
FutureGRID : A Program for long-term research into GRID
systems architecture

J A Crowcroft
�
, S M Hand

�
, T L Harris

�
, A J Herbert � , M A Parker

�
and I A Pratt

�

�
University of Cambridge Computer Laboratory, Cambridge, UK

� Microsoft Research, Cambridge, UK�
Cambridge e-Science Centre

August 7, 2003

Abstract

This is a project to carry out research into long-term GRID architecture, in the University of Cam-
bridge Computer Laboratory and the Cambridge eScience Center, with support from the Microsoft Re-
search Laboratory, Cambridge.

It is part of a larger vision for future systems architectures for public computing platforms, including
both scientific GRID and commodity level computing such as games, peer2peer computing and storage
services and so forth, based on work in the laboratories in recent years into massively scaleable distributed
systems for storage, computation, content distribution and collaboration[26].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/1302945?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Good architecture arises from harvesting best prac-
tice. For example the ANSA project led by Andrew
Herbert, now of Microsoft, was formed in 1985 to
harvest the early experience of research into LAN-
based distributed computing. ANSA paved the way
towards the CORBA standard for enterprise appli-
cation integration. From the research results of the
time the ANSA project synthesized a platform, AN-
SAware, which was used by others to build distributed
applications. The design of ANSAware was a chal-
lenge in integration and spawned research in its own
right. Experience from the community of ANSAware
developers and ongoing research results were fed back
into the design iterations of the platform ensuring it
remained state of the art. Grid computing is cur-
rently at a similar threshold to that faced by LAN-
based distributed computing in 1985: promising re-
search results point the way, many groups are build-
ing ambitious applications, but there is a lack of a
suitable architecture to pull it all together. It is our
belief that coupling the four areas of investigation
cited in this project we can develop a future Grid ar-
chitecture that points the way forward from the first
steps taken with the introduction of the Open Grid
Services Architecture (OGSA). Our target for large
scale exploitation is in the timeframe of five to ten
years out.

Emergent Architecture
There are a number of specific techniques that we
believe are likely to have important implications for
GRID architecture, and we are pursuing their de-
velopment now, so that the local (Cambridge, and
broader UK) community can benefit soonest:

1. Concrete resource accounting and management

2. Use of Distributed Hash Tables and other peer-
to-peer techniques

3. Spread-Spectrum Computing

4. Design of self organising systems

Recent research results in these areas, from the
peer-to-peer community, large scale control systems
theory, publish/subscribe and event notification sys-
tems, and self-organising systems theory is very promis-
ing. We anticipate that several orders of magnitude
growth in the size of typical distributed applications
is feasible, with lower management costs than pre-
vious systems designs. Searchable storage systems
of thousands of petabytes, with “10 9s” availabil-
ity should not be impossible; high availability, high
performance distributed computations for tasks that

have traditionally been hard to decompose; timely
notification of events and content update are on our
agenda; finally, a replacement of the collaborative
frameworks for synchronous and asynchronous com-
puter supported working is needed, and we believe
we have an approach that can accommodate this very
nicely.

Four corners of the Program
It is too early to specify an architecture on a tabula
rasa. Instead, we choose to explore the systems de-
sign space through four projects, which exploit the
skills and track record of the two laboratories, and
see how the gradual identification of common el-
ements leads to an emergent understanding of the
overall requirements.

In particular, there are four application areas which
motivate our study, and for which we will demon-
strate prototype GRID services:

1. Massively scalable middleware for collabora-
tive virtual communities. This combines the
experience with implementing the multicast tools
that make up the access grid, and already in-
volving MSR and the Computer Lab, but re-
placing the multicast IP substrate with P2P sys-
tems based on MSR work, including Scribe
and Pastry.

2. Advanced resource location mechanisms. This
extends recent results on Content Addressable
Systems to include multiple criteria for resource
location.

3. Automatic replication and distribution of s/w
components. Here we will exploit self organi-
sation and redundancy coding concepts to their
full.

4. Global data storage and publishing systems.
This takes advantage of work adding persis-
tence and efficient update to Pastry and other
P2P storage systems, already in collaboration
between CL and MSR.

The next four sections cover the details of the
four related, but non inter-dependant projects which
form the basis of this part of a larger programme of
work on Future GRID Architectures. At the end of
the work that constitutes these four projects, we will
be in an excellent position to make a fundamental
contribution to the vision for the Future GRID Ar-
chitecture, and this is discussed in the final section.



1 Massive Scaling Collaborative
Environments through P2P

1.1 Background
This part of the project is about using P2P techniques
to build massively scalable, reliable distributed sys-
tems support for online Collaborative virtual envi-
ronments.

It is rooted in much deep background in the lab
in such tools in the past using IP Multicast (the Ac-
cess Grid tools were partly built one of us) and in
P2P.

This work (described in detail at http://www-
mice.cs.ucl.ac.uk/multimedia/software/)
formed the basis of the MICE Mbone tools, now
largely in use as Access Grid software. Many prob-
lems persist with the systems design that these tools
rest on, which are recognised by the community, not
the least being the limited deployment of native IP
multicast, and the unreliability and problems of ac-
counting and carrying out access control for inter-
domain multicast.

Several UK GRID projects have ambitions in this
space, albeit largely at higher levels (e.g. MyGRID,
Discovery Net, etc). The Equator IRC (which the
PI is involved in) has also been extended to look
at Advanced GRID Interfaces for Environmental e-
Science, and CoAKTinG, GRID enabled knowledge
services. However, these are at the human-computer
interface, and knowledge engineering levels. They
rest on rather shaky network foundations at the mo-
ment.

Recent work at MSR and in the Computer Lab-
oratory has addressed the way that application layer
multicast and p2p may be effectively and efficiently
combined, at least in simulation.

This work involves extended the approach to ap-
plications and testbeds and obtaining real performance
experimentation results.

1.2 Observations on P2P
MSR was a key player in developing Pastry. A re-
lated system, CAN [25] achieves efficient organisa-
tion of content distribution over a set of distributed
nodes, without any distinguished node. Both sys-
tems have been extended to offer multicast services,
through Scribe and CANcast [28]. Work at CMU
developed End Systems Multicast (ESM) [7] which
was then used to build collaborative tools on an ex-
perimental basis [6].

Meanwhile, work between the Computer Lab and
MSR also moved forward on transport protocols as-

suming the presence of native IP multicast, includ-
ing work on Fcast for file dissemination, and PGM
which can be used for event notification as well as
media tools. However, these tend to assume some
degree of novel IP router support, which is not with-
out problems.

1.3 Proposal
To carry out the work of porting Access Grid trans-
port protocols and applications such as fcast, PGM,
and vic and rat, over Scribe/Pastry, we propose the
following work plan:

� Deploy Xenoservers [26] at Access Grid sites
(all e-Science Centres).

� Port Pastry and Scribe to Xenoserver with ac-
counting and resource management of network
usage! (multicast congestion control work with
Jim Gemmell, closed group multicast, pricing
with Peter Key etc etc).

� Design suitable API based on WSDL/OGSA
(Mainline GRID GGF liason here!) SOAP,
etc.

� Port application set (vic, rat, fcast, powerpoint)
to new infrastructure, including gateways to
legacy “native” multicast versions. Note that
such a gateway is also dual function since it is
also a BRIDGE for unicast IP native tools!

� User trials

1.4 Value and Evaluation
Value - we develop a standard massively scalable
middleware with the largest software provider in the
collaborative virtual community space.

Evaluation - of middleware on UK-wide plat-
form requiring no input from network provider (it
is important to remove this potentially fatal depen-
dence, in our experience in other projects in the last
decade).

We will carry out a performance comparison of
end-system p2p only multicast with native solutions.
(We expect performance to be slightly lower in terms
of use of network bandwidth, but much better in terms
of scalable deployment).



2 Multi-dimensional peer-to-peer
search systems

2.1 Background
Recent research on peer-to-peer systems has devel-
oped a number of mechanisms for implementing dis-
tributed look-up algorithms – for example Pastry [27],
Chord [30] and Tapestry [32].

These systems differ from one another in the ex-
act approach taken but, in outline, each manages a
large global key space within which identifiers repre-
senting peers and data are both located. The system
exposes operations such as lookup(k) and store(k,v)
on key-value pairs within this space.

A peer manages a section of the key space around
its own identifier, maintaining key-value mappings
for data in that region. Schemes based on Plaxton
trees are usually used for routing lookup and stor-
age requests between nodes [23], forming the peers
into an overlay network in which �����
	��� links are
traversed to access any key in a system of � nodes.
For performance the peers may track the underlying
network topology and use this to influence how the
overlay is constructed. Peers maintain additional in-
formation for robustness and to support the dynamic
entry and exit of nodes.

2.2 Observations
The distributed look-up interface provided by exist-
ing peer-to-peer toolkits can form the basis of many
data storage applications. For example, projects have
set out to build distributed file systems such as PAST [12]
(providing persistent and anonymous storage), Pas-
try [24] (providing mutability and decentralized names-
pace management) and Mnemosyne [13] (providing
a steganographic file system). The existing systems
can also support a one-dimensional ‘nearest neigh-
bor’ lookup in the key space since messages con-
cerning a key can be routed to the node whose own
identifier is closest.

However, many problems that might benefit from
a distributed implementation cannot easily be cast in
terms of simple key lookup operations. As an ex-
ample, and one that is of particular concern to the
Grid community, consider the problem of matching
the resource requirements of a particular computa-
tional job against the resources offered by a number
of systems. Existing proposals (such as those sur-
veyed by Krauter [18]) are generally based on build-
ing some form of resource information database that
clients query in order to locate servers. Replication

and caching can be configured to provide robustness
and to exploit locality that may exist in accesses.

The desire for a self-organizing system, in which
replication, caching and (ideally) load balancing are
managed and configured automatically is one of the
advantages claimed for well-designed peer-to-peer
systems such as those outlined in Section 2.1.

2.3 The Work
We are researching techniques for casting more gen-
eral search problems into peer-to-peer solutions, tak-
ing the matching of resource requirements and re-
source availability as a motivating example. Such
systems stand to provide the same benefits to multi-
dimensional search problems as existing peer-to-peer
lookup systems do to single-dimensional key spaces.

To illustrate this, consider a multi-dimensional
space in which server capabilities and job require-
ments reside – for instance with two dimensions cor-
responding to network locations (in the manner pro-
posed by Ng and Zhang [20]), others to physical
memory size, processor families, availability of spe-
cialised facilities, operating jurisdiction and the like.
Jobs would specify a target location in this space,
corresponding to their requirements and servers would
specify a location corresponding to their facilities.

With this in mind a multi-dimensional search sys-
tem could perform a nearest-neighbor search to iden-
tify a set of possible servers to use. In a peer-to-
peer implementation, each peer would also be lo-
cated in the multi-dimensional space and act as a
‘broker’ between the servers in that space and the job
requirements being matched. These brokers would
move within the space to perform load balancing.
General sequential algorithms for searching metric
spaces are well developed, for example those sur-
veyed by Chávez [5].

Concretely, we are investigating:

� Techniques for managing distributed data struc-
tures whose representation is shared between
a number of nodes as in a peer-to-peer sys-
tem. Doing so in the face of node failures re-
lies on self-stabilization [10], a field of which
our existing work on non-blocking data struc-
tures forms a part [15, 16].

� Pastry enables dynamic cacheing and proxy-
ing since an application can be invoked each
time a message is routed, also allowing re-
source accounting. Query paths can be re-
versed for dissemination, achieving excellent
locality. Pastry looks after the state robustly.



� Mechanisms for decomposing the design of
peer-to-peer systems into constituent parts –
for example to separate the management of
entry/exit requests of nodes from the manage-
ment of the data structure being represented.

� The ability for such a system to operate at grid-
scale levels and, in particular, the performance
of an automatically self-organizing peer-to-peer
system in comparison to a distributed direc-
tory.

We have reported on early results here in two
publications in HPDC[29] and IPTPS[22].

3 Spread-Spectrum Computing
Techniques

3.1 Background
In computational grid systems such as Globus, Le-
gion and Condor a key challenge is deciding which
resources on which nodes should be used for any
given task. In the case where a single processor
or portion thereof is required, this boils down to a
resource matching problem and may be tackled by
techniques suggested in proposal 2. In the more gen-
eral case, a subset of the grid including many proces-
sors or portions is required. This problem is often
referred to as the “co-allocation” problem.

Earlier systems such as the distributed queue-
ing system (DQS), IBM’s Load Leveller and NASAs
portable batch system (PBS) focused on load balanc-
ing individual jobs. Indeed, work in this area goes
back to the early 70’s – a good taxonomy is of work
until the late 1980’s is given in [3]

On-line monitoring and prediction of resource
usage is done using tools like the network weather
service (NWS) [31]. Actual distribution and ’launch-
ing’ of applications is done in a variety of ways, of-
ten by the grid resource management tool GRAM.

Current techniques to solve the co-allocation prob-
lem take a straightforward approach [19]: a set of
candidate resource shares is identified, and then reser-
vations are attempted. A “rollback” process may be
instigated in cases where a reservation fails. Node
failure later in the computation may or may not be
handled.

Again, the use of Pastry techniques to keep statis-
tics on usage and resources over time allows systems
to be built which can make longer term decisions.

3.2 Observations
The co-allocation algorithm described in Section 3.1
is expected to operate for all users regardless of their
requirements or preferences. There is a danger here
that a single notion of optimality may unintention-
ally be imposed upon the entire system. In particu-
lar, it may be that certain classes of user are willing
to expend additional redundant resources in order to
obtain more resilient or available service.

Redundancy in distributed systems has been used
to provide increased availability, performance and
reliability by techniques such as striping and mir-
roring [1], fast fail-over [21], and byzantine fault-
tolerance [4]. However this is oriented toward col-
lections of machines and devices which are fairly
small (a few hundred machines at most) relative to
modern wide-area distributed systems – in particular
existing ‘peer-to-peer’ systems and emerging com-
putational grids – which may have participant nodes
numbering in the hundreds of thousands.

3.3 Workplan
We are investigating spread spectrum computing as a
computation paradigm for the grid. In spread-spectrum
computing a subset of a large number of distributed
resources are selected according to some keyed pseudo-
random process, using redundancy to remove the need
to explicitly arbitrate usage between independent users.
Although the selection is decentralised, if the candi-
date set is large enough and the pseudo-random pro-
cedure fairly uniform, we can expect relatively good
load balancing. If the keys are good enough, the set
of resources used by any particular client should be
unpredictable and hence resilient to attack.

In terms of the co-allocation problem this means
that a set of � candidate nodes are tried in paral-
lel on the assumption that at least some � of them
will succeed. Any node may reject an incoming re-
quest for any reason (e.g. overload, security policy).
Providing at least � accept the request, the overall
execution will complete correctly.

We believe such a scheme has a number of bene-
fits. Firstly, it avoids a central notion of “optimality”
and hence allows each individual user to choose their
own trade-offs in terms of cost, reliability availabil-
ity, etc. Secondly, tolerance to collisions effectively
provides “soft capacity” – the resources of the entire
system are shared automatically between the num-
ber of users. This second property also means that
scalability is inherent.

Existing experience with using this techniques
for storage have been promising [14], but applying



the approach to general purpose computing is more
challenging for a variety of reasons. It remains to be
seen to how great an extent the desired benefits may
be achieved in this domain.

Concretely, we are investigating:

� designing redundantly encoded parallel algo-
rithms,

� efficiency of coding/partition functions,

� fuzzy distribution protocols, and

� programming language support.

A report on an initial strawman design for this
was recently submitted to the HOTOS conference,
entitled “An Operating System Symphony”.

4 Storage and distribution
Providing a common location-independent environ-
ment to applications is an essential tenet of Grid com-
puting. A massively scalable and globally available
storage system is a key component of this.

Ideally, such a system should make data highly
available through replication across physically sep-
arate hosts (perhaps making use of information dis-
persion codes for storage efficiency). It should uti-
lize aggressive caching so that data can be served lo-
cally and with low-latency from where it is currently
being accessed, and automatically replicated to cope
with varying demand such as ’flash crowds’. How-
ever, data updates should be propagated quickly, and
some model of consistency enforced.

The Grid Storage Resource Broker [2] is a first
attempt to provide a unified storage interface to Grid
applications, but doesn’t provide the automatic caching
and replication that is desired. Other distributed file
systems such as AFS[17] address some of these is-
sues, but can not be described as massively-scalable,
and do not provide the automatic ‘hands-free’ man-
agement that is required.

The current popularity of peer-to-peer systems
has led to significant work in this area, most notably
PAST[11], CFS[9] and Freenet[8]. These systems
employ Distributed Hash Tables (DHTs) as the un-
derlying storage mechanism and can achieve good
availability and caching.

However, current work has focused on write-once
publication systems rather than fully-fledged file sys-
tems. We wish to investigate how these techniques
can be extended to provide the functionality required
by a Grid storage service, supporting the file sys-
tem mutability that is missing from current systems.

More complex distributed data structures (such as
B* trees) may be required to allow efficient index-
ing and searching.

A further area we wish to investigate how a Grid
storage service could be used to provide shared workspaces
to allow ad-hoc collaboration between users.

In traditional file systems users belonging to a
particular group or ACL have permission to create
and modify files in shared spaces. Such schemes
breakdown when there are large numbers of users,
particularly when not all our necessarily fully trusted.

One potential solution is to allow each user to
have their own personal ‘view’ of shared spaces, where
modifications they make are performed in a copy-
on-write fashion. This modified view can then be
published and made available for other users to use
as the basis of their own view, which may consist of
the composition of the views of several such users in
an overlaying fashion.

We envisage that ‘authorities’ on particular top-
ics will emerge and over time be linked together to
form a structure akin to a Google or Yahoo directory,
that most users will choose to have as their own root
view that they extend and customize as desired.

5 Relationship of work with
Evolution of Web Service
and GRID Services

Looking at the four areas of work in retrospect over
the last 20 years we can see a pattern of evolution
that one might characterise as punctuated equilib-
rium: in classical distributed computation, we have
moved from the Cambridge Distributed System through
ANSA and CORBA to OGSA; in the area of col-
laborative tools we have moved from point-to-point,
to multicast, to peer-to-peer; for directory informa-
tion we have moved from grapevine through DNS to
the LDAP systems; and in storage systems we have
moved from remote file access of NFS and AFS, to
the large scale SANs and p2p storage systems that
are emerging now. This project takes a view that we
are about to go through a rapid phase shift, and that
while continuity for existing eScience services must
be assured, the Computer Science community must
prepare for the next step-shift into a new distribution
paradigm.

In the immediate term, though, we note that there
is a large body of work ongoing in the GRID com-
munity moving from Web Services through to the
GRID. We do not anticipate being on a direct inter-
cept with this for some time, although the working



relationship with Microsoft Research may result in
some influence on directions in their .net technol-
ogy. MSR have a symmetrical view. However, we
believe that our approaches are radical enough in
structure that they are likely to be largely compli-
mentary in any case.

We will bring ideas to the relevant standards groups
when the time is ripe. One area of direct collabo-
ration with the Cambridge e-Science centre will be
through the peer-to-peer Access Grid worked described
in section 1.3. The self-organising content distribu-
tion overlay network we propose will have clear ap-
plication to the tele-medicine work ongoing at the
centre. We envisage that opportunities for other di-
rect interaction will emerge as the project progresses.

Code and other IP developed by the project will
be owned by the University of Cambridge, but it is
our intention to release it into the public domain un-
der a BSD-style license.

References
[1] Thomas Anderson, Michael Dahlin, Jeanna

Neefe, David Patterson, Drew Roselli, and
Randolph Wang. Serverless network file sys-
tems. In Proceedings of the 15th Symposium
on Operating System Principles. ACM, pages
109–126, Copper Mountain Resort, Colorado,
December 1995.

[2] C. Baru, R. Moore, A. Rajasekar, and M. Wan.
The sdsc storage resource broker, 1998.

[3] Thomas L. Casavant and Jon G. Kuhl. A tax-
onomy of scheduling in general-purpose dis-
tributed computing systems. IEEE Transac-
tions on Software Engineering, 14(2):141–154,
February 1988.

[4] Miguel Castro and Barbara Liskov. Practi-
cal Byzantine Fault Tolerance. In Proceedings
of the 3rd Symposium on Operating Systems
Design and Implementation, Usenix Associa-
tion, New Orleans, LA, USA, February 1999.
USENIX Association, Co-sponsored by IEEE
TCOS and ACM SIGOPS.

[5] Edgar Chávez, Gonzalo Navarro, Ricardo
Baeza-Yates, and José Luis Marroquin.
Searching in metric spaces. ACM Computing
Surveys, 33(3):273–321, September 2001.

[6] Y. Chu, S. Rao, S. Seshan, and H. Zhang. En-
abling conferencing applications on the inter-
net using an overlay multicast architecture. In
Proceedings of ACM SIGCOMM, 2001.

[7] Y. Chu, S. Rao, and H. Zhang. A case for end
system multicast. In Proceedings of ACM SIG-
METRICS, pages 1–12, June 2000.

[8] Ian Clarke, Oskar Sandberg, Brandon Wiley,
and Theodore W. Hong. Freenet: A distributed
anonymous information storage and retrieval
system. In Workshop on Design Issues in
Anonymity and Unobservability, pages 46–66,
2000.

[9] F. Dabek, M. F. Kaashoek, D. Karger, R. Mor-
ris, and I. Stoica. Wide-area cooperative
stroage with cfs. In Proceedings of ACM SOSP
2001, October 2001.

[10] Shlomi Dolev. Self-Stabilization. MIT Press,
Cambridge, MA, 2000. Ben-Gurion University
of the Negev, Israel.

[11] P. Druschel and A. Rowstron. Past: A large-
scale, persistent peer-to-peer sotrage utility. In
Proceedings of HOTOS VIII, May 2001.

[12] Peter Druschel and Antony Rowstron. PAST:
A persistent and anonymous store. In HotOS
VIII, May 2001.

[13] Steven Hand and Timothy Roscoe.
Mnemosyne: peer-to-peer steganographic
storage. In Proceedings of the 1st Interna-
tional Workshop on Peer-to-Peer Systems,
March 2002.

[14] Steven Hand and Timothy Roscoe. Spread
spectrum storage with mnemosyne. In FuDiCo
2002: International Workshop in Future Direc-
tions in Distributed Computing, 2002.

[15] Timothy L. Harris. A pragmatic implemen-
tation of non-blocking linked lists. In Dis-
tributed Computing, 15th International Con-
ference, volume 2180 of Lecture Notes in
Computer Science, pages 300–314. Springer-
Verlag, October 2001.

[16] Timothy L Harris, Keir Fraser, and Ian A Pratt.
A practical multi-word compare-and-swap op-
eration. In Submitted for publication, April
2002.

[17] J. Howard, S. Menees M. Kazar, D. Nichols,
M. Satyanarayanan, R. Sidebotham, and
M. West. Scale and performance in a dis-
tributed file system. ACM Transactions on
Computer Systems, February 1988.



[18] Klaus Krauter, Rajkumar Buyya, and Muthu-
cumaru Maheswaran. A taxonomy and survey
of grid resource management systems for dis-
tributed computing. Software Practice and Ex-
perience, 32(2):135–164, February 2002.

[19] Chuang Liu, Lingyun Yang, Ian Foster, and
Dave Angulo. Design and Evaluation of a Re-
source Selection Framework for Grid Applica-
tions, 2002. Submitted for publication.

[20] T S Eugene Ng and Hui Zhang. Predicting in-
ternet network distance with coordinates-based
approaches. In Proceedings of IEEE INFO-
COM 2002, 2002.

[21] Fernando Pedone and Svend Frolund. Pronto:
A Fast Failover Mechanism for Off-the-Shelf
Commercial Databases. Technical Report
HPL-2000-96, HP Laboratories, July 2000.

[22] Marcelo Pias, Jon Crowcroft, Steve Wilbur,
Tim Harris, and Saleem Bhatti. Lighthouses
for scalable distributed location. In Pro-
ceedings of the 2nd International Workshop
on Peer-to-Peer Systems (IPTPS ’03), febuary
2003.

[23] C Greg Plaxton, Rajmohan Rajaraman, and
Andrea W Richa. Accessing nearby copies of
replicated objects in a distributed environment.
In Proceedings of ACM SPAA, June 1997.

[24] Ian A Pratt, Timothy Moreton, and Timo-
thy L Harris. Storage, mutability and nam-
ing in pasta. In 2002 International Workshop
on Peer-to-Peer Computing (to appear), April
2002.

[25] S Ratnasamy, P. Francis, M. Handley, R. Karp,
and S. Shenker. A Scalable Content-
Addressable Network. In Proceedings of
ACM SIGCOMM 2001, San Diego, California,
USA., August 2001.

[26] Dickon Reed, Ian Pratt, Paul Menage, Stephen
Early, and Neil Stratford. Xenoservers: ac-
counted execution of untrusted code. In Pro-
ceedings of the fifth Workshop on Hot Topics in
Operating Systems (HotOS-VII), 1999.

[27] Antony Rowstron and Peter Druschel. Pas-
try: Scalable, decentralized object location,
and routing for large-scale peer-to-peer sys-
tems. Lecture Notes in Computer Science,
2218:329–350, 2001.

[28] Antony Rowstron, Anne-Marie Kermarrec,
Miguel Castro, and Peter Druschel. Scribe:
The design of a large-scale event notifica-
tion infrastructure. In Jon Crowcroft and
Markus Hofmann, editors, Networked Group
Communication, Third International COST264
Workshop (NGC’2001), volume 2233 of Lec-
ture Notes in Computer Science, pages 30–43,
November 2001.

[29] David Spence and Tim Harris. Xenosearch:
Distributed resource discovery in the
xenoserver open platform. In Proceedings of
the Twelfth IEEE International Symposium
on High Performance Distributed Computing
(HPDC-12), 2003.

[30] Ion Stoica, Robert Morris, David Karger, Frans
Kaashoek, and Hari Balakrishnan. Chord: A
scalable Peer-To-Peer lookup service for inter-
net applications. In Roch Guerin, editor, Pro-
ceedings of the ACM SIGCOMM 2001 Confer-
ence (SIGCOMM-01), volume 31, 4 of Com-
puter Communication Review, pages 149–160,
New York, August 27–31 2001. ACM Press.

[31] R. Wolski, N. Spring, and J. Hayes. The net-
work weather service: A distributed resource
performance forecasting service for metacom-
puting. In Journal of Future Generation Com-
puter System 15(5/6):757–768, 1999.

[32] Ben Y. Zhao, John Kubiatowicz, and An-
thony D. Joseph. Tapestry: an infrastructure for
fault-resilient wide-area location and routing.
Technical Report UCB//CSD-01-1141, Uni-
versity of California at Berkeley, April 2001.


