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This paper describes a new mathematical method called conflation for consolidating data from 
independent experiments that measure the same physical quantity. Conflation is easy to calculate 
and visualize and minimizes the maximum loss in Shannon information in consolidating several 
independent distributions into a single distribution. A formal mathematical treatment of conflation 
has recently been published. For the benefit of experimenters wishing to use this technique, in this 
paper we derive the principal basic properties of conflation in the special case of normally distributed 
(Gaussian) data. Examples of applications to measurements of the fundamental physical constants 
and in high energy physics are presented, and the conflation operation is generalized to weighted 
conflation for cases in which the underlying experiments are not uniformly reliable. V 2011C 

American Institute of Physics. [doi:10.1063/1.3593373] 

When different experiments are designed to measure the 
same unknown quantity, how can their results be consoli-

dated in an unbiased and optimal way? Given data from 
experiments made at different times, in different loca-

tions, with different methodologies, and perhaps differing 
even in underlying theory, is there a straightforward, eas-

ily applied method for combining the results from all of 
the experiments into a single distribution? This paper 
describes a new mathematical method called conflation 
for consolidating data from independent experiments 
that measure the same physical quantity. 

I. INTRODUCTION 

The consolidation of data from different sources can be 
particularly vexing in the determination of the values of the 
fundamental physical constants. For example, the U.S. 
National Institute of Standards and Technology (NIST) 
recently reported “two major inconsistencies” in some meas-

ured values of the molar volume of silicon VmðSiÞ and the 
silicon lattice spacing d220, leading to an ad hoc factor of 1.5 
increase in the uncertainty in the value of Planck’s constant 
h (Refs. 1, p. 54, and 2). (One of those inconsistencies has 
since been resolved3). 

Input data distributions that happen to have different 
means and standard deviations are not necessarily 
“inconsistent” or “incoherent” (Ref. 4, p. 2249). If the vari-

ous input data are all normally (Gaussian) or exponentially 
distributed, for example, then every interval centered at the 
unknown positive true value has a positive probability of 
occurring in every independent measurement. Ideally, of 
course, all experimental data, past and present, should be 
incorporated into the scientific record. But in the case of the 
fundamental physical constants, this could entail listing 
scores of past and present experimental datasets, each of 
which includes results from hundreds of experiments with 
thousands of data points, for each one of the fundamental 

constants. Most experimentalists and theoreticians who use 
Planck’s constant, however, need only a concise summary of 
its current value rather than the complete record. Having the 
mean and estimated standard deviation (e.g., via weighted 
least squares) does give some information, but without any 
knowledge of the distribution, knowing the mean within two 
standard deviations is only valid at the 75% level of signifi-

cance, and knowing the mean within four standard deviations 
is not even significant at the standard 95% confidence level. 
Is there an objective, natural and optimal method for consoli-

dating several input-data distributions into a single posterior 
distribution P? In this paper, we describe a new such method 
called conflation. 

Note that this is not the standard statistical problem of 
producing point estimates and confidence intervals, but 
rather a method for simply summarizing all of the experi-

mental data with a single distribution. 
First, it is useful to review some of the shortcomings of 

standard methods for consolidating data from several differ-

ent input distributions. For simplicity, consider the case of 
only two different experiments in which independent labora-

tories Lab I and Lab II measure the value of the same quan-

tity. Lab I reports its results as a probability distribution P1 

(e.g. via an empirical histogram or probability density func-

tion) and Lab II reports its findings as P2. 

A. Averaging the probabilities 

One common method of consolidating two probability 
distributions is to simply average them—for every set of val-

P1ðAÞ þ P2ðAÞ 
ues A, set PðAÞ ¼  . If the distributions both 

2 
have densities, for example, averaging the probabilities 
results in a probability distribution with density, the average 
of the two input densities (Figure 1). This method has several 
significant disadvantages. First, the mean of the resulting dis-

tribution P is always exactly the average of the means of P1 

and P2, independent of the relative accuracies or variances 
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FIG. 1. Averaging the probabilities. (The black curve is the average of the 
gray (input) curves. Note that the variance of the average is larger than the 
variance of either input.) 

of each. (Recall that the variance is the square of the stand-

ard deviation.) But if Lab I performed twice as many of the 
same type of trials as Lab II, the variance of P1 would be 
half that of P2, and it would be unreasonable to weight the 
two respective empirical means equally. 

A second disadvantage of the method of averaging prob-

abilities is that the variance of P is always at least as large 
as the minimum of the variances of P1 and P2 (see Figure 1), 
since 

2VðP1Þ þ VðP2Þ ½meanðP1Þ� meanðP2Þ�
VðPÞ ¼  þ : 

2 4 

If P1 and P2 are nearly identical, however, then their average 
is nearly identical to both inputs, whereas the standard devia-

tion of a reasonable consolidation P should probably be 
strictly less than that of both P1 and P2. The method of aver-

aging probabilities completely ignores the fact that two 
laboratories independently found nearly the same results. 
Figure 1 also shows another shortcoming of this method— 
with normally-distributed input data, it generally produces a 
multimodal distribution, whereas one might desire the con-

solidated output distribution to be of the same general form 
as that of the input data—Gaussian, or at least unimodal. 

B. Averaging the data 

Another common method of consolidating data—one 
that does preserve normality—is to average the underlying 
input data itself. That is, if the result of the experiment from 
Lab I is a random variable X1 (i.e. has distribution P1) and 
the result of Lab II is X2 (independent of X1, with distribu-

X1 þ X2
tion P2), take P to be the distribution of . As with 

2 
averaging the distributions, averaging the data also results in 
a distribution that always has exactly the average of the 
means of the two input distributions, regardless of the rela-

tive accuracies of the two input data-set distributions (see 
Figure 2). With this method, on the other hand, the variance 
of P is never larger than the maximum variance of P1 and 

VðP1Þ þ VðP2Þ 
P2 since VðPÞ ¼  , whereas some input

4 
data distributions that differ significantly should sometimes 

FIG. 2. Averaging the data. (The black curve is the average of the gray data 
curves. Note that the mean of the averaged data is exactly the average of the 
means of the two input distributions, even though they have different 
variances.) 

reflect a higher uncertainty. A more fundamental problem 
with this method is that in general it requires averaging data 
that were obtained using very different and even indirect 
methods, for example, as with the watt balance and x-ray=op-

tical interferometer measurements used in part to obtain the 
2006 CODATA recommended value for Planck’s constant.2 

The three main goals of this paper are: to describe con-

flation and derive important basic properties of conflation in 
the special case of normally-distributed data (perhaps the 
most common class of experimental data); to provide con-

crete examples of conflation using real experimental data; 
and to introduce a new method for consolidating data when 
the underlying data sets are not uniformly weighted. 

II. CONFLATION OF DATA SETS 

For consolidating data from different independent sour-

ces,5 introduced a mathematical method called conflation as 
an alternative to averaging the probabilities or averaging the 
data. In practice, it is impossible to ensure that there are 
absolutely no unidentified correlations between two meas-

urements, no matter how different in methodology they may 
be. However, whether data can be treated as truly independ-

ent is a common problem and is a hypothesis for the experi-

menters to decide. This paper addresses how to combine the 
data, once that determination has been made. 

The hypothesis of independence of the underlying 
experiments or data sets in conflation is exactly analogous to 
the hypothesis of independence in the usual statistical analy-

sis of data. For example, when the sample average of 
repeated measurements of a quantity is used to estimate the 
unknown true value of the quantity, independence of the 
underlying repetitions of the experiment is assumed in apply-

ing the strong law of large numbers or the central limit theo-

rem. In practice, formal mathematical independence of those 
experiments is usually impossible to ascertain. But if inde-

pendence of the repetitions is accepted as a reasonable 
assumption, the sample average will be a good estimate of 
the unknown value. Similarly, if independence of the under-

lying experiments of different types seems like a reasonable 
assumption, then conflation will provide a good consolida-

tion of the data from those experiments. 
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Conflation (designated with the symbol “&” to suggest 
consolidation of P1 and P2) has none of the disadvantages of 
the two averaging methods described above and has many 
advantages that will be described below. 

In the important special case that the input distributions 
P1; P2; …; Pn all have densities (e.g. Gaussian or exponential 
distributions), then the conflation &ðP1; P2; …; PnÞ of 
P1; P2; …; Pn is simply the probability distribution with den-

sity, the normalized product of the input densities. That is, 

( )  If  P1…; Pn have densities f1; …; fn, respectively, 
and the denominator is not 0 or 1, then 
&ðP1; P2; …; PnÞ is continuous with density 

f1ðxÞf2ðxÞ� fnðxÞ 
f ðxÞ ¼ Ð :1 

f1ðyÞf2ðyÞ� fnðyÞdy�1

(Especially note that the product in ( ) is taken for the den-

sities evaluated at the same point, x. Note also that conflation 
is easy to calculate and to visualize; see Figure 3.) 

Remark: This normalized product of density functions 
also arises in other stochastic contexts, such as in log-opinion 
polls for combining subjective expert opinions,6 in the condi-

tional distribution of independent random variables given 
they are equal,5 and in statistical inference calculating the 
posterior distribution based on the prior distribution and the 
likelihood function. Thus, some of the properties in Sec. III 
below, such as the fact that conflation of normal distributions 
is normal, may also be derived in those settings. In contrast 
to those frameworks, however, the notion of conflation does 
not require external random variables or underlying paramet-

ric statistical models. For discrete input distributions, the 
analogous definition of conflation is the normalized product 
of the probability mass functions, and for more general situa-

tions the definition is more technical.5 For the purposes of 
this paper, it will be assumed that the input distributions are 
continuous, and that the integral of their product is not 0 or 
1. This is always the case, for example, when the input dis-

tributions are all Gaussian. 
As can easily be seen from ð�Þ and elementary condi-

tional probability, the conflation of distributions has a natural 
heuristic and practical interpretation—gather data from the 

FIG. 3. Conflating distributions. (The black curve is the conflation of the 
gray curves. Note that the mean of the conflation is closer to the mean of the 
input distribution with smaller variance, i.e. with greater accuracy.) 

independent laboratories sequentially and simultaneously 
and record the values only at those times when the laborato-

ries (nearly) agree. This observation is readily apparent in 
the discrete case—if two independent integer-valued random 
variables X1 and X2 (e.g., binomial or Poisson random varia-

bles) have probability mass functions f1ðkÞ ¼ PrðX1 ¼ k) 
and f2ðkÞ ¼ PrðX2 ¼ kÞ, then the probability that X1 ¼ j 
given that X1 ¼ X2, is simply 

PrðX1 ¼ X2 ¼ jÞ f1ðjÞf2ðjÞ ¼P : 
PrðX1 ¼ X2Þ k f1ðkÞf2ðkÞ 

The argument in the continuous case follows similarly. 
At first glance, it may seem counterintuitive that the 

conflation of two relatively broad distributions can be a 
much narrower one (Figure 3). However, if both measure-

ments are assumed equally valid, then with relatively high 
probability, the true value should lie in the overlap region 
between the two distributions. Looking at it statistically, if 
one lab makes 50 measurements and another lab makes 100, 
then the standard deviations of their resulting distributions 
will usually be different. If the labs’ methods are also differ-

ent, with different systematic errors, or their methods rely on 
different fundamental constants with different uncertainties, 
then the means will likely be different too. But the bottom 
line is that the total of 150 valid measurements is substan-

tially greater than either lab’s data set, so the standard devia-

tion should indeed be smaller. 

III. PROPERTIES OF CONFLATION 

Conflation has several basic mathematical properties 
with significant practical advantages, and to describe these 
properties succinctly, it will be assumed throughout this sec-

tion that X1 and X2 are independent normal random variables 
with means m1; m2 and standard deviations r1; r2, respec-

tively. That is, for i ¼ 1; 2, 

2( ) Xi Nðm; r Þ has density function i h 
2 
i 

1 �ðx miÞfiðxÞ ¼  pffiffiffiffi exp for all �1 < x < 12 ri 2p 2ri Ð 
and distribution Pi given by PiðAÞ ¼ A fiðxÞdx. 

Remark: The generalization of the properties of confla-

tion described below to more than two distributions is rou-

tine; the generalization to non-normal distributions can be 
found in Ref. 5. 

Some of the basic properties of conflation are as follows: 

(1) Conflation is commutative and associative: 

&ðP1; P2Þ ¼ &ðP2; P1Þ and &ð&ðP1; P2Þ; P3Þ 
¼ &ðP1; &ðP2; P3ÞÞ: 

Proof: Immediate from ( ) and the commutativity and 
associativity of real numbers, which implies that f1ðxÞf2ðxÞ 
¼ f2ðxÞf1ðxÞ and ðf1ðxÞf2ðxÞÞf3ðxÞ ¼ f1ðxÞðf2ðxÞf3ðxÞÞ. 

(2) Conflation is iterative: 

&ðP1; P2; P3Þ ¼ &ð&ðP1; P2Þ; P3Þ: 
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Proof: Immediate from ( ). 
Thus from property (2), to include a new data set in the 

consolidation, simply conflate it with the overall conflation 
of the previous data sets. 

(3) Conflations of normal distributions are normal: 
If P1 and P2 satisfy ( ), then 

m1 m2þ
2 2 2 2r r r2m1 þ r1m2

&ðP1; P2Þ is normal with m ¼ 1 2 ¼ 
2 2 
1 2 

1 1 r þ rþ
2 2r r1 2 

2 21 r1r2 ¼and r ¼ 2 :
2 2 
1 2 

1 1 r þ rþ
2 2r r1 2 

Proof: By ð�Þ and ð��Þ, &ðP1; P2Þ is continuous with 
density proportional to "  # "  # !  

1 ðx m1Þ2 ðx m2Þ2 

f1ðxÞf2ðxÞ ¼  exp :
2 2r1r22p 2r 2r1 2 

Completing the square of the exponent gives " # " # 
ðx m1Þ2 ðx m2Þ2 

2 22r 2r1 2 

2 21 1 m1 m2 m m1 2¼� þ x 2 þ þ x þ
2 2 2 2 2 22r 2r r r 2r 2r1 2 1 2 1 2 " 

1 1 m1 m2 1 1
2 

¼� þ x þ = þ
2 2 2 2 2 22r 2r r r r r1 2 1 2 1 2 # 

2 2 2m1 m2 1 1 m1 m2þ þ = þ þ ;
2 2 2 2 2 2r r 2r 2r 2r 2r1 2 1 2 1 2 

which is easily seen to be the exponent of the density of a nor-

mal distribution with the mean and variance in property (3). 
By properties (2) and (3), conflations of any finite num-

ber of normal distributions are always normal (see Fig-

ure 3, and the dashed curve in Figure 4(b)). Similarly, many 
of the other important classical families of distributions, 
including gamma, beta, uniform, exponential, Pareto, Lap-

lace, Bernoulli, zeta, and geometric families, are also pre-

served under conflation (Ref. 5, Theorem 7.1). 

(4) Means and variances of conflations of normal distribu-

tions coincide with those of the weighted-least-squares method. 
Sketch of proof: Given two independent distributions 

with means m1; m2 and standard deviations r1; r2, respec-

tively, the weighted-lease-squares mean m is obtained by 
minimizing the function 

ðm m1Þ2 ðm m2Þ2 

f ðmÞ ¼  þ ;
2 2r r1 2 

with respect to m. Setting 

FIG. 4. Comparison of averaging probabilities, averaging data, and conflat-

ing (The gray curve in Figure 4(b) is the average of the three input distribu-

tions in Figure 4(a), the dashed curve is the average of the three input 
datasets, and the black curve is the conflation.) 

2ðm m1Þ 2ðm m2Þ 
f 0ðmÞ ¼  þ ¼ 0

2 2r r1 2 

2 2r m1þr m2and solving for m yields m ¼ 2 1 , which, by property 2 2r þr
1 2 

(3), is the mean of the conflation of two normal distributions 
with means m1; m2 and standard deviations r1; r2. The 
conclusion for the weighted-least-squares variance follows 
similarly. 

Whenever data from several (input) distributions are 
consolidated into a single (output) distribution, this will typi-

cally result in some loss of information, however that is 
defined. A classic measure of information is the Shannon in-

formation. Recall that the Shannon information obtained 
from observing that a random variable X is in a certain set A 
is log2 of the probability that X is in A. That is, the Shan-

non information is the number of binary bits of information 
obtained by observing that X is in A. For example, if X is a 
random variable uniformly distributed on the unit interval 
½0; 1�, then observing that X is greater than 1=2 has Shannon 

1information exactly log2Pr X > 1 ¼� log2 ¼ 1, so
2 2 

one unit (binary bit) of Shannon information has been 
obtained, namely, that the first binary digit in the expansion 
of X is 1. 
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The Shannon information is also called the surprisal or 
self-information—the smaller the value of PrðX 2 AÞ, the  
greater the information or surprise—and the (combined) Shan-

non information obtained by observing that independent random 
variables X1 and X2 are both in A is simply the sum of the infor-

mation obtained from each of the datasets X1 and X2, that  is,  

SP1;P2 ðAÞ ¼ SP1 ðAÞ þ SP2 ðAÞ ¼  log2P1ðAÞP2 ðAÞ. 

Thus, the loss in Shannon information incurred in replacing the 
pair of distributions P1; P2 by a single probability distribution Q 
is SP1;P2 ðAÞ� QðAÞ for the event A. 

(5) Conflation minimizes the loss of Shannon information: 
If P1 and P2 are independent probability distributions, 

then the conflation &ðP1; P2Þ of P1 and P2 is the unique 
probability distribution that minimizes, over all events A, the 
maximum loss of Shannon information in replacing the pair 
P1; P2 by a single distribution Q. 

Sketch of proof: First, observe that for an event A, the 
difference between the combined Shannon information 
obtained from P1 and P2 and the Shannon information 
obtained from a single probability Q is SP1;P2 ðAÞ� QðAÞ ¼  

QðAÞ 
log2 . Since log2ðxÞ is strictly increasing, the 

P1ðAÞP2ðAÞ 
maximum (loss) thus occurs for an event A where 

QðAÞ 
is maximized. 

P1ðAÞP2ðAÞ 
Next, note that the largest loss of Shannon information 

occurs for small sets A, since for disjoint sets A and B, 

QðA [ BÞ QðAÞ þ QðBÞ 
P1ðA [ BÞP2ðA [ BÞ P1ðAÞP2ðAÞ þ P1ðBÞP2ðBÞ 

QðAÞ QðBÞ 
max ; ;

P1ðAÞP2ðAÞ P1ðBÞP2ðBÞ 

where the inequalities follow from the inequalities 
a þ b a b ða þ bÞðc þ dÞ� ac þ bd and max ; for posi-
c þ d c d 

tive numbers a, b, c, and  d. Since  P1 and P2 are normal, their 
densities f1ðxÞ and f2ðxÞ are continuous everywhere, so the 
small set A may in fact be replaced by an arbitrarily small 
interval, and the problem reduces to finding the probability 
density function f that makes the maximum, over all real val-

f ðxÞ 
ues x, of the ratio as small as possible. But, as is 

f1ðxÞf2ðxÞ
seen in the discrete framework, the minimum over all non-

negative p1; …; pn with p1 þ � þ pn ¼ 1 of the maximum of 
p1 pn p1 pn 
; …; occurs when ¼� ¼ (if they are not equal, 

q1 qn q1 qn 

reducing the numerator of the largest ratio, and increasing that 
of the smallest, will make the maximum smaller). Thus, the f 

f ðxÞ 
that makes the maximum of as small as possible is 

f1ðxÞf2ðxÞ
when f ðxÞ ¼ cf1ðxÞf2ðxÞ, where  c is chosen to make f a den-

sity function, i.e., to make f integrate to 1. But this is exactly 
the definition of the conflation &ðP1; P2Þ in ( ). 

Remark: The proof only uses the facts that normal distri-

butions have densities that are continuous and positive 
everywhere, and that the integral of the product of every two 
normal densities is finite and positive. 

(6) Conflation is a best linear unbiased estimate (BLUE): 
If X1 and X2 are independent unbiased estimates of h 

with finite standard deviations r1; r2, respectively, then 
H ¼ mean½&ðN1; N2Þ� is a best linear unbiased estimate for 
h, where N1 and N2 are independent normal probability dis-

tributions with (random) means X1 and X2 and standard devi-

ations r1 and r2, respectively. 
Sketch of proof: Let X ¼ pX1 þ ð1 pÞX2 be the linear 

estimator of h based on X1 and X2 and weight 0 p 1. 
Then the expected value EðXÞ of X is EðXÞ ¼ pm1 

þð1 pÞm2, and since X1 and X2 are independent, the var-
22 2 2iance VðXÞ of X is VðXÞ ¼ p r þ ð1 pÞ r . To  find  the  1 2

dV 2 2p that minimizes VðXÞ, setting ¼ 2pr 2ð1 pÞr ¼ 01 2dp 
2 2 2r2 r2X1 r1X2

yields p ¼ , so  X ¼ þ is BLUE for 
2 2 2 2 2 2r þ r r þ r r þ r1 2 1 2 1 2 

h. But by property (3), X is the mean of &ðN1; N2Þ. 

ð7Þ Conflation yields a maximum likelihood estimator 
(MLE): 

If X1 and X2 are independent normal unbiased estimates 
of h with finite standard deviations r1; r2, respectively, then 
H ¼ mean½&ðN1; N2Þ� is a MLE for h, where  N1 and N2 are in-

dependent normal probability distributions with (random) means 
X1 and X2 and standard deviations r1 and r2, respectively. 

Sketch of proof: The classical likelihood function in this 
case is 

L ¼ f ðX1; hÞf ðX2; hÞ " # " # 
1 �ðX1 hÞ2 1 �ðX2 hÞ2 

¼ pffiffiffiffiffiffi exp pffiffiffiffiffiffi exp ;
2 2 r1 2p 2r1 r2 2p 2r2 

so to find the h that maximizes L, take the partial derivative 
of log L with respect to h and set it equal to zero 
@ log L X1 h X2 h ¼ þ ¼ 0.

2 2@h r r1 2 
This implies that the critical point (and maximum likeli-

hood) occurs when 

1 1 X1 X2h þ ¼ þ :
2 2 2 2r r r r1 2 1 2 

Thus 

X1 X2 1 1 
h ¼ þ = þ :

2 2 2 2r r r r1 2 1 2 

By property (3), this implies that the MLE h is the mean of 
&ðN1; N2Þ. 

Remark: Note that the normality of the underlying distri-

butions is used in property (7), but it is not required for prop-

erties (5) or (6). Properties (4), (6), and (7) in the general 
cases use Aiken’s generalization of the Gauss-Markov theo-

rem and related results, see, e.g., Refs. 7 and 8. 
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In addition to properties (6) and (7), conflation is also 
optimal with respect to several other statistical properties. In 
classical hypotheses testing, for example, a standard tech-

nique to decide from which of n known distributions given 
data actually came is to maximize the likelihood ratios, that 
is, the ratios of the probability density or probability mass 
functions. Analogously, when the objective is how best to 
consolidate data from those input distributions into a single 
(output) distribution P, one natural criterion is to choose P 
so as to make the ratios of the likelihood of observing x 
under P to the likelihood of observing x under all of the (in-

dependent) distributions fPig as close as possible. The con-

flation of the distributions is the unique probability 
distribution that makes the variation of these likelihood 
ratios as small as possible (Ref. 5, Theorem 5.2). 

The conflation of the distributions is also the unique 
probability distribution that preserves the proportionality of 
likelihoods (Ref. 5, Theorem 5.5). A criterion similar to like-

lihood ratios is to require that the output distribution P reflect 
the relative likelihoods of identical individual outcomes 
under the fPig. For example, if the likelihood of all the 
experiments fPig observing the identical outcome x is twice 
that of the likelihood of all the experiments fPig observing 
y, then PðxÞ should also be twice as large as PðyÞ. 

Conflation has one more advantage over the methods of 
averaging probabilities or data. In practice, assumptions are 
often made about the form of the input distributions, such as 
an assumption that underlying data are normally distributed.1 

But the true and estimated values for Planck’s constant are 
clearly never negative, so the underlying distribution is cer-

tainly not truly normally distributed—more likely, it is trun-

cated normal. Using conflation, the problem of truncation 
essentially disappears—it is automatically taken into 
account. If one of the input distributions is summarized as a 
true normal distribution and the other excludes negative val-

ues, for example, then the conflation will exclude negative 
values, as is seen in Figure 5. 

IV. EXAMPLES IN MEASUREMENTS OF PHYSICAL 
CONSTANTS AND HIGH-ENERGY PHYSICS 

As described in the Introduction, methods for combining 
independent data sets are especially pertinent today as pro-

gress is made in creating highly precise measurement stand-

ards and reference values for basic physical quantities. A 
suggestion by the authors for a re-definition of the kilogram9 

brought them into contact with the researchers at NIST and 
their counterparts outside the U.S. and, as suggested in the 
Introduction, it became apparent that there is a pressing need 
for an objective method for combining data sets measured in 
different laboratories. 

In Ref. 9, it is proposed that the kilogram be defined in 
terms of a predetermined theoretical value for Avogadro’s 
number. In contrast, the NIST approach is based on a more 
precise value for Planck’s constant determined in the labora-

tory using a watt balance. In fact, this approach may result in 
a defined exact value for Planck’s constant in parallel with 
the speed of light and the second (these two determine the 
meter exactly as well). Since conflation is the result pro-

duced by an objective analysis of exactly this question—how 
to consolidate data from independent experiments—perhaps, 
conflation can be employed to obtain better consolidations of 
experimental data for the fundamental physical constants. In 
this section, we illustrate, using experimental data, how con-

flation may be used in this way. 
Example 1: ({220} Lattice spacing measurements) The 

input data used to obtain the CODATA 2006 recommended 
values and uncertainties of the fundamental physical con-

stants includes the measurements and inferred values of the 
absolute {220} lattice spacing of various silicon crystals 
used in the determination of Planck’s constant and the Avo-

gadro constant. The four measurements came from three dif-

ferent laboratories and had values 192,015.565(13), 
192,015.5973(84), 192,015.5732(53), and 192,015.5685(67), 
respectively, Ref. 2, Table XXIV, where the parenthetical 
entry is the uncertainty. The CODATA task force viewed the 
second value as “inconsistent” with the other three (see gray 
curves in Figure 6) and made a consensus adjustment of the 
uncertainties. Since those values “are the means of tens of 
individual values, with each value being the average of about 
ten data points,”2 the central limit theorem suggests that the 
underlying datasets are approximately normally distributed 
as is shown in Figure 6 (gray curves). The conflation of those 
four input distributions, however, requires no consensus 

FIG. 5. The black curve is the conflation of the gray curves. Note that the 
conflation has no negative values, since the triangular input had none. 

FIG. 6. The four gray curves are the distributions of the four measurements 
of the {220} lattice spacing underlying the CODATA 2006 values; the black 
curve is the conflation of those four distributions and requires no ad hoc 
adjustment. 
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adjustment and yields a value essentially the same as the 
final CODATA value, namely, 192,015.5762 (Ref. 2, Table 
LIII), but with a much smaller uncertainty. Since uncertain-

ties play an important role in determining the values of the 
related constants via weighted least squares, this smaller and 
theoretically justifiable uncertainty is a potential improve-

ment to the current accepted values. 
Example 2: (top quark mass measurements) The top 

quark is a spin-1=2 fermion with charge two thirds that of 
the proton, and its mass is a fundamental parameter of the 
standard model of particle physics. Measurements of the 
mass of the top quark have been made by two different de-

tector groups at the Fermi National Accelerator Laboratory 
(FNAL) Tevatron: the Collider Detector at Fermilab (CDF) col-

laboration using a multivariate-template method, a b-jet 
decay-length likelihood method, and a dynamic-likelihood 
method; and the D0 collaboration using a matrix-element-

weighting method and a neutrino-weighting method. The 
mass of the top quark was then “calculated from 11 inde-

pendent measurements made by the CDF and D0 collabo-

rations” yielding the 11 measurements: 167.4(11.4), 
168.4(12.8), 164.5(5.5), 178.1(8.3), 176.1(7.3), 180.1(5.3), 
170.9(2.5), 170.3(4.4), 186.0(11.5), 174.0(5.2), and 
183.9(15.8) GeV (Figure 4 in Ref. 10). Again assuming that 
each of these measurements is approximately normally dis-

tributed, the conflation of these 11 independent input distri-

butions is normal with mean and uncertainty (standard 
deviation) 172.63(1.6), which has a slightly higher mean and 
a lower uncertainty than the average mass of 171.4(2.1) 
reported in Ref. 10. (Top quark measurements are being 
updated regularly, and the reader interested in the latest val-

ues should check the most recent FNAL publications; these 
particular (c. 2006) values were used simply for illustrative 
purposes.) 

V. WEIGHTED CONFLATION 

The conflation &ðP1; …; PnÞ of n probability distribu-

tions of independent random variables (experimental data-

sets) P1; …; Pn described above and in Ref. 5 treated all the 
underlying distributions equally, with no differentiation 
between relative perceived validities of the experiments. A 
related statistical concept is that of a uniform prior, that is, a 
prior assumption that all the experiments are equally likely 
to be valid. 

If, on the other hand, additional assumptions are made 
about the reliability or validity of the various experiments— 
for instance, that one experiment was supervised by a more 
experienced researcher, or employed a methodology thought 
to be better than another—then a consolidation of the data 
from the independent experiments should probably be 
adjusted to account for this perceived non-uniformity. 

More concretely, suppose that in addition to the inde-

pendent experimental distributions P1; …; Pn, non-negative 
weights w1; …; wn are assigned to each of the distributions to 
reflect their perceived relative validity. For example, if P1 is 
considered twice as reliable as P1, then w1 ¼ 2w2. Without 
loss of generality, the weights w1; …; wn are nonnegative, 
and at least one is positive. How should this additional infor-

mation w1; …; wn be incorporated into the consolidation of 
the input data? That is, what probability distribution 
Q ¼ &ððP1; w1Þ; …; ðPn; wnÞÞ should replace the uniform-

weight conflation &ðP1; …; PnÞ 
For the case where all the underlying datasets are 

assumed equally valid, it was seen that the conflation 
&ðP1; …; PnÞ is the unique single probability distribution Q 
that minimizes the loss of Shannon information between Q 
and the original distributions P1; …; Pn. Similarly, for 
weighted distributions ðP1; w1Þ; …; ðPn; wnÞ, identifying the 
probability distribution Q that minimizes the loss of Shannon 
information between Q and the weighted data distributions 
leads to a unique distribution &ððP1; w1Þ; …; ðPn; wnÞÞ called 
the weighted conflation. 

Given n weighted (independent) distributions ðP1; w1Þ; …; 
ðPn; wnÞ, the  weighted Shannon Information of the event A, 
SððP1;w1Þ;…;ðPn;wnÞÞðAÞ, is  

n X wj
SððP1;w1Þ;…;ðPn;wn ÞÞðAÞ ¼  SPj ðAÞ wmaxj¼1 

n X 
¼ 

j¼1 

wj 

wmax 
log2PjðAÞ; 

where, here and throughout, wmax ¼ maxfw1; …; wng. 
Note that SððP1 ;w1Þ;…;ðPn;wnÞÞ is continuous and symmetric 

in both P1; …; Pn and w1; …; wn, and that SððP1;w1Þ;…; 

ðPn; wnÞÞðAÞ ¼ 0 if all the probabilities of A are 1, for all 
P1; …; Pn and w1; …; wn. That is, no matter what the distri-

butions and weights, no information is attained by observing 
any event that is certain to occur. 

Remarks: 

(i) Dividing by wmax reflects the assumption that only 
the relative weights are important, so for instance if 
one experiment is considered twice as likely to be 
valid as another, then the information obtained from 
that experiment should be exactly twice as much as 
the information from the other, regardless of the 
absolute magnitudes of the weights. Thus in this lat-

ter case, for example, 

SððP1;2Þ;ðP2 ;1ÞÞðAÞ ¼ SððP1;4Þ;ðP2;2ÞÞðAÞ 
1 ¼ SP1 ðAÞ þ  SP2 ðAÞ: 2 

In general, this means simply that for all P1; …; Pn 

and w1; …; wn, 

SððP1;w1Þ;…;ðPn;wnÞÞðAÞ ¼ SððP1;w1 =wmaxÞ;…;ðPn;wn =wmaxÞÞðAÞ: 

(ii) If all the weights are equal, the weighted Shannon 
information coincides with the classical combined 
Shannon information, i.e., 

n 

SððP1;w1Þ;…;ðPn;wnÞÞðAÞ ¼  SPj ðAÞ 
j¼1 

if w1 ¼ ¼ wn > 0: 

X 

(iii) The weighted Shannon information is at least the 
Shannon information of the single input distribution 
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with the largest weight and no more than the classical 
combined Shannon information of P1; …; Pn, that is,  

SP1 ðAÞ  SððP1;w1Þ;…;ðPn;wnÞÞðAÞ  SP1;…;Pn ðAÞ; 

with equality if w1 > w2 ¼ ¼ wn ¼ 0 or  
w1 ¼ ¼ wn > 0, respectively. 

Next, the basic definition of conflation ( ) is generalized 
to the definition of weighted conflation, where 
&ððP1; w1Þ; …; ðPn; wnÞÞ designates the weighted conflation 
of P1; …; Pn with respect to the weights w1; …; wn. 

( ) If  P1; …; Pn have densities f1; …; fn, respectively, 
and the denominator is not 0 or 1, then 
&ððP1; w1Þ; …; ðPn; wnÞÞ is continuous with 
density 

w1 w2 wn 
wmax wmax wmaxf ðxÞ f ðxÞ� fn ðxÞ 

f ðxÞ ¼  1 2 :w1 w2 wn Ð1 wmax wmax wmax 
�1 f1 ðyÞ f ðyÞ� fn ðyÞdy2 

Remarks: 

(i) The definition of weighted conflation for discrete 
distributions is analogous, with the probability den-

sity functions and integration replaced by probability 
mass functions and summation. 

(ii) If P1; …; Pn are all normal distributions, then 
&ððP1; w1Þ; …; ðPn; wnÞÞ is normally distributed 
(calculation analogous to property (4)). 

(iii) The weighted conflation depends only on the rela-

tive, not the absolute, values of the weights, that is, 

&ððP1; w1Þ; …; ðPn; wnÞÞ 
w1 wn¼ & P1; ; …; Pn; : wmax wmax 

(iv) If all the weights are equal, the weighted conflation 
coincides with the standard conflation, that is, 

&ððP1; w1Þ; …; ðPn; wnÞÞ ¼ &ðP1; …; PnÞ 
if w1 ¼� ¼ wn > 0: 

(v) Updating a weighted distribution with an additional 
distribution and weight is straightforward: compute 
the weighted conflation of the pre-existing weighted 
conflation distribution and the new distribution, 
using weights wmax ¼ maxfw1; …; wng and wnþ1, 
respectively. That is, the analog of property (2) for 
weighted conflation is 

&ððP1; w1Þ; …; ðPn; wnÞ; ðPnþ1; wnþ1ÞÞ 

¼ &ððP1; w1Þ; …; ðPn; wnÞ; wmaxÞ; ðPnþ1; wnþ1ÞÞ: 

(vi) Normalized products of density functions of the 
forms ( ) and ( ) have been studied in the 

context of “log opinion polls” and, more recently, in 
the setting of Hilbert spaces—see Refs. 6 and 5 and 
the references therein. 

(8) Weighted conflation minimizes the loss of weighted 
Shannon information: 

If ðP1; w1Þ; …; ðPn; wnÞ are weighted independent 
distributions, then the weighted conflation &ððP1; w1Þ; …; 
ðPn; wnÞÞ is the unique probability distribution that mini-

mizes, over all events A, the maximum loss of weighted 
Shannon information in replacing ðP1; w1Þ; …; ðPn; wnÞ by a 
single distribution Q. 

The proofs of the above conclusions for weighted con-

flation follow almost exactly from those for uniform confla-

tion; the details are left for the interested reader. 

VI. CONCLUSION 

The conflation of independent input-data distributions is a 
probability distribution that summarizes the data in an optimal 
and unbiased way. The input data may already be summar-

ized, perhaps as normal distributions with given means and 
variances, or may be the raw data themselves in the form of 
empirical histograms or densities. The conflation of these 
input distributions is easy to calculate and visualize and 
affords easy computation of sharp confidence intervals. Con-

flation is also easy to update, is the unique minimizer of loss 
of Shannon information, is the unique minimal likelihood ra-

tio consolidation, and is the unique proportional consolidation 
of the input distributions. Conflation of normal distributions is 
always normal, and conflation preserves truncation of data. 
Perhaps, the method of conflating input data will provide a 
practical and simple, yet optimal and rigorous method to 
address the basic problem of consolidation of data. 
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