

Comparative Analysis of Polyhedral Oligomeric Silsesquioxane (POSS) Using ToF-SIMS

Danielle Baur,¹ Fei Zhang,² and Dr. Xiao-Ying Yu²

¹ California State University San Marcos ² Pacific Northwest National Laboratory

Introduction

- Polyhedral Oligomeric Silsesquioxane (POSS) is an important type of nanostructured chemical compound; ¹
- Applications as an additive, a plastic, and a preceramic;
- Valuable features of POSS including large molecule building block and the intermediate composition between SiO₂ and R₂SiO; ^{2,3}
- Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS) is used to study POSS to provide more insight in its molecular structure and functioning group.

Experimental Design

POSS Structures Analyzed

Sample 1: Octaviynl

Sample 3: Disilanol

Sample 2: Trisilanol

Sample 4: Tetrasilanol

with the Pacific Northwest National Laboratory.

Sanctuary Foundation (<u>www.marinesanctuary.org</u>), the California State University ⁴

Office of the Chancellor, and California Polytechnic State University, in partnership

solves complex problems in energy, national security, and the environment, and advances scientific frontiers in the chemical, biological, materials,

been managed by Ohio-based Battelle since 1965.