

possible, it is vital that a CT is available.

Supplementary data provided with articles may include the input files and

results of computational chemistry calculations or the crystal structures de-

termined. These data formats are more structured and, importantly, should

necessarily contain the CT for the molecule (or molecules) in an almost triv-

ially recoverable form. Data in such forms is considered in the subsequent

chapters.

66

Chapter 3

Parsing Program Input —
Compilers

The previous chapter dealt with the extraction of data from the semi-structured

experimental section of chemical papers which did not conform to a formal

grammar. It should however be possible to create a formal grammar for data

produced by, or for, a computer program. Data in such a form should there-

fore lend itself to automated extraction with extremely high rates of both

recall and precision; thus eliminating, or at the least drastically reducing,

the requirement for human intervention.

A compiler is a program that reads a program in one language — the source

language — and translates it into another language — the target language

(figure 3.1). Both the source and target languages should have fully specified

grammars; part of the translation process involves the compiler reporting

any errors in the source program (deviations from the specified grammar).

To avoid having to use proprietary software, only ASCII files are considered

as suitable for use as the source language. In all cases the eventual target

language is CML, although in some cases XML is used as the primary target

language which is then transformed to CML using stylesheets. There follows

a general introduction to compiler theory and how it has been applied to

extract data from input files for computational chemistry programs [120].

67

Figure 3.1: Overview of a compiler.

3.1 Compilers and Classification Techniques

There are two parts to the compilation process: analysis and synthesis. The

analysis breaks the source program up into constituent pieces and may create

an intermediate representation of the data. The synthesis part constructs

the desired target program from the constituent pieces of the intermediate

representation. This is often the most complex part for code compilation. In

contrast, when dealing with chemistry held in an XML form, the synthesis

is almost trivial and involves the application of stylesheets. During analysis

the operations implied by the source program are determined and recorded

in a hierarchical structure called a tree. A specialised kind of tree called a

syntax tree is often used, in which each node represents an operation and

the children of the node represent the arguments of the operation. Syntax

trees are not required for processing computational chemistry but are vital

for less structured chemical data.

A compiler itself is often not sufficient to create an entire target program

because the source program may be stored in separate files, or have include

statements for brevity. A pre-processor usually deals with the task of pulling

together all the relevant pieces of the source program. It was necessary to

implement a pre-processor in some cases, although it was decided that include

statements would not be expanded.

68

3.1.1 The Phases of a Compiler

The traditional view of the phases of a compiler and the way in which they

interact is shown in figure 3.2. This project only required five of these phases:

lexical analysis, syntactic analysis, semantic analysis, symbol-table manager

and the error handler. A symbol-table is a data structure containing a record

for each identifier with fields for the attributes of the identifier, allowing the

rapid recall and modification of data relevant to that record. These tasks are

managed by using a XML infrastructure.

Every phase may encounter or generate errors. All errors must be dealt

with, so that the compilation (transformation) process can proceed, allowing

further errors to be identified although some particular errors would imme-

diately stop the process. The phases which most frequently give rise to the

largest fraction of the errors are syntax and semantic analysis. The lexical

phase can detect errors where the characters remaining in the input do not

form any token of the language.

The analysis of the source program consists of three phases:

1. Linear analysis, in which the stream of characters making up the source

program is read from left-to-right and grouped into tokens that are

sequences of characters having a collective meaning.

2. Hierarchical analysis, in which characters or tokens are grouped hier-

archically into nested collections with collective meaning.

3. Semantic analysis, in which certain checks are performed to ensure that

the components of the program fit together meaningfully.

In a compiler, linear analysis is called lexical analysis or scanning. For the

java assignment

int position = initial + rate * 60;

the lexical analyser would produce the stream of tokens, where each token

represents a logically cohesive set of characters, such as identifier, keyword

69

Figure 3.2: The phases of a compiler.

70

(for example if, while and int), or a punctuation character. The character

sequence forming a token is called the lexeme for the token. In this example

id1, id2 and id3 will be used to represent position, initial and rate respec-

tively, emphasising that the internal representation of an identifier is different

from the lexeme for that identifier. Figure 3.3 shows how this assignment

would be processed by the three phases. The semantic analyser allows the

compiler to know that an integer must be formed by the addition or multi-

plication of two integers. This allows the assignment of id2, id3 and 60 to

type int.

The division between lexical and syntactic parsing is chosen to simplify the

overall analysis task, although the division becomes necessary if the source

language is inherently recursive. Lexical constructs do not require recursion,

while syntactic constructs often do. Context-free grammars are a formal-

isation of the recursive rules that can be used to guide syntactic analysis

(discussed later in this chapter). For example, recursion is not necessary

to recognise a number, but is required to match parentheses in expressions.

For code generation, the semantic analysis phase checks the source program

for syntactic errors and gathers type information for the subsequent code

generation phase.

The Number of Passes

In the compilation of computer code, several phases are usually implemented

in a single pass: where a pass is defined as reading an input file and writing

an output file. It is desirable to keep the number of passes to a minimum,

but whilst this used to be necessity it is now more of a guideline. The lack of

definite reserved-words in chemical literature means that a one-pass compiler

is impossible.

A Simple Compiler

The syntax of a language can be represented using a notation called context-

free grammars or Backus-Naur Form (BNF) [121, 122]; the specification is

shown in appendix C. BNF came about as part of the creation process for

71

Figure 3.3: Assignments produced by the first three phases of a compiler.

72

Figure 3.4: The structure of a compiler incorporating a syntax-directed trans-
lator.

ALGOL. At the first World Computer Congress, which took place in Paris

in 1959, Backus presented a formal description of the international algebraic

language which was later called ALGOL 58 [123]. The formal language he

presented, which would later evolve in to the BNF, was based on Post’s

production system [124].

When such a context-free grammar exists it may be used to guide the

translation of a program; this is called syntax-directed translation. The

structure for such a compiler is shown in figure 3.4.

3.1.2 Context-Free Grammars

A context-free grammar (grammar for short) is a way of specifying the syntax

of a language (or any data). This is most easily illustrated with reference to

a programming language. An if-else statement in Java has the form:

if (expression) statement else statement

In other words, the statement is a concatenation of the keyword if, an

opening parenthesis, an expression, a closing parenthesis, a statement, the

keyword else, and another statement. Using the variables expr and stmt

to represent an expression and a statement respectively this may now be

written

stmt ⇒ if (expr) stmt else stmt

73

A

X Y Z

Figure 3.5: A simple parse tree.

where the arrow should be read ‘may have the form’. Rules of this form are

termed productions. In productions, lexical elements such as the keywords

and the parentheses are called tokens, whilst variables such as expr and stmt

comprise collections of tokens and are called nonterminals.

A context-free grammar has four components:

1. A set of tokens, known as terminal symbols.

2. A set of nonterminals.

3. A set of productions where each production consists of a nonterminal,

called the left side of the production, an arrow, and a sequence of tokens

and/or nonterminals, called the right side of the production.

4. A designation of one of the nonterminals as the start symbol.

3.1.3 Parse Trees

A parse tree pictorially shows how the start symbol of a grammar derives a

string in the language. If nonterminal A has a production

A ⇒ XY Z

then a parse tree may have an interior node labelled A with three children

X, Y and Z from left to right (figure 3.5). Formally, given a context-free

grammar, a parse tree is a tree with the following properties:

74

• the root is labelled by the start symbol

• each leaf is labelled by a token or by ε

• each interior node is labelled by a nonterminal

• if A is the label of an interior node and X1, X2, . . . , Xn are the labels

of the children of that node from left to right, then A ⇒ X1X2. . . Xn

is a production. Here X1, X2, . . . , Xn stand for a symbol that is either

a terminal or a nonterminal. If A ⇒ ε then each node labelled A may

only have a single child labelled ε

A simple example of a parse tree was seen in figure 3.5. The leaves of a

parse tree read from left to right form the yield of the tree. Most parsing

methods fall in to one of two classes, called top-down and bottom-up methods.

These terms refer to the order in which the nodes in the parse tree are

constructed. In the former, construction starts at the root and proceeds

toward the leaves and vice versa for the latter. Top-down parsers are usually

easier to construct by hand and this is the general approach taken for this

project.

Ambiguity

A grammar is said to be ambiguous if it is possible to represent a particular

token string by more than one parse tree. Since this would generally mean

that the token string’s meaning can be interpreted in more than one way it

is usual to attempt to remove all ambiguity in a grammar. It is possible to

use ambiguous grammars, but these require additional rules to resolve the

ambiguities.

3.1.4 Predictive Parsers

Recursive-descent parsing is a top-down method of syntax analysis in which

a set of recursive procedures are executed to process the input. Predictive

parsing is a special case of this where the lookahead symbol unambiguously

75

determines the procedure selected for each nonterminal. The lookahead sym-

bol is the next token in the token stream. A predictive parser consists of a

procedure for every nonterminal:

1. Each procedure decides which production to use by looking at the looka-

head symbol; the production, with right side α, is used if lookahead

symbol is FIRST(α). If there is a conflict between two right hand sides

for any lookahead symbol then the method cannot be used. A produc-

tion with ε on the right hand side is used if the lookahead symbol is

not the FIRST set for any other right hand side.

2. The procedure uses a production by mimicking the right hand side.

A nonterminal calls the procedure for that nonterminal, and a token

matching the lookahead symbol results in the next input token being

read. If at some point the token in the production does not match the

lookahead symbol, an error is declared.

FIRST is defined such that, if a nonterminal α that has the production

α ⇒ βχδ . . . ζ then FIRST(α) is β. It is impossible to construct a predictive

parser for chemical documents owing to the number of nonterminals that

share the same FIRST symbol (see section 3.3).

3.1.5 Lexical analysis

A lexical analyser reads and converts the input into a stream of tokens to be

analysed by the parser. From the definition of a grammar: a sentence of a

language consists of strings of tokens. A sequence of input characters that

comprises a single token is called a lexeme. Examples of possible lexemes for

chemical names are seen later in this chapter. A lexical analyser insulates

a parser from the lexeme representation of tokens. For instance, instead

of passing the actual value of a number in the source to the parser, the

lexical analyser would identify the number and pass a token indicating that

a number was present to the parser, with a pointer to the actual value (see

figure 3.6). It may also remove or normalise whitespace and comments.

76

Figure 3.6: An example of how a lexical analyser passes tokens to the parser.

Figure 3.7: The lexical analyser and parser acting as a producer-consumer
pair.

The interaction of a lexical analyser, the input and the parser are shown

in figure 3.7. The analyser reads characters from the input and determines

what token will represent them. In some cases it is necessary to lookahead

several characters to determine what the current token should be. Once

these characters have been read they must be pushed back on to the input

in case they form the start of a new token. The lexical analyser and parser

form a producer-consumer pair. The analyser produces tokens and the parser

consumes them.

3.1.6 Regular Expressions

Lexemes are usually determined by matching against a regular expression.

Although regular expressions have previously been discussed informally, a

77

more rigorous definition follows.

A regular expression is built up from simpler regular expressions using a

set of defining rules. Each regular expression r denotes a language ÃL(r). The

defining rules specify how ÃL(r) is formed by combining, in various ways, the

languages denoted by the sub-expressions of r. The following rules show the

definition of the languages denoted by the regular expression being defined:

1. ε is a regular expression that denotes ε, that is, the set containing the

empty string.

2. If a symbol a is a symbol in Σ, then a is a regular expression that

denotes a, i.e., the set containing the string a. Although the same

notation is used for all three, technically the regular expression a is

different from the string a and the symbol a. It should be clear from

the context whether a is being treated as a regular expression, string

or symbol.

3. Suppose r and s are regular expressions denoting the languages L(r)

and L(s). Then:

(a) r|s is a regular expression denoting L(r)
⋃

L(s).

(b) rs is a regular expression denoting L(r)L(s).

(c) r* is a regular expression denoting (L(r))*.

(d) (r) is a regular expression denoting L(r). This rule states that

extra parentheses may be placed around regular expressions if

desired.

A language denoted by a regular expression is said to be a regular set. The

specification of regular expression is an example of a recursive definition.

Rules (1) and (2) form the basis of the definition and rule (3) provides the

inductive step. To avoid unnecessary parentheses in regular expressions, the

following conventions have been adopted.

1. The unary operator * has the highest precedence

78

2. Concatenation has the second highest precedence

3. The or operator | has the lowest priority

All the operators are left associative. Under these conventions, (a)|((b)*(c))

is equivalent to a|b*c. Both expressions denote the set of strings that are

either a single a or zero or more b’s followed by one c.

Some languages cannot be described by any regular expression. One exam-

ple is the set of all strings of balanced parentheses (in fact regular expressions

cannot be used to describe any arbitrary set of balanced or nested constructs

but a context-free grammar can). Regular expressions can only be used to

denote a fixed or arbitrary number of repetitions of a given construct. Thus

Hollerith strings of the form n Ha1a2 ... an from early versions of For-

tran cannot be described, because the number of characters following H must

match the decimal number n before H. Matching strings of this type is possi-

ble using a library such as Perl Compatible Regular Expressions which allow

both look ahead and recursion functionality. However such regular expres-

sions no longer correspond to the original mathematical definition of regular

expressions [125].

3.1.7 Non-deterministic parsing

Context-free grammars and regular expressions are deterministic methods

of identifying data, i.e. the behaviour of the system is described completely

without probabilities (other than zero or one). Non-deterministic methods

(such as Näıve Bayesian), which are largely used for classification, are dis-

cussed below.

Hidden Markov Model

Hidden Markov Models (HMMs) are often used in biochemistry to predict

which amino acid residue is most likely to occur next in a chain [126, 127].

The technique uses a training set that has been manually marked up to deter-

mine initial transition probabilities, which become modified as the program

sees more examples.

79

Formally, the HMM is a finite set of states, each of which is associated with

a (generally multidimensional) probability distribution. Transitions between

states are governed by a set of probabilities called transition probabilities.

In a particular state an outcome or observation can be generated, according

to the associated probability distribution. Only the outcome, not the state,

is visible to an external observer; hence the name Hidden Markov Model.

The theory is based on three assumptions:

1. That the next state is dependent only upon the current state, and

the resulting model becomes actually a first order HMM. However,

generally the next state may depend on past k states and it is possible

to obtain such a model, called an kth order HMM. A higher order HMM

will have a higher complexity. Even though the first order HMMs are

the most common, some attempts have been made to use the higher

order HMMs (the Markov assumption).

2. That state transition probabilities are independent of the actual time

at which the transitions takes place (the stationary assumption).

3. That the current output (observation) is statistically independent of the

previous outputs (observations). Unlike the other two, this assumption

has a very limited validity. In some cases this assumption may not be

fair enough and therefore becomes a severe weakness of the HMMs.

3.1.8 Bayesian Classification

In the Bayesian approach to statistical inference, probability is a model of

scientific knowledge [128]. One of the strengths of the Bayesian method is

that it allows expert knowledge, in the form of a prior probability distribu-

tion, to be formally incorporated into the statistical analysis. The Bayesian

paradigm views both the data and the underlying parameters that generated

the data as random variables — random because they are unknown [129].

80

A Bayesian classifier is commonly employed in email filters to separate

spam from non-spam. The expert knowledge is incorporated by producing a

list of the features that are, in the experts’ opinion, most likely to indicate

that an email is spam. The list is likely to contain words such as Via-

gra and porn. These would be described as information-rich words because

their presence is highly indicative that the email can be classified as spam.

Information-poor words might be dear or cost which are likely to appear

with approximately equal frequency in emails of both type. Once the initial

list of features has been created it may be augmented by the classification

program if it identifies other information-rich words.

Natural Language Processing

The goal of Natural Language Processing (NLP) is to allow machines to

analyse, understand and generate languages that humans use naturally [130].

This is a hard task. Human language contains much ambiguity and sentence

construction often makes comprehension difficult. The sentences below are

both human-understandable but present problems to machines:

I can can a can.

A well-dressed man was speaking; he had a foreign accent.

The first sentence contains the word can present in three different forms: a

modal modifier of a verb, as a verb and as a noun. Syntax analysis would

group the first two occurrences as a modal verb. The second sentence contains

anaphora; this is coreference of one expression with its antecedent. Anaphora

is common because it avoids repetition of words, making sentences more

elegant. Part-of-speech analysis and tagging allows many of the common

linguistic problems to be resolved.

Shallow parsing is the process of identifying syntactic phrases (such as

noun phrases) in natural language sentences, for instance, Chomsky’s system

of transformational grammar. As outlined in Syntactic Structures [131], it

comprised three sections, or components; the phrase-structure component,

81

Figure 3.8: The parse tree generated by the Chomskian analysis of the phrase
‘The man will hit the ball’.

82

the transformational component, and the morphophonemic component. In

the following system of rules, S stands for Sentence, NP for Noun Phrase, VP

for Verb Phrase, Det for Determiner, Aux for Auxiliary (verb), N for Noun,

and V for Verb stem.

1. S → NP + VP

2. VP → Verb + NP

3. NP → Det + N

4. Verb → Aux + V

5. Det → the, a, . . .

6. N → man, ball, . . .

7. Aux → will, can, . . .

8. V → hit, see, . . .

This is a simple phrase-structure grammar. It generates and thereby defines

as grammatical many sentences and it assigns to each sentence that it gen-

erates a structural description. Figure 3.8 shows the parse tree generated by

Chomskian analysis of the phrase ‘The man will hit the ball’.

3.2 JFlex and CUP

Several tools exist to create lexical analysers from special purpose notation

based on regular expressions. This project used JFlex [132], which is a Java

implementation of the C program flex [133, 134]. Figure 3.9 shows a typical

example of this process. A specification of a lexical analyser is created in the

JFlex language, this is run through the JFlex compiler to create the Java

code. This code consists of a tabular representation of a transition diagram

constructed from the regular expressions specified, together with a standard

routine to recognise lexemes. The Java code is then compiled using the javac

command. The resultant class is the lexical analyser that transforms an input

stream into a sequence of tokens.

83

Figure 3.9: Creating a lexical analyser with JFlex.

User code

- Comments and import statements
- Anything in here is placed verbatim in Lex.java
%%
Options and declarations

- Directives and macros
%%
Lexical rules

- Regular expressions and Java actions
- Rules section

Figure 3.10: The specifications of a JFlex file.

84

%%

%class CommentRemover
%standalone
%unicode
LineTerminator = \r|\n|\r\n
Comment = ";".*{LineTerminator}
AnythingElse = [^;]+
%%
{Comment} { ; /*don’t print these out */ }
{LineTerminator} { System.out.println(); }
{AnythingElse} { System.out.println(yytext()); }
<<EOF>> { return 0; }

Figure 3.11: The comment remover pre-processor in JFlex. The token
<<EOF>> is pre-defined and represents the end of the file. yytext() com-
mands the program to replace this phrase with whatever was matched by
the token.

Figure 3.10 shows the JFlex file specification (the BNF of the lexical rules

is shown in appendix D). If the %standalone directive is present the Java

code in the lexical rules usually directly creates the target language otherwise

it returns a token for the parser generator to consume. An example of a

standalone scanner is shown in figure 3.11, where the target language is

simply the original file with the comments removed.

When consuming its input, the scanner determines the regular expression

that matches the longest portion of the input (longest match rule). If there

is more than one regular expression that matches the longest portion of

input (i.e. they all match the same input), the generated scanner chooses

the expression that appears first in the specification. After determining the

active regular expression, the associated action is executed. If there is no

matching regular expression, the scanner terminates the program with an

error message.

The scanner is used to determine that only permissible lexemes are present

in the input. However the meaning of each lexeme (and how it should be

processed) is not always apparent without context; for instance, a token rep-

resenting a number might represent the atomic mass, a coordinate, the year

or the amount of memory used. Therefore a syntactic analyser must be in-

troduced. A Look-Ahead Leftmost Reduction (LALR) parser is a specialised

85

PairBlock ::= PAIR:t1 BLANKLINES PairLineBlock

 ;

PairLineBlock ::= PairLine
 | PairLineBlock PairLine
 ;

PairLine ::= PairLine1
 | LongPairLine1
 | PairLine2
 ;

PairLine1 ::= SPACE INT:i1 SPACE INT:i2 SPACE INT:i3 SPACE FLOAT:f1 SPACE
FLOAT:f2 EOL

{: System.out.println("<pair atom1=’"+i1+"’ atom2=’"+i2+"’ function=’"+i3+"’
param1=’"+f1+’"’ param2=’"+f2+"’ />");
:}
 ;

LongPairLine1 ::= SPACE INT:i1 SPACE INT:i2 SPACE INT:i3 SPACE FLOAT:f1
SPACE FLOAT:f2 SPACE FLOAT:f3 SPACE FLOAT:f4 EOL

{: System.out.println("<longpair atom1=’"+i1+"’ atom2=’"+i2+"’

Figure 3.12: The productions for a [pair] block.

terminal SPACE, EOL;

terminal String INT, PAIR, FLOAT;

non terminal PairBlock, PairLineBlock, PairLine, PairLine1, LongPairLine1, PairLine2;

Figure 3.13: Definitions of terminal and non terminal tokens.

form of a LR parse that can deal with more context-free grammars than Sim-

ple LR (SLR) parsers but fewer than LR(1) parsers. Constructor of Useful

Parsers (CUP) is a system for generating LALR parsers from simple speci-

fications [135]. CUP is a Java implementation of the widely used program

YACC and is used to specify a grammar in BNF and how the various tokens

should be processed [136]. Figures 3.12 and 3.13 show typical terminal and

non-terminal token definitions and how they are combined to create a sample

grammar.

3.3 Parsing Program Input

The input file for a computational chemistry program must be machine read-

able and machine parsable (hence highly structured and conforming to a

86

#include "ffgmx.itp"

#include "spc.itp"

 [moleculetype]

 ;name nrexcl

DRG 5

 [atoms]

 ; nr type resnr resid atom cgnr charge

 1 O 1 DRG O8 1 0.000

 �46

 8 H 1 DRG HAB 1 0.280

 [bonds]

 ;ai aj fu c0 c1

 1 2 1 0.123 502080.0 0.123 502080.0 ; O8 C3

 �46

 7 8 1 0.100 374468.0 0.100 374468.0 ; N4 HAB

 [pairs]

 ;ai aj fu c0 c1

 1 4 1 ; O8 C7

 �46

 5 8 1 ; HA N6

 [angles]

 ;ai aj ak fu c0 c1

 1 2 3 1 120.0 418.4 120.0 418.4 ; O8 C3 N2

 �46

 4 7 8 1 120.0 418.4 120.0 418.4 ; C5 N4 HAB

 [dihedrals]

 ;ai aj ak al fu c0 c1 m c0 c1 m

 2 5 3 1 2 0.0 1673.6 0 0.0 1673.6 0 ; IDI C3 N4 N2 O8

 �46

 7 6 4 8 2 0.0 1673.6 0 0.0 1673.6 0 ; IDI N6 C5 N4 C3

 [system]

PRODRG in water

 [molecules]

 DRG 2

 SOL 2747

Figure 3.14: A GROMACS topology file.

grammar). Any deviation from the rules governing input format can be in-

terpreted as errors.

GROMACS [137] (Groningen Machine for Chemical Simulations) is an

Open Source engine to perform molecular dynamics simulations and energy

minimisations and is often used to model the behaviour of small molecules in

a solvent. The input file (topology file) is in ASCII format and well defined

in the documentation; this presented an ideal opportunity to create and test

a simple parser, which could be adapted to deal with more complex and less

87

well defined source. The full definition of the GROMACS topology file can

be found in appendix E, and an example of a topology file is shown in figure

3.14.

A comment in a topology file is surrounded by a semicolon and a newline

character. Comments are included for human-readability and are ignored by

GROMACS. A pre-processor was created to remove comments before passing

the results to the parser. The pre-processor is a lexer, that is: it forms tokens

from the input character stream and specifies what should be done when a

particular token is produced. The lexer was written in JFlex, the complete

lexer code is shown in figure 3.11.

The GROMACS topology file shown in figure 3.14 was passed through the

lexer. The lines of the resultant file are ambiguous because, for example, a

regular expression to match a line of numeric [bonds] data may also match

a line of numeric [pairs] data. It is thus necessary to determine the syntax

of the line before it can be parsed. Finite-state automata were investigated

as a possible way to incorporate this functionality in the lexer. However,

because GROMACS permits retrospective definitions (which may be present

anywhere in the document) this approach was impossible.

The tokenisation and syntactic analysis processes were performed by JFlex

and CUP respectively. Figure 3.12 shows the production for the data in the

[pair] block and how the captured data should be held in an XML form.

The terminal and nonterminal tokens are defined in figure 3.13.

This approach allowed correctly-structured GROMACS input files to be

parsed — no attempt was made to parse incorrectly-structured files. An

incorrectly-structured file may be parsable but the resulting output is likely

to be nonsensical because the structure is used to determine meaning. If

GROMACS is presented with an incorrectly-structured file it will not parse

it, but will flag up an error.

88

3.3.1 Parsing Program Output

The parser-like approach worked for GROMACS input files. 100% of the

correctly-structured files tested were correctly converted to CML and 100%

of the incorrectly-structured files generated the appropriate error message.

Although it is important to be able to parse input files, there is relatively

little data gained when compared to that available in output files.

Program output is generated by a machine, and thus consists of a finite

vocabulary. Typically this has a well-defined structure but error messages

may appear at any point making perfect parsing almost impossible. The

output is designed to be human-readable and understandable but not neces-

sarily machine-understandable. There is a large quantity of data in this form

(with the possibility of there being far more). If the data can be parsed into

a machine-understandable form, it can relieve much of the more mundane

analysis thereby making it much more attractive for re-use.

The success of the parser-like approach to extract data from input files

led to the creation of an adapted version to interpret the less-structured

MOPAC output (see figure 1.13). The parser-like approach was attractive

because it supports the or operator (but not the ampersand operator). This

would permit each section of the output to be combined with correspond-

ing error messages connected by the or operator, thereby allowing a simple

program construction with an extremely low failure rate. The subsequent

parser worked well for toy documents, but an exponential combinatorial ex-

plosion of the number of states was encountered when applied to actual doc-

uments, which prevented the parser from completing the translation. Figure

3.15 shows the largest section of a document that the parser was capable of

matching using this approach. The parser-like approach was abandoned as

a method to parse the less-structured output documents and other methods

examined. This culminated in the creation of JUMBOMarker which forms

the basis of the following chapter.

89

 ** MOPAC2002 (c) Fujitsu **

 PM3 CALCULATION RESULTS

 * MOPAC2002 Version 1.01 CALC.’D. Mon May 12 15:10:14 2003

 * PM3 - THE PM3 HAMILTONIAN TO BE USED

 *

 *

 *

 * CHARGE ON SYSTEM = 0

 *

 *

 *

 * T= - A TIME OF 86400.0 SECONDS REQUESTED

 * DUMP=N - RESTART FILE WRITTEN EVERY 7200.000 SECONDS

 PM3 CHARGE=0

Figure 3.15: The largest section of the MOPAC output that was matched
using JFlex.

90

Chapter 4

Parsing Program Output —
JUMBOMarker

Current computational chemistry programs use input and output formats

designed to be understood by a human; these files are usually ASCII text.

Figure 4.1 shows various input and output schemes for programs and the

various designs are discussed below.

Design 1 is the ideal case; XML/CML is used to hold all the data (both

input and output). This allows all concepts to be fully marked up according

to prearranged dictionaries. Such dictionaries are currently being created

and tested by, amongst others, the Murray-Rust group [139]. Currently,

this design is not usual practice, although if a program is Open Source, it

may be achievable [140, 141, 142]. Holding both input and output data in

XML/CML is advantageous because it allows multiple programs to be linked

together simply (see figure 4.2). However since XML/CML is not human-

friendly, stylesheets are used to convert to a preferred display format. If

this were to be HTML-based (with SVG graphs incorporated) all the data

could be easily hyperlinked to the appropriate dictionary. Unfortunately

most computational chemistry programs are still written in Fortran which

has little XML support, thus this design requires a lot of work.

Design 2 is possible if the source code is accessible, but is simpler than

design 1 because it does not require XML support in the program code. Spe-

91

Figure 4.1: Program designs, with different input and output methods.

92

Figure 4.2: Programs can be linked together using XML/CML ‘glue’.

cific parsers (usually stylesheets) must be constructed for each code requiring

the creation of input. As XML is ASCII, the original out statements can be

replaced with a new statement to output the data in XML format. The XML

is thus never held as a object in memory, merely written out line by line to

the output file.

Design 3 does not require access to the source code. Effectively the orig-

inal program is wrapped by XML-aware parsers, the input parsers being

identical to that in design 2. However the output parser must convert text to

XML/CML. Whilst this approach will work for any code, it may require more

user intervention (for instance moving the files between the program and the

parsers). This design is more fragile that the others because any changes to

input and output format of the code requires the creation of a new parser.

The text to XML parser created for this process is JUMBOMarker.

JUMBOMarker provides the user with a way to convert computational

chemistry output into XML and subsequently to convert this into CML or

93

<!ELEMENT template (moduleGroup | primitiveGroup)*>
<!ATTLIST template

default CDATA #IMPLIED

>
<!ELEMENT moduleGroup (moduleGroup | primitiveGroup)*>
<!ATTLIST moduleGroup

id CDATA #IMPLIED

name CDATA #IMPLIED

ref CDATA #IMPLIED

maxOccurs CDATA #IMPLIED

minOccurs CDATA #IMPLIED

splitBefore CDATA #IMPLIED

>
<!ELEMENT primitiveGroup (primitive*)>
<!ATTLIST primitiveGroup

id CDATA #IMPLIED

name CDATA #IMPLIED

ref CDATA #IMPLIED

maxOccurs CDATA #IMPLIED

minOccurs CDATA #IMPLIED

>
<!ELEMENT primitive ANY>
<!ATTLIST primitive

id CDATA #IMPLIED

ref CDATA #IMPLIED

maxOccurs CDATA #IMPLIED

minOccurs CDATA #IMPLIED

parent CDATA #IMPLIED

element CDATA #IMPLIED

attributes CDATA #IMPLIED

regexp CDATA #IMPLIED

>

Figure 4.3: The DTD for JUMBOMarker.

HTML tables for human-friendly display. The process involves the use of

a set of templates (consisting of groups of regular expressions) to identify

various sections of the output, and processing instructions which specify how

to represent the extracted data in XML. The application of stylesheets allows

the user to transform the data to other formats for display.

4.1 Design of JUMBOMarker

JUMBOMarker is an XML-based language supporting structured regular

expressions for parsing semi-structured documents. The regular expression

to match a single line is enclosed in a primitive element. The DTD for

JUMBOMarker is shown in figure 4.3. Figures 1.13 and 4.4 show extracts

from MOPAC and GAMESS output files; there is a lot of implicit structure

in the documents and the components are well labelled (an expert human

94

Figure 4.4: A section of a GAMESS output file.

95

MOLECULAR POINT GROUP : C2

MOLECULAR POINT GROUP : D3h

Figure 4.5: The point group of two different molecules as reported by
MOPAC.

practitioner could understand what all the numbers mean). Comparing mul-

tiple output files from the same program allows the identification of parts of

the output as boilerplate∗ which does not vary between documents. Figure

4.5 shows the point group reported by MOPAC for two different molecules;

from this it is determined that the string:

MOLECULAR POINT GROUP :

is boilerplate. The template to extract the point group is shown in figure

4.6. The extraction is a two stage process. Firstly the document is split

into chunks; in this case, the point group (which is captured) and everything

else (which is discarded). The more boilerplate present, especially where

these provide well defined start and end points for each section, the easier

the chunking process is. Once the chunk has been identified, whatever is

matched within the capture group is available for JUMBOMarker to process.

The data in the first capturing group is then recalled using {$1}, the second

{$2} and so on. When run on the text in figure 4.5, this would produce:

<cml>

<job>

<scalar dictRef=‘cml:pointgroup’>C2</scalar>

</job>

<job>

<scalar dictRef=‘cml:pointgroup’>D3h</scalar>

</job>

</cml>

∗Boilerplate text consists of standard phrases that may be combined or recalled to
create new documents; it is commonly used in contracts or other agreements detailing
terms and conditions.

96

<template default="job">
<cml>

<moduleGroup name="job" id="job" maxOccurs="999999">
<job>

<primitiveGroup name="pointgroup">
<primitive name="pointgroup.p" regexp=" MOLECULAR POINT GROUP :\s+(.*\S)">

<scalar dictRef="cml:pointgroup">{$1}</scalar>
</primitive>

</primitiveGroup>
</job>
</moduleGroup>

</cml>
</template>

Figure 4.6: The template to extract and markup the point group from
MOPAC output.

CARTESIAN COORDINATES

NO. ATOM X Y Z

1 O 0.00210000 -0.00410000 0.00200000

2 O -0.06910000 5.24140000 0.03230000

.

.

.

14 H -3.16080000 1.41050000 0.94380000

15 H -3.18530000 1.42060000 -0.83600000

Figure 4.7: Section of MOPAC output: cartesian coordinates.

Unforeseen character strings present in the output, such as error messages,

usually prevent regular expressions from matching. The grouping of regular

expressions into templates dictates that if one does not match then the entire

group fails to match. Further processing is dependent on whether or not

the template is mandatory. If the template is mandatory (minOccurs ≥ 1)

the parser produces an error message, discards all the data for the job and

moves on to subsequent jobs. In other words any job containing unexpected

data is lost. However, if the template is optional (minOccurs = 0) the parser

attempts to match the next template against the output. This only results in

loss of the data associated with the section in which the mismatch occurred.

The removal of the block structure might be considered as a way to avoid

discarding mismatched jobs. In such a system, if an unexpected message were

encountered, the parser would jump the line containing the message and then

97

NET ATOMIC CHARGES AND DIPOLE CONTRIBUTIONS

ATOM NO. TYPE CHARGE No. of ELECS. s-Pop p-Pop

1 O -0.278945 6.2789 1.86320 4.41574

2 O -0.282193 6.2822 1.86399 4.41820

.

.

.

14 H 0.055649 0.9444 0.94435

15 H 0.055699 0.9443 0.94430

Figure 4.8: Section of MOPAC output: net atomic charges and dipole con-
tributions.

continue trying to match the current regular expression. However, although

MOPAC output contains many stock-phrases, an unambiguous individual

line recognition technique is not possible. For instance, consider the two

types of data shown in figures 4.7 and 4.8; a regular expression to match a

numeric line of the CARTESIAN COORDINATES would have the following form:

\s+DIGIT+\s+CHEM ELEMENT\s+FLOAT\s+FLOAT\s+FLOAT

where:

CHEM ELEMENT = (H|He|Li|Be|...|Uuo)
DIGIT = [0-9]

FLOAT = (\+|-)?DIGIT+\.DIGIT+

This regular expression would also match numeric lines in the NET ATOMIC

CHARGES AND DIPOLE CONTRIBUTIONS block, if the element in question has

only s electrons. The only way of removing the ambiguity between the two

lines is by context. Context is primarily provided by textual headings and po-

sition in the document. The only way to determine context in such documents

is by chunking, hence the block structure of JUMBOMarker is necessary.

4.2 JUMBOMarker: Single-Pass, Single-Parse

The original design of JUMBOMarker consisted of a single-pass, single-parse

parser; this means that the input document is only read once (single-pass)

and that the data is extracted in a single process (single-parse). This design

98

Figure 4.9: For single-pass, single-parse parsing JUMBOMarker is an over-
arching program that determines what output should be created, all the
temporary files being held in memory.

(shown in figure 4.9) resulted in an overly large, complex and extremely

fragile system. Much of the complexity was a result of the need to control

which routine should be run as a result of the presence or absence of particular

matched groups in the output document (held in memory) before the final

files are created. Because the templates to parse each computational code

differ, specific methods are required to control the output for each. Therefore,

to adapt JUMBOMarker to parse the output from a different computational

chemistry program required editing the source code and effectively creating

a new program.

The single-pass, single-parse approach yielded ca. 95% correct parsing.

All the incorrectly-parsed documents resulted from the presence of unex-

pected strings in the output. To improve and simplify the parsing process,

a two-pass, two-parse parser was introduced. This had the added benefit of

separating the various components of the program. The separation on the

components resulted in a more robust program and greatly simplified the

process of extending JUMBOMarker to parse other program output.

99

4.3 JUMBOMarker: Two-Pass, Two-Parse

In the two-pass, two-parse approach, JUMBOMarker is only used as a parser.

In effect this implementation uses two single-pass, single-parse parsers which

are controlled by an external program (figure 4.10). The first of these parsers

is used to determine whether or not the job has failed. If the job has failed,

the second parser is not used. However, if the job has run successfully, the

control program runs the second parser to extract the data. Although this

description refers to two separate parsers, they are in actuality the same

parser (JUMBOMarker) using different templates.

The first parser runs JUMBOMarker over the output log file with the

failure template. The failure template serves two purposes, to determine that

the output log file is complete and to check that there are no error or fail

messages in the log file. Each of the primitiveGroups have the minOccurs

attribute set to 0 and maxOccurs set to 1. Thus an XML file is always

produced — even if it only contains an empty root element. A stylesheet is

then run over the XML files produced to determine if the job is complete and

contained no error messages. If this is the case, the output log file is suitable

for the further parsing. If it is not, a further file (fail.xml) containing the

failure reason is created.

There are two sources of failure; incomplete output files and programmatic

errors. If the failure reason is that the output file is incomplete then the job

can simply be resubmitted for calculation. Jobs which cause programmatic

errors are analysed and the appropriate refinements are made to the protocol

(see chapter 7). The list below shows the sections present in a GAMESS

failure template:

• gamess-begun

• too-many-steps

• wrong-charge-and-multiplicity

100

Figure 4.10: JUMBOMarker is only used to parse the document, each step
is controlled by external programs or scripts. The second parse is dependent
on the results of the first.

101

• scf-not-converged

• too-little-time-to-do-another-point

• atoms-too-close

• general-error

• general-failure

• gamess-terminated

• error-termination

The presence of both the gamess-begun and gamess-terminated sections

indicate that the entire document is likely to be complete. If any of the

other sections are also present this indicates that the job has failed for an

identifiable programmatic reason. If there is no failure, the control program

then applies the second parser to extract the data.

The introduction of the two-pass, two-parse JUMBOMarker greatly sim-

plified the detection of errors in the log files and hence the parsing process.

Whilst this system was sufficient for the extraction of the required data from

MOPAC output, it was incapable of fully parsing a GAMESS output file

because of the repeating groups present in these files. To address this issue

a multi-pass, multi-parse approach was adopted.

4.4 JUMBOMarker: Multi-Pass, Multi-Parse

The limitations of the two-pass, two-parse approach are those of ordering

and choice. JUMBOMarker can parse the following document structure:

A* B? C+

where A, B and C are all sections of the document. However, it does not

support:

(A | B) C (D & E) F

102

where D, E and F are all sections of the document and the ampersand means

at least one of each but in any order. It is in general unnecessary for the

ampersand connector to be supported to parse output files and the ‘or’ con-

nector (whilst useful) is not vital provided that the type of output is known.

For example, different (though largely very similar) templates can be created

to parse the output from different run types.

By using optional repeating groups JUMBOMarker can parse documents

with the structures:

A B A B A B A

A A A B B B A

B B A A A B B B A

where A and B represent primitives within a primitiveGroup (with maxOccurs

> 1). However, there cannot be any unparsed data between A and B. Thus

documents of the form:

A C B A C B

where C represents a section of the document for which no template exists

cannot be parsed. All quantifiers in JUMBOMarker are greedy, that is, they

match as much as they possibly can; thus there is no way of ‘skipping’ over a

section because a general template to match an unspecified number of lines

(<primitive regexp=‘.*’ minOccurs=‘0’ maxOccurs=‘unbounded’ />)

would continue to match to the end of the document and B would never

match.

The introduction of multi-parse parsing eliminates this problem. Figure

4.11 shows the multi-parse process. The first parse through the document

A C B A C B

would markup the A sections producing

~A ~A

103

Figure 4.11: The out.txt will only be parsed if it has already passed the failure
test. In multi-pass multi-parse parsing JUMBOMarker traverses the input
file multiple times, each time producing a different file — this is necessary
for overlapping repeating groups.

104

(where ~A represents the XML markup of section A). The second parse would

mark up the B sections producing

~B ~B

These sections would then be merged using stylesheets to produce

~A ~B ~A ~B

This version of JUMBOMarker implements the same initial single-pass, single-

parse parser as that in the two-pass, two-parse version. However, if the job

has not failed the extraction of the data is no longer performed in a single-

process but by multiple parsers, the results of which are then combined to

give all the extracted data.

The multi-pass, multi-parse approach took an average of five seconds to

check that a file had not failed, extract the data and coordinates and extract

the times reported into CML — this figure includes the initial loading time

for the program and all the reading and writing to disk that is necessary.

The parsing was performed on a Sony VAIO laptop computer; Intel Pentium

4 2.8 GHz cpu with 512 Mb of RAM.

4.5 Conclusions

The current multi-pass, multi-parse version of JUMBOMarker achieves greater

than 99.9% correct parsing of all files with no human curation. The files which

are not correctly parsed are simply not parsable without a complete rewrite of

the underlying code and might still require human input. The main problem

remaining is that of encoding particular characters in the XML representa-

tion. This is a general issue for any XML based system [143]. Fortunately,

this problem occurs only rarely — only one instance was found during the

course of this work. The extremely low error rate of JUMBOMarker allows it

to be incorporated into automated processes thereby reducing the amount of

work to be done by humans. The use of JUMBOMarker as part of a workflow

to parse program output for analysis forms an integral part of the following

chapters.

105

Although very little human intervention is required once JUMBOMarker

has been set up, the creation of the templates still requires a large amount

of user input and it is desirable to reduce this. Methods to automatically

generate templates, or parts of templates which could be fleshed out by the

user, were examined (using HMMs and extended natural language parsing

techniques). However, whilst such techniques could provide a rough outline

of the required template a large amount of debugging was required before they

were usable. In fact, because the user was not involved in the initial creation

of the templates, it was often found that more time was required to work out

what was required than if these methods were not employed. In general, it

proved simpler and faster to create the templates by hand. Collaborations

with Martin Braendle [144], René Kanters [145] and Miguel Howard [146]

have led to the creation of templates for GAUSSIAN03 [147] output and the

implementation of the JUMBOMarker approach to parse user-defined extra

data for programs such as Jmol.

106

Chapter 5

High-Throughput Computing

High-Throughput (HT) computing involves allowing users to run large num-

bers of independent jobs simultaneously over long periods of time. Con-

versely, High-Performance computing is aimed at provided large amounts of

computing power for relatively short periods of time. HT computing is par-

ticularly applicable to the process of optimising molecular geometries — the

same algorithm is applied repeatedly to different molecules independently.

A typical computer is used very inefficiently; it is often idle for a very large

percentage (>80%) of its available cycles. Various groups have attempted to

to make use of these idle cycles — such as the Berkeley students behind

the SETI@home [148] project and CANCER@HOME [149]. However, these

schemes have all involved users downloading a purpose-built program which

runs whilst the computer would otherwise be idle. These systems only allow a

specific program to be run. Therefore a group at the University of Wisconsin-

Madison developed Condor; once installed on a machine this allows many

(any) programs to be run whilst the machine would otherwise be idle [150].

5.1 Condor

The idea behind Condor is simple; it matches any computational jobs that

users have with spare power in other owners’ computers. Computer owners

do not have to modify their programs to use Condor, they just have to agree

to become part of a Condor network. This network is a group of computers

107

connected in such a way that messages and data can pass between them.

Condor remains in the background of the network, on a computer called the

central manager — which can be any computer in the network — where

it searches for inactive computers. When such a machine is found, Condor

claims it and adds it to the list of available nodes. By default, a physical

user has higher priority than Condor so when the owner resumes using the

computer, Condor stops any currently running programs and removes the

computer from the available nodes list.

In practice Condor is more complicated. Every computer in the pool must

continually run parts of the Condor software that track activity on both the

central manager and the local system. To do this, the computer must be

capable of multi-tasking, or running more than one piece of software simul-

taneously. The overall effect is that by using Condor previously unusable

computing resources and time become available for free.

Condor implements an internal scheduling system so that large jobs do

not drain the pool of cycles, this is based on the priority Up-Down algorithm

developed by Livny et al. [151]

This system makes it possible for scientists who are running time-

consuming research to coexist with people running shorter jobs.

The priority that the system assigns to a scientist’s project de-

creases as the number of cycles the scientist uses increases. [152]

The Unilever Centre for Molecular Science Informatics (UCC) allowed

Zhang of the Murray-Rust group to establish a Condor pool on 24 teaching

machines in 2002. This provided approximately three months of uninter-

rupted run time over the summer vacation (6 cpu years), effectively using

the Condor system as a scheduler. During term (when interruptions may oc-

cur as physical users claim the machines) this reverted back to an idle-cycle

scavenging system as per the original design.

108

5.2 MOPAC and NCI HT Computing

MOPAC is a general-purpose semi-empirical molecular orbital package for the

study of solid state and molecular structures and reactions. Semi-empirical

Hamiltonians are used in the electronic part of the calculation to obtain

molecular orbitals, the heat of formation and its derivative with respect to

molecular geometry. Using these results MOPAC calculates the vibrational

spectra, thermodynamic quantities, isotopic substitution effects and force

constants for molecules, radicals, ions, and polymers.

The National Cancer Institute (NCI) make available the connection tables

of 250,251 structures for download and re-use [153]. As described by Zhang in

2004 [154], these structures were downloaded in SDF format and converted

to CML using OpenBabel [155], the resultant CML was combined with a

set of job controls to create a MOPAC input file. The input file specified

the type of calculation to run; a geometry optimisation using PM3 and the

charge on the molecule. Where there were multiple molecules in the MOL file

the largest fragment was selected∗. The Condor submission node does not

support 250,251 individual jobs and therefore the input files were collected

into 500 groups of 500 and a single group of 251 inputs. These were then

submitted to the Condor infrastructure for calculation†. Figure 5.1 shows

the overview of this process.

The structure and properties determined by MOPAC were extracted and

parsed to CML using JUMBOMarker, combined with the input structure

previously generated (thus already in CML) and stored in an XML database

(Xindice [156]). This process was non-trivial. Whilst MOPAC is in general

a very stable program, the large number of jobs revealed some problems

that were previously not encountered. An example of such a problem was a

memory overflow issue that affected every 64,000th job, causing it to crash.

∗The largest fragment was taken to be that which contained the most atoms.
†The calculation and analysis of the NCI molecules using MOPAC was a collaborative

project between Zhang and this author. The submission of the jobs was entirely the work
of Zhang, the subsequent analysis the work of this author.

109

Figure 5.1: Overview of the MOPAC calculation of the NCI molecules.

110

Figure 5.2: Mismatches in the MOPAC input and output

The JUMBOMarker used for this process was the single-pass, single-parse

design as defined in section 4.2. The templates developed for this process

were designed to be fault tolerant — that is, if a job failed JUMBOMarker

should skip over this job and continue parsing. Hence, the simple matching

system for input and output files often resulted in mismatches as shown in

figure 5.2.

The detection of this fault was relatively trivial because the matching

program reported the mismatch, for example;

no output structure was found for input molecule 500.

The fault was not easy to rectify because the files did not contain unique

identifiers. Hence determining which was the appropriate output file to match

with a particular input file relied on matching the structures contained in each

— InChIs are ideal for this purpose.

5.2.1 InChI

InChI is the IUPAC International Chemical Identifier and is a string of char-

acters that is designed to canonically represent a chemical substance [17, 157].

It is derived from a structural representation of the substance in a way de-

signed to be independent of the structural representation. Therefore a single

111

Figure 5.3: Various structures that all are represented by the same basic
InChI.

compound will always produce the same basic identifier. Figure 5.3 shows

various structural representations of the same molecule which are normalised

to a single basic InChI.

The InChI technical manual states:

It was agreed at IUPAC meetings prior to the start of this project

that the first version of the InChI should cover well-defined, covalently-

bonded organic molecules. It was also agreed to include sub-

stances with mobile hydrogen atoms (tautomers, for instance). In

the course of this project, it was found that straightforward exten-

sion organometallic compounds could be represented. Methods

were found to also include variable protonation. Also, the present

version only considers traditional organic stereochemistry (double

bond — sp2 and tetrahedral — sp3) and the most common forms

of H-migration (tautomerism). However, the layered structure of

the InChI allows future refinements with little or no change to

the layers currently used. [17]

It is possible to generate InChIs for molecules that the program was not

designed for and those that are not chemically valid, for example C(CH3)6

generates

InChI=1/C7H18/c1-7(2,3,4,5)6/h1-6H3

112

input calculated

Figure 5.4: Garbage-In, Good-Out: a molecule from the NCI that was
mended by MOPAC.

but with the warning

message: type=warning value=Accepted unusual valence(s): C(6)

The use of InChIs to index and identify documents (especially web-based

documents) was described by Coles et al. in 2005 [158]. It was hoped that

creating InChIs for the structures contained in both the input and output

documents should allow the correct molecules to be matched up, unfortu-

nately this did not always prove to be the case. In several cases the con-

nection table (from which the InChI is derived) changed as a result of the

MOPAC calculation. The term proteus was coined to describe this type of

molecule‡. It is interesting to note that occurrence of proteus molecules in the

dataset would likely have remained undiscovered if the mismatching problem

had not occurred.

5.2.2 Proteus Molecules

Analysis of the proteus molecules showed that in some cases the MOPAC cal-

culation had mended a bad input structure (Garbage-In, Good-Out) whilst in

other cases the MOPAC calculation broke a good input structure (Good-In,

‡Proteus was a shape-changing ocean deity in Greek mythology.

113

input calculated

Figure 5.5: Good-In, Garbage-Out: a molecule from the NCI that was broken
by MOPAC — the five coordinate atom is antimony.

Garbage-Out). Examples of these are shown in figures 5.4 and 5.5 respec-

tively. In general the Good-In, Garbage-Out molecules were as a result of

attempting to calculate properties for molecules that MOPAC is not opti-

mised to deal with (under the protocol that was in use), i.e. those containing

heavy metals. The identification of good and bad structures might be possi-

ble using sufficiently chemically-aware programs but currently is performed

by human experts.

As previously discussed, it is important to verify that data is of sufficient

quality before it is publicly disseminated. Determining which of the struc-

tures calculated were Good-Out (regardless of whether or not input structure

was good) is difficult because of the inconsistent quality and volume of the

NCI dataset. To provide a measure of the quality of the MOPAC structures,

comparison with structures obtained from a different source is necessary (fig-

ure 5.6). Ideally the comparisons between structures would be between the

molecules in the MOPAC calculated set and the same molecules determined

experimentally.

Experimentally-determined 3D structures are available from X-ray crystal-

lography reported in Crystallographic Information Files (CIFs). The format

114

Figure 5.6: To cross-check the MOPAC results the structures can be com-
pared to experimentally-determined structures or those determined by a dif-
ferent computational program

of a CIF is discussed in chapter 6 and the processing necessary to extract the

CTs, in section 7.3. For the moment it is sufficient to state that the extraction

of the CTs is non-trivial and in general, not possible without downloading

the entire CIF. The lack of the CT, or an identifer directly derived from

it (such as InChI), in an immediately machine-understandable form, means

that it is impossible for a machine to automatically search the literature to

find appropriate structures for comparison. It was decided that it would be

more tractable to compare the geometries determined by MOPAC with those

calculated by a different program at a higher level of theory.

5.3 MOPAC and GAMESS

GAMESS (General Atomic and Molecular Electronic Structure System) al-

lows the optimisation of molecular geometries using the energy gradient (cal-

culated analytically for SCF or DFT wavefunctions) [159]. The original code

split in 1981 into two variants, GAMESS (US) and GAMESS (UK) which

now differ substantially. This work has been performed using GAMESS (US)

which is available at no cost to both academic and industrial users. This work

investigates the behaviour of GAMESS in a HT environment and uses the

results to validate the results of the MOPAC optimisations. To do this,

a general purpose protocol was required — the protocol should be able to

cope with a wide range of different molecules and still converge the SCF and

115

optimise the geometry.

GAMESS input is directed by what is called ‘$’ or ‘$ groups’. The in-

put components directing what type of calculation should be performed are

included in the $CONTRL group. The $DATA section provides the specific

molecular set up, including both the symmetry type and the 3D coordinate

information necessary to construct the molecule. This can be provided as a

set of Cartesian components or, as a Z-matrix which describes the molecules

using internal coordinates. Figure 5.7 shows a typical input file.

Whilst the protocol was designed to reduce the number of failures, some

failed jobs were anticipated. The failures were expected to fall into four

categories:

System crashes The calculation can either be regarded as lost or resub-

mitted for calculation.

Calculations overrun The protocol can be adapted to give more time for

each job (the time is effectively free) but this might be a sign of a

pathological molecule which will always cause problems.

The wrong answer is produced There are four possibilities;

• The protocol is not capable of dealing with molecules of this type

(for example open shell systems). Either filters should be imple-

mented to remove molecules of this type or the protocol should

be changed to accommodate them.

• This is a general problem (everyone gets the same wrong answer),

as such this should not be considered a problem because the pro-

tocol should be developed to get consistent answers rather than

right ones.

• The result produced by GAMESS is different from that from other

programs — such results are a GAMESS community concern and

would be reported to the developers.

116

Figure 5.7: An example GAMESS input file. The molecule speci-
fied in cartesian coordinates (COORD=CART) should be geometry-optimised
(RUNTYP=OPTIMIZE) using automatically-generated internal coordinates
($ZMAT group). The maximum time (TIMLIM) allowed for the calculation
is 10080 minutes (one week) and a maximum of 262144000 8-byte words
of memory are to be used (MEMORY). The energies are calculated using the
Restricted Hartree Fock wavefunction (SCFTYP=RHF) theory with the B3LYP
exchange function (DFTTYP=B3LYP) optimisation. Pople’s N-31G split valence
basis set is to be used (GBASIS=N31) available for H-Zn when NGAUSS=6
and one polarisation function to be included on atoms of atomic number 3
and over (NDFUNC=1). The basis set and exchange function were chosen be-
cause they represent the best trade-off between calculation time and accuracy
in common use [160].

117

• The result produced by this system differs from that calculated

by another GAMESS system using the same level of theory. This

is probably the most important wrong answer to identify, but

does not necessarily mean that the answer is wrong; for example

different starting geometries may lead to different local minima.

Repeating calculations of the same molecule on different systems

(in this case Linux- and Windows-based architectures) allows the

determination of acceptable variation.

Unforeseen failures Although every attempt is made to predict how calcu-

lations might fail, previous experience suggests that unforeseen failures

do occur. These are often useful because they highlight new ways of

looking at the data and adapting the protocol.

Chapter 7 details how a protocol is created and refined which involves

choosing an appropriate level of theory and how to determine which struc-

tures are suitable for calculation at that level. However, the method pre-

sented relies on an assumed knowledge of the behaviour of the calculation

program. The initial creation of a suitable protocol for HT computing with

an unfamiliar program is extremely difficult and the first attempt should be

expected to fail. The development cycle relies on the detection of problems

to determine problems with the protocol which can then be refined or filters

put in place. Figure 5.8 shows a typical protocol development cycle.

The intention is for humans to validate protocols rather than individual

data items (when large datasets are being used, dealing with individual data

items is often impossible). Thus when developing a protocol, a molecule

that is correctly computed is of no immediate interest because it does not

highlight any problems present. Once the protocol has been established

all the molecules that were correctly computed using that protocol can be

analysed to produce derived data and in some cases further refinements for

that protocol.

118

Figure 5.8: A typical development cycle for a protocol

119

Typical examples of the types of error encountered during the protocol

development and the resultant action taken are described below:

System crash A thunderstorm caused a power cut that prevented the air

conditioning working, thus the computers overheated and stopped; all

affected jobs were restarted.

Science error A large number of the results failed because the incorrect

charge was specified; a bug was found in the code that created the in-

put file which resulted in all molecules being submitted with an overall

charge of zero. The code was corrected and all the jobs were resubmit-

ted.

Unsuitable data Open shell systems were being submitted for calculation

to a protocol for closed shell systems only; a filter was created to prevent

open shell systems being submitted.

Program crash Partial log files were produced for some results, the cause

of this remains unknown; the affected jobs were resubmitted.

Further refinements to the protocol resulted from analysis of the parsed data.

To increase the number of molecules that can be calculated, it is desirable

to reduce the calculation time for each one. The most obvious way to do

this for molecules that contain symmetry is to only calculate the symmetry

unique atoms. Unfortunately this can lead to problems:

When the point group contains a 3-fold or higher rotation axis,

the degenerate moments of inertia often cause problems choos-

ing correct symmetry unique axes, in which case you must use

COORD=UNIQUE rather than Z-matrices. Warning: The reorienta-

tion into principal axes is done only for atomic coordinates, and

is not applied to the axis dependent data in the following groups:

$VEC, $HESS, $GRAD, $DIPDR, $VIB, nor Cartesian coords of ef-

fective fragments in $EFRAG. COORD=UNIQUE avoids reorientation,

and thus is the safest way to read these. [161]

120

no Z-matrix Z-matrix

Total time (s) 12090251 8124016
Mean time per molecule (s) 17650 11860
Mean time per basis function (s) 154 104
Mean time per non-H atom (s) 2752 1849

Table 5.1: Comparing the effects of not implementing and implementing
internal coordinates (Z-matrix) on the calculation time. The statistics
are derived from the successfully completed geometry optimisations of 685
molecules containing between three and eight non-hydrogen atoms.

It was felt that this would not be a worthwhile time-saving approach, largely

because it would require many man-hours to create the new protocol and

because the resultant protocol would be less general.

Other methods are available to reduce the calculation time (lowering the

level of theory for instance) but in general:

. . . geometry optimizations depend on the coordinates being used

(not the starting values, but rather the type). In general the

most satisfactory behavior for the least human effort comes from

putting cartesian coordinates in $DATA, selecting NZVAR=3N-6,

and then using $ZMAT DLC=.TRUE. AUTO=.TRUE. $END. [162]

The creation of the internal coordinates is automated within GAMESS [163]

but may fail:

. . . in cases where the automatic coordinate generation fails, you

will have to play with the NONVDW, IXZMAT, and IRZMAT keywords

in the same group. In addition, you always have to set the key-

word NZVAR in the $CONTRL group to 3N − 6 (or 3N − 5 in case

of linear molecules) when you use the DLC option, with N being

the number of atoms. [164]

121

53 minutes to compute no Z-matrix 204 minutes to compute

16 minutes to compute with Z-matrix 10078 minutes to compute

Figure 5.9: Although in general using a Z-matrix reduces the calculation
time, this was not always found to be the case. Both molecules were under-
going geometry optimisation using 6-31G*/B3LYP.

The programs used to create the input file contained no methods for as-

certaining the linearity of a molecule therefore the NZVAR was always set to

3N − 6. In fact, no linear molecules that were suitable for calculation have

been found in the dataset to date.

In general the calculation time was found to decrease when a Z-matrix

was used (see table 5.1), this was not the case for all the molecules. Figure

5.9 shows the effects of using internal coordinates on two structural isomers.

Whilst such cases may be interesting on an individual basis, from the point

of view of the protocol developer they are exceptions to the general case and

have little overall effect. To quote one of the developers of GAMESS:

. . . it is possible for some molecules, some times, to work better in

other coordinates. This is numerical work, and exceptions always

turn up. [162]

The possibility of a small number of automatic coordinate generation failures

was deemed an acceptable trade-off for the general decrease in calculation

time, thus a Z-matrix was implemented in subsequent protocols.

122

−4 −2 0 2 4

−
0.

15
−

0.
10

−
0.

05
0.

00
0.

05
0.

10
0.

15

Theoretical Quantiles

∆R
 (

G
A

M
E

S
S

−
M

O
P

A
C

)
/ A

ng
st

ro
m

Figure 5.10: QQ plot for the 106 C–Cl bonds in the dataset — the data are
normally distributed over the entire length with ∆R=0.041Å and s=0.013Å.

123

5.4 Results

The difference in bond length (∆R(GAMESS−MOPAC)) is expected to be

normally distributed; this can be assessed graphically by using Quantile-

Quantile plots (QQ plots). The QQ plot is a graphical technique for diag-

nosing differences between distributions; the normal theoretical quantiles are

plotted on the x-axis and quantiles found in the data on the y-axis. If the

sample data is normally distributed it should form a straight line, the gradi-

ent of which is equal to the standard deviation of the sample and the value

at x = 0 the mean. Figures 5.10 and 5.11 show cases where all the data

appears to be normally distributed. Data of this sort provides little scope

for further refinement of the protocol but does reinforce the belief that the

ideal value is being approached.

QQ plots also provide an excellent indication of the threshold values, above

or below which, bond length differences appear to be no longer behaving

normally (see figure 5.12). QQ plots for all bond types with more than 100

instances in the dataset are given below. The order of the bond between

the atoms is irrelevant in this analysis because the difference in bond length

is being considered — this is beneficial as it allows for alternative bonding

patterns being applied.

Outliers can also be identified by plotting a basic x-y graph of the bond

length calculated by MOPAC against the bond length calculated by GAMESS.

However this becomes more difficult with larger datasets. Figure 5.13 shows

the C–C bond lengths in this form, one outlier is plain but the unusual be-

haviour evident in figure 5.12 is no longer clear. A combination of the two

methods is therefore used; once threshold values have been determined the

SVG graphing program described in section 1.12.1 was used to examine those

molecules giving rise to the outliers.

124

−4 −2 0 2 4

−
0.

15
−

0.
10

−
0.

05
0.

00
0.

05
0.

10
0.

15

Theoretical Quantiles

∆R
 (

G
A

M
E

S
S

−
M

O
P

A
C

)
/ A

ng
st

ro
m

Figure 5.11: QQ plot for the 324 N–N bonds in the dataset — the data are
normal over the entire length with ∆R=−0.007Å and s =0.022Å.

125

−4 −2 0 2 4

−
0.

15
−

0.
10

−
0.

05
0.

00
0.

05
0.

10
0.

15

Theoretical Quantiles

∆R
 (

G
A

M
E

S
S

−
M

O
P

A
C

)
/ A

ng
st

ro
m

Figure 5.12: QQ plot for the 9115 C–C bonds in the dataset — the data are
normally distributed within ∆R = ±0.05Å with ∆R=0.005Å and s=0.013Å.
Outliers are apparent at ∆R ≈ 0.1Å and ∆R < −0.05Å.

126

1.1 1.2 1.3 1.4 1.5 1.6 1.7

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

MOPAC bond length / Angstrom

G
A

M
E

S
S

 b
on

d
le

ng
th

 /
A

ng
st

ro
m

Figure 5.13: The x-y plot of all the C–C bonds shows a clear outlier but little
further immediate information.

127

−4 −2 0 2 4

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

Theoretical Quantiles

∆R
 (

G
A

M
E

S
S

−
M

O
P

A
C

)
/ A

ng
st

ro
m

Figure 5.14: QQ plot for all the bonds in the dataset (16978) — the data
are very approximately normally distributed within ∆R = ±0.1Å with
∆R=0.002Å and s=0.020Å.

128

original amended

Figure 5.15: The molecule giving rise to the major outlier in figure 5.12 (left)
and the emended entry now in the NCI database.

5.4.1 All Bonds

Figure 5.14 shows that overall there is good agreement between the bond

lengths calculated by MOPAC and by GAMESS. Outliers are present (|∆R| >
0.1Å) but these are usually caused by the presence of heavier elements (alu-

minium, silicon, phosphorus and sulfur). While this graph gives an overall

picture, analysis based on specific bond types is preferable.

5.4.2 C–C bonds

Figure 5.12 shows the QQ plot for all C–C bonds. The major outlier ∆R ≈
0.1Å was caused by the molecule in figure 5.15. The charge and connec-

tion table for this molecule were incorrectly specified in the NCI dataset,

although it has now been amended. The bonds giving rise to the tail of

the distribution (∆R < −0.05Å) were found to be atoms bonded to fluo-

rine. The 29 molecules with a C–CFn fragment (n = 1, 2, 3) were examined;

the ∆R(GAMESS−MOPAC) of the C–CFn bond ranged from −0.003Å to

−0.081Å. There appears to be a correlation between the number of fluorine

atoms and the change in bond length ρ = −0.75 (see figure 5.16).

5.4.3 C–N bonds

The C–N bonds show generally good normality (figure 5.17); of those be-

low the threshold value of ∆R < −0.075Å one was from the molecule in

figure 5.15, four from N-hydroxy-amide derivatives and two from molecules

129

1.0 1.5 2.0 2.5 3.0

−
0.

08
−

0.
06

−
0.

04
−

0.
02

0.
00

y = −0.0285x + 0.0106
number of fluorine atoms

∆R
 (

G
A

M
E

S
S

−
M

O
P

A
C

)
/ A

ng
st

ro
m

Figure 5.16: The variation in ∆R(GAMESS−MOPAC) for the 29 molecules
containing a C–CFn n = 1, 2, 3 fragment.

130

−4 −2 0 2 4

−
0.

15
−

0.
10

−
0.

05
0.

00
0.

05
0.

10
0.

15

Theoretical Quantiles

∆R
 (

G
A

M
E

S
S

−
M

O
P

A
C

)
/ A

ng
st

ro
m

Figure 5.17: QQ plot for the 3615 C–N bonds in the dataset — the data are
normally distributed for ∆R > −0.075Å with ∆R=−0.019Å and s=0.014Å.

131

containing N–N bonds. 18 instances of N-hydroxy-amides were found in the

corpus with the ∆R(GAMESS−MOPAC) of the nitrogen–carbonyl carbon

bond varying between −0.03Å and −0.12Å. The consistent negative sign of

∆R(−s)uggests that the discrepancies in the bond lengths are caused by

systematic problems with one or both of the methods used.

5.4.4 C–O and N–O bonds

The QQ plots of C–O and N–O bond length changes (figures 5.18 and 5.19)

both show kinks indicating that there might be overlapping distributions

present. This is evident in the density plots in figure 5.20. An analysis to

determine the molecular features that discriminate between molecules giv-

ing inconsistent bond lengths between MOPAC and GAMESS was therefore

undertaken.

A dataset of 282 molecules which contained a bond with a large bond length

deviations§ (the bad set) and a dataset of 2302 molecules which did not (the

good set) were prepared and 146 MOE descriptors [165] were created for the

molecules in the two sets. A correlation analysis indicating which variables

are likely to contribute to an agreement between the two programs and those

likely to contribute to disagreement was performed. This showed that higher

carbon valence connectivity, larger hydrophobic Van der Waals surface area,

larger numbers of carbon atoms, higher total negative partial charge and a

higher number and surface area of hydrogen atoms correlate with the good

set. Conversely, molecules in the bad set typically contained a larger number

of nitrogen atoms, larger fractional polar surface area, a large total polar

surface area and high molecular mass density. Overall, many of the variables

are related implicitly to the nitrogen content of the molecules (a property

which was explicitly observed).

In order to establish which structural features are responsible for disagree-

ment between the two datasets, circular fingerprints (the representation of

§A large bond length deviation was taken to be a bond with |∆R| > threshold value
for that bond type.

132

−4 −2 0 2 4

−
0.

15
−

0.
10

−
0.

05
0.

00
0.

05
0.

10
0.

15

Theoretical Quantiles

∆R
 (

G
A

M
E

S
S

−
M

O
P

A
C

)
/ A

ng
st

ro
m

Figure 5.18: QQ plot for the 3019 C–O bonds in the dataset — the data are
approximately normally distributed over the entire length with ∆R=0.011Å
and s=0.014Å, although there is a kink which indicates the possibility of
overlapping distributions (see figure 5.20).

133

−4 −2 0 2 4

−
0.

15
−

0.
10

−
0.

05
0.

00
0.

05
0.

10
0.

15

Theoretical Quantiles

∆R
 (

G
A

M
E

S
S

−
M

O
P

A
C

)
/ A

ng
st

ro
m

Figure 5.19: QQ plot for the 193 N–O bonds in the dataset — the data
does not appear to be normally distributed, possibly there are two or more
overlapping distributions present (see figure 5.20), overall ∆R=0.033Å and
s=0.023Å.

134

−0.10 −0.05 0.00 0.05 0.10

0
5

10
15

20
25

30

C−O bonds

∆R (GAMESS−MOPAC) / Angstrom

D
en

si
ty

−0.10 −0.05 0.00 0.05 0.10

0
5

10
15

20

N−O bonds

∆R (GAMESS−MOPAC) / Angstrom

D
en

si
ty

Figure 5.20: The C–O bonds appear to come from two distinct distributions
and the N–O bonds from three.

135

molecular structures by atom neighborhoods) were employed in combination

with information-gain feature selection [166]. The ten features most able to

discriminate between the datasets, their relative frequencies in the datasets

and the corresponding information gain are given in figure 5.21. The frag-

ments selected are in good agreement with those determined via decision trees

based on the MOE descriptors. Aromatic moieties are much more frequent

in the bad dataset, in particular those containing nitrogen.

The identification of discrepancies in the bond lengths and the subsequent

elucidation of the underlying cause being (nitrogen containing) aromatic moi-

eties was performed by methods which could be entirely automated. Opti-

mising the geometry of nitrogen, especially when the lone pair is delocalised,

has been found to be problematic in the past [167]. The results presented

above therefore reinforce the idea that machines can be used to validate re-

sults and furthermore that there may be undiscovered science in the legacy

literature.

5.4.5 C–S bonds

The most apparent outlier (∆R ≈ −0.05Å) was caused by trifluoromethanthiol.

It was thought that this might be related to the effect seen for fluorinated

carbon bond lengths but the corpus only contained one molecule with a S–

C–F fragment, therefore no further analysis was possible. The remaining

outliers arose from bonds in aromatic heterocycles containing N–N bonds.

5.5 Time

The prediction of calculation times and likely failure rates are vital for the

integration of a program into a workflow and for the development of a suit-

able protocol. The run times of the GAMESS jobs has been examined and

models of the data proposed. One of the initial constraints imposed in future

protocols (that molecules containing more that 15 non-hydrogen atoms are

not suitable for calculation) is a direct result of this work (see chapter 7) and

the performance of the models is reported in section 8.6.

136

Fb = 0.067, Fg = 0.000, Ig = 0.024 Fb = 0.089, Fg = 0.004, Ig = 0.020

Fb = 0.057, Fg = 0.000, Ig = 0.024 Fb = 0.057, Fg = 0.004, Ig = 0.020

Fb = 0.074, Fg = 0.004, Ig = 0.017 Fb = 0.043, Fg = 0.000, Ig = 0.013

Fb = 0.103, Fg = 0.017, Ig = 0.013 Fb = 0.035, Fg = 0.000, Ig = 0.012

Fb = 0.053, Fg = 0.003, Ig = 0.012 Fb = 0.043, Fg = 0.001, Ig = 0.012

Figure 5.21: The ten molecular fragments most able to discriminate between
the good and bad datasets. Fb is frequency of the fragment in the bad dataset,
Fg the frequency in the good dataset and Ig is the information gain.

137

−4 −2 0 2 4

−
0.

15
−

0.
10

−
0.

05
0.

00
0.

05
0.

10
0.

15

Theoretical Quantiles

∆R
 (

G
A

M
E

S
S

−
M

O
P

A
C

)
/ A

ng
st

ro
m

Figure 5.22: QQ plot for the 358 C–S bonds in the dataset — the data
appears to be approximately normally distributed for ∆R > 0Å with
∆R=0.045Å and s=0.025Å. There might be two overlapping distributions
present (the behaviour changing at ∆R ≈ 0.075Å). However, the decreasing
density of points for ∆R > 0.1Å suggests that these are outliers rather than
a different distribution.

138

number of total jobs number of failure %
non-H atoms failures

3 2 0 0
4 23 1 4.3
5 125 3 2.4
6 93 3 3.2
7 448 5 1.1
8 6 0 0

overall 697 12 1.7

Table 5.2: The number of calculations that failed to complete because of
insufficient time, broken down by the number of non-hydrogen atoms. The
statistics are based on the 685 completed jobs reported in table 5.1 and the
12 failed jobs created producing that data.

The percentage of jobs that fail to complete because they ran out of time

was found to be approximately 2% (see table 5.2) but this was expected to in-

crease with increasing molecule size. A greater proportion of the calculations

on such molecules would be expected to run for the total specified run time

(a week) with the effect of increasing the reported total average time. The

analysis of the run times below is based only on those jobs that successfully

completed the geometry optimisation within the time limit specified.

The time required for a single step of a calculation is predicted by the DFT

equations to rise with the number of basis functions to the fourth power .

However these algorithms have been rewritten with efficiency in mind and

it is found that it is often the matrix manipulations which dominate (which

scale as the cube on the number of basis functions). Figure 5.23 shows the

behaviour of the mean step time for the calculations in this study which scale

more favourably than the expected behaviour. It is likely to have been artifi-

cially lowered because of the removal of the all non-terminating calculations

— although pseudo-diagonalisation of the matrices and symmetry effects are

also likely to have contributed.

139

0 20 40 60 80 100 120 140 160 180 200 220 240
0

500

1000

1500

2000

2500

m
ea

n
st

ep
 ti

m
e

/ s

number of basis functions

y=0.0011x2.6753

Figure 5.23: The mean step time for a calculation in this study scales more
favourably than the expected n3.

140

It is more convenient to work with the number of atoms in a molecule than

the number of basis functions because it is readily apparent and more gen-

eralisable being independent of the basis set used. Fortunately the number

of basis functions is correlated with the number of atoms (ρ = 0.81) but it is

more strongly correlated (ρ = 0.95) with the number of non-hydrogen atoms

(see figure 5.24).

The total time to complete a geometry optimisation is not accurately pre-

dictable by theory because of the chaotic behaviour displayed near the min-

imum on the potential energy surface¶. However the total time does show

a correlation with the number of non-hydrogen atoms (see figure 5.25); the

calculated exponent was felt to be sufficiently close to three that a cubic de-

pendance could be used to model the data. The use of a cubic exponent (or

possibly higher) rather than the value of 2.9469 shown in figure 5.23 was also

justified by recalling that the longest running jobs have been removed from

the data and is the expected exponent for DFT calculations implementing

an auxiliary basis rather than a standard coulomb integral. The equation of

the line of best fit was found to be;

3
√

t = 3.095n + 1.5268 (5.1)

where t is the expected calculation time in seconds and n is the number of

non-hydrogen atoms.

There is a variation of several orders of magnitude in the calculation time

per non-hydrogen atom which results in large standard deviations. It should

be noted that the standard deviation is not constant but in fact appears to

rise linearly with the mean time per non-hydrogen atom as shown in figure

5.26. This is advantageous because in combination with equation 5.1 it allows

the prediction of the standard deviation for larger molecules as shown in table

5.3. The ability to predict run times (with some measure of the spread of

¶Close to minima on potential energy surfaces the gradient with respect to all coordi-
nates tends to zero. This often causes gradient-following algorithms to oscillate around
the true minimum for an unpredictable number of steps.

141

0 5 10 15 20 25 30 35
0

20

40

60

80

100

120

140

160

180

200

220

240
nu

m
be

r o
f b

as
is

 fu
nc

tio
ns

number of atoms

y = 5.0459x + 55.25

ρ = 0.81

4 6 8 10 12
0

20

40

60

80

100

120

140

160

180

200

220

nu
m

be
r o

f b
as

is
 fu

nc
tio

ns

number of non-hydrogen atoms

y=16.315x+10.198

ρ = 0.95

Figure 5.24: The number of basis functions can be more accurately modelled
as a function of non-hydrogen atoms than of the total number of atoms.

142

2 4 6 8 10 12
100

101

102

103

104

105

 number of non-hydrogen atoms

to
ta

l t
im

e
/ s

y=36.107x2.9469

Figure 5.25: The total calculation time appears to be dependent on the
number of non-hydrogen atoms present (ρ = 0.66) although the run times
for a particular number of non-hydrogen atoms varies by several orders of
magnitude.

143

0 10000 20000 30000 40000 50000
0

5000

10000

15000

20000

25000

30000

35000

st
an

da
rd

 d
ev

ia
tio

n
/ s

mean total time per non-hydrogen atom / s

y = 0.6336x - 720.13

Figure 5.26: The standard deviation of run times of jobs containing a speci-
fied number of non-hydrogen atoms can be modelled by the mean run time
for those jobs (ρ = 0.98).

these times) allows suitable protocols which may form part of a workflow to

be created.

5.6 Conclusions

The MOPAC–GAMESS comparisons show good agreement in general and

have shown that machines are capable of reproducing the results found by

humans. However, only comparing two computational methods on data of

inconsistent and indeterminable quality, means that it is impossible to deter-

mine which is right when a consistent discrepancy is found between the two

sets of results (for example the fluorinated compounds). It then becomes nec-

essary to validate the calculated results with those that are experimentally

144

determined and of measurable quality (see chapter 7).

The analysis of the run times have shown that they appear to be accu-

rately modelled using simple cubic relationships. It does not appear to be

possible to predict the run time for an individual molecule — the run time

for a particular number of non-hydrogen atoms varies by at least an order of

magnitude. However, if a sufficiently large number of calculations are run,

their behaviour may be modelled by using the mean run time (for which the

standard deviation also appears to be predictable).

145

predicted number of mean total standard upper bound
non-H atoms time / s deviation /s 95% confidence

3 400 100 1400
4 2100 1200 4700
5 4500 2700 9700
6 6400 5000 17000
7 15000 6800 27000
8 21000 10000 40000
9 30000 18000 56000
10 42000 23000 76000
11 45000 33000 100000

X 12 58000 36000 130000
X 13 73000 45000 160000
X 14 90000 56000 200000
X 15 110000 69000 250000
X 16 130000 84000 300000
X 17 160000 100000 360000
X 18 190000 120000 420000
X 19 220000 140000 500000
X 20 260000 160000 580000
X 21 290000 190000 670000

all values given to 2 significant figures

Table 5.3: The mean run time for a calculation involving a specified number
of non-hydrogen atoms may be predicted using equation 5.1 and the stan-
dard deviation calculated from this value. The 95% confidence interval is
calculated by t+2s where t is the mean runtime per non-hydrogen atom and
s is the standard deviation of the sample. There are 604800 seconds in a
week, thus ca. 95% of calculations involving 20 non-hydrogen atoms would
be expected to complete in this time.

146

Chapter 6

X-Ray Crystallography

X-ray crystallography uses the diffraction pattern produced by bombarding a

single crystal with X-rays to solve the crystal structure [168]. The diffraction

pattern is recorded and then analysed or solved to reveal the nature of the

crystal. This technique is widely used in chemistry and biochemistry to

determine the structures of an immense variety of molecules. When single

crystals are not available, related techniques such as powder diffraction or

thin film X-ray diffraction coupled with lattice refinement algorithms such

as Rietveld refinement [169] may be used to extract similar, though less

complete, information about the nature of the crystal.

The crystallographic field also suffers from data deluge. Figure 6.1 shows

the trend in the number of crystal structures published per year [170]. Cur-

rently only ca. 20% of the crystal structures determined are actually pub-

lished; this figure is likely to rise in the future witch will further exacerbate

the problems associated with the data deluge. These problems may be al-

leviated if the data could be more easily handled by automated processes,

which would also allow it to be searched more precisely and easily.

6.1 Determining the Structure

The spacing in the crystal lattice can be determined using Bragg’s law [171]:

nλ = 2d sin θ (6.1)

147

1965 1970 1975 1980 1985 1990 1995 2000 2005
0

5000

10000

15000

20000

25000

30000

35000

nu
m

be
r o

f s
tru

ct
ur

es

publication year

Figure 6.1: Number of crystal structures published in each of the years 1965
– 2006; the data for 2006 are as yet incomplete.

148

Figure 6.2: The steps involved in a crystal structure determination.

where λ is the wavelength of the incident radiation, θ is the angle of in-

ference, d is the distance between atomic layers and n is an integer. The

electrons that surround the atoms, rather than the atomic nuclei themselves,

are the entities that physically interact with the incoming X-ray photons.

The contribution to the diffracted X-ray intensity is larger for atoms with a

greater electron density than for the lighter elements (especially hydrogen)

which can make it difficult to determine the positions of the lighter elements

accurately when heavy elements are present. Figure 6.2 shows the flowchart

for crystal structure determination [172].

In order to solve the three-dimensional structure of a molecule, it must

first be crystallized. This is because a single molecule in solution has in-

sufficient scattering power alone, and the scattering of multiple molecules in

a concentrated solution is too convoluted to yield high resolution informa-

tion (although methods such as small angle X-ray scattering can be used

for the determination of particle systems in terms of averaged particles sizes

or shapes in such cases). A crystal can be considered to be an (effectively)

149

infinite repeating array of the molecule of interest. The Laue conditions and

Bragg’s law show that constructive interference between diffracted X-rays

that are in-phase reinforce each other, so that the diffraction pattern be-

comes detectable [173]. The geometric conditions where diffraction occurs

can be visualised using Ewald’s sphere [174].

Once prepared, the crystals are harvested and then mounted. Several meth-

ods of mounting exist: it is possible to hold the crystal in a thin glass tube

using grease or by using superglue or epoxy resin to hold the crystal to a

glass fibre. A more recent alternative is to use a drop of oil and liquid nitro-

gen to fix the crystal to the fibre. By cooling crystals the radiation damage

incurred during data collection is reduced and thermal motion within the

crystal decreased, giving rise to better diffraction limits and higher quality

data.

Crystals are then mounted on a diffractometer coupled with a machine

that emits a beam of X-rays. The X-rays are diffracted by their interaction

with the electrons in the crystal, and the pattern of diffraction is recorded

on film or, more recently, charge-coupled device detectors and scanned into a

computer. Successive images are recorded as a crystal is rotated within the

X-ray beam.

Before the advent of cryocooling, data was usually collected at room tem-

perature. Increased radiation damage to the crystal meant that sometimes

several crystals had to be used to obtain a single dataset. Cryocooling has

reduced this problem. Moreover, instead of collecting the data spots one at a

time, many modern machines use an array of X-ray detectors to collect data

over a large range of angles at once.

The data collected from a diffraction experiment is a reciprocal space rep-

resentation of the crystal lattice. The position of each diffraction spot is

governed by the size and shape of the unit cell, and the inherent symmetry

within the crystal. The intensity of each diffraction spot is recorded, and is

150

proportional to the square of the structure factor amplitude. The structure

factor is a complex number containing information relating to both the am-

plitude and phase of a wave. In order to obtain an interpretable electron

density map, phase estimates must be obtained (an electron density map

allows a crystallographer to build a starting model of the molecule). This is

known as the phase problem, and can be solved in a variety of ways:

• molecular replacement — if a structure exists of a related protein, it

can be used as a search model in molecular replacement to determine

the orientation and position of the molecules within the unit cell. The

phases obtained this way can be used to generate electron density maps.

• heavy atom methods — if high molecular weight atoms (not usually

found in proteins) can be soaked into the crystal, direct methods or

Patterson-space methods can be used to determine their location and

to obtain initial phase estimates.

• ab initio phasing — if high resolution data exists (with accuracy better

than 1.6Å) direct methods can be used to obtain phase information.

Having obtained initial phases, an initial model (the hypothesis) can be

built. The Cartesian coordinates of atoms and their respective Debye-Waller

factors (accounting for the thermal motion of the atom) can then be refined

to best fit the observed diffraction data. This generates a new (and hopefully

more accurate) set of phases and a new electron density map is generated.

The model is then revised and updated by the crystallographer and a fur-

ther round of refinement is carried out. This continues until the correlation

between the diffraction data and the model is maximised.

6.2 Derived Results

The primary numerical results of a structure determination are the parame-

ters obtained in the least-squares refinement. Usually these consist of:

• three positional coordinates for each atom

151

• and a number (often one, for isotropic, or six, for anisotropic models)

of temperature factors, thermal parameters or displacement parameters

for each atom

• other parameters for effects such as extinction and overall scaling of

the observed and calculated datasets

These parameters may be refined as supposedly independent values, or there

may be various constraints and/or restraints applied to their refinement. The

refinement supplies not only values for the parameters but also an estimated

standard deviation (esd) for each one. The structure determination also gives

the atom types.

The primary results are usually not the main object of the structure de-

termination experiment, rather, it is the molecular geometry and possibly

intermolecular interactions which are of interest. Therefore secondary results

must be derived (such as bond lengths, bond angles and torsion angles). Each

of these derived values should also have an associated esd.

It has been suggested that the thermal parameters describe both the time-

averaged temperature-dependent movement of the atoms about their mean

equilibrium positions and their random distribution over different sets of

equilibrium positions from one unit cell to another. These parameters may

therefore be called atomic displacement parameters. The interpretation and

analysis of these atomic displacement parameters is often not undertaken.

6.2.1 β, B and U Parameters

Atomic displacements are described by a variety of different parameters, all

of which are mathematically related. Thus, for an isotropic model, a single

parameter is used, but this may be called B or U . These are related by

f ′(θ) = f(θ) exp

(
−B sin2 θ

λ2

)
= f(θ) exp

(
−8π2U sin2 θ

λ2

)
(6.2)

where f(θ) is the scattering factor for a stationary atom and f ′(θ) the scat-

tering factor for the vibrating atom. B and U both have units of Å2 and U

152

represents a mean-square amplitude of vibration. For an anisotropic model,

six parameters are used and the exponent
(−B sin2 θ

λ2

)
becomes

−(β11h2 + β22k2 + β33l2 + 2β23kl + 2β13hl + 2β12hk) (6.3)

although other forms are also used. These parameters are often represented

graphically as thermal ellipsoids. This is possible only if certain inequality

relationships among the six parameters are satisfied; otherwise they are said

to be non-positive definite and the corresponding ellipsoid does not have

three real principal axes. Such a situation may indicate a real problem in the

structural model (e.g. a disordered atom), or it may be due to imprecise U ij

parameters (high esds), in which case the anisotropic model for this atom is

perhaps not justified.

The anisotropic displacement parameters are often not published in most

chemical journals and their significance is difficult to assess immediately.

A simpler parameter to assess atomic motions is the equivalent isotropic

parameter Ueq. There are different definitions of Ueq and some appear to be

inappropriate [175]. One version of Ueq is that corresponding to a sphere of

volume equal to the ellipsoid representing, on the same probability scale, the

anisotropic parameters. A commonly used definition is Ueq = 1
3

(trace of the

orthogonalised U ij matrix) although its meaning is not entirely clear. The

effect of temperature on Ueq is examined in section 8.5.

6.2.2 Libration

Thermal motion is known to produce an apparent shrinkage in molecular

dimensions. Figure 6.3 shows how this shrinkage occurs for riding motion

but is extensible to all libration (rotary oscillation). If a molecule has only

small internal molecular vibrations compared with its movement as a whole

about its mean position in the crystal structure, then it can be treated ap-

proximately as a rigid body. In this case the atomic displacements are not

independent and the U ij parameters of the atoms must be consistent with

the overall molecular motion.

153

Figure 6.3: A light atom bonded to a heavy one will oscillate about its equi-
librium position causing the election density to be spread out (black lines).
The electron density is modelled as an ellipsoid (in the three dimensional
case) with the atom at the centre of this ellipsoid (red). This causes ob-
served bond length, r1, to be shorter than the true bond length r2.

154

The molecular motion can be described by a combination of three tensors

(3× 3 matrices): T , L and S. T describes the translation and is symmetric,

L describes libration (also symmetric) and S describes a screw motion which

is not symmetric. T and L both have 6 independent parameters and S

has 8 because there is a constraint on the three diagonal terms. From the

rigid body parameters, corrections can be calculated for bond lengths within

the molecule; these depend only on the libration tensor. Although many

molecules are not rigid, certain groups of atoms within them may be and it

is possible to treat these as rigid bodies and to calculate the subsequent bond

length corrections. The Hirshfeld test [176] is used to determine whether a

molecule or part of a molecule can be regarded as a rigid body. The effect of

rigid body corrections and the agreement with the calculated bond length is

shown in section 8.4.5.

6.2.3 Minor Conformations and Incorrectly Assigned
Atoms

It is sometimes hard to distinguish whether an atom has a high thermal

motion or is statically disordered (minor conformations are present). The

presence of disorder in a structure, unless it is very simple and can be well

modelled, reduces to some extent the overall precision of the structure, not

just the particular atoms affected. The lowest reported site occupancy in

the dataset of crystallography used in this thesis was 0.0107. It is therefore

possible that there were some minor conformations (< 1% frequency) which

were not reported.

It is possible, though unlikely, that a completely incorrect structure is iden-

tified (essentially the wrong chemical compound is found) when the crystal

structure is solved. An example of wrongly assigned atom types being re-

ported was identified by von Schnering and Vu in 1986 [177]. They ques-

tioned the reported structure of ‘[ClF6][CuF4]’ which in reality was probably

[Cu(H2O)4][SiF6]. The mistake was likely caused by the similar scattering

powers of Si and Cl, and of O and F. Subsequent improvements in crystal-

lography mean that such incorrect assignments are now extremely unlikely,

155

especially when only light atoms are present in the crystal.

6.2.4 Atomic Scattering Factors

The scattering factors commonly used are reasonably accurate representa-

tions of the scattering power of individual, isolated atoms at rest. This

commonly referred to as the independent atom model (IAM). The scatter-

ing factors have spherical symmetry and probably their greatest limitation

is the lack of allowance for distortion of this spherical electron density when

atoms are placed together and bonded to each other. This is one reason why

bonds to hydrogen atoms are found to be systematically shortened in X-ray

diffraction studies.

The invariom concept [178] provides a definition of a pseudoatom electron

density, that is transferable between molecules, and employs the multipole

formalism introduced by Hansen and Coppens [179]. In invariom refinement,

the multipole parameters are predicted by a procedure involving theoretical

calculations and can be described as providing aspherical scattering factors.

Hence, the number of parameters to be refined in the least-squares procedure

does not increase when compared with a standard IAM refinement.

In 2005 Dittrich et al. demonstrated that the determination of molecular

geometry by conventional X-ray single-crystal diffraction experiments of or-

ganic molecules can be improved by invariom modelling [180]. The lengths of

bonds involving hydrogen atoms were particularly affected. The structure of

l-valinol determined by the IAM, invariom refinement and quantum chemical

geometry optimisation (using GAUSSIAN98, D95++(3df,3pd)) was reported

in 2006 [181]. Table 6.1 shows the comparison of the bond length differences

between each of the methods. The effect of using spherical rather than as-

pherical scattering factors for atoms (other than hydrogen) is thought to be

significantly less than those caused by libration, minor disorder and incor-

rectly assigned atoms.

156

X-C bonds, X=C,O,N

esd / Å
invariom 0.0007
IAM 0.0012

∆R/ Å
∆R(invariom−IAM) 0.0010
∆R(invariom−GAUSSIAN98) −0.0034

X-H bonds, X=C,O,N

esd / Å
invariom 0.0089
IAM 0.0118

∆R/ Å
∆R(invariom−IAM) 0.1284
∆R(invariom−GAUSSIAN98) −0.0280

Table 6.1: The effect of using invariom refinement compared to the IAM and
the GAUSSIAN98 geometry optimised structure. The values are based on
data reported by Dittrich et al. in 2006 for l-valinol [181].

157

6.3 The CIF Format

As mentioned previously, X-ray crystallography, in the form of Crystallo-

graphic Information Files (CIFs), is a source of high quality, experimentally

determined, 3D coordinates and connection tables for structures. The CIF

format was introduced in 1991 to be used for the electronic transmission of

crystallographic data between laboratories, journals and databases and was

adopted by the International Union of Crystallography (IUCr) as the recom-

mended medium for this purpose [182]. The development of a dictionary of

crystallographic data items was a major feature of this work; each data item

has been assigned a self-explanatory (within a 32 character limit) name for

use in a CIF and the precise definition of the item given in the appendix to

the paper (now available online) [183]. The CIF is based on the Self-Defining

Text Archive and Retrieval (STAR) file syntax procedure defined by Hall in

1991 [184] and subsequently defined in Backus-Naur form in 1993 [185].

The CIF format places nine further restrictions on the STAR file syntax

as detailed below:

1. Lines may not exceed 80 characters

2. Data names and block codes may not exceed 32 characters. All data

names are case insensitive

3. The CIF dictionary defines particular data items as number or charac-

ter types

4. A data item is assumed to be a number if it starts with a digit, plus,

minus, a period and is not bounded by matching single quotes, double

quotes or semicolons as the first character on a line

5. A number may be specified as an integer, floating-point number, or in

scientific notation. When concatenated with a number in parentheses,

that integer is assumed to be the esd in the final digit(s) or the number.

For example: 34.5, 3.45E1, 34.5(12), 3.45E1(12) are all versions of 34.5

with and without an esd of 1.2

158

6. A data item is assumed to be of data type text if it extends over more

than one line, i.e. it starts and ends with a semicolon as the first

character of a line

7. A data item is assumed to be of data type character is if is not a number

or text

8. Only one level of loop is permitted. Additional levels of repeated data

must be stored as lists within a text field

9. The CIF dictionary specifies default units for CIF data items. If the

data item is not stored in the default units, the units code is appended

to the data name. Only those units defined in the CIF dictionary are

acceptable.

The data names defined for use in a CIF are separated into components

representing the internal hierarchy of data categories. The data names are

of the form

<category> <topic> <subtopic>

For instance data relating to atoms begins with atom and is further cat-

egorised into those data relating to the position of the atom in the crystal

(atom site) and the properties of the atom type that occupies that position

(atom type).

The chemical conn data items specify the 2D chemical structure of the

molecular species and allow a 2D chemical diagram to be constructed — a

complete chemical entity must be described so symmetry-generated atoms

must be included. The connection tables of all the molecules in the CIF

are thus trivially recoverable. However, whilst this facility is provided, it is

not required and authors usually do not supply this data (no instances were

found in the 6738 CIFs examined in this study).

159

6.4 Quality Indicators

There are many data items that can be used to assess and validate a crystal-

lographic structure. UNIMOL [186] implements a variety of checks including

searching for voids and consistency of bond lengths. The IUCr host a free

service, checkCIF [187], that provides a report to authors of possible mis-

takes in the CIF submitted. There are three versions of checkCIF: basic

structural check, full structural check and full publication check. The full

structural check performs 321 tests to determine the self-consistency of the

data and that it falls within expected parameters [188]. Data that do not

pass a test are reported as alerts of differing levels (A to D, most to least

severe). Whilst CIFs with level A alerts are published, the author has to

justify that the reason for the alert is valid; in general authors are advised

to resolve as many of the problems giving rise to alerts before submission.

The automatic checkCIF validation helps to ensure that there are no er-

rors present in the published data (and that it is at least self-consistent)

but this still allows large variation in the quality of the data. Fortunately

the CIF contains data items that can be used as a measure of the data

quality, the most obvious being the R-factor. Various methods are used to

calculate the R-factor but are reported under the refine ls data name

(refine data names describe the structure refinement parameters and ls

data names refer to the least squared method). The conventional R-factor is

refine ls R factor gt (which succeeded refine ls R factor obs). This

is the residual factor for reflection data classified as observed (the intensity

of the reflection is sufficiently intense) and is calculated by

R =

∑ ∣∣∣|Fm| − |Fc|
∣∣∣

∑ |Fm| (6.4)

where Fm and Fc are the measured and calculated structure factors. The

calculated structure for atoms with diffracting power f situated at different

points in the unit cell as specified by the fractional coordinates x, y, and z

160

for the reflecting plane hkl is given by

F 2
c = A2 + B2 (6.5)

where

A =
∑

f cos 2π(hx + ky + lz) (6.6)

B =
∑

f sin 2π(hx + ky + lz) (6.7)

Atoms in crystals vibrate at ordinary temperatures with frequencies very

much lower that those of X-rays; at any one instant, some atoms are displaced

from their mean positions in one direction while those in another part of

the crystal are displaced in another direction. Consequently, diffracted X-

rays which would be exactly in phase if the atoms were at rest are actually

not quite in phase, and the intensity of the diffracted beam is thus lower

than it would be if all atoms were at rest. The thermal displacements of

atoms in crystals with large plane spacings (those giving reflections at small

angles) are small fractions of the plane spacing, hence the intensities are

largely unaffected. However crystals with closely spaced planes are more

affected. The effect also increases with rising temperature; lower temperature

experiments are therefore likely to be higher quality.

Neutrons do not interact with matter in the same manner as X-rays. X-rays

interact primarily with the electron cloud surrounding each atom. Neutrons

interact directly with the nucleus of the atom, and the contribution to the

diffracted intensity is different for each isotope; for example, hydrogen and

deuterium are distinguishable. It is also often the case that light atoms

contribute strongly to the diffracted intensity even in the presence of heavy

atoms. Non-magnetic neutron diffraction is directly sensitive to the positions

of the nuclei of the atoms. Neutron diffraction is therefore likely to provide

extremely high quality structures with the positions of all the atoms well

determined. Unfortunately, such experiments are not performed with the

same regularity as the more traditional X-ray based studies.

161

Chapter 7

Creating a Workflow

A workflow may be described as a collection of steps and data that define the

paths taken to complete a task. Such a workflow might contain processes such

as displaying content to users, collecting information from users or computer

systems, performing calculations and sending messages to external computer

systems. The tasks under consideration in this chapter are those of calculat-

ing the minimised geometries for the connection tables (CTs) contained in

CIFs and organising these results in a suitable way for analysis to take place.

Previously in this thesis phrases such as the molecules were submitted for

calculation and a protocol was created together with workflow diagrams such

as figure 5.1 have been used to indicate what processes were performed. The

amount of work necessary to create these processes and to link them together

is often not appreciated. This chapter examines in more detail these processes

and the work necessary for their creation.

A simple high-level overview of a workflow is very simple to construct

(figure 7.1 shows a typical example). Such a high-level (or coarse-grained)

view is unlikely to reflect what is actually required to complete the specified

task. Whilst much effort is typically put into ensuring that the calculations

performed are valid and useful (these parameters are incorporated in the

protocol, see section 7.9) it is vital that the infrastructure is in place to allow

such a protocol to be adopted.

162

Figure 7.1: A simple high-level overview of a workflow.

7.1 Existing Workflow Technology

Murray-Rust et al. have examined various methods for the creation and de-

velopment of workflow technology for chemistry [189, 190]. Their approach

has built on the myGrid Taverna project [191] and focuses on creating Web-

Services (WS) for each of the processes. A WS provides a standardised

programmatic interface for a particular piece of functionality. This has the

advantage that large libraries or platform-dependent code need not be dis-

tributed. Instead the process that they perform are encapsulated within a

single WS.

A finer-grained workflow for the required tasks is shown in figure 7.2.

Whilst this is more realistic than that shown in figure 7.1, none of the

processes or repositories shown were immediately available in usable states.

Previous experience showed that it was unrealistic to attempt to control

the entire process with a single workflow; a modular approach was therefore

adopted. This required the creation of lightweight and independent modules

for each of the processes. The modules created would then be encapsulated

in a WS and distributed for re-use. The glue between each of the modules is

XML/CML and the JUMBO toolkit which allows the output of one activity

to be the input for the next as outlined in by Zhang et al. in 2004 [192]. To

develop the required modules (which are often entire workflows themselves)

163

CIF

CIF REPOSITORY

DOWNLOAD

CREATE

INPUT

RUN

RESULTS

REPOSITORY

88 8 8

MOPAC, GAMESS...
RETRIEVE

RESULTS

ANALYSIS

QUERY

WEB BASED WEB SERVICE CLUSTER

LOCAL MACHINE

Figure 7.2: A workflow describing the ideal situation for calculating proper-
ties of a collection of CIFs and analysing the results

164

each of the processes and repositories must be considered at a lower level.

7.2 CIF Repositories

The Cambridge Crystallographic Data Centre (CCDC) was conceived in 1965

as a non-profit, charitable institution whose objectives are the general ad-

vancement and promotion of the science of chemistry and crystallography

for the public benefit. As part of this, the CCDC compile the Cambridge

Structural Database (CSD) which is the world repository of small-molecule

crystal structures.

The CSD, whilst not web-based, should therefore provide an ideal reposi-

tory of CIFs. Unfortunately the conditions of use of the CIFs provided from

the CCDC CIF archive state that

Individual CIF datasets are provided freely by the CCDC on the

understanding that they are used for bona fide research purposes

only. They may contain copyright material of the CCDC or of

third parties, and may not be copied or further disseminated in

any form, whether machine-readable or not, except for the pur-

pose of generating routine backup copies on your local computer

system. [193]

The intention is for all the results of this project to be openly available (and

repeatable), thus it was determined that the CCDC could not be used as a

CIF resource.

The electronic supplementary data provided for an article in a chemical

journal may contain a CIF. This data can (often) be accessed without sub-

scribing to the journal, is electronically searchable and can be reused. It is

therefore ideal for this project except that there is no longer a single access

point or access protocol.

165

list of journals
and years
list of journals
and years
list of journals
and years
list of journals
and years

list of journals
and years
list of journals
and years
list of journals
and years
list of journals
and years

list of journals
and years
list of journals
and years
list of journals
and years
list of journals
and years

list of papers
list of papers
list of papers
list of papers
list of papers
list of papers
list of papers
list of papers

list of papers
list of papers
list of papers
list of papers
list of papers
list of papers
list of papers
list of papers

list of papers
list of papers
list of papers
list of papers
list of papers
list of papers
list of papers
list of papers

list of papers
list of papers
list of papers
list of papers
list of papers
list of papers
list of papers
list of papers

list of papers
list of papers
list of papers
list of papers
list of papers
list of papers
list of papers
list of papers

list of papers
list of papers
list of papers
list of papers
list of papers
list of papers
list of papers
list of papers

Experimental

Experimental

Experimental

CIF

CIF

CIF

CIF

List of journals

and journals

by year

List of papers

from this

journal by year

Papers

Supplementary

data for

this paper

Figure 7.3: Overview of how journals organise supplementary data.

166

To create a repository of CIFs for calculation it was necessary to deter-

mine how to retrieve the CIFs from a journal that would allow automated

electronic download. Figure 7.3 shows how the supplementary data is typ-

ically organised by a journal. Day described a workflow for this process in

2005 [189]. This workflow was used to provide a repository of CIFs which

were provided as supplementary data for articles published in Acta Crystallo-

graphica, Section E between January 2001 and September 2005. These were

attractive because only a single experiment is reported in each CIF (which

simplifies the parsing process) and because all the CIFs submitted to this

journal must contain certain data items as specified by the IUCr [194].

7.3 Download

The download process as indicated in figure 7.2 would tend to indicate that

a molecule’s CT is immediately retrievable from the CIF, or at least it is

possible to determine whether or not a particular CIF is useful before down-

loading it∗. The nature of the download process thus depends largely on the

availability of an online CIF repository which could be queried for structures

fitting the chosen protocol. Ideally only those CIFs containing structures

that will be calculated would be downloaded. Following the previous discus-

sion this was clearly impossible. This section thus focuses on the creation of

a suitable data structure to store the set of downloaded CIFs and how the

CTs contained in the CIFs were made searchable.

The downloaded CIFs were provided in the structure shown in figure 7.4.

Each of the CIFs is uniquely identified within the journal by a two letter,

four number combination. Although unique, the identifier does not contain

any information about the CIF but it is believed that each reviewer has their

own two letter code and the number is simply an increment. Thus it should

be possible to determine which structures were cleared for publication by

which reviewer.

∗In this case useful means that the CIF contains the CT for a structure that would be
appropriate for calculation.

167

Figure 7.4: The data structure for the downloaded CIFs, the general case
(left) and an example of the values for this work (right).

168

Figure 7.5: The hierarchical data structure adopted for the downloaded
CIFs; the .cif.cml.xml contains the complete CIF parsed to CML and
the .cif.cml1.xml contains only the molecules from the CIF for display
purposes.

Although CIF is based on the STAR syntax that was designed to be

machine-understandable, the CIFs must be converted to CML to be inte-

grated into the rest of the workflow and processed with the available tools.

A hierarchical structure was chosen to store the data pertaining to each CIF;

thus each CIF was moved to a subdirectory of the same name. This al-

lows all the data relating to a particular CIF to be stored under a separate

subdirectory.

169

The CT and the 3D coordinates of the molecules in the CIF are obtained by

the following processing sequence based on that published by Murray-Rust

et al. in 2004 [195]:

1. Read the CIF into an XMLDOM [52] (achieved using a CIF2CML

library [196])

2. Discard minor disordered components

3. Convert fractional coordinates to cartesian

4. Join bonds using ‘reasonable’ covalent radii

5. Apply symmetry operations to generate the minimum number of molec-

ular fragments

6. Generate CT(s) for the molecule(s)

7. Check against chemical formula (often not given)

8. Serialise the result as CML (.cif.cml.xml)

The process is not foolproof as CIFs do not always include the molecular

charges correctly specified and any disorder may be difficult to interpret.

The serialised CML produced should contain all the information specified in

the CIF, but for display purposes a second file was created (.cif.cml1.xml)

which contained only the molecules. The results of this process with the new

file structure are shown in figure 7.5.

CIFs may contain multiple molecules in the unit cell (whether they are re-

peated instances of the same CT or different CTs). The workflow is designed

to deal with each molecule individually, thus subdirectories were created for

each of the molecules in the CIF and the relevant file created (.inp.cml.xml).

These files contained the CT and 3D coordinates of the relevant molecule to-

gether with other data extracted from the CIF used to determine if they

were suitable for calculation. The files can be easily recovered by searching

for all files of filetype .inp.cml.xml under the actae directory. The final

data structure adopted is shown in figure 7.6.

170

Figure 7.6: The hierarchical data structure adopted for the downloaded
CIFs; the moleculeN.inp.cml.xml contains all the data relating to the Nth

molecule found in the CIFs in CML. In this case molecule1 was suitable for
calculation (so the .inp file was created) whilst molecule2 was not.

171

A traditional database has only one instance of a particular piece of in-

formation with many links to it — this is a normalised approach, whereas

using the file system as described above promotes a denormalised approach.

Each time a piece of information is required a copy of it is present (for

example the atom site occupancies are in the CIF, the .cif.cml.xml and

the .inp.cml.xml files) thus no links are required which removes a level

of complication. The only relational ideas in the file system representation

employed are that everything in a particular subdirectory is a finer-grained

representation of what is the parent directory.

7.4 Create Input

Once a structure has been determined to be suitable for calculation, an input

file must be generated for submission to the compute node or program. This

file should contain the unique ID of the molecule. An ant [197] script was

used to combine the coordinates from the .inp.cml.xml file with the job

controls (determined by the protocol) creating the input file (.inp). The

input files are then copied to submission nodes for computation.

To speed up the input creation process, the files for submission were split

into two sets and the input creation script run on both concurrently. These

files were submitted for calculation and many failed very rapidly. A brief

examination of the log files showed that the correct input had not been cre-

ated, for example certain keywords were missing. Further analysis revealed

that some of the input files contained the coordinates for a different molecule.

The entire set of jobs were cancelled.

The input file creation process was repeated and the files examined before

submission to the compute nodes. The same type of mistakes were found in

these files; although not always in the same files that contained errors the

first time. The cause of the errors was found to be that the script used a

temporary file to hold the data and the process was not designed to be multi-

threaded. When run as a serial process the creation of input files succeeded.

172

It is desirable that a standard format to hold input data is implemented (e.g.

CMLComp) with all the concepts linked to dictionaries [139]; these could

either be read directly by the program or automatically transformed into

program-specific input files as described in chapter 4.

7.5 Run

Once the input has been created, running the computation requires moving

the requisite jobs to a suitable computation node and the job starting. This

should be a trivial process but actually proved to be much more complex

than expected. The calculations were to be performed on three separate

clusters; Kellogg, Corona and Vendian.

7.5.1 The Clusters

Cluster is a widely-used term meaning independent computers combined into

a unified system through software and networking. At the most fundamental

level, when two or more computers are used together to solve a problem, it is

considered a cluster. Kellogg is the home-built Beowulf cluster in the UCC,

so-called because it runs only serial jobs. The cluster consists of seven single-

CPU nodes, each with a 2.53GHz Pentium 4 processor and 1Gb memory. It

is intended primarily for running long serial (single CPU) jobs; there is no

parallel environment set up.

Corona is the name for the IBM x-series cluster at the UCC, intended

primarily for running parallel jobs. The submission node of Corona is an IBM

x-series 345, a 2U, dual-Pentium-Xeon machine with 4Gb of memory. The

sixteen compute nodes are IBM x-series 335s, 2.4GHz dual-Pentium-Xeon

machines with 4Gb memory. Although designed for parallel jobs, serial jobs

may be run although they have very low priority.

The Condor pool, for which Vendian is the central manager, consists of

this central manager, and 16 iPaqs. All the machines are setup as dedicated

Condor hosts and are not used for interactive work. The central manager is

173

a Dell OptiPlex GX150 (1GHz Pentium III, 512Mb memory) and the iPaqs

have 500MHz Pentium III processors and 512Mb memory.

The jobs were apportioned between the clusters in the ratio 1
5
:2
5
:2
5

respec-

tively. The numbers of nodes stated above represent the maximum available

on each cluster — the scheduler limits a user’s allocation to allow other users

computer time if required. Based on the data presented in table 5.3 the

geometry optimisation of 1000 molecules containing 15 non-hydrogen atoms

in would require a total run time of 1.1 × 108 seconds (3.5 years) to com-

plete on average — which would take approximately 5 weeks of real time

on the 39 available nodes. The actual real time required was over a year.

Unfortunately, the Corona cluster suffered an unrecoverable crash not long

after this work started resulting in the loss of 16 of the available nodes. The

data, which was backed up, was recovered following which the uncalculated

jobs were again reapportioned between the remaining available nodes and

resubmitted.

The Vendian Condor pool was a recent addition to the UCC computing

facilities following the success of the pool set up on the teaching machines

(which had to be uninstalled). It is effectively a dedicated computing cluster

which uses Condor as the scheduler and networking mechanism. The infras-

tructure was still being put in place to provide a stable environment whilst

this work was being carried out which resulted in a very high percentage

(>99%) of the calculations submitted failing. This was found to be caused

by corruption of the GAMESS executable binary file whilst it was being sent

to the compute node although this remained undiagnosed for some months.

Alternatives to the Vendian cluster were available in the form of the

University-wide Condor pool set up as part of the CamGRID project [198].

Unfortunately this system, which uses Condor in the originally intended cy-

cle scavenging way, does not provide guaranteed uninterrupted runtime and

is only available between the hours of 10pm to 6am. This is because the Uni-

versity Computing Service will only allow the Linux based version of Condor

174

to be used (because of security issues in the Windows based version) and the

computers which make up CamGRID all run Windows but have a dual boot

system. The computers are automatically remotely rebooted into the Linux

operating system at 10pm (if they are not currently claimed by a physical

user), when the Condor service becomes available and then rebooted into the

Windows operating system at 6am. Of course, at any time between 10pm

and 6am a user can reboot a machine into Windows if desired.

The lack on guaranteed uninterrupted runtime was not an insuperable

problem because GAMESS has a checkpointing facility which allows the cur-

rent state to be saved and the calculation restarted from that point. However,

the remote rebooting of the machines does not allow the system to finish

what it is currently doing which therefore does not allow the Condor system

to retrieve the checkpoint data. Overall it was felt that camGRID did not

provide a suitable platform for these calculations, therefore any uncalculated

jobs (effectively all of them) were submitted to the only remaining resource,

the Kellogg cluster.

7.5.2 Schedulers

When a job is submitted for calculation on a cluster, it is not being run

directly, but entering a scheduler which actually performs the process of

moving the job (together with any other specified files) to a particular node

and starting the calculation. The scheduler may also implement a queuing

system so that

all the users of a particular cluster are treated equally badly. [199]

The scheduler provides both advantages and disadvantages; all users are

treated fairly and the submission of a large number of calculations en masse

is possible but it is a further level of complexity which can crash. In cases

where the scheduler crashed, all the completed jobs were removed from the

cluster for parsing and analysis and those which were either unsubmitted or

incomplete were reentered into the queue.

175

IS JOB

SUBMITTED?

IS JOB

FINISHED?

TERMINATED

CORRECTLY?

RESUBMIT

GET NEXT JOB

MOVE JOB TO

LOCAL

MACHINE

YES

NO

YES

YES

NO

NO

Figure 7.7: The decision diagram for retrieving jobs. Ovals represent deci-
sions, each of which requires a separate method, rectangles represent simple
instructions or other workflows. It should be noted that this diagram is
simplified.

176

7.6 Retrieve Results

This process is actually a separate workflow in its own right. Figure 7.7

shows the steps required for this sub-workflow. The rules governing the

three decisions are shown below.

Is Job Submitted? Although the submission script adds all the jobs to the

queue, the actual calculation may not have started. The submission for

a job consists of two files:

Input File (.inp) This consists of the starting coordinates of the

atoms and control information for GAMESS.

Submission File (.sub) This consists of a set of instructions for the

node running the job such as where the input file is located, where

the GAMESS program resides and what to do with the various

outputs.

If the job is not in the queue but these two files (and only these two

files) are present, then the job has not been submitted and should be

added to the queue. If the job is in the queue then it simply has not

begun to execute and no further action should be taken.

Is Job Finished? Once a job has begun executing, four further files are

created (the .inp and .sub files must already be present for execution

to occur):

Log file (.log) The information that would usually go to ‘System.out’,

designed to be slightly human-understandable.

Data file (.dat) Essentially a more compressed version of the data

that is sent to the log file. Less human-understandable and also

more difficult to machine-parse completely unambiguously. The

start and end points are less well defined. This file only contains

the data, rather than fail messages.

Queue manager log file (.pbs.log) An empty file as all the infor-

mation is sent to the error file.

177

Queue manager error file (.pbs.err) A complete list of where GAMESS

stores particular files etc.

Any job that has only these six files present is treated as finished and

is suitable for further processing. However, GAMESS also creates a

series of F files. These all have file types of the form:

.F\d\d?

The presence of the these F files indicates that either the job is still

running, or that the node has crashed during the execution of the job.

Unfortunately such information is not present in the .pbs.err file. It

is thus necessary to interrogate the list of currently executing jobs to

determine if this job is present. If it is then no further action should

be taken, if it is not then the job has crashed during execution and this

should either be immediately resubmitted automatically or moved to

another location ready for manual resubmission. Although there is a

desire to automate the entire process, it may not be sensible to have

automatic resubmission of jobs of this sort because an analysis of the

failed job might lead to useful knowledge.

If finished then move else wait If the job has finished then remove the

files to a permanent store otherwise look at the next job, if all the jobs

have been looked at then wait for a specified time before restarting the

process.

Determine if job has terminated correctly JUMBOMarker was used to

determine that the log file produced was complete as described in sec-

tion 4.3. If the log file is complete then the file can be moved to the

results repository, otherwise it should be resubmitted.

7.7 Results Repository

Web-based repositories do exist, such as DSpace, which captures, stores, in-

dexes, preserves, and distributes digital research material [200]. However,

178

whilst analysing the data produced, a local repository was preferred, be-

cause until the analysis was completed the files containing the data were

being frequently accessed and modified. A local repository reduces access

times, bandwidth requirements and removes a level of complication from the

analysis.

7.8 Designing a Robust Analysis Method

Once the calculations have been performed and the data is in the local repos-

itory, the majority of the analysis can occur. Chapter 5 details various exam-

ples in which the calculation was changed owing to peculiarities discovered

in the data created, and such changes were also necessary in this study.

This involved finding molecules which were inappropriate for calculation and

tightening the protocol so that such instances would be filtered off before

submission (see section 7.11).

Increasing the severity of the filters imposed on the data for calculation

is useful for increasing the efficiency and validity of future calculations but

not for those molecules already calculated; these must be retrofitted with the

improved protocol. Two possible ways of retrofitting the data are

• altering the file structure

• altering the file

7.8.1 Altering the File Structure

Altering the file structure could range from changing the name of a file (so

that it would no longer be included in an iterative call for all files of a

particular type), to the complete deletion of a file and all data derived from

it. The second of these examples would decrease the amount of storage

required for the data and the subsequent corpus would more closely resemble

the data structure generated in future using the protocol.

179

It was felt that the needless and wanton destruction of data in this manner

should be avoided and therefore all results (however ridiculous) should be

kept in the dataset and eventually archived along with the rest. However,

included in the aims of this study are a desire to check the validity of the

data available in the public domain, to allow re-use of the data and to allow

others to recreate experiments, thus it is necessary to provide an indication

of the quality of the data during this process together with the necessary

tools to analyse it.

7.8.2 Altering the File

Altering the file is a logical progression from the denormalisation of data;

all the data used to determine whether or not a molecule in a particular file

is suitable for calculation should be present in that file. The files already

contain elements or attributes from the original CIF indicating, for example,

the presence of disorder; further elements were included during analysis to

indicate whether or not a molecule passed a particular filter, or the data

required to ascertain if it would pass.

The elements added to a file need not be those pertaining to the require-

ment of the protocol. For instance if a molecule was found to be protean this

can also be indicated. Elements added purely to determine if the molecule

has passed the requirements for the protocol, or is suitable for further analysis

are in the form;

<scalar id=‘flag’ dictRef=‘jat:cyclic flag’>ACYCLIC</scalar>

or

<scalar id=‘flag’ dictRef=‘jat:proteus flag’ />

and are referred to generally as flags.

7.9 Creating a Protocol

When performing HT calculations it is important to reduce, as far as possible,

the error rate of those calculations and also to maximise the amount of

180

useful work done in the time available. Previous experience of designing

protocols, and analysis of the calculations performed suggested that it is a

better use of the available resources to construct a fairly simple protocol

and refine it after calculations have been performed rather than attempting

to design the perfect protocol before starting any calculations. It is more

efficient to perform more radical but crude filtration than to create very

specific filters; although this might prevent a few interesting structures from

being calculated, overall, more structures will be determined.

A protocol may be divided into two separate sets of parameters:

Job controls such as the time allowed, the memory available, the size of

the basis set and the level of theory to use.

Molecule selection is it reasonable to attempt to calculate the geometry

of this molecule given the specified job controls?

The job controls used were those which had been determined as a result

of the analysis of the MOPAC molecules, i.e. the 6-31G* basis set, B3LYP

exchange function, internal coordinates and a maximum runtime of one week

(an example of a full input file showing all the job controls is shown in figure

5.7).

7.10 Molecule Selection Parameters

Molecules that are attractive for submission for both high- and low-throughput

computation are ones that will provide interesting results and that run to

completion rapidly. Finding such molecules is both difficult and time con-

suming. Whilst low-throughput computation might focus more on a few

interesting molecules and allow such calculations to run for extremely long

times, HT computation focuses on getting as many results as possible in the

given time.

The initial parameters selected to determine if a molecule was suitable for

calculation were

181

• no disorder

• element type

• number of non-hydrogen atoms

Disorder in CIFs can present a problem, especially when the disordered

groups are not correctly identified, or the occupancy of the disordered sites

are equal (because then it is not trivial to determine which of the sites go

together to form each group). To prevent such problems, any structure that

contained disorder was determined to be ineligible for calculation — it should

be noted that this check was performed on a per-molecule basis rather than a

per-CIF basis, hence some molecules in a CIF might be eligible for submission

whilst others are not.

This study focussed primarily on organic structures with well-described

bonding schemes containing only those elements which can be represented

using the basis set and level of theory stated above. Therefore only molecule

containing the following element types were considered for submission: H,

B, C, N, O, F, Si, P, S, Cl and Br. Table 5.3 shows the predicted run time

required for a calculation involving a certain number of non-hydrogen atoms.

This suggests that ca. 95% of the calculation on molecules containing 20 non-

hydrogen atoms are likely to complete within a week. Molecules containing

fewer than 20 non-hydrogen atoms are likely to run to completion in less

time.

To prevent calculating the structures of too many solvent-type molecules

(for example water and dichloromethane) which, because of their abundance

in the CIFs, would dominate the available computing time and provide little

of interest, a minimum number of non-hydrogen atoms was also imposed.

The minimum value chosen was four, this removes many small solvents and

counter ions (such as ammonium) without preventing some of the more in-

teresting small molecules from being calculated (especially α substituted car-

bonyl groups with one to three fluorine and chlorine atoms present).

182

The imposition of the initial parameters on the dataset yielded ca. 2400

molecules. It was decided that this should be split into two sets of input data:

those molecules with four to 15 non-hydrogen atoms, and those with 16 to

20. The sets contained approximately 1200 and 1000 molecules respectively.

The submission of the latter set (with more non-hydrogen atoms and hence

longer run times) was dependent on the results derived from analysing the

first set. Unfortunately, although the results of the initial dataset were pos-

itive, the loss of available compute resources and time constraints prevented

the second set from being calculated. Therefore the following calculations

consider molecules containing four to 15 non-hydrogen atoms, with no disor-

dered atoms present and only containing the elements specified above.

It was fully expected that further refinement of the selection parameters

would be required as the analysis progressed. Methods for implementing

these are described in section 7.8. A filter to remove molecules with unpaired

electrons was not implemented because it was thought that the limit imposed

on the number and type of atoms would make it impossible for such molecules

to be present. Only very stable radicals are sufficiently stable to form crystals

which are typically found in large structures or structures containing heavy

metals [201].

The total number of CIFs in the corpus was 6738, from which 6676 were

successfully parsed to CML. The 63 which were not parsed lacked partic-

ular required data items or contained the data items in a form which was

not understandable by the parser (they did not conform to the CIF dictio-

nary within acceptable tolerance). The parsed CIFs yielded a total of 6455

molecules. Using the three initial parameters 1181 molecules were found that

were suitable for calculation.

7.11 Refining the Protocol

The comparison of MOPAC and GAMESS bond lengths suggested that per-

forming geometry optimisations at 6-31G* with GAMESS provides consis-

183

1.2 1.4 1.6 1.8 2.0 2.2

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

CIF bond length / Angstrom

G
A

M
E

S
S

 b
on

d
le

ng
th

 /
A

ng
st

ro
m

Figure 7.8: One clear outlier is visible, as is the appearance of bands, for
example at a calculated bond length of 1.5Å. The x = y line is shown.

184

tent, and high-quality data. Crystallographic data is considered to be of a

consistent quality (as opposed to the NCI database), therefore any outliers

found between the bond lengths reported in the CIF and those calculated

by GAMESS are indicative of possible problems in either the experimental

or calculated values — or that like is not being compared with like. All

bonds to hydrogen atoms are excluded from the analysis because their posi-

tions are poorly determined by crystallographic methods in general. Proteus

molecules were also removed from the dataset before the geometries were

compared. The analysis of these molecules is presented in section 8.2. As

before, both x-y and QQ plots were used to determine outliers.

Figure 7.8 shows all the 9512 bond lengths reported in the CIF against

those calculated by GAMESS (excluding bonds to hydrogen); the bonds are

from 973 molecules. There are two features of note; a clear outlier and an

apparent banding. The molecule giving rise to the outlier was examined and

found to be N,N -dimethylformamide. The bonds giving rise to the banding

at a GAMESS bond length of 1.5Å were all found to be perchlorate ions.

The determination of the positions of atoms in solvent/ion/guest molecules

(such as the perchlorate anion) is not given the same priority as those from

the major structure and therefore these molecules should not form part of

the analysis. A program was written to check whether or not a molecule

was a solvent/ion/guest and to add a flag indicating the results of this test.

Appendix F shows the list of molecules, or molecular fragments considered

to fall into this category. Figure 7.9 shows the QQ plot of all the 9512 bond

length changes — the outliers are not as clearly apparent but there appear to

be overlapping sets of data, with the behaviour changing at ∆R ≈ ± 0.05Å.

The cause of this is observed later.

After the solvent/ion/guest molecules were removed from the dataset, 8728

bonds (from 785 molecules) remain; the QQ plot of these is shown in figure

7.10. The major outliers are caused by the loss of hydrogen bonding (on

moving from the crystalline state to a single molecule in vacuum). Effectively

185

−4 −2 0 2 4

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

Theoretical Quantiles

∆R
 (

G
A

M
E

S
S

−
C

IF
)

/ A
ng

st
ro

m

Figure 7.9: All bonds in the corpus excluding those to hydrogen — the data
appear to be normally distributed within ∆R ≈ ± 0.05Å. It is possible
that there are several overlapping distributions. Overall ∆R=0.016Å and
s=0.022Å.

186

−4 −2 0 2 4

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

Theoretical Quantiles

∆R
 (

G
A

M
E

S
S

−
C

IF
)

/ A
ng

st
ro

m

Figure 7.10: The QQ plot of all bonds excluding those from solvent/ion/guest
molecules — the data is mostly normally distributed with ∆R=0.014Å and
s=0.017Å.

187

this means that the comparison of bond lengths is not comparing like with

like, resulting in large outliers. To remove such outliers from the dataset, all

bonds involving oxygen atoms that were not bonded to two non-hydrogen

atoms, are marked with a flag to indicate that they might be affected by

hydrogen bonding and removed from further analysis. Similarly all nitrogen

atoms that are bonded to one or more hydrogen atoms and are sp3-hybridised

may be hydrogen bond donors and are therefore also flagged. It should be

noted that this is done on a per-bond basis, thus other bonds in the molecule

are still included and the molecule would still be considered suitable for

calculation.

After the removal of possible hydrogen bonding effects, 7177 bonds (from

782 molecules) remain; the QQ plot of these (figure 7.11) shows that there are

still outliers. On examination many of the outliers were caused by molecule

with large R-factors; following advice from Alison Edwards, all CIFs with

R-factor > 0.05 were removed from the dataset, and the protocol altered to

filter off such structures in future because these are less likely to be high

quality structures [202]. Figure 7.12 shows the QQ plot of the 5034 bonds

from 571 molecules following the imposition of this filter.

It is possible to place constraints on particular atom sites during the de-

termination of the crystal structure which are labelled in the CIF using the

atom site refinement data item. It was felt that structures with con-

strained atoms (except hydrogen) were not sufficiently experimentally deter-

mined.

The initial filtering of constrained atoms was performed on a per-bond

basis — only those bonds containing constrained atoms were removed from

the analysis, because the remaining bonds in the molecule would still re-

flect experimentally determined values — but this proved to be ineffectual.

Therefore, all molecules containing constrained atoms were removed from

the dataset. Figure 7.13 shows the QQ plot resulting from removing only

constrained bonds rather than the entire molecule (4264 bonds from 547

188

−4 −2 0 2 4

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

Theoretical Quantiles

∆R
 (

G
A

M
E

S
S

−
C

IF
)

/ A
ng

st
ro

m

Figure 7.11: The QQ plot of 8728 bonds excluding those from sol-
vent/ion/guest molecules and those which are possibly effected by hydrogen
bonding — the data is mostly normally distributed with ∆R=0.014Å and
s=0.015Å.

189

−4 −2 0 2 4

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

Theoretical Quantiles

∆R
 (

G
A

M
E

S
S

−
C

IF
)

/ A
ng

st
ro

m

Figure 7.12: R-factor 6 0.05 — the data is mostly normally distributed with
∆R=0.013Å and s=0.015Å.

190

−4 −2 0 2 4

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

Theoretical Quantiles

∆R
 (

G
A

M
E

S
S

−
C

IF
)

/ A
ng

st
ro

m

Figure 7.13: No constrained bonds — the data is mostly normally distributed
with ∆R=0.013Å and s=0.015Å.

191

−4 −2 0 2 4

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

Theoretical Quantiles

∆R
 (

G
A

M
E

S
S

−
C

IF
)

/ A
ng

st
ro

m

Figure 7.14: No molecules containing constrained non-hydrogen atoms —
the data is mostly normally distributed with ∆R=0.013Å and s=0.014Å.

molecules).

Figure 7.14 shows the QQ plot of the 3658 bonds (547 molecules) which

remain following the imposition of the filters described above. The outliers

∆R < −0.05Å have two causes; loss of aromaticity and incorrectly specified

charges in the CIF. 1,3,5,7-cyclooctatetrene in vacuo has been calculated to

have alternating bond lengths of 1.47Å and 1.34Å reflecting the non-aromatic

nature of the molecule. The crystal structure contains the molecule com-

plexed with thulium allowing metal-ligand electron donation. The reported

C–C bond lengths in the CIF are between 1.40Å and 1.42Å reflecting the

192

−4 −2 0 2 4

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

Theoretical Quantiles

∆R
 (

G
A

M
E

S
S

−
C

IF
)

/ A
ng

st
ro

m

Figure 7.15: Only molecules from CIFs containing the specified elements —
the data is mostly normally distributed with ∆R=0.012Å and s=0.013Å.

aromatic nature of the bonding in this state. There is no reason to believe

that the bond lengths obtained from the CIF and the GAMESS calculation

are incorrect but they describe the molecules in different states. The outlier

should therefore not be interpreted as being caused by bad data.

The process of determining which atoms are part of a molecule is not

currently sufficiently chemically aware. This frequently results in coordinated

molecules and organometallic molecules becoming separated (for example

ferrocene will become two cyclopentadienyl molecules and an iron atom).

The presence of heavy atoms (in the crystallographic sense) in the crystal

193

also reduces the accuracy of the determination of the positions of the lighter

nuclei. Therefore CIFs which contained other than the permitted nuclei (H,

B, C, N, O, F, Si, P, S, Cl and Br) were removed from further analysis.

Figure 7.15 shows the QQ plot of the 5253 bonds (348 molecules) that fulfil

this requirement.

The CIF containing the molecule with incorrectly specified charge con-

tained two charged molecules and the authors had mistakenly swapped the

charges over. There is no simple algorithmic method for determining that

this has occurred, so a manual removal flag was used. 5251 bonds (347

molecules) remain in the dataset; the QQ plot of these is shown in figure

7.16.

The temperature at which the crystal structure is determined affects the

quality of the resultant structure, as mentioned in chapter 6. Tradition-

ally structures were resolved at room temperature but the introduction of

cryocooling has allowed low temperature studies to be performed. The tem-

peratures reported in the entire corpus for this work ranged from 5K to 573K

(the upper bound is highly dubious — see section 8.5). Following advice from

Bernd Schweizer all crystal structures with a reported temperature greater

than 200K were removed and a filter created to prevent the calculation of such

structures in future [203]. Figure 7.17 shows the 1397 bonds (150 molecules)

still in the dataset.

To more completely remove the crystal packing effects from the analysis,

only bonds which are part of a ring are considered. This involved creating

a flag for each bond to designate whether or not it was a cyclic bond —

this is has the sole effect of minimising the crystal packing effects on the

analysis of the data; molecules containing no cyclic bonds are still suitable

for calculation.

990 bonds (128 molecules) remain after the implementation of all the filters

(including that for cyclic bonds). Figure 7.18 shows the QQ plot of the bond

194

−4 −2 0 2 4

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

Theoretical Quantiles

∆R
 (

G
A

M
E

S
S

−
C

IF
)

/ A
ng

st
ro

m

Figure 7.16: Manual removal — the data is mostly normally distributed with
∆R=0.012Å and s=0.013Å.

195

−4 −2 0 2 4

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

Theoretical Quantiles

∆R
 (

G
A

M
E

S
S

−
C

IF
)

/ A
ng

st
ro

m

Figure 7.17: T 6 200 K — the data is mostly normally distributed with
∆R=0.009Å and s=0.012Å.

196

−4 −2 0 2 4

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

Theoretical Quantiles

∆R
 (

G
A

M
E

S
S

−
C

IF
)

/ A
ng

st
ro

m

Figure 7.18: Cyclic bonds only — the data is mostly normally distributed
with ∆R=0.009Å and s=0.011Å.

197

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

1.
8

1.
9

CIF bond length / Angstrom

G
A

M
E

S
S

 b
on

d
le

ng
th

 /
A

ng
st

ro
m

Figure 7.19: The calculated bond lengths appear to be consistently longer
than those determined experimentally, with the effect becoming more pro-
nounced for longer bonds. The x = y line is shown.

length comparisons. There is a slight positive skew present — GAMESS bond

lengths are found to be consistently longer than the corresponding CIF bond

length — with this effect becoming more pronounced for longer bonds. The

lengthening is more apparent in the x-y plot (figure 7.19) and is examined

in chapter 8. Table G.1 shows the 112 unique connection tables of the 128

molecules which pass the final protocol.

198

7.12 Conclusions

As expected, the analysis of the data led to further filtering and refinement

of the original protocol. The final protocol is given below:

• no disordered atoms

• molecules from CIFs consisting only of the following element types are

permitted: H, B, C, N, O, F, Si, P, S, Cl, Br

• molecules containing more that 4 non-hydrogen atoms are suitable —

but the more of these atoms are present the longer the run time is likely

to be (see tables 5.3 and 8.10).

• solvent/ion/guest molecules are not suitable

• only molecules with a R-factor (refine ls r factor gt) 6 0.05 are

suitable

• molecules containing constrained atoms (atom site constraints) other

than hydrogen atoms are not suitable

• structures determined at a temperature greater than 200K are not suit-

able

• manual removal of author error

A further two factors should be considered when comparing the reported

bond lengths in the CIF and those calculated in vacuo. Firstly, hydrogen

bonding in the crystalline form can affect the bond lengths of the atoms

involved and adjacent bonds (see section 8.4.3); the most common hydrogen

bond acceptors and donors found in the dataset were carbonyl and imine

groups, alcohols and amine groups respectively. Algorithms to detect bonds

to these groups have been created and implemented. Secondly, the effects of

crystal packing forces can largely be negated by considering only bonds which

are part of a cyclic system. The identification of cyclic bonds is possible using

the current tools and has been implemented.

199

Developing a suitable architecture for HT computing is non-trivial. Work-

flows must be developed with flexibility and tolerance to failures in mind.

The protocol should be expected to undergo considerable refinement before

it can be considered suitable. This refinement is likely to be directed by the

analysis of the results; to analyse the data produced without knowing the

limitations of the protocol is meaningless.

Traditional workflows programs (such as Taverna) are not well suited to

the kind of HT computing detailed above. It might be possible to incorporate

an entire workflow in such a program but to do so increases the complexity

of the code required. Much of this complexity results from the limited input

and output format for each of the processes in such programs. The program

writers are therefore forced to implement the necessary algorithms to per-

form the intended process as well as the transformation of the data to and

from the specified workflow format. Traditional workflow programs are also

not designed to implement processes on multiple platforms; this is often an

absolute necessity in HT computing.

In general, it is the belief of this author that workflows should be con-

structed from simple, lightweight components each of which should perform

one process. Each process should be written in such a way that it is as

general as possible and clearly reports any errors encountered. Passing data

between the processes is most easily accomplished by correct use of the file

system; a denormalised approach (possibly with each process creating a new

instance of a file) is desirable. The processes may be linked together using

a script if desired. Even if each of the processes are encapsulated in a WS

and made publicly available they are unlikely to be globally usable although

local re-use is possible. Examples of processes that may be re-usable locally

are input creation, submission and retrieval of results.

200

Chapter 8

Results

Some analysis of the results has already been presented in the previous chap-

ter. This analysis was necessary to determine how the original protocol

should be modified and only considered non-proteus molecules that had com-

pleted the geometry optimisation. To give a complete picture of the applica-

bility of the workflow, the failed calculations and the proteus molecules must

also be examined.

8.1 Failure Analysis

The 1181 jobs submitted for calculation under the original protocol yielded

180 instances where the calculation failed (see table 8.1). There were four

sources of failure:

• insufficient time to finish the minimisation (21)

• bad delocalised coordinates generated (16)

• SCF did not converge (78)

• incorrect charge and/or multiplicity specified (65)

The molecules giving rise to each of these failures were examined to ascertain

whether it would have been possible to create a filter to remove jobs of this

type before submission.

201

number of . . .
CIFs 6738
CIFs parsed to CML 6738
molecules extracted 6455
molecules suitable for calculation (original protocol) 1181
disordered molecules otherwise suitable for calculation 65
calculations (total) 1181
calculations failed (original protocol) 180
calculations failed (final protocol) 14

Table 8.1: The breakdown of the calculation statistics.

8.1.1 Insufficient Time

Table 8.2 shows the unique CTs of the molecules that did not have sufficient

time to complete the minimisation process. The dataset of completed calcu-

lations was searched for the CTs of each of the molecules which failed. This

search revealed cases where the calculation of the same CT (with very sim-

ilar initial geometries) resulted in both failures and successfully completed

computations. Figure 8.1 show an example of the energy profiles of the suc-

cessful and failed calculations. The profiles suggest that there is a very small

radius of convergence for the energy minimisation algorithm implemented

in GAMESS. The 21 failures of this type represent a failure rate of 1.8%.

This figure matches that found for the calculation of the MOPAC optimised

structures which, taken in conjunction with the large spread of run times for

a given number of non-hydrogen atoms, suggests that a failure rate of ca.

2% should be expected. There does not appear to be any way to differenti-

ate the CTs giving rise to failures of this type from those which successfully

complete in the time limit. Therefore no further refinement were made to

the protocol.

202

Table 8.2: The molecules which did not have sufficient
time to complete. The numbers below each molecule are:
the number of instances of this molecule which did not
have sufficient time to complete and, in brackets, the
number of instances of the molecule which successfully
completed in the time limit.

1 (0) 1 (0)

1 (0) 2 (32)

1 (0) 2 (2)

1 (1) 1 (0)

Continued on Next Page. . .

203

Table 8.2 – Continued

1 (0) 1 (9)

1 (0) 1 (0)

1 (0) 1 (0)

1 (0)

1 (1)

Continued on Next Page. . .

204

Table 8.2 – Continued

1 (0) 2 (2)

8.1.2 SCF Did Not Converge

The SCF failed to converge for 78 molecules under the original protocol.

These 78 failures were caused by the 16 unique CTs shown in table 8.3.

Again, the dataset was searched for instances where the same CT resulted

in completed calculations; these are indicated in the table.

It was observed that the molecules for which the SCF did not converge

all contain localised charges. However, the dataset included many molecules

with localised charges for which the SCF did converge. It is therefore not

reasonable to include a filter in the protocol to remove such molecules. The

maximum number of iterations permitted for the SCF to converge is 30 by

default in GAMESS. Increasing this value might allow more calculations

to complete. However, these calculations are likely to require more time

than is allowed by the protocol and therefore alteration was thought be be

unnecessary.

205

0 1 2 3 4
-481.75

-481.70

-481.65

-481.60

-481.55

-481.50

-481.45

to
ta

l e
ne

rg
y

/ H
ar

tre
e

step

 worked 1
 worked 2
 failed 1
 failed 2

10 20 30 40 50 60 70 80
-481.7295

-481.7290

-481.7285

-481.7280

-481.7275

-481.7270

to
ta

l e
ne

rg
y

/ H
ar

tre
e

step

 worked 1
 worked 2
 failed 1
 failed 2

100 150 200 250 300 350 400 450
-481.72920
-481.72915
-481.72910
-481.72905
-481.72900
-481.72895
-481.72890
-481.72885
-481.72880
-481.72875

to
ta

l e
ne

rg
y

/ H
ar

tre
e

step

 failed 1
 failed 2

Figure 8.1: The energy profiles for four calculations on the same connection
table (N -benzyl-N -methylprop-2-yn-1-aminium) with similar initial geome-
tries. The y-axis scale is different for each graph.

206

Table 8.3: The molecules for which the SCF did not con-
verge. The number of times each molecule was observed
is indicated.

10 (2) 1 (0)

7 (0) 40 (0)

1 (0) 1 (0)

6 (0) 1 (0)

Continued on Next Page. . .

207

Table 8.3 – Continued

1 (0) 2 (0)

2 (0)

1 (0)

1 (0) 1 (0)

Continued on Next Page. . .

208

Table 8.3 – Continued

2 (0) 1 (0)

8.1.3 Bad Delocalised Coordinates Generated

It was noted in section 5.3 that the automated creation of internal coordinates

by GAMESS may fail. There were 16 instances of this failure from 9 unique

CTs. These unique CTs are shown in table 8.4 — as before, the number of

instances where the same connection table resulted in completed calculations

is indicated in brackets. This is a previously reported GAMESS error and

there is no easy way to determine which molecules it will effect. Therefore,

no changes were made to the protocol.

Table 8.4: The molecules for which bad delocalised co-
ordinates were generated. The number of times each
molecule was observed is indicated.

1 (0) 3 (0)

Continued on Next Page. . .

209

Table 8.4 – Continued

1 (4) 1 (3)

5 (0) 1 (4)

1 (0) 1 (0)

1 (0)

8.1.4 Incorrect Charge or Multiplicity

There were found to be three reasons for this failure, all of which occurred in

molecules suitable for calculation under the final protocol. The most common

cause of this failure was the incorrect charge being specified in the CIF, or

not being specified in a manner that was correctly parsable by the CIF2CML

process. There is no way to account for author error. The checkCIF process

does not report these as severe alerts although these mistakes were detected

210

by the calculation process.

The CIF2CML process might be modified so that it places looser restric-

tions on the format of formulae that it can parse. This would allow the

parsing of the specified formula even if it did not correspond to the format

specified by the CIF dictionary [205]. However, the results of the OSCAR

project suggest that it is impossible to correctly interpret loosely-defined

data types with high precision. Failures of this type would therefore still be

expected.

Two instances of this problem were caused by a mistake in the input file;

one of the lines defining an atom in the file was longer than 80 characters.

This causes GAMESS to skip the next input line which results in the next

atom not being included in the calculation. The cause of the long lines is

the use of the Java Double primitive to hold the coordinates. Whilst the

CIF2CML program holds the fractional coordinates to the precision defined

in the CIF, the cartesian coordinates created by the process are held to

the maximum precision allowed by the Double primitive. Detection of this

problem is possible before submission and was included in later protocols.

However, it is still desirable that the underlying cause should be addressed;

namely that the CIF2CML parser should ensure that the derived values

should be given to the appropriate precision.

The final reason for this problem was incorrectly reported structures. For

example, Newton et al. report the structure and formula of 2-C-hydroxymethyl-

2,3-O-isopropylidene-d-ribono-1,5-lactam as C9H14NO5 which matches the

structure reported in the CIF [208]. However, this structure does not match

the CT given in the article which is C9H15NO5 (see figure 8.2).

Failures owing to the incorrect charge and/or multiplicity being specified

accounted for 5.5% of the submitted calculations and were all caused by in-

correct or inconsistent CIFs. Failures of this type take extremely little time to

211

Figure 8.2: The CTs of 2-C-hydroxymethyl-2,3-O-isopropylidene-d-ribono-
1,5-lactam as reported by Newton et al. The intended structure is shown of
the left and the structure reported in the CIF on the right [208].

calculate (typically a few tenths of seconds) and therefore such computations

could be used to automatically validate the reported crystal structures.

8.2 Proteus Molecules

Previous work highlighted the existence of molecules which when under going

geometry optimisation showed a change in the CT (proteus molecules). The

analytical tools used to determine differences in the geometry between the

input and output structures require that there is no change of CT between

the two. Therefore, before further processing, an InChI was generated for

each molecule in each of the the parsed data-and-coords.xml files. The

InChI was added as a child of the molecule element as a separately names-

paced identifier element (see figure 8.3). A program was written to iterate

through each of the InChIs and compare them to the InChI of the original

(input) molecule. If the basic InChIs did not exactly match, a flag was added

to the file to indicate that the molecule was protean.

Initial analysis of the proteus molecules presented some unexpected results;

namely that although some of the molecules marked as protean did change

CT at some point during the calculation, the input and output molecules

had identical InChIs. To rectify this another flag was introduced

<scalar id=‘flag’ dictRef=‘jat:semi proteus molecule’ />

212

<cml xmlns:inchi="http://www.iupac.org/inchi" xmlns="http://www.xml−cml.org/schema">
 <molecule>
 <atomArray>
 ...
 </atomArray>
 <bondArray>
 ...
 </bondArray>
 <inchi:identifier>
 <inchi:basic>InChI=1/C6H11NO2/c8-6(9)5-3-1-2-4-7-5/h5,7H,1-4H2,(H,8,9)/t5-/m0/s1</inchi:basic>
 <inchi:auxinfo>
AuxInfo=1/1/N:11,14,8,17,6,20,3,1,2/E:(8,9)/it:im/rA:20OONHHCHCHHCHHCHHCHHC
/rB:...</inchi:auxinfo>
 </inchi:identifier>
 </molcule>
</cml>

Figure 8.3: An example of how a molecule’s InChI was incorporated into the
CML document.

These molecules showed a change of CT during the minimisation process but

the optimised structure had an identical InChI to the input, whereas a true

proteus molecule has a different InChI for the input and output structures.

28 proteus molecules were found, most of which were a result of the move-

ment of a hydrogen atom to neutralise the charge on the molecule. A conse-

quence of this was that most of the amino acids and derivative structures were

removed from the dataset. These molecules tend to exist in the zwitterion

form in the solid state and solution where they are able to make favourable

ionic interactions. However, individual molecules (particularly in vacuo) are

not usually stable in this form with respect to the neutral species.

Of the 28 proteus molecules 26 were as a result of charge reduction, in all

but one instance this involved the movement of hydrogen atom(s). The other

cause was the distance between a nitrogen and a boron atom increasing from

1.66Å to 1.84Å which was no longer considered to be within bonding distance

by the analysis tools used. The calculated bond order reported by GAMESS

for the N–B bond was 0.325, with overall charges of +0.64 and −0.77 on the

nitrogen and boron atoms respectively. The two proteus molecules which

were not caused by charge reduction were both found to be molecules that

should have been charged but were not reported to be so in the CIF. Table

H.1 shows an example of the geometries adopted during the calculation of a

proteus molecule.

213

15 semi-proteus molecules were found. 13 of these were caused by 6- or

7-member ring formation between charged and uncharged carboxylic groups

in 1,3 or 1,4 relative positions. A typical example of this can be seen in table

H.2. The remaining two instances involved the distance between bonded

atoms lengthening beyond the value considered to constitute a bond by the

analysis software (see table H.3). Although the semi-proteus molecules are

interesting, overall they do not effect the protocol because only the initial

and final geometries are being compared.

8.3 CIF Analysis

To verify that the repository of CIFs used in this work was a representative

subset of small molecule crystallography (as recorded in the CSD) a series

of comparisons were drawn which are presented below. The statistics are

derived from the 6675 CIFs which were parsed into CML to form the corpus

for this work (set A) and the 775 CIFs which contained at least one molecule

deemed suitable for calculation under the original protocol (set B).

The CCDC publishes yearly statistics, based on the structures in the the

CSD as of the 1st of January each year. The statistics used below are taken

from the 2007 publication. The derivation of the statistics from the datasets

used in this thesis has been performed by automated processes wherever

possible. This means that minor errors are interpreted as errors even if the

error was trivially human-parsable.

Table 8.5 shows the analysis of crystal systems in the CSD and corpus of

CIFs used in this thesis. The 6675 parsed CIFs contained 6673 instances

where the crystal system was correctly defined. The two which did not,

contained incorrect formatting and/or labels that were not defined in the

CIF dictionary. One further result was excluded because it contains a spelling

mistake in the definition (‘rombohedral’).

214

System % of Entries % of Entries % of
CSD set A set A set B set B

Triclinic 23.5 1543 23.1 160 20.6
Monoclinic 52.7 3690 55.3 439 56.6
Orthorhombic 18.9 1203 18.0 165 21.3
Tetragonal 2.2 108 1.6 7 0.9
Trigonal 1.7 59 0.9 4 0.5
Hexagonal 0.5 38 0.6 0 0
Cubic 0.4 29 0.4 0 0
Rhombohedral n/a 2 0.0 0 0
Total 99.9 6672 100 775 100

Table 8.5: The cell symmetries for the CSD and the corpus for this work.
The CSD results are obtained from the 397,293 CSD structures for which the
space group is fully defined.

Table 8.6 shows the distribution of Hermann-Mauguin space groups for the

datasets. The 6675 parsed CIFS yielded 6671 instances with the Hermann-

Mauguin space group correctly defined. The four files for which the space

group could not be identified used labels which were not defined in the CIF

dictionary.

Table 8.7 shows the R-factor statistics for the datasets. The CIF dictionary

allows several to define the R-factor, all of which are valid. This work has only

considered the conventional R-factor defined by the CIF dictionary which is

labelled as

refine ls R factor gt

The required R-factor was contained in 6650 CIFs, the remaining 25 files

had the R-factor given in an alternative format. The CSD contains 3.8%

structures with unreported R-factors, although it should be noted that these

are from short communications and most commonly from the earlier liter-

ature [204]. The corpus for this work contains 0.4% structures with the

conventional R-factor missing, although a valid alternative form was always

present.

215

Space group % of Entries % of Entries % of
CSD set A set A set B set B

P2(1)/c 35.1 1463 21.9 181 23.4
P2(1)/n n/a 997 14.9 134 17.3
P2(1)/a n/a 68 1.0 12 1.6
P-1 22.6 1498 22.5 151 19.5
P2(1)2(1)2(1) 8.1 458 6.9 83 10.7
C2/c 7.9 552 8.3 36 4.7
P2(1) 5.5 298 4.5 54 7.0
Pbca 3.5 257 3.9 37 4.8
Pna2(1) 1.4 95 1.4 21 2.7
Pnma 1.3 92 1.4 0 0
Cc 1.1 46 0.7 3 0.4
P1 1.0 43 0.6 8 1.0
Pbcn 0.9 41 0.6 4 0.5
C2 0.9 54 0.8 3 0.4
Pca2(1) 0.7 61 0.9 10 1.3
R-3 0.6 24 0.4 1 0.1
P2/c 0.6 14 0.2 0 0
P2(1)/m 0.6 34 0.5 0 0
C2/m 0.5 54 0.8 0 0
P2(1)2(1)2 0.4 18 0.3 3 0.4
Pc 0.4 16 0.2 5 0.6
Pccn 0.4 26 0.4 3 0.4
Fdd2 0.3 21 0.3 2 0.3
I4(1)/a 0.3 15 0.2 3 0.4
Total 94.1 6671 93.6 773 97.5

Table 8.6: Hermann-Mauguin space group statistics for the CSD and the
test corpus. The CSD results are obtained from the 397,293 CSD structures
for which the space group is fully defined, and represents > 0.3% of the
structures.

216

R-factor % of Entries % of Entries % of
CSD set A set A set B set B

R 6 0.030 9.2 940 14.1 86 11.1
0.030 < R 6 0.040 19.8 1766 26.5 219 28.3
0.040 < R 6 0.050 22.4 1890 28.3 246 31.7
0.050 < R 6 0.070 27.9 1709 25.6 190 24.5
0.070 < R 6 0.090 10.5 279 4.2 27 3.48
0.090 < R 6 0.100 2.4 46 0.7 6 0.8
0.100 < R 6 0.150 3.4 18 0.3 1 0.1

0.150 < R 0.7 2 0.0 0 0
not reported 3.8 25 0.4 0 0

Table 8.7: R-factor statistics for the CSD and the corpus for this thesis.

Aug-01 Jun-02 Apr-03 Feb-04 Dec-04
0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040
0.045
0.050
0.055
0.060
0.065
0.070
0.075

R
-fa

ct
or

Figure 8.4: The mean R-factor of all the CIFs accepted by Acta Crystallo-
graphica Section E by month. The error bars show the standard deviation
of the values.

217

Tables 8.5 and 8.6 suggest that the dataset used for this thesis does form

a reasonable subset of small molecule crystallography. However, it was ob-

served that the corpus of CIFs used in this study contained a greater per-

centage of lower R-factors than those in the CSD. This was expected because

this study only considers CIFs published between the years 2000 and 2005

inclusive whereas the CSD contains much older structures since when there

have been significant improvements in crystallographic experiments. Fig-

ure 8.4 shows the mean R-factor per month of all the CIFs accepted by Acta

Crystallographica Section E for publication between November 2000 and Au-

gust 2005. The data is derived from the 6123 CIFs used in this study that

contained both the required R-factor and the journal acceptance date. The

graph shows that both the mean and the standard deviation of the R-factor

has remained approximately constant since November 2000. The graph also

shows that the implementation of the R-factor 6 0.05 filter in the protocol

removes at most 50% of the structures published in a particular month.

8.4 Bond Lengths

Figure 8.5 shows a histogram of the reported estimated standard deviations

(esds) for the 990 bonds which pass the final protocol. It is important to

have an idea of the average esd to determine whether or not differences

in bond length between those reported in the CIF and those calculated by

GAMESS are significant. The average esd is 0.003Å and s=0.002Å, therefore

it is likely that bond lengths determined by the two methods that differ by

approximately 0.003Å may be explained by the expected spread of the data.

The graph shows that most of the esds are less than 0.005Å, which might be

a suitable filter to introduce in future protocols.

8.4.1 S–X Bonds

The comparison of the bond lengths in the previous chapter indicated that

the GAMESS bond length was consistently longer than that reported in the

CIF. This lengthening effect was most noticeable for longer bonds which were

identified as S–X bonds (X=C,N). The seven molecules containing cyclic S–X

218

esd / Angstrom

F
re

qu
en

cy

0.000 0.002 0.004 0.006 0.008 0.010

0
10

0
20

0
30

0
40

0
50

0

Figure 8.5: The reported esds of the 990 bonds which pass the final protocol,
esd=0.003Å, s=0.002Å.

219

molecule GAMESS GAUSSIAN03
name bond length / Å

a b a b
lh6438molecule1 1.718 1.791 1.719 1.790
lh6379molecule1 1.742 1.732 1.730 1.741
ac6153molecule1 1.759 1.800 1.762 1.804
ob6428molecule1 1.771 1.769 1.766 1.767
bt6436molecule1 1.839 1.893 1.839 1.888
bt6436molecule2 1.838 1.893 1.839 1.890
cv6296molecule1 1.783 1.759 1.783 1.759

Table 8.8: The bond lengths of the S–X (X=C,N) bonds for the seven
molecules shown in figure 8.6. Both calculations were performed using 6-
31G*/B3LYP.

bonds in the dataset are shown in figure 8.6. There is no clear reason for

the discrepancy in the bond lengths so it was thought that a higher level

calculation may be required.

The molecules were submitted for calculation by GAMESS using a large

basis set (6-311G**) and the B3LYP exchange function. Unfortunately these

calculations did not complete in the time limit and therefore GAUSSIAN03

was used for the calculations instead. The GAUSSIAN03 program was a

very recent addition to the computating facilities at the UCC and runs on

the recently acquired Dove cluster. This is an Opteron-based compute cluster

intended for parallel work. It has a head node with dual Opteron 246 CPUs

and 4GB RAM. There are 8 compute nodes with dual, dual-core Opteron 265

CPUs and 4GB of RAM. This hardware is significantly faster than that of the

Kellogg cluster which reduces the run times approximately eight-fold. This

assumes that the implementation of the DFT code does not scale significantly

differently in the two programs.

The standard 6-31G*/B3LYP calculation was repeated on GAUSSIAN03

to verify that the two methods produced similar bond lengths for the molecules

(see table 8.8). Three further calculations were performed on each molecule:

220

lh6438molecule1 lh6379molecule1

ac6153molecule1 ob6428molecule1

bt6436molecule1 bt6436molecule2

cv6296molecule1

Figure 8.6: Long bonds to sulphur. The indicated bonds show a large differ-
ence between the calculated and CIF bond lengths.

221

CIF 6-311G** 6-31G* 6-311G**
B3LYP MP2 MP2

a b a b a b a b
lh6438molecule1 1.664 1.756 1.716 1.792 1.707 1.772 1.701 1.772
lh6379molecule1 1.720 1.709 1.782 1.739 1.713 1.726 1.709 1.721
ac6153molecule1 1.739 1.771 1.762 1.802 1.744 1.781 — —
ob6428molecule1 1.744 1.730 1.763 1.766 1.752 1.754 1.749 1.750
bt6436molecule1 1.788 1.825 1.840 1.893 1.810 1.843 — —
bt6436molecule2 1.789 1.826 1.840 1.894 1.810 1.843 — —
cv6296molecule1 1.752 1.749 1.782 1.759 1.750 1.739 1.743 1.734

all values are given in Å to four significant figures

Table 8.9: The S–X (X=C,N) bond lengths as reported in the CIF and cal-
culated at various levels and methods of theory. The labels a and b indicate
the bond referred to (see figure 8.6). Where no bond length is shown, the
calculation failed to complete in the required time limit.

6-311G**/B3LYP, 6-31G*/MP2 and 6-311G**/MP2. The results of these

calculations are shown in table 8.9. It was observed that simply increasing

the size of the basis set did not improve the agreement with the experimen-

tal values. However, the calculations at a higher level of theory did show a

general improvement. This suggests that 6-31G*/B3LYP is not sufficient for

accurate calculations involving second row elements. Unfortunately the time

required for calculations at higher levels of theory is often prohibitive. The

protocol must therefore be modified to only include bonds involving first row

elements.

8.4.2 All Bonds

To this point, all the QQ graphs have been plotted using the same axes limits

to make it easier to detect the effect of implementing the various filters. The

limits were chosen so that all outliers would be visible and were −0.25 6
∆R / Å 6 0.25 on the y-axis and ± four standard deviations of the standard

normal distribution on the x-axis. However, now that the major outliers

have been identified and removed for justifiable reasons, it is instructive to

examine the distributions in more detail.

222

−3 −2 −1 0 1 2 3

−
0.

06
−

0.
04

−
0.

02
0.

00
0.

02
0.

04
0.

06

Theoretical Quantiles

∆R
 (

G
A

M
E

S
S

−
C

IF
)

/ A
ng

st
ro

m

Figure 8.7: QQ plot of the 976 bonds in the dataset after the imposition
of all the filters. The data is mostly normally distributed with ∆R=0.009Å
and s=0.010Å although unusual behaviour is still observed at both long and
short bond lengths.

223

The Shapiro-Wilk W test [207] tests the null hypothesis that a sample

x1, . . . , xn are from a normally distributed population. A W statistic of 1 is

found for data that is perfectly normally distributed. The test also provides

a p-value which is used to assess whether or not the observed deviation from

normality is significant. For example, a W statistic of 0.97 with p-value of

0.05 suggests that there is no evidence to reject the null hypothesis at a 95%

confidence level. A lower p-value would indicate that the W value is too

extreme to be explained by chance variation (i.e. evidence against normal

distribution) and the null hypothesis should be rejected.

Figure 8.7 shows the QQ plot of all the bonds in the dataset after the

imposition of all the filters. It is observed that although the data is mostly

normally distributed there are significant outliers at both ends of the distri-

bution. The Shapiro-Wilk W test gives W = 0.960, p-value = 1.04× 10−15,

the null hypothesis is therefore rejected, although the W value near unity

suggests that the data is almost normally distributed. The deviation from

normality is likely to be caused by the tails of the distribution which are

examined in the next sections.

8.4.3 C–C Bonds

Figure 8.8 shows the 752 C–C cyclic bonds in the dataset after the imposition

of all the filters. The molecules giving rise to those bonds with ∆R > 0.03Å

were examined and all found to be involved in hydrogen bonds in the crystal

that had subsequently been lost in the calculation. An example of this effect

is shown in figure 8.9. As expected the C–O bond length decreases when

hydrogen bonding is lost whilst the adjacent C–C bond lengths both increase.

The W value was 0.928 and p-value < 2.2 × 10−16, the null hypothesis is

therefore rejected although the W value indicates that the data is nearly

normally distributed. The tails of the distribution are the likely cause of this

deviation from normality and may be explained by the loss of crystal packing

effects when the calculation is performed.

224

−3 −2 −1 0 1 2 3

−
0.

06
−

0.
04

−
0.

02
0.

00
0.

02
0.

04
0.

06

Theoretical Quantiles

∆R
 (

G
A

M
E

S
S

−
C

IF
)

/ A
ng

st
ro

m

Figure 8.8: QQ plot of the 752 C–C cyclic bonds in the dataset after the
imposition of the final protocol. The data is mostly normally distributed
with ∆R=0.010Å and s=0.008Å. There appears to be a discontinuity at
∆R > 0.03Å.

225

Figure 8.9: The loss of hydrogen bonding can effect the bond length of cyclic
bonds. The bond lengths indicated are in Å.

226

−2 −1 0 1 2

−
0.

06
−

0.
04

−
0.

02
0.

00
0.

02
0.

04
0.

06

Theoretical Quantiles

∆R
 (

G
A

M
E

S
S

−
C

IF
)

/ A
ng

st
ro

m

Figure 8.10: QQ plot of the 160 C–N cyclic bonds in the dataset after the
imposition of the final protocol. The data appears normally distributed with
∆R=0.007Å and s=0.013Å.

227

8.4.4 C–N and C–O Bonds

There are 160 C–N bonds and 54 C–O bonds in the dataset after all the

filters are imposed. The QQ plots of these are shown in figures 8.10 and

8.11 respectively. Both bond types show approximately normally distributed

data. The Shapiro-Wilk W tests for the C–N and C–O ∆R were W = 0.962,

p-value = 2.00 × 10−4 and W = 0.953, p-value = 3.23 × 10−2 respectively.

Again the outliers are caused by the loss of crystal packing effects on calcu-

lation. These tests indicate that the data is not normally distributed, but is

almost so. There are no other bond types with more than 13 instances in

the dataset.

8.4.5 PLATON

Rigid-body model libration corrections can be calculated using PLATON [209].

Unfortunately, these calculations cannot easily be automated because the

program cannot be run entirely from the command line. However, to inves-

tigate the effect of the possible corrections, the program was run manually

on the 129 molecules which contained cyclic bonds that passed the entire

protocol. This dataset comprised 990 bonds but PLATON was unable to

calculate libration corrections for 30 of these bonds. In all cases the PLA-

TON corrected bond length was longer than that reported in the CIF (the

minimum correction was 0.001Å and the maximum 0.014Å), ∆R(PLATON-

CIF)=0.003Å with s=0.002Å. The X–S bonds (X=C,N) were lengthened by

an average of 0.003Å which improved the agreement with the calculated val-

ues for these bonds. ∆R(GAMESS-PLATON)=0.006Å with s =0.010Å, the

maximum and minimum ∆R(GAMESS−PLATON) found were 0.064Å and

−0.031Å respectively. These results suggest that the libration corrected bond

lengths agree well with the calculated bond lengths although the spread of

the data is significantly larger than the esd of the bond lengths. Much of

this variation is expected to be a result of the loss of crystal packing effects

when the calculation is performed on isolated molecules in vacuo.

228

−2 −1 0 1 2

−
0.

06
−

0.
04

−
0.

02
0.

00
0.

02
0.

04
0.

06

Theoretical Quantiles

∆R
 (

G
A

M
E

S
S

−
C

IF
)

/ A
ng

st
ro

m

Figure 8.11: QQ plot of the 54 C–O cyclic bonds in the dataset after the
imposition of the final protocol. The data appears normally distributed with
∆R=−0.002Å and s=0.012Å.

229

0 100 200 300 400 500 600

0.0

0.1

0.2

0.3

0.4

0.5

U
is

o,
bo

nd
 /

Å
²

temperature / K

Figure 8.12: The Uiso,bond for the 9512 bonds (excluding those to hydrogen)
calculated by GAMESS under the original protocol plotted against the tem-
perature at which the experiment was conducted.

230

8.5 Uiso,bond

The

atom site U iso or equiv

data item is used to report the equivalent isotropic parameter Ueq for each

atom in a CIF. The parameter is expected to depend on temperature. The

Uiso,bond between two bonded atoms i and j was defined as:

Uiso,bond =
√

U2
eq,i + U2

eq,j (8.1)

where Ueq,i is the reported Ueq for atom i. Figure 8.12 shows Uiso,bond plotted

against temperature for all 9512 bonds (excluding those to hydrogen) that

were calculated by GAMESS under the initial protocol. There are several

features of interest; firstly there are structures which have reportedly been

determined at 573, 566, 546 and 393 K. These are not reported as high

temperature studies in the literature and look far more reasonable when 273

K is subtracted from the values. It is extremely likely that the authors had

incorrectly reported the temperature in Celsius rather than of Kelvin. The

Uiso,bond appears to be only weakly correlated with temperature (ρ = 0.45).

The bonds giving rise to some of the highest values of Uiso,bond were ex-

amined and were found to be solvent molecules. An example of a structure

giving rise to a high Uiso,bond is shown in figure 8.13. The extreme eccentricity

of the thermal displacement ellipsoids in the solvent molecule suggests that

there is likely to be unreported disorder (minor conformations) present.

Figure 8.14 shows Uiso,bond against temperature for the bonds which pass

the final protocol (although both cyclic and acyclic bonds are permitted).

It is observed that there is still only weak correlation (ρ = 0.48) between

temperature and Uiso,bond. The largest values of Uiso,bond were from the C–F

bonds in 2,2,2-trifluroethanol molecules. These molecules should have been

removed as solvents but were missed. The list of solvent/ion/guest molecules

was compiled by hand and is therefore likely to have some omissions. The

231

Figure 8.13: Displacement ellipsoids at the 50% probability level showing
extremely large thermal motion for the N,N -dimethylformamide molecule.
The size and extreme eccentricity of the O5 ellipsoid in particular suggests
that minor conformations may be present. The figure has been taken from
the article by Li and Xiao [206].

232

0 50 100 150 200 250
0.00

0.02

0.04

0.06

0.08

0.10

0.12

U
is

o,
bo

nd
 /

Å
²

temperature / K

Figure 8.14: The Uiso,bond for the 990 bonds (excluding those to hydrogen)
that pass the final protocol plotted against the temperature at which the
experiment was conducted.

233

4 6 8 10 12 14 16
100

101

102

103

104

105

106

to
ta

l t
im

e
/ s

number of non-hydrogen atoms

y=12.03x3.334

y=(3.095x+1.5268)3

Figure 8.15: The total calculation time for the geometry optimisation of
structures taken from crystallography scales less favourably than the pre-
dicted cubic dependence (red line). However, the predicted run time consis-
tently over estimates the actual value for n < 15.

list of molecules currently identified as solvent/ion/guests is given in full in

appendix F. Figure 8.14 suggests that a further filter might be added to the

protocol, namely that bonds with Uiso,bond > 0.1 Å2 should be omitted from

analysis. Unfortunately Uiso,bond is a derived quantity and is not reported in

the CIF which makes the filter more difficult to implement.

8.6 Time

Figure 8.15 shows that the total run times for the geometry optimisation

of the structures obtained from crystallography scale less favourably (n3.334)

234

number of mean total standard predicted predicted
non-H atoms time / s deviation / s mean total standard

time / s deviation / s

4 2100 1600 2700 980
5 3500 2900 4900 2400
6 9300 12000 8100 4400
7 10000 8100 12000 7300
8 16000 11000 18000 11000
9 32000 35000 25000 15000
10 25000 15000 34000 21000
11 40000 23000 45000 28000
12 59000 35000 58000 36000
13 80000 44000 73000 45000
14 76000 48000 90000 56000
15 110000 61000 110000 84000

all values given to 2 significant figures

Table 8.10: The observed run times are reasonably well predicted using equa-
tion 5.1. The largest observed deviation occurs for molecules containing 14
non-hydrogen atoms with the predicted average run time overestimating the
true average run time by almost four hours. The predicted standard devia-
tion consistently underestimated the observed values.

than those that were already optimised using MOPAC which scale as n2.9469.

It is observed that there is still a large variation of run times for a particular

number of non-hydrogen atoms. Table 8.10 shows that run times predicted

using equation 5.1 are reasonable, the largest difference between the predicted

and actual average run times being approximately 4 hours.

These comparisons support the theory that it is possible to predict the

average run times for calculations using simple models, although the stan-

dard deviation was consistently underestimated. It is important to note that

attempting to predict the time required for a single calculation is nonsensical

given the extremely large standard deviations observed and that very similar

starting structures may require significantly different calculation times (see

figure 8.1). However, the upper bound on the time to calculate a sufficiently

235

large dataset may be predicted with reasonable confidence. It is suggested

that such a dataset should contain at least 100 molecules.

8.7 Applying the Protocol

Figure 8.16 shows the final protocol developed with each of the filters colour

coded to indicate the reason for the implementation. There are five reasons;

Crystallographic effects These filters remove many of the poorly deter-

mined experimental values and are mostly based on data items re-

ported in the CIF — the exception is the removal of solvent/ion/guest

molecules.

GAMESS / time limitation These filters are required for the calculation

to be completed within the time limit or for it to give meaningful

results. For example, there is no point in attempting to compute the

properties of atoms which are not well-described by the basis set being

used.

Methodology The calculation is performed on single molecules in vacuo

which removes many of the short contacts that are made in the crys-

talline form. These filters remove bonds which are likely to be affected

by these disparities.

Author error Such errors are unfortunately unavoidable, although the use

of validation tools before publication should reduce these in future,

they will be present in the legacy literature.

X–Y (Y=Si,P,S,Cl,Br) The basis set and level of theory chosen (6-31G*/B3LYP)

does not appear to be able to accurately calculate the bond lengths of

bonds involving second row (or heavier) elements. Increasing the level

of theory, to MP2 for example, would allow the calculation of heavier

elements, but such calculations require much longer run times.

The identification of particular filters that relate to crystallographic effects

allows the literature to be searched for high-quality structures (i.e. those

236

Figure 8.16: The filters imposed on the data colour coded by reason.

237

Filter % pass
R-factor 6 0.05 66.5
Not solvent/ion/guest 89.4
No non-H refinement 83.0
Temperature 6 200K 32.9
No disorder 92.8
Pass all filters 18.0

Table 8.11: The percentage of the molecules which pass each individual crys-
tallographic filter and the percentage which pass all the filters.

that pass all the crystallographic effect filters). The percentage of molecules

extracted from the CIFs which pass each crystallographic filter and all the

filters is shown in table 8.11.

Using the esd of bond lengths it is possible to estimate the maximum

torsion angle in a toluene molecule that may be accounted for by random

error in the coordinates as 0.85◦ (see figure 8.17). This agrees well with

the esd reported for the torsion angles in the CIF which is of the order of

0.5◦. The 6455 molecules obtained from the CIFs were searched for mono-

substituted phenyl rings (the substituent being a carbon atom) contained in

molecules that pass all the crystallographic filters of the final protocol. The

largest deviation from planarity was found to be 4.1◦ for the cyclic atoms

and 7.5◦ between the external carbon and the ring.

GAUSSIAN03 allows the calculation of optimised geometries with speci-

fied constraints. These constraints allow the torsion angle between particular

atoms to be fixed at a particular value. Figure 8.18 shows the chosen con-

straints places on the torsion angles of toluene molecules. The energies of the

geometry optimised structures relative to the completely flat molecule were

found to be 0.35kJ mol−1 and 2.25kJ mol−1 for torsion angles t1=t2=175◦

and t1=t2=170◦ respectively. These calculations suggest that the energy

required to produce the torsion angle of 7.5◦ is approximately 2kJ mol−1.

However, there is no simple interaction apparent in the crystal structure to

238

Figure 8.17: The maximum torsion angle of a phenyl ring that can be ac-
counted for by the average esd in the atomic coordinates and a bond length
of 1.4Å is 0.85◦.

Figure 8.18: The torsion angles which were constrained during the geometry
optimisation of toluene. The values shown are in degrees.

239

explain this distortion from planarity.

8.8 Conclusions

The information in CIFs can be parsed to more generally machine-understandable

formats with extremely high recall and precision. This data includes the con-

nection tables of the molecules and some derived data. This allows molecule-

based data-drive science to be performed. The use of validation tools such

as checkCIF before publication means that there are few errors in the data.

The comparison of the reported bond lengths to those calculated by GAMESS

suggests that variations in bond length less than 0.03Å are the result of ran-

dom error. The agreement between the values is improved by using rigid-

body libration corrected bond lengths. Differences of bond lengths greater

than 0.03Å may be explained by identifiable effects in general, but may merit

further examination. The results have shown that the poor agreement be-

tween the bond lengths calculated by MOPAC and GAMESS for aromatic

nitrogen-bearing moieties are likely to be caused by MOPAC.

The protocol developed allowed the identification of high-quality crystal-

lographic structures (reducing recall at the expense of precision). Day is

conducting further work which implements this protocol and involves inor-

ganic structures [210]. The bond lengths in these high-quality structures,

which account for ca. 20% of the recently reported structures, have an esd of

0.003Å. These structures form a dataset that can be used for the identifica-

tion of interesting structures which can be reused to form the basis of future

experiments.

240

Appendix A

Computational Chemistry

A.1 ab initio Calculations

Using atomic units, the time-independent molecular Schrödinger Hamilto-
nian is (ignoring all relativistic terms)

H = −1

2

∑
i

∇2
i −

∑
iA

1

|ri −RA| +
∑
i>j

1

|ri − rj| +
∑
A>B

ZAZB

|RA −RB| (A.1)

where i, j denote electrons at ri, rj and A,B denote nuclei with charges

ZA, ZB at RA,RB. Solutions (energies and wavefunctions) of the Schrödinger
equation are obtained from

HΨ = EΨ (A.2)

for fixed positions of the nuclei. E ≡ E(R) is therefore the potential energy
surface. The fundamental expansion functions used to find approximate so-
lutions of Schrödinger’s equation are Slater determinants, which have the
form

Ψ =
1√
n!

φ1(1) φ1(2) · · · φ1(n)
φ2(1) φ2(2) · · · φ2(1)

...
...

φn(1) φn(2) · · · φn(n)

(A.3)

= A(φ1φ2φ3 · · ·φn) (A.4)

A =
1√
n!

n!∑
u

σuPu (A.5)

where Pu is a permutation of the coordinates in φ1φ2φ3 · · ·φn. A permutation
is even (σu = +1) or odd (σu = −1) if it is made up of an even number or odd
number of single interchanges. These determinants obey the Pauli principle.

241

Ideally hydrogenic type functions

Rnl(r)exp(−ZnR)Ylm(σφ) (A.6)

would be used as expansion function for molecular orbitals. These can also
be written as

rnxpyqzsexp(−Znr) (A.7)

from which it is seen that such a set includes s, p, d, f, etc. atomic orbitals.
However, it is impossible to (non-numerically) evaluate the one and two
electron integrals which arise in the evaluation of matrix elements if such
functions are used. These functions are usually referred to as Slater functions,
or Slater Type Orbitals (STOs).

Boys [211] suggested using Gaussian basis functions, or Gaussian Type
Orbitals (GTOs)

xpyqzsexp(−ar2) (A.8)

with p, q, s integers, and r2 = x2 + y2 + z2. The angular parts of these
functions are the same as the STOs but the radial part is different. The
derivative of an s Gaussian is zero at the origin, unlike the STO. The Gaus-
sian dies off with exponential quadratic dependence compared to the STO’s
linear dependence for large r. Thus GTOs have a totally different behavior
to STOs at both small r and large r. However the key advantage of GTOs
is that all the required integrals are easy to calculate. This follows from the
fact that the product of two Gaussians is another Gaussian.

To overcome the less desirable short and long range behavior of Gaus-
sians, it is common to used fixed combinations of one to six Gaussians as
basis functions, chosen to make the combination look more like STOs. STO-
3G for example means the use of a contracted combination of three Gaussians
to represent a Slater function. Computational chemistry programs have de-
veloped a specific notation for basis sets of this sort often called Pople’s basis
set. The notation of the basis set is in the form N-ijG or N-ijkG where N
is the number of Gaussian primitives (GTOs) for the inner shells, ij or ijk
are the numbers of Gaussian primitives for contractions in the valence shell.
N-ijG* denotes a polarized basis set augmented with d type functions on
heavy atoms only, whilst N-ijG** or N-ijG(d,p) specifies a basis set with
p-functions on hydrogen atoms as well.

A.1.1 Closed Shell Self Consistent Field Theory

The energy expression is

E = 〈Ψ|H|Ψ〉 = 2
∑

i

hii +
∑
ij

[2(ii|jj)− (ij|ij)] (A.9)

242

with Ψ = A(ψ2
1ψ

2
2 · · ·ψ2

n), where the superscript 2 indicates dual occupancy.
Each orbital ψi is expressed in terms of the basis functions

ψi =
m∑

α=1

cαiηα (A.10)

The orbitals which make the energy stationary with respect to variations of
the molecular orbital coefficients cαi, maintaining orbital orthonormality are
then found.

If n of these orbitals φi have been found, there will be (m − n) other
orbitals φa (called unoccupied or virtual orbitals) which obey 〈φa|φi〉 = 0
because there are m total basis functions. The condition that the energy is
stationary with respect to the variation

φk → φk + εφa (k = 1, 2, . . . n; a = n + 1, n + 2, . . .m) (A.11)

is therefore found. Substituting A.11 in A.9 and setting everything with a
coefficient of ε to zero gives the stationary condition. For the one electron
part

〈φk + εφa|h|φk + εφa〉 = hkk + ε(hak + hka) + ε2haa (A.12)

the coefficient is therefore 2hak (using hermiticity). Similarly for the two
electron part

(k + εa k + εa|jj) = (kk|jj) + ε[(ka|jj) + (ak|jj)] + · · · (A.13)

(ii|k + εa k + εa) = (ii|kk) + ε[(ii|ka) + (ii|ak)] + · · · (A.14)

(k + εa j|k + εa j) = (kj|kj) + ε[(aj|kj) + (kj|aj)] + · · · (A.15)

(i k + εa|i k + εa) = (ik|ik) + ε[(ik|ia) + (ia|ik)] + · · · (A.16)

using the properties of two electron integrals and replacing
∑

i by
∑

j where
appropriate, the stationary condition is obtained

4hak +
∑

j

[8(ak|jj)− 4(aj|kj)] = 0 (A.17)

or
hak +

∑
j

[2(ak|jj)− (aj|kj)] = 0 (A.18)

The Fock hamiltonian F is defined such that

〈φa|F |φk〉 = hak +
∑

j

[2(ak|jj)− (aj|kj)] (A.19)

243

which is more recognisable as a hamiltonian when written as

F (1) = h(1) +
∑

j

2

∫
φ2

j(2)

r12

dr2 −
∑

j

∫
φj(2)φj(1)

r12

dr2P12 (A.20)

where P12φk(1) = φk(2). The Fock hamiltonian is therefore an effective one-
electron hamiltonian, including a kinetic term, nuclear attraction and an
average potential term made up of a n electron coulomb part and an electron
exchange part. Thus from A.18 and A.19, the condition that the energy is
stationary with respect to variations of the molecular orbital coefficients is

Fak ≡ (φa|F |φk) = 0 (k = 1, 2, . . . n; a = n + 1, n + 2, . . . m) (A.21)

The orbitals that satisfy this condition may be obtained by solving the canon-
ical secular equations ∑

β

(ηα|F − εi|ηβ)cβi = 0 (A.22)

where εi is the ith energy, for which it is known that the resulting orbitals
obey

Fpq = εpδpq (A.23)

Thus the solutions of the secular equations obey the conditions of A.21. In
practise, because F is a hamiltonian and εi are the corresponding energies
of the orbitals φi, the n lowest eigensolutions of A.22 are identified as the
occupied orbitals and the (m−n) remaining solutions as unoccupied orbitals.
F is defined in terms of its solution so an iterative procedure is required to
solve the Self Consistent Field equations A.22:

i Select the geometry of the molecule and the basis set.

ii Evaluate the basis function integrals hαβ,(αβ|γδ) and Sαβ

iii Guess some coefficients cαβ for the occupied orbitals

iv Form the density matrix Dαβ =
∑n

i cαicβi

v Construct the Fock matrix

(ηα|F |ηβ) = hαβ +
∑

γδ

(2(αβ|γδ)− (αγ|βδ)) (A.24)

vi Solve the secular equations A.22. Go to step (iv).

In step (iv), other than the first iteration, check that D has changed (to a suf-
ficiently small tolerance) from the previous iteration; if it has, the equations
have converged and the energy is then calculated using

E = 2
∑

αβ

Dαβhαβ +
∑

αβγδ

DαβDγδ(2(αβ|γδ)− (αγ|βδ)) (A.25)

244

A.2 Density Functional Theory

Since 1993 DFT has become the most often used approach of computational
quantum chemistry for the study of ground state molecular properties. In
DFT, the total energy is expressed in terms of the total electron density
rather than the wave function. In this type of calculation, there is an ap-
proximate Hamiltonian and an approximate expression for the total electron
density. DFT methods can be very accurate for comparatively little com-
putational cost. The drawback is, that unlike ab initio methods, there is
no systematic way to improve the methods by improving the form of the
functional.

Physicists have been promoting the use of DFT since Slater’s contribu-
tion in 1951 [212] which suggests the replacement of the exchange term in
the Hartree-Fock method by the Dirac potential [213] which he argued con-
tained both the exchange and correlation effects. This original form made
the molecules significantly over bound. There are now no problems with ma-
trix element evaluation and DFT codes which use local functionals are now
less expensive to use than Hartree-Fock codes.

Traditional methods in electronic structure theory, in particular Hartree-
Fock theory and its descendants, are based on the complicated many-electron
wavefunction. The main objective of DFT is to replace the many-body
electronic wavefunction with the electronic density as the basic quantity.
Whereas the many-body wavefunction is dependent on 3N variables, three
spatial variables for each of the N electrons, the density is only a function of
three variables and is a simpler quantity to deal with both conceptually and
practically.

If N is the number of elections then the density ρ(r) is defined by

ρ(x1) = N

∫
. . .

∫
|Ψ|2ds1dx2 . . . dxN (A.26)

where Ψ(x1x2 . . .xN) is the electronic wavefunction for the molecule. It is
observed that ∫

ρ(r)dr = N (A.27)

The most common implementation of density functional theory is through
the Kohn-Sham method [214]. The Kohn-Sham equations for the Kohn-Sham
orbitals φi are

(
−1

2
∇2 + v(r) +

∫
ρ(r′)
|r− r′|dr

′ + vxc(r)

)
φi(r) = εiφi(r) (A.28)

245

where vxc is the exchange-correlation potential. If this can be exactly de-
termined the exact density is accessible. However this remains unlikely and
currently semi-empirical functionals are used instead. One of the most fre-
quently used functionals is B3LYP [215, 216, 217].

B3LYP which is a hybrid functional in which the exchange energy, in this
case from Becke’s exchange functional, is combined with the exact energy
from Hartree-Fock theory. Three parameters define the hybrid functional,
specifying how much of the exact exchange is mixed in. The adjustable
parameters in hybrid functionals are generally fitted to a training set of
molecules. Unfortunately, although the results obtained with these func-
tionals are usually sufficiently accurate for most applications, there is no
systematic way of improving them (in contrast to some of the traditional
wavefunction-based methods like configuration interaction or coupled cluster
theory). Hence in the current DFT approach it is not possible to estimate
the error of the calculations without comparing them to other methods or
experiment.

Within the framework of Kohn-Sham DFT, the intractable many-body
problem of interacting electrons in a static external potential is reduced to a
tractable problem of non-interacting electrons moving in an effective poten-
tial. The effective potential includes the external potential and the effects of
the Coulomb interactions between the electrons.

A.3 Semi-Empirical Methods

Semi-empirical quantum chemistry methods are based on the Hartree-Fock
formalism but make many approximations and obtain some parameters from
empirical data. They are very important in computational chemistry for
treating large molecules where the full Hartree-Fock method without ap-
proximations is too expensive. The use of empirical parameters appears to
allow some inclusion of electron correlation effects into the methods.

Within the framework of Hartree-Fock calculations, some pieces of infor-
mation (such as two-electron integrals) are sometimes approximated or com-
pletely omitted. In order to correct for this loss, semi-empirical methods are
parameterised. That is, their results are fitted by a set of parameters, nor-
mally in such a way as to produce results that best agree with experimental
data, but sometimes to agree with ab initio results.

Semi-empirical calculations are much faster than ab initio methods but
the results can be very wrong if the molecule being computed is not similar

246

enough to the molecules in the database used to parameterise the method.
Semi-empirical calculations have been most successful in the description of or-
ganic chemistry, where only a few elements are used extensively and molecules
are of moderate size.

The AM1 (Austin Model 1), is a semi-empirical method for the quantum
calculation of molecular electronic structure in computational chemistry. It
is based on the Neglect of Differential Diatomic Overlap (NDDO) integral
approximation [218]. Specifically, it is a generalization of the modified neglect
of differential diatomic overlap (MNDO) approximation. AM1 was developed
by Dewar and co-workers and published in 1985 [219].

AM1 is an attempt to improve the MNDO model by reducing the repul-
sion of atoms at small separation. The atomic core terms in the MNDO
equations were modified through the addition of off-center attractive and re-
pulsive Gaussian functions. The complexity of the parameterisation problem
increased in AM1 as the number of parameters per atom increased from 7 in
MNDO to 13-16 per atom in AM1.

The PM3 method (Parameterised Model 3) is based on the NDDO integral
approximation. The PM3 method uses the same formalism and equations
as the AM1 method. The only differences are that PM3 uses two Gaussian
functions for the core repulsion function, instead of the variable number used
by AM1 (which uses between one and four Gaussians per element) and that
the numerical values of the parameters are different. Other differences lie
in the methodology used during the parameterisation; whereas AM1 takes
some of the parameter values from spectroscopical measurements, PM3 treats
them as values which may be optimised.

The PM3 method was developed by Stewart and first published in 1989 [220,
221]. It is implemented in the MOPAC program, along with the related AM1,
MNDO and MINDO methods. The original PM3 publication included pa-
rameters for the following elements: H, C, N, O, F, Al, Si, P, S, Cl, Br, and I.
Many other elements, mostly metals, have subsequently been parameterised.

247

Appendix B

Regular Expressions in Java

The following is taken from the Java documentation on regular expressions
as defined in the package java.util.regex [222]

Table B.1: Regular expression constructs as specified by Java

Summary of regular-expression constructs
Construct Matches

Characters
χ The character χ
\ The backslash character
\0n The character with octal value 0n (0 <= n <= 7)
\0nn The character with octal value 0nn (0 <= n <= 7)
\0mnn The character with octal value 0mnn (0 <= m <= 3, 0 <= n <= 7)
\xhh The character with hexadecimal value 0xhh
\uhhhh The character with hexadecimal value 0xhhhh
\t The tab character (‘\u0009’)
\n The newline (line feed) character (‘\u000A’)
\r The carriage-return character (‘\u000D’)
\f The form-feed character (‘\u000C’)
\a The alert (bell) character (’\u0007’)
\e The escape character (‘\u001B’)
\cχ The control character corresponding to χ

Character classes
[abc] a, b, or c (simple class)
[ˆabc] Any character except a, b, or c (negation)
[a-zA-Z] a through z or A through Z, inclusive (range)
[a-d[m-p]] a through d, or m through p: [a-dm-p] (union)
[a-z&&[def]] d, e, or f (intersection)
[a-z&&[ˆbc]] a through z, except for b and c: [ad-z] (subtraction)
[a-z&&[ˆm-p]] a through z, and not m through p: [a-lq-z](subtraction)

Continued on Next Page. . .

248

Table B.1 – Continued
Construct Matches
Predefined character classes
. Any character (may or may not match line terminators)
\d A digit: [0-9]
\D A non-digit: [ˆ0-9]
\s A whitespace character: [\t\n\x0B\f\r]
\S A non-whitespace character: [ˆ\s]
\w A word character: [a-zA-Z 0-9]
\W A non-word character: [ˆ\w]

POSIX character classes (US-ASCII only)
\p{Lower} A lower-case alphabetic character: [a-z]
\p{Upper} An upper-case alphabetic character:[A-Z]
\p{ASCII} All ASCII:[\x00-\x7F]
\p{Alpha} An alphabetic character: [\p{Lower}\p{Upper}]
\p{Digit} A decimal digit: [0-9]
\p{Alnum} An alphanumeric character: [\p{Alpha}\p{Digit}]
\p{Punct} Punctuation: One of !”#$%&’()*+,-./:;<=>?[\]ˆ ‘{|}˜
\p{Graph} A visible character: [\p{Alnum}\p{Punct}]
\p{Print} A printable character: [\p{Graph}\x20]
\p{Blank} A space or a tab: [\t]
\p{Cntrl} A control character: [\x00-\x1F\x7F]
\p{XDigit} A hexadecimal digit: [0-9a-fA-F]
\p{Space} A whitespace character: [\t\n\x0B\f\r]

java.lang.Character classes (simple java character type)
\p{javaLowerCase} Equivalent to java.lang.Character.isLowerCase()
\p{javaUpperCase} Equivalent to java.lang.Character.isUpperCase()
\p{javaWhitespace} Equivalent to java.lang.Character.isWhitespace()
\p{javaMirrored} Equivalent to java.lang.Character.isMirrored()

Classes for Unicode blocks and categories
\p{InGreek} A character in the Greek block (simple block)
\p{Lu} An uppercase letter (simple category)
\p{Sc} A currency symbol
\P{InGreek} Any character except one in the Greek block (negation)
[\p{L}&&[ˆ\p{Lu}]] Any letter except an uppercase letter (subtraction)

Boundary matchers
ˆ The beginning of a line
$ The end of a line
\b A word boundary
\B A non-word boundary
\A The beginning of the input
\G The end of the previous match
\Z The end of the input but for the final terminator, if any
\z The end of the input

Continued on Next Page. . .

249

Table B.1 – Continued
Construct Matches

Greedy quantifiers
X? X, once or not at all
X∗ X, zero or more times
X+ X, one or more times
X{n} X, exactly n times
X{n, } X, at least n times
X{n, m} X, at least n but not more than m times

Reluctant quantifiers
X?? X, once or not at all
X∗? X, zero or more times
X+? X, one or more times
X{n}? X, exactly n times
X{n, }? X, at least n times
X{n, m}? X, at least n but not more than m times

Possessive quantifiers
X?+ X, once or not at all
X ∗+ X, zero or more times
X + + X, one or more times
X{n}+ X, exactly n times
X{n, }+ X, at least n times
X{n, m}+ X, at least n but not more than m times

Logical operators
XY X followed by Y
X|Y Either X or Y
(X) X, as a capturing group

Back references
\n Whatever the nth capturing group matched

Quotation
\ Nothing, but quotes the following character
\Q Nothing, but quotes all characters until \E
\E Nothing, but ends quoting started by \Q

Special constructs (non-capturing)
(?:X) X, as a non-capturing group
(?idmsux-idmsux) Nothing, but turns match flags on - off
(?idmsux-idmsux:X) X, as a non-capturing group with the given flags on - off

250

Backslashes, escapes, and quoting

The backslash character (‘\’) serves to introduce escaped constructs, as de-
fined in the table above, as well as to quote characters that otherwise would
be interpreted as unescaped constructs. Thus the expression \\ matches a
single backslash and \{ matches a left brace.

It is an error to use a backslash prior to any alphabetic character that does
not denote an escaped construct; these are reserved for future extensions
to the regular-expression language. A backslash may be used prior to a
non-alphabetic character regardless of whether that character is part of an
unescaped construct.

Backslashes within string literals in Java source code are interpreted as re-
quired by the Java Language Specification as either Unicode escapes or other
character escapes. It is therefore necessary to double backslashes in string
literals that represent regular expressions to protect them from interpretation
by the Java bytecode compiler. The string literal “\b”, for example, matches
a single backspace character when interpreted as a regular expression, while
“\\b” matches a word boundary. The string literal “\(hello\)” is illegal and
leads to a compile-time error; in order to match the string (hello) the string
literal “\\(hello\\)” must be used.

Character Classes

Character classes may appear within other character classes, and may be
composed by the union operator (implicit) and the intersection operator
(&&). The union operator denotes a class that contains every character
that is in at least one of its operand classes. The intersection operator de-
notes a class that contains every character that is in both of its operand
classes.

The precedence of character-class operators is as follows, from highest to
lowest:

1. Literal escape \x
2. Grouping [...]

3. Range a-z

4. Union [a-e][i-u]

5. Intersection [a-z&&[aeiou]]

251

Note that a different set of metacharacters are in effect inside a character
class than outside a character class. For instance, the regular expression
‘.’ loses its special meaning inside a character class, while the expression ‘-’
becomes a range forming metacharacter.

Line terminators

A line terminator is a one- or two-character sequence that marks the end of
a line of the input character sequence. The following are recognized as line
terminators:

• A newline (line feed) character (‘\n’),

• A carriage-return character followed immediately by a newline charac-
ter (‘\r\n’),

• A standalone carriage-return character (‘\r’),
• A next-line character (‘\u0085’),

• A line-separator character (‘\u2028’), or

• A paragraph-separator character (‘\u2029’).

If UNIX LINES mode is activated, then the only line terminators recognized
are newline characters.

The regular expression ‘.’ matches any character except a line terminator
unless the DOTALL flag is specified.

By default, the regular expressions ˆ and $ ignore line terminators and
only match at the beginning and the end, respectively, of the entire input
sequence. If MULTILINE mode is activated then ˆ matches at the beginning
of input and after any line terminator except at the end of input. When in
MULTILINE mode $ matches just before a line terminator or the end of the
input sequence.

Groups and capturing

Capturing groups are numbered by counting their opening parentheses from
left to right. In the expression ((A)(B(C))), for example, there are four such
groups:

1. ((A)(B(C)))

2. (A)

252

3. (B(C))

4. (C)

Group zero always stands for the entire expression.

Capturing groups are so named because, during a match, each subsequence
of the input sequence that matches such a group is saved. The captured
subsequence may be used later in the expression, via a back reference, and
may also be retrieved from the matcher once the match operation is complete.

The captured input associated with a group is always the subsequence
that the group most recently matched. If a group is evaluated a second time
because of quantification then its previously-captured value, if any, will be
retained if the second evaluation fails. Matching the string “aba” against the
expression (a(b)?)+, for example, leaves group two set to “b”. All captured
input is discarded at the beginning of each match.

Groups beginning with (? are pure, non-capturing groups that do not
capture text and do not count towards the group total.

253

Appendix C

Backus-Naur Form

The following definition for BNF is taken from The World of Programming
Languages by Marcotty and Ledgard [122].

The meta-symbols of BNF are:

::= meaning is defined as

| meaning or

< > angle brackets used to surround category names

The angle brackets distinguish syntax rules names (also called non-terminal
symbols) from terminal symbols which are written exactly as they are to be
represented. A BNF rule defining a nonterminal has the form:

nonterminal ::= sequence of alternatives consisting
of strings of terminals or nonterminals
separated by the meta-symbol |

For example, the BNF production for a mini-language is:

<program> ::= program
<declaration sequence>

begin
<statements sequence>

end ;

This shows that a mini-language program consists of the keyword program
followed by the declaration sequence, then the keyword begin and the state-
ments sequence, finally the keyword end and a semicolon.

254

In fact, many authors have introduced some slight extensions of BNF for
the ease of use:

• optional items are enclosed in meta symbols [and], for example

<if statement> ::= if <boolean expression> then
<statement sequence>

[else
<statement sequence>]

end if ;

• repetitive items (zero or more times) are enclosed in meta symbols {
and }, for example

<identifier> ::= <letter> { <letter> | <digit> }

this rule is equivalent to the recursive rule:

<identifier> ::= <letter> |
<identifier> [<letter> | <digit>]

• terminals of only one character are surrounded by quotes (‘’) to distin-
guish them from meta-symbols, for example:

<statement sequence> ::=
<statement> { ‘;’ <statement> }

• terminal and non-terminal symbols are distinguished by using bold
faces for terminals and suppressing < and > around non-terminals.
This improves greatly the readability. The example then becomes:

if statement ::= if boolean expression then
statement sequence

[else
statement sequence]

end if ‘;’

BNF’s syntax may be represented with a BNF like the following:

255

syntax ::= { rule }
rule ::= identifier ‘::=’ expression
expression ::= term { ‘|’ term }
term ::= factor { factor }
factor ::= identifier |

quoted symbol |
‘(’ expression ‘)’ |
‘[’ expression ‘]’ |
‘{’ expression ‘}’

identifier ::= letter { letter | digit }
quoted symbol ::= ‘ ‘ ’ { any character } ‘ ’ ’

256

Appendix D

JFlex Lexical Rules

The syntax of the lexical rules section of a JFlex program is described by the
following BNF grammar (terminal symbols are enclosed in ‘quotes’). This
has been taken from the JFlex manual [132].

257

LexicalRules ::= Rule+
Rule ::= [StateList] [‘^’] RegExp [LookAhead] Action

| [StateList] ‘<<EOF>>’ Action
| StateGroup

StateGroup ::= StateList ‘{’ Rule+ ‘}’
StateList ::= ‘<’ Identifier (‘,’ Identifier)* ‘>’
LookAhead ::= ‘$’ | ‘/’ RegExp
Action ::= ‘{’ JavaCode ‘}’ | ‘|’

RegExp ::= RegExp ‘|’ RegExp
| RegExp RegExp
| ‘(’ RegExp ‘)’
| (‘!’|‘~’) RegExp
| RegExp (‘*’|‘+’|‘?’)
| RegExp ‘‘{’’ Number [‘‘,’’ Number] ‘‘}’’
| ‘[’ [‘^’] (Character|Character‘-’Character)* ‘]’
| PredefinedClass
| ‘{’ Identifier ‘}’
| ‘ ’’ ’ StringCharacter+ ‘ ’’ ’
| Character

PredefinedClass ::= ‘[:jletter:]’
| ‘[:jletterdigit:]’
| ‘[:letter:]’
| ‘[:digit:]’
| ‘[:uppercase:]’
| ‘[:lowercase:]’
| ‘.’

The grammar uses the following terminal symbols:

JavaCode a sequence of BlockStatements as described in the Java Language
Specification.

Number a non negative decimal integer.

Identifier a letter [a-zA-Z] followed by a sequence of zero or more letters,
digits or underscores [a-zA-Z0-9]

Character an escape sequence or any unicode character that is not one of

these meta characters: | () { } [] < > \ . * + ? $̂ / . ‘ ’ ˜ !

StringCharacter an escape sequence or any unicode character that is not
one of these meta characters: \ ”

An escape sequence which consists of:

• \n \r \t \f \b

258

• a \x followed by two hexadecimal digits [a-fA-F0-9] (denoting a
standard ASCII escape sequence)

• a \u followed by four hexadecimal digits [a-fA-F0-9] (denoting an
unicode escape sequence)

• a backslash followed by a three digit octal number from 000 to
377 (denoting a standard ASCII escape sequence)

• a backslash followed by any other unicode character that stands
for this character

259

Appendix E

GROMACS topology file

The GROMACS input parser was created by encoding all the allowable com-
binations shown in this appendix. The following is extracted from the GRO-
MACS 3.1 manual [223] and is included for completeness. The topology file
is built following the GROMACS specification for a molecular topology. All
possible entries in the topology file are listed in Table E.1 and Table E.2.
Also listed are all the units of the parameters, which interactions can be per-
turbed for free energy calculations, which bonded interactions are used by
the GROMACS preprocessor (grompp) for generating exclusions and which
bonded interactions can be converted to constraints by grompp. Description
of the file layout:

• semicolon (;) and newline surround comments

• on a line ending with \ the newline character is ignored

• directives are surrounded by [and]

• the topology consists of three levels:

– the parameter level (see Table E.1)

– the molecule level, which should contain one or more molecule
definitions (see TableE.2)

– the system level: [system], [molecules]

• items should be separated by spaces or tabs, not commas

• atoms in molecules should be numbered consecutively starting at 1

• the file is parsed once only which implies that no forward references
can be treated: items must be defined before they can be used

• exclusions can be generated from the bonds or overridden manually

260

• the bonded force types can be generated from the atom types or over-
ridden per bond

• it is possible to apply multiple bonded interactions of the same type on
the same atoms

• descriptive comment lines and empty lines are highly recommended

• starting with GROMACS version 3.1.3 all directives at the parameter
level can be used multiple times and there are no restrictions on the
order, except that an atom type needs to be defined before it can be
used in other parameter definitions

• If parameters for a certain interaction are defined multiple times for the
same combination of atom types the last definition is used; starting with
GROMACS version 3.1.3 grompp generates a warning for parameter
redefinitions with different values

• using one of the [atoms], [bonds], [pairs], [angles], etc. with-
out having used [moleculetype] before is meaningless and generates
a warning

• using [molecules] without having used [system] before is mean-
ingless and generates a warning

• after [system] the only allowed directive is [molecules]

• using an unknown string in [] causes all the data until the next direc-
tive to be ignored, and generates a warning

261

Parameters
interaction directive # f. parameters F.E.
type at. tp

mandatory defaults non-bonded function type;

combination rule(α);
generate pairs (no/yes);
fudge LJ (); fudge QQ ();

mandatory atomtypes atomtype;m(u);q(e);particle type;

V(α);W(α)

bondtypes see table E.2, directive bonds

constrainttypes see table E.2, directive constraints

pairtypes see table E.2, directive pairs

angletypes see table E.2, directive angles

proper dih. dihedraltypes 2/4(b) 1 φs(deg);kφ(kJ mol−1);multiplicity φ,k

improper dih. dihedraltypes 2/4(c) 2 ζ0(deg);kζ(kJ mol−1 rad−2) all

RB dihedral dihedraltypes 2/4(b) 3 C0, C1, C2, C3, C4, C5 (kJ mol−1) all

LJ nonbond params 2 1 V(α);W(α)

Buckingham nonbond params 2 2 a (kJ mol−1); b (nm−1);

c6 (kJ mol−1 nm6)

Molecule definition(s)
interaction directive # f. parameters F.E.
type at. tp

mandatory moleculetype moleculename
exclude neighbours # bonds away
for non-bonded interactions

mandatory atoms 1 atomtype; residue number; type
residue name; atom name;
charge group number; q(e); m(u) q,m

intramolecular interaction definitions as described in table E.2

System
mandatory system system name
mandatory molecule molecule name; number of molecules

‘# at.’ is the number of atom types
‘f. tp’ is function type
‘F.E’ indicates which parameters can be interpolated during free energy calculations
(a) the combination rule determines the type of LJ parameters
(b) the inner two or all four atoms in the dihedral
(c) the outer two or all four atoms in the dihedral
For free energy calculations, the parameters for topology ‘B’ (λ = 1) should be added on the same line,
after the normal parameters, in the same order as the normal parameters.

Table E.1: The topology file

262

Intramolecular interaction definitions
interaction directive # f. parameters F.E.
type at. tp

bond bonds(b,c) 2 1 b0 (nm); kb (kJ mol−1 nm−2) all

G96 bond bonds(b,c) 2 1 b0 (nm); kb (kJ mol−1 nm−4) all

morse bonds(b,c) 2 3 b0 (nm); D (kJ mol−1);β (nm−1)

cubic bond bonds(b,c) 2 4 b0 (nm); Ci=2,3 (kJ mol−1 nm−i)

connection bonds(b) 2 5

harmonic pot. bonds 2 6 b0 (nm); kb (kJ mol−1 nm−2) all

FENE bond bonds 2 7 bm (nm); kb (kJ mol−1 nm−2)

LJ/Coul. 1-4 pairs 2 1 V (a); W (a) all

LJ/C. 1-4 A pairs 2 2 V (a); W (a)

LJ/C. pair A pairs 2 3

angle angles(c) 3 1 θ0 (deg); kθ (kJ mol−1 rad−2) all

G96 angle angles(c) 3 2 θ0 (deg); kθ (kJ mol−1) all

quartic angle angles(c) 3 6 θ0 (deg); Ci=0,1,2,3,4 (kJ mol−1 rad−i)

proper dih. dihedrals 4 1 φs (deg); kφ (kJ mol−1); multiplicity all

improper dih. dihedrals 4 2 ζ0 (deg); kζ (kJ mol−1 rad−2) all

RB dihedral dihedrals 4 3 C0,C1,C2,C3,C4,C5 (kJ mol−1) all

constraint constraints(b) 2 1 b0 (nm) all
constr. n.c. constraints 2 2 b0 (nm) all
settle settles 3 1 dOHdHH , (nm)
vsite2 virtual sites2 3 1 a ()
vsite3 virtual sites3 4 1 a, b ()
vsite3fd virtual sites3 4 2 a (); d (nm)
vsite3fad virtual sites3 4 3 θ (deg); d (nm)

vsite3out virtual sites3 4 4 a, b (); c (nm−1)
vsite4fd virtual sites4 5 1 a, b (); d (nm)

position res. position restraints 1 1 kx, ky , kz , (kJ mol−1 nm−2) all
distance res. distance restraints 2 1 type; label; low, up1, up2 (nm);

weight ()
orient. res. orientation restraints 2 1 exp.; label; α; c (U nmα); obs. (U);

weight (U−1)

angle res. angle restraints(c) 4 1 θ0 (deg); kc (kJ mol−1); multiplicity θ, k

angle res. z angle restraints z(c) 2 1 θ0 (deg); kc (kJ mol−1); multiplicity θ, k

exclusions exclusions(c) 1 one or more atom indicies

‘# at.’ is the number of atom types
‘f. tp’ is function type
‘F.E’ indicates which parameters can be interpolated during free energy calculations
(a) the combination rule determines the type of LJ parameters
(b) used by grompp for generating exclusions
(c) can be converted to constraints by grompp

For free energy calculations, the parameters for topology ‘B’ (λ = 1) should be added on the same line,
after the normal parameters, in the same order as the normal parameters.

Table E.2: Intramolecular actions definitions

263

Appendix F

Solvents and counter ions

There follows a list of all the structures deemed to be solvent/ion/guest
molecules.

Inorganic molecules and counter ions

• SiF6

• CO2−
3

• CO3H
−

• CO3H2

• NO3

• HNO+
3

• SO42−

• HSO4−

• H2SO4

• PF−6

• PO3−
4

• HPO2−
4

• H2PO−
4

• PO3−
3

• HPO2−
3

264

• H2PO−
3

• H3PO3

• ClO−
3

• ClO−
4

• HClO3

• HClO4

• BrO−
3

• BrO−
4

• HBrO3

• HBrO4

• IO−
3

• IO−
4

• HIO3

• HIO4

• BF−4

Small solvent molecules

All acids and alcohols are included in both their protonated and deprotonated
forms.

• trichloromethane

• dicyanoamine

• oxalic acid (ethandioic acid)

• acetic acid

• fluorinated acetic acid

• chlorinated acetic acid

• brominated acetic acid

• sulfonic acid

265

• fluorinated sulfonic acid

• chlorinated sulfonic acid

• brominated sulfonic acid

• trifluoroethanol

• trichloroethanol

• tribromoethanol

• propanol

• acetone

• dimethylsulfoxide

• ether

• furan

• tetrahydrofuran

• N,N -dimethylformamide

• trimethylammonia

• trimethylammonium

• dimethyl sulphate

• amino ethanioc acid

• benzene

• toluene

Included for completeness

These molecules are too small (fewer than four heavy atoms) to be suitable
for calculation, but are included for completeness.

• F−

• Cl−

• Br−

• I−

266

• NH4+

• dichloromethane

• hydrogencyanide

• CN−

• H2O

267

Appendix G

Molecules

Table G.1: The 112 unique connection tables of the
molecules that fulfil the final protocol. The number of
occurrences of each of the connection tables in the final
dataset are indicated.

Molecules that pass the final protocol

1 2 2

Continued on Next Page. . .

268

Table G.1 – Continued

1 1 1

1 1 1

1 1 1

Continued on Next Page. . .

269

Table G.1 – Continued

1 1 1

1 1 2

2 1 1

Continued on Next Page. . .

270

Table G.1 – Continued

1 1 1

1 2 2

1 1 1

Continued on Next Page. . .

271

Table G.1 – Continued

1 1 1

1 1 1

1 1 1

Continued on Next Page. . .

272

Table G.1 – Continued

2 1 2

1 1 1

1 1 1

Continued on Next Page. . .

273

Table G.1 – Continued

1 1 1

1 1 3

2 2 1

Continued on Next Page. . .

274

Table G.1 – Continued

1 1 2

1 1 1

1 1 1

Continued on Next Page. . .

275

Table G.1 – Continued

1 1 1

1 1 1

1 1 1

Continued on Next Page. . .

276

Table G.1 – Continued

1 1 1

1 1 1

1 1 1

Continued on Next Page. . .

277

Table G.1 – Continued

1 1 2

1 1 1

2 1 1

Continued on Next Page. . .

278

Table G.1 – Continued

1 1 1

1 1 1

1 1 1

Continued on Next Page. . .

279

Table G.1 – Continued

1 1 1

3 1 1

1 1 1

Continued on Next Page. . .

280

Table G.1 – Continued

1

281

Appendix H

Molecule Optimisations

Table H.1: The reported geometries adopted by
bv6006molecule3 during the geometry optimisation cal-
culation. All steps of the optimisation are shown.

Geometry optimisation of bv6006molecule3

step 0 step 1 step 2 step 3

step 4 step 5 step 6 step 7

step 8 step 9 step 10 step 11

Continued on Next Page. . .

282

Table H.1 – Continued

step 12 step 13 step 14 step 15

step 16 step 17 step 18 step 19

step 20 step 21 step 22 step 23

step 24 step 25 step 26 step 27

step 28 step 29 step 30 step 31

Continued on Next Page. . .

283

Table H.1 – Continued

step 32 step 33 step 34 step 35

step 36 step 37 step 38 step 39

step 40 step 41 step 42 step 43

step 44 step 45 step 46 step 47

step 48 step 49 step 50 step 51

Continued on Next Page. . .

284

Table H.1 – Continued

step 52 step 53 step 54 step 55

step 56 step 57 step 58 step 59

step 60 step 61 step 62 step 63

step 64 step 65 step 66 step 67

step 68 step 69 step 70 step 71

Continued on Next Page. . .

285

Table H.1 – Continued

step 72 step 73 step 74 step 75

step 76 step 77 step 78 step 79

step 80 step 81 step 82 step 83

step 84 step 85 step 86 step 87

step 88

286

Table H.2: The reported geometries adopted by
ci6067molecule2 during the geometry optimisation cal-
culation. The first 20 (of 27) geometries are shown, no
further protean behaviour was observed after this point.

Geometry optimisation of ci6067molecule2

step 0 step 1 step 2 step 3

step 4 step 5 step 6 step 7

step 8 step 9 step 10 step 11

step 12 step 13 step 14 step 15

Continued on Next Page. . .

287

Table H.2 – Continued

step 16 step 17 step 18 step 19

Table H.3: The reported geometries of rz6070molecule1
during the geometry optimisation calculation. The first
12 (of 52) geometries are shown, no further protean be-
haviour was observed after this point.

Geometry optimisation of rz6070molecule1

step 0 step 1 step 2 step 3

step 4 step 5 step 6 step 7

step 8 step 9 step 10 step 11

288

Appendix I

Published Work

The following papers and communications have been published as a result of

work contained in this thesis.

P. Murray-Rust, R. C. Glen, H. S. Rzepa, J. J. P. Stewart, J. A. Townsend,

E. L. Willighagen, Y. Zhang, A semantic GRID for molecular science, Pro-

ceedings of UK e-Science All Hands Conference 2003

Y. Zhang, P. Murrary-Rust, M. T. Dove, R. C. Glen, H. S. Rzepa, J. A.

Townsend, S. Tyrrell, J. Wakelin, E. L. Willighagen, JUMBO – An XML In-

frastructure for eScience, Proceedings of UK e-Science All Hands Conference

2004

S. E. Adams, J. M. Goodman, R. J. Kidd, A. D. McNaught, P. Murray-Rust,

F. R. Norton, J. A. Townsend, C. A. Waudby, Experimental data checker:

better information for organic chemists, Org. Biomol. Chem., 2004, 2, 3067–

3070

J. A. Townsend, S. E. Adams, C. A. Waudby, V. K. de Souza, J. M. Good-

man, P. Murray-Rust, Chemical documents: machine understanding and

automated information extraction, Org. Biomol. Chem., 2004, 2, 3294–3300

J. A. Townsend, P. Murray-Rust, Capturing chemistry in XML, Abstr. Am.

289

Chem. Soc. 2004

Y. Zhang, R. C. Glen, P. Murray-Rust, H. S. Rzepa, J. A. Townsend, Seman-

tic grid computing — The WorldWideMolecularMatrix, Abstr. Am. Chem.

Soc. 2004

J. A. Townsend, P. Murray-Rust, S. M. Tyrrell, Y. Zhang, Computational

chemistry robots, Abstr. Am. Chem. Soc. 2005

P. Murray-Rust, H. S. Rzepa, J. A. Townsend, D. Wilson, Computational

chemistry in XML, Abstr. Am. Chem. Soc. 2006

P. T. Corbett, P. Murray-Rust, N. E. Day, J .A. Townsend, H. S. Rzepa,

Chemistry publications in CML, Abstr. Am. Chem. Soc. 2006

290

Bibliography

[1] T. Hey, A. Trefethen, The Data Deluge: An e-Science Perspective,

Wiley, 2003, 809–824

[2] M. Lesk, Practical digital libraries: Books, bytes, and bucks, Morgan

Kaufmann 1997

[3] M. Atkinson, Grid Infrastructure meets Biological Research Chal-

lenges, 2002, http://www.nesc.ac.uk/presentations/

[4] F. Berman, Viewpoint: From TeraGrid to knowledge grid, Comm.

ACM, 2001, 44, 27–28

[5] M.R. Helal, Y.A. Yousef A.T. Afaneh, Ab Initio Calculations of the

Stabilization Energies of the Conformational and the Structural Iso-

mers of C3H7X where X = F, Cl, and Br, J. Comp. Chem., 2003, 23,

966–976

[6] J.E. Davies, oral presentation, Unpublished Structures, CCG Autumn

Meeting, 2003

[7] F. Allen, oral presentation, The Future of Crystallographic ‘Publica-

tion’, CCG Autumn Meeting, 2003

[8] http://www.admin.cam.ac.uk/offices/gradstud/current/submitting/phd/cdrom.html

[9] http://hdl.handle.net/1842/433

[10] http://wwmm.ch.cam.ac.uk/blogs/murrayrust/?p=362

291

[11] P. Murray-Rust, Data-driven Science — A Scientit’s View, NSF/JISC

Repositories Workshop, 2007

[12] http://www.cas.org/newsevents/releases/milliondocs1206.html

[13] http://www.cas.org/ASSETS/836E3804111B49BFA28B95BD1B40CD0F/casstats.pdf

[14] H. Shojaei, Z. Li-Bohmer, P. vonZezschwitz, Iromycins: A New Family

of Pyridone Metabolites from Streptomyces sp. II. Convergent Total

Synthesis, J. Org. Chem., 2007, 72, 5091–5097

[15] http://en.wikipedia.org/wiki/Metadata

[16] http://dublincore.org

[17] http://www.iupac.org/inchi

[18] J. J. P. Stewart, On the use of Semiempirical Methods for Detecting

Anomalies in Reported Heats of Formation of Organic Compounds, J.

Phys. Chem. Ref. Data, 2004, 33, 713–724

[19] B. Schlegel, A. Härtl, H. M. Dahse, F. A. Gollmick, U. Gräfe, H.

Dörfelt H, B. Kappes, Hexacyclinol, a new antiproliferative metabo-

lite of Panus rudis HKI 0254, J. Antibiot., 2002, 55, 814–817

[20] J. J. La Clair, Total Syntheses of Hexacyclinol, 5-epi-Hexacyclinol,

and Desoxohexacyclinol Unveil an Antimalarial Prodrug Motif, Angew.

Chem. Int. Ed., 2006, 45, 2769–2773

[21] S. D. Rychnovsky, Predicting NMR Spectra by Computational Meth-

ods: Structural Revision of Hexacyclinol, Org. Lett., 2006, 8, 2895–

2898

[22] http://www.nesc.ac.uk/nesc/mission.html

[23] T. Berners-Lee, J. Hendler, O. Lassila, The Semantic Web, Sci. Am.,

2001, 284, 34–43

292

[24] G. V. Gkoutous, P. Murray-Rust, H. S. Rzepa, M Wright, Chemical

Markup, XML, and the World-Wide Web. 3. Toward a Signed Semantic

Chemical Web of Trust, J. Chem. Inf. Comput. Sci., 2001, 41, 1124–

1130

[25] P. Murray-Rust, H. S. Rzepa, M. J. Williamson, E. L. Willighagen,

Chemical Markup, XML, and the World-Wide Web. 5. Applications of

Chemical Metadata in RSS Aggregators, J. Chem. Inf. Comput. Sci.,

2004, 44, 462–469

[26] R. D. King, M. Young, A. J. Clare, K. E. Whelan, J. Rowland, The

Robot Scientist Project, Springer Berlin 2005

[27] T. Helgaker, P. Jørgensen, J. Olsen, Molecular Electronic-Structure

Theory, Wiley 2004

[28] R. R. Gotwals, S. C. Sendlinger, A Chemistry Educator’s Guide to

Molecular Modeling, 2007, http://chemistry.ncssm.edu/book/

[29] http://www.w3.org/TR/REC-xml

[30] J. H. Coombs, A. H. Renear, S. J. DeRose, Markup Systems and the

Future of Scholarly Text Processing, Comm. ACM, 1987, 30, 933–947

[31] http://www.w3.org/TR/html401

[32] http://www.w3.org

[33] http://www.w3.org/TR/xhtml1

[34] http://www.w3.org/TR/REC-xml/#dt-doctype

[35] http://www.w3.org/XML/Schema

[36] http://www.w3.org/TR/REC-xml-names

[37] P Murray-Rust, H. S. Rzepa, STMML. A markup language for scien-

tific, technical and medical publishing, Data Sci., 2002, 1, 128–192

293

[38] NISO Standard Z39.85-2001, http://www.niso.org

[39] ISO Standard 15836-2003, http://www.iso.org

[40] http://www.w3.org/TR/xslt

[41] P. Murray-Rust, H. S. Rzepa, Handbook of Chemoinformatics, Wiley-

VCH, 2003

[42] http://www.xml-cml.org/information/position.html

[43] P. Murray-Rust, H. S. Rzepa, Chemical markup, XML, and the World-

wide Web. 1. Basic principles, J. Chem. Inf. Comput. Sci., 1999, 39,

928–942

[44] A. Dalby, J. G. Nourse, W. Douglas Hounshell, A. K. I. Gushurst, D.

L. Grier, A. Leland, J. Laufer, Description of several chemical structure

file formats used by computer programs developed at Molecular Design

Limited, J. Chem. Inf. Comput. Sci., 1992, 32, 244–255

[45] P. Murray-Rust, H. S. Rzepa, Chemical markup, XML, and the World-

wide Web. 4. CML Schema, J. Chem. Inf. Comput. Sci., 2003, 43,

757–772

[46] G. W. Kramer, ANIML: Analytical information markup language for

spectroscopy and chromatography data, Abstr. Am. Chem. Soc. 2003

[47] http://www.gaml.org

[48] A. D. T. Nguyen, A. Arslan, J. Travis, M. Smith, R. Schäfer, G.

W.Kramer, Molecular spectrometry data interchange applications for

NIST’s SpectroML, J. Assoc. Lab. Auto., 2004, 9, 346–354

[49] J. Wakelin, P. Murray-Rust, S. M. Tyrrell, Y. Zhang, H. S. Rzepa, A.

Garcia, Mol. Simulations, 2005, 31, 315–322

[50] http://www.w3.org/TR/REC-DOM-Level-1

[51] http://www.w3.org/TR/DOM-Level-2-Core

294

[52] P Murray-Rust, H. S. Rzepa, Chemical markup, XML, and the World-

wide Web. 2. Information Objects and the CMLDOM, J. Chem. Inf.

Comput. Sci., 2001, 41, 1113–1123

[53] D. E. Knuth, The Art of Computer Programming, Addison-Wesley,

1997

[54] http://www.opensource.org/docs/osd

[55] http://sourceforge.net/projects/cml

[56] http://www.w3.org/Graphics/SVG

[57] http://www.sun.com

[58] http://www.adobe.com

[59] http://www.apple.com

[60] http://www.ibm.com

[61] http://www.kodak.com

[62] http://www.w3.org/TR/xlink

[63] http://www.w3.org/TR/xmlbase

[64] http://www.w3.org/TR/xml-stylesheet

[65] http://www.w3.org/TR/REC-smil

[66] http://www.w3.org/TR/2001/REC-smil-animation-20010904

[67] http://www.r-project.org

[68] http://office.microsoft.com/excel

[69] http://www.uszla.me.uk/software/pelote.html

[70] J. Bishop, Java Gently: Programming Principles Explained, Addison-

Wesley 1998

295

[71] http://java.sun.com

[72] http://jmol.sourceforge.net

[73] http://www.povray.org

[74] http://www.winedt.com

[75] http://office.microsoft.com/word

[76] C. Creighton, S. Hanash, Mining gene expression databases for associ-

ation rules, Bioinformatics, 2003, 19, 79–86

[77] M. Andrade, A. Valencia, Automatic extraction of keywords from sci-

entific text: Application to the knowledge domain of protein families,

Bioinformatics, 1998, 14, 600–607

[78] J. M. Temkin, M. R. Gilder, Extraction of protein interaction informa-

tion from unstructured text using a context-free grammar, Bioinfor-

matics, 2003, 19, 2046–2053

[79] P. Murray-Rust, H. S. Rzepa, The Next Big Thing: From Hypermedia

to Datuments, J. Digital Information, 2004, 5, 248

[80] L. R. Garson, Communicating original research in chemistry and re-

lated sciences, Acc. Chem. Res., 2004, 37, 141–148

[81] F. Damerau, A technique for Computer Detection and Correction of

Spelling Errors, Comm. ACM, 1964, 7, 171–176

[82] R. P. Murelli, A. K. Cheung, M. L. Snapper, Conformationally Re-

stricted (+)-Cacospongionolide B Analogues. Influence on Secretory

Phospholipase A2 Inhibition, J. Org. Chem., 2007, 72, 1545–1552

[83] http://www.rsc.org/Publishing/ReSourCe/AuthorGuidelines/ArticleLayout/sect3.asp

[84] Jeffrey E. F. Friedl, Mastering Regular Expressions, O’Reilly and As-

sociates 2002

296

[85] L. P. Deutsch, B. W. Lampson, An online editor, Comm. ACM, 1967,

10, 793–799

[86] http://java.sun.com/javase/6/docs/api/java/util/regex/package-

summary.html

[87] S. E. Adams, J. M. Goodman, R. J. Kidd, A. D. McNaught, P. Murray-

Rust, F. R. Norton, J. A. Townsend, C. A. Waudby, Experimental data

checker: better information for organic chemists, Org. Biomol. Chem.,

2004, 2, 3067–3070

[88] Private communication with J. Brazier and Dr J. Burton, Unilever

Centre for Molecular Science Informatics 2005

[89] P. Wiklund, J. Bergman, Ring forming reaction of imines of 2-

aminobenzaldehyde and related compounds, Org. Biomol. Chem.,

2003, 1, 367–372

[90] K. Hirota, K. Kazaoka, I. Niimoto, H. Sajiki, Efficient synthesis of 2,9-

disubstitued 8-hydroxyadenine derivates, Org. Biomol. Chem., 2003,

1, 1354–1365

[91] E. T. Gallagher, D. H. Grayson, Reactions of litiated (E)-3-halo-1-

phenlssulfonylprop-1-enes and (Z)-1-halo-3-phenylsulfonylprop-1-enes

with aldehydes, Org. Biomol. Chem., 2003, 1, 1374–1381

[92] K. Smith, G. A. El-Hiti, A. J. Jayne, M. Butters, Acylation of aro-

matic ethers over solid acid catalysts: scope of the reaction with more

complex acylating agents, Org. Biomol. Chem., 2003, 1, 2321–2325

[93] X. Peng, N. Fukui, M. Mizuta, H. Suzuki, Nitration of moderately

deactivated arenes with nitrogen dioxide and molecular oxygen under

neutral conditions. Zeolite-induced enhancement of regioselectivity and

reversal of isomer ratios, Org. Biomol. Chem., 2003, 1, 2326–2335

[94] P. Wiklund, I. Romero, J. Bergman, Products from dehydration of

dicarboxylic acids derived from anthranilic acid, Org. Biomol. Chem.,

2003, 1, 3396–3403

297

[95] F. Lecornué, J. Ollivier, Construction of medium-ring oxacy-

cloalkenones. Extension towards benzo-fused cyclic ethers, Org.

Biomol. Chem., 2003, 1, 3600–3604

[96] F. Jeannot, G. Gosselin, C. Mathé, Synthesis and antiviral evaluation of

2’-deoxy-2’-C-trifluoromethyl b-D-ribonucleoside analogues bearing the

five naturally occurring nucleic acid bases, Submitted for publication

in Org. Biomol. Chem.

[97] R. Hunter, P. Richards, Stereoselective tetrapyrido[2,1-a]isoindolone

synthesis via carbanionic and radical intermediates: a model study for

the Tacaman alkaloid D/E ring fusion, Submitted for publication in

Org. Biomol. Chem.

[98] M. D. Toscano, M. Frederickson, D.P. Evans, J.R. Coggins, C. Abell,

C. González-Bello, Design, synthesis and evaluation of bifunctional in-

hibitors of type II dehydroquinase, Submitted for publication in Org.

Biomol. Chem.

[99] C. A. Waudby, Unpublished work 2006

[100] J. A. Townsend, S. E. Adams, C. A. Waudby, V. K. de Souza, J.

M. Goodman, P. Murray-Rust, Chemical documents: machine under-

standing and automated information extraction, Org. Biomol. Chem.,

2004, 2, 3294–3300

[101] A. Vasserman, Identifying Chemical Names in Biomedical Text: An

Investigation of the substring co-occurence based approaches, Proceed-

ings of the Student Research Workshop at HLT-NAACL 2004

[102] http://www.cambridgesoft.com/software/ChemDraw

[103] P. M. Elliott, Translation of Chemical Nomenclature by Syntax Con-

trolled Techniques. MSc. Thesis, The Ohio State University 1969

[104] E. Garfield, An Algorithm for Translating Chemical Names to Molec-

ular Formulas, PhD Thesis 1962

298

[105] D.I. Cooke-Fox, G.H. Kirby, J.D. Rayner, Computer Translation of IU-

PAC Systematic Organic Chemical Nomenclature. 1. Introduction and

Background to a Grammar-Based Approach, J. Chem. Inf. Comput.

Sci., 1989, 29, 101–105

[106] D.I. Cooke-Fox, G.H. Kirby, J.D. Rayner, Computer Translation of

IUPAC Systematic Organic Chemical Nomenclature. 2. Development

of a Formal Grammar, J. Chem. Inf. Comput. Sci., 106, 29, 106–112

[107] D.I. Cooke-Fox, G.H. Kirby, J.D. Rayner, Computer Translation of

IUPAC Systematic Organic Chemical Nomenclature. 3. Syntax Anal-

ysis and Semantic Processing, J. Chem. Inf. Comput. Sci., 1989, 29,

112–118

[108] D.I. Cooke-Fox, G.H. Kirby, J.D. Rayner, Computer Translation of IU-

PAC Systematic Organic Chemical Nomenclature. 4. Concise connec-

tion tables to structure diagrams, J. Chem. Inf. Comput. Sci., 1990,

30, 122–127

[109] D.I. Cooke-Fox, G.H. Kirby, J.D. Rayner, Computer Translation of IU-

PAC Systematic Organic Chemical Nomenclature. 5. Steroid nomen-

clature Steroid nomenclature, J. Chem. Inf. Comput. Sci., 1990, 30,

128–132

[110] G.H. Kirby, M.R.Lord, J.D. Rayner, Computer Translation of IU-

PAC Systematic Organic Chemical Nomenclature., 6. (Semi)automatic

Name correction, J. Chem. Inf. Comput. Sci., 1991, 31, 153–160

[111] A Guide to IUPAC Nomenclature of Organic Chemistry, Recommenda-

tions 1993, (including Revisions, Published and hitherto Unpublished,

to the 1979 Edition of Nomenclature of Organic Chemistry), IUPAC

1993

[112] D. Weininger, SMILES, a Chemical Language and Information System.

1. Introduction to Methodology and Encoding Rules, J. Chem. Inf.

Comput. Sci. 1988, 28, 31–36

299

[113] D. Weininger, A. Weininger, J. L. Weininger, SMILES. 2. Algorithm

for Generation of Unique SMILES Notation, J. Chem. Inf. Comput.

Sci. 1989, 29 97–101

[114] D. Weininger, SMILES. 3. DEPICT. Graphical Depiction of Chemical

Structures, J. Chem. Inf. Comput. Sci. 1990, 30, 237–243

[115] A. Copestake, M. A. Parker, S. Teufel, P. Murray-Rust, Extracting the

Science from Scientific Publications, EPSRC, EP/C010035/1

[116] P. Corbett, P. Murray-Rust, High-throughput identification of chem-

istry in life science texts, Computational Life Sciences II, Proceedings

Lecture Notes in Computer Science, 2006, 4216, 107–118

[117] P. Corbett, Unpublished work 2006

[118] A. Copestake, P. Corbett, P. Murray-Rust, C.J. Rupp, A. Siddharthan,

S. Teufel, B. Waldron, An Architecture for Language Processing for

Scientific Texts, Proceedings of the UK e-Science All Hands Conference

2006

[119] J. Brecher, Name=Struct: A Practical Approach to the Sorry State of

Real-Life Chemical Nomenclature, J. Chem. Inf. Comput. Sci., 1999,

39 943–950

[120] A. V. Aho, R. Sethi, J. D. Ullman, Compilers Principles, Techniques,

and Tools, Prentice-Hall 2003

[121] P. Naur, Revised Report on the Algorithmic Language ALGOL 60,

Comm. ACM, 1960, 3, 299–314

[122] M. Marcotty, H. Ledgard, The World of Programming Languages,

Springer-Verlag 1986

[123] J. W. Backus, The Syntax and Semantics of the Proposed Interna-

tional Algebraic Language of the Zürich ACM-GAMM Conference,

ICIP Paris, 1959

300

[124] E. L. Post, Formal Reductions of the General Combinatorial Decision

Problem, Am. J. Mathematics, 1943, 65, 197–215

[125] http://www.pcre.org

[126] A. K. McCallum, Reinforcement Learning with Selective Perception

and Hidden State, PhD Thesis 1995

[127] http://jedlik.phy.bme.hu/˜gerjanos/HMM/node4.html

[128] P. C. Austin, L. J. Brunner, J. E. Hux, Bayeswatch: an overview of

Bayesian statistics, J. Eval. Clin. Pract., 2002, 8, 277–286

[129] A. Gelman, J. B. Carlin, H. S. Stern, D. B. Rubin, Bayesian Data

Analysis, Chapman & Hall 1995

[130] http://research.microsoft.com/nlp

[131] N. Chomsky, Syntactic Structures, Walter de Gruyter 1957

[132] http://jflex.de

[133] B. W. Kernighan, D. M. Ritchie, The C programming Language,

Prentice-Hall 1988

[134] J. R. Levine, T. Mason, D. Brown, Lex & Yacc, O’Reilly & Associates

1992

[135] S. E. Hudson, CUP LALR Parser Generator for Java,

http://www.cs.princeton.edu/˜appel/modern/java/CUP/

[136] S. C. Johnson, YACC — Yet Another Compiler Compiler, CS Technical

Report Bell Telephone Laboratories, 1975, 32

[137] E. Lindahl, B. Hess, D. van der Spoel, GROMACS 3.0: a package for

molecular simulation and trajectory analysis, J. Mol. Mod., 2001, 7,

306–317

[138] J. J. P. Stewart, MOPAC: A semiempirical molecular orbital program

J. Comput. Aided Mol. Des., 1990, 4, 1–45

301

[139] Private communication with Andrew Walkingshaw, Unilever Centre for

Molecular Science Informatics 2007

[140] J. M. Soler, E. Artacho, J. D. Gale, A. Garca, J. Junquera, P. Ordejón

and D. Sánchez-Portal, The SIESTA method for ab initio order-N ma-

terials simulation, J. Phys. Condens. Matter, 2002 , 14, 2745–2779

[141] J. D. Gale, GULP: A computer program for the symmetry adapted

simulation of solids, J. Chem. Soc. Faraday Trans., 1997, 93, 629–637

[142] I. T. Todorov, W. Smith, DL POLY 3: the CCP5 National UK Code

for molecular-dynamics simulations, Phil. Trans., 2004, 362, 1835–

1852

[143] A. Garćıa, P. Murray-Rust, J. Wakelin, The use of XML and CML in

Computational Chemistry and Physics Programs, Proceedings of UK

e-Science All Hands Conference, 2004

[144] Private communication with Dr M. Braendle, Infozentrum Chemie Bi-

ologie Pharmazie 2005

[145] Private communication with Dr R. Kanters, Department of Chemistry,

University of Richmond 2005

[146] Private communication with M. Howard, Jmol project 2005

[147] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A.

Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N.

Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone,

B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H.

Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa,

M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X.

Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J.

Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R.

Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A.

Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich,

A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck,

302

K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul,

S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P.

Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-

Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill,

B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian

03, Gaussian, Inc., Wallingford, CT, 2004

[148] http://www.seti.org

[149] W. G. Richards, Virtual screening using grid computing: the screen-

saver project, Nat. Rev. Drug Discovery, 2002, 1, 551–555

[150] J. Basney, M. Livny, T. Tannenbaum, High Throughput Computing

with Condor, HPCU news, 1, (1997)

[151] M. W. Mutka, M. Livny, Scheduling remote processing capacity in a

workstation-processor bank network, Proc. 7th Int. Conf. Distributed

Comput. Syst., 1987, 2–9

[152] M. J. Litzkow, M. Livny, M. W. Mutka, Condor — a hunter of idle

workstations, Proc. 8th Int. Conf. Distributed Computing Systems,

1988, 104–111

[153] http://cactus.nci.nih.gov/ncidb2/download.html

[154] Y. Zhang, R. C. Glen, P. Murray-Rust, H. S. Rzepa, J. A. Townsend,

Semantic grid computing — The WorldWideMolecularMatrix, Abstr.

Am. Chem. Soc. 2004

[155] http://openbabel.sourceforge.net

[156] http://xml.apache.org/xindice

[157] http://wwmm.ch.cam.ac.uk/inchifaq

[158] S. J. Coles, N. E. Day, P. Murray-Rust, H. S. Rzepa, Y. Zhang, En-

hancement of the chemical semantic web through the use of InChI

identifiers, Org. Biomol. Chem., 2005, 3, 1832–1834

303

[159] M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S.

Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J.

Su, T. L. Windus, M. Dupuis, J. A. Montgomery, General Atomic and

Molecular Electronic Structure System, J. Comput. Chem., 1993, 14,

1347–1363

[160] K. K. Irikura, D. J. Frurip, Computational Thermochemistry: Predic-

tion and Estimation of Molecular Thermodynamics, ACS Symp. Ser.,

1998

[161] http://www.msg.ameslab.gov/GAMESS/GAMESS Manual

[162] Private communication with Prof. K. K. Baldridge, University of

Zürich, 2005

[163] J. Baker, A. Kessi, B. Delley, The generation and use of delocalized

internal coordinates in geometry optimization, J. Chem. Phys., 1996,

105, 192–212

[164] Private communtication with Dr W. Sudholt, University of Zürich, 2004

[165] Molecular Operating Environment, Version 2000.03, Chemical Com-

puting Group Inc.

[166] R. C. Glen, A. Bender, C. H. Arnby, L. Carlsson, S. Boyer, J. Smith,

Circular fingerprints: Flexible molecular descriptors with applications

from physical chemistry to ADME, IDrugs, 2006, 9, 199–204.

[167] O. Ludwig, H. Schinke, W. Brandt, Reparametrisation of Force Con-

stants in MOPAC 6.0/7.0 for Better Description of the Activation Bar-

rier of Peptide Bond Rotations, J. Mol. Mod., 1996, 2, 341–350

[168] P. P. Ewald, Fifty Years of X-Ray Diffraction, Springer 1962

[169] H. M. Rietveld, A profile refinement method for nuclear and magnetic

structures, J. Appl. Cryst., 1969, 2, 65–71.

304

[170] F. H. Allen, The Cambridge Structural Database: a quarter of a million

crystal structures and rising, Acta Cryst., 2002, B58, 380–388

[171] W. L. Bragg, The Diffraction of Short Electromagnetic Waves by a

Crystal, Proc. Camb. Philos. Soc., 1912, 17, 43-57

[172] W. Clegg, A. J. Blake, R. O. Gould, P. Main, Crystal Structure Anal-

ysis: Principles and Practice, Oxford University Press 2002

[173] W. Friedrich, P. Knipping, M. Laue, Interferenzerscheinungen bei

Röntgenstrahlen, Annalen der Physik, 1913, 346, 971–988

[174] P. P. Ewald, Zur Theorie der Interferenzen der Röntgentstrahlen in

Kristallen, Physik. Z., 1913, 14, 465–472

[175] D. Watkin, Uequiv: its past, present and future, Acta. Cryst., 2000,

B56, 747–749

[176] F. L. Hirshfeld, Can X-ray data distinguish bonding effects from vibra-

tional smearing?, Acta Cryst., 1976, A32, 239–244

[177] H. G. von Schnering, D. Vu, Are the Previously Described [ClF6][CuF4]

and [Cu(H2O)][SiF6] Identical?, Angew. Chem. Int. Ed., 1983, 22, 408

[178] B. Dittrich, T. Koritsánszky, P. Luger, A Simple Approach to Non-

spherical Electron Densities by Using Invarioms, Angew. Chem. Int.

Ed., 2004, 43, 2718-2721

[179] N. K. Hansen, P. Coppens, Testing Aspherical Atom Refinements on

Small-Molecule Data Sets, Acta Cryst., 1978, A34, 909–921

[180] B. Dittrich, C. B. Hübschle, M. Messerschmidt, R. Kalinowski, D.

Girnta, P. Lugera, The invariom model and its application: refinement

of D,L-serine at different temperatures and resolution, Acta Cryst.,

2005, A61, 314–320

[181] B. Dittrich, P. Munshi, M. A. Spackman, Invariom-model refinement

of l-valinol, Acta Cryst., 2006, C62, 633–635

305

[182] S. R. Hall, F. H. Allen, I. D. Brown, The Crystallographic Information

File (CIF): a New Standard Archive File for Crystallography, Acta

Cryst., 1991, A47, 655–685

[183] http://www.iucr.org/iucr-top/cif/cif core/index.html

[184] S. R. Hall, The STAR file: a new format for electronic data transfer

and archiving, J. Chem. Inf. Comput. Sci., 1991, 31, 326–333

[185] S. R. Hall, N. Spadaccinit, The STAR File: Detailed Specifications, J.

Chem. Inf. Comput. Sci., 1994, 34, 505–508

[186] F. H. Allen, O. Kennard, W. D. S. Motherwell, W. G. Town, D. G.

Waston, T. J. Scott, A. C. Larson, The Cambridge Crystallographic

Data Centre. Part 3. The Unique Molecule Program, J. Appl. Cryst.,

1974,7, 73–78

[187] http://checkcif.iucr.org

[188] http://journals.iucr.org/services/cif/datavalidation.html

[189] N. E. Day, P. Murray-Rust, H. S. Rzepa, S. M. Tyrrell, Y. Zhang,

Automatic aggregation of open chemical data, Abstr. Am. Chem. Soc.

2005

[190] R. Guha, M. T. Howard, G. R. Hutchison, P. Murray-Rust, H. Rzepa,

C. Steinbeck, J. Wegner, E. L. Willighagen, The Blue Obelisk — Inter-

operability in Chemical Informatics, J. Chem. Inf. Model., 2006, 46,

991–998

[191] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood,

T. Carver, K. Glover, M. R. Pocock, A. Wipat, P. Li, Taverna: a

tool for the composition and enactment of bioinformatics workflows,

Bioinformatics, 2004, 20, 3045–3054

[192] Y. Zhang, P. Murrary-Rust, M. T. Dove, R. C. Glen, H. S. Rzepa,

J. A. Townsend, S. Tyrrell, J. Wakelin, E. L. Willighagen, JUMBO –

306

An XML Infrastructure for eScience, Proceedings of UK e-Science All

Hands Conference, 2004

[193] http://www.ccdc.cam.ac.uk/products/csd/request/request.php4

[194] http://journals.iucr.org/services/cif/reqditems.html

[195] P. Murray-Rust, H. S. Rzepa, S. M. Tyrrell, Y. Zhang, Representation

and use of chemistry in the global electronic age, Org. Biomol. Chem.,

2004, 2, 3192–3203

[196] P. Murray-Rust, S. Tyrrell, CIF2CML — Automatic Processing in

XML/CML, Acta Cryst., 2005, A61, C109

[197] http://ant.apache.org

[198] M. Calleja, B. Beckles, M. Keegan, M. A. Hayes, A. Parker, M.

T. Dove, CamGrid: Experiences in constructing a university-wide,

Condor-based, grid at the University of Cambridge, Proceedings of UK

e-Science All Hands Conference, 2004

[199] Private communication with Dr C. Bolton, Unilever Centre for Molec-

ular Science Informatics

[200] http://www.dspace.org

[201] L. Zorina, S. Khasanov, B. Narymbetov, R. Shibaeva, A. Ko-

tov, É. Yagubskii, Crystal structure of radical cation salt, (BEDT-

TTF)4(GaCl4)2 C6H5CH3, 2001, 46, 219-224

[202] Private communication with Dr Alison Edwards, Bragg Institute 2006

[203] Private communication with Dr W. Bernd Schweizer, Eidengenössische

Technische Houchschule Zürich 2006

[204] http://www.ccdc.cam.ac.uk/products/csd/statistics

[205] http://www.iucr.org/iucr-top/cif/cifdic html/1/cif core.dic/Cchemical formula.html

307

[206] X.-H., Li, H.-P. Xiao, catena-Poly[[[(2,2’-bipyridine)copper(II)]-µ-

terephthalato] N,N -dimethylformamide solvate], Acta Cryst., 2004,

E60, 898–900

[207] S. S. Shapiro, M. B. Wilk, An analysis of variance test for normality

(complete samples), Biometrika, 1956, 52, 591–611

[208] C. R. Newton, I. S. Michela, G. W. J. Fleet, Y. Blériot,

D. J. Watkin, 2-C-Hydroxymethyl-2,3-O-isopropylidene-D-ribono-1,5-

lactam, Acta Cryst., 2004, E60, 909–910

[209] A.L. Spek, Single-crystal structure validation with the program PLA-

TON, J. Appl. Cryst., 2003, 36, 7–13

[210] N. E. Day, Unpublished work 2006

[211] S.F. Boys, Electronic wavefunctions. I. A general method of calculation

for stationary states of any molecular system. Proc. Roy. Soc., 1950,

200, 542–554

[212] J. C. Slater, A Simplification of the Hartree-Fock Method, Phys. Rev.,

1951, 81, 385–390

[213] P. A. M. Dirac, Note on exchange phenomena in the Thomas-Fermi

atom, Proc. Camb. Philos. Soc., 1930, 26, 376–385

[214] W. Kohn, L. J. Sham, Self-Consistent Equations Including Exchange

and Correlation Effects, Phys. Rev., 1965, A140, 1133–1138

[215] A. D. Becke, Density-functional thermochemistry. III. The role of exact

exchange, J. Chem. Phys., 1993, 98, 5648–5652

[216] C. Lee, W. Yang, R. G. Parr, Development of the Colle-Salvetti

correlation-energy formula into a functional of the electron density,

Phys. Rev., 1988, B37, 785–789

[217] P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, Ab ini-

tio calculation of vibrational absorption and circular dichroism spectra

308

using density functional force fields, J. Chem. Phys. 1994, 98 11623–

11627

[218] J. Pople, D. L. Beveridge, P. A. Dobosh, Approximate Self-Consistent

Molecular-Orbital Theory. V. Intermediate Neglect of Differential

Overlap, J. Chem. Phys., 1967, 47, 2026–2033

[219] M.J.S. Dewar, E. G. Zoebisch, E.F. Healy, J.J.P. Stewart, AM1: A

New General Purpose Quantum Mechanical Molecular Model, J. Am.

Chem. Soc., 1985, 107, 3902–3909

[220] J. J. P. Stewart, Optimization of parameters for semiempirical methods

.1. Method, J. Comp. Chem., 1989, 10 209–220

[221] J. J. P. Stewart, Optimization of parameters for semiempirical methods

.2. Applications, J. Comp. Chem., 1989, 10 221–264

[222] http://java.sun.com/j2se/1.5.0/docs/api

[223] http://alpha2.bmc.uu.se

References are given in the style adopted by the Journal of Chemical Infor-

matics and Computer Science.

309

