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Abstract. A recent article by Alexopoulos and Leontsinis presented 
empirical evidence that the first digits of the distances from the Earth 
to galaxies are a reasonably good fit to the probabilities predicted by 
Benford’s law, the well known logarithmic statistical distribution of sig-
nificant digits. The purpose of the present article is to give a theoretical 
explanation, based on Hubble’s law and mathematical properties of Ben-
ford’s law, why galaxy distances might be expected to follow Benford’s 
law. The new galaxy-distance law derived here, which is robust with 
respect to change of scale and base, to additive and multiplicative compu-
tational or observational errors, and to variability of the Hubble constant 
in both time and space, predicts that conformity to Benford’s law will 
improve as more data on distances to galaxies becomes available. Con-
versely, with the logical derivation of this law presented here, the recent 
empirical observations may beviewed as independent evidence of the 
validity of Hubble’s law. 

Key words. Benford’s law—Hubble’s law—stars—galaxies—significant 
digit. 

1. Introduction 

Very recently, Alexopoulos and Leontsinis (2014) observed that in standard 
databases of distances to 702 galaxies the first digits are a reasonably good fit to Ben-
ford’s law; see Figure 1(a). The main purpose of this article is to show how a Benford 
distribution of galaxy distances follows from Hubble’s law and certain mathemati-
cal properties of Benford’s law. The new galaxy-distance law derived here, which is 
robust with respect to change of scale and base, to additive and multiplicative com-
putational or observational errors, and to small variability of the Hubble constant 
in both time and space, predicts that conformity to Benford’s law will improve as 
more data on distances to galaxies becomes available. Conversely, with the logical 
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derivation of the new galaxy-distance law presented here, the recent empirical obser-
vations may be viewed as independent evidence of the validity of Hubble’s law. 

2. Hubble’s law and galaxy distances 

Let t0 and tp denote any distant past base time and the present time, respectively, 
where time is given in (earth) years (for example, tp = 00:00:00 hours GMT, 1 
January 2015, and t0 = tp − 109). 

Let x(t) denote the actual distance in light years from the Earth to a generic 
galaxy at time t > t0, and let  x̂(t) denote the observed distance in light years to the 
galaxy at time t . Here ‘distance’ means the standard proper distance (as opposed to 
the co-moving distance). 

Since current measurements are obtained using data from light emitted by the 
galaxy, the observed distance is the actual distance at the time that light was emitted; 
in other words, the observed distance satisfies the relation 

x(t) ˆ = x(tp − tc(t)) , (1) 

where c is the speed of light (assumed to be finite and constant), and tc(t) = x̂(t)/c 
is the time, sometimes called the lookback time (Hogg 1999), that it took for the 
observed data to arrive. 

Hubble’s law in physical cosmology is the observation that distant galaxies are 
receding from any observation point, such as the Earth, at a rate that is proportional 
to their distance away. In terms of the above notation, the idealized Hubble’s law 
(e.g., see Peacock 1999) simply states that 

dx = Hx .  (2)
dt 

Assuming H is a constant (Hubble’s constant), the solution of equation (2) is  

x(t) = x(t0) exp(H(t − t0)) for all t0 < t  ≤ tp . (3) 

Together, equations (1) and  (3) imply  � � ��ˆ )x(tp
x(tˆ p) = x(t0) exp H tp − t0 − . (4) 

c 

Looking backward in time, this implies that the actual distance at the base time t0 
in terms of the observed distance at the present time tp satisfies 

� � ˆ )x(tp
x(t0) = x̂(tp) exp H exp(−H(tp − t0)) . (5) 

c 

3. Benford’s law 

Benford’s law is the well-known logarithmic statistical distribution of significant 
(decimal) digits, dating back to Newcomb (1881), and popularized by Benford 
(1938); the online database (Berger et al. 2009) contains over 800 references to this 
law. To state it formally, let S(x) denote the decimal significand (sometimes called 
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coefficient in floating-point arithmetic) of the positive number x; e.g., S(2015) = 
2.015 = S(0.02015). 

With this terminology, a random variable X is Benford if 

Prob(S(X) ≤ t)  = log t,  for all 1 ≤ t <  10 , 

and a sequence (xn) = (x1, x2, x3, . . .)  of real numbers is Benford if 

#{n ≤ N : S(xn) ≤ t}
lim = log t,  for all 1 ≤ t <  10 , 

N→∞ N 

where log(t) denotes the decimal logarithm of t , and #{A} denotes the number of 
elements in the set A. 

The obvious relation between these two concepts that will be used below is this: 

If XN is a random variable with values that are equally likely 
to be any of the values x1, x2, . . . , xN , where (xn) is a Benford (6) 

sequence, then XN approaches a Benford distribution as N →∞. 

The most familiar form of Benford’s law is the special case of first significant digits, 
namely � � 

1 
Prob(D1(X) = d)  = log 1 + , d = 1, 2, . . . ,  9, 

d 

where D1(x) is the first significant digit of x; e.g., D1(2015) = 2 = D1(0.02015). 
Thus, for example, if a dataset (random variable or sequence) is Benford, then exactly 
100 log 2  = 30.10% have first significant digit 1, and exactly 100 log (10/9)  = 
4.57% have first significant digit 9 (see Figure 1). 

One of the key properties of Benford’s law is the fact that it is scale-invariant, and  
that it is the only scale-invariant distribution on significant digits (Theorem 5.3 of 
Berger & Hill 2015). In terms of random variables, 

If X is a Benford random variable, then aX is Benford for all a >  0  (7)  

and, in terms of sequences, 

If (xn) is a Benford sequence, then (axn) is Benford for all a >  0. (8) 

Another property of Benford sequences that will play an essential role is related 
to the well-known fact that if b is not a rational power of 10, then the sequence 
(bn) = (b, b2, b3, . . .)  is Benford (e.g., Theorem 4.16 of Berger & Hill 2015), which 
follows easily from the uniform distribution characterization of Benford’s law and 
Weyl’s theorem about irrational rotations on the circle (see Berger & Hill 2015). 
The following generalization of this fact is a crucial part of the argument below; no 
explicit reference to it is known to the authors, but it is an easy corollary of Theorem 
5.3 of Berger et al. (2005) by taking βj = (p(j + 1)/p(j))b and fj ≡ 0. 

If b >  0 is not an exact rational power of 10, then (p(n)bn) is a 
(9)Benford sequence for all non-zero polynomials p. 

Note that the rate of convergence of the sequence in equation (9) to Benford depends 
on both the polynomial p and the base b. 
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Also note that none of the familiar classical probability distributions or random 
variables are Benford, including normal, uniform, exponential, beta, binomial and 
gamma distributions, for any values of the parameters. Similarly, there is no known 
‘easy’ explanation of Benford’s law, and in the context of this note, there is no known 
easy explanation of why distances to galaxies or stars should be Benford. In particu-
lar, the all-too-common assumption that ‘Benford’s law applies approximately to any 
physical quantity that is distributed reasonably smoothly over many orders of magni-
tude’ is simply wrong. This can readily be seen by considering a quantity X = 109Y , 
where Y has a normal (gaussian) distribution with mean 6 and variance 1. Then X is 
distributed smoothly over many orders of magnitude, but is far from Benford, since 
the first digit of X (which is the same as the first digit of Y ) is 1 with probability less 
than 1%. For more details on this large-spread fallacy, see Berger & Hill (2011). 

4. A galaxy-distance law 

The main goal of this article is to derive the following law for the distribution of 
significant digits of distances to galaxies, based on Hubble’s law and the mathemat-
ical properties of Benford’s law stated above. When the value of a variable, such as 
galaxy distance, is not known a priori, then a neutral assumption – the simplest and 
oldest so-called non-informative prior in statistics – is to consider all values in its 
range equally likely. 

To state a discrete version of the galaxy-distance law concisely, say that a finite lat-
tice is a collection of regularly-spaced real numbers {a, a+δ, a+2δ, a+3δ, . . .  , a+ 
Nδ}; for example, the set of numbers {100.0, 100.1, 100.2, . . . ,  499.9, 500.0} is a 
lattice of 4001 points spaced 0.1 apart starting at 100.0 (i.e., here a = 100.0, 
N = 4000 and δ = 0.1). In the framework of this paper, both the starting point a and 
the spacing δ are completely arbitrary fixed positive numbers, and only the number 
of points N varies. The main contribution of this paper is now easy to state. 

Galaxy-distance law: If the  observed distance to a galaxy at any given time is equally 
likely to be any of the values in a finite lattice, then the actual distance at that time 
approaches a Benford distribution as the number of points increases. 

Moreover, if the distribution of the significant digits of distances is Benford at any 
time in the region where Hubble’s law holds, then it is Benford at all times in that 
region. 

To derive this law, fix a generic galaxy and assume that ˆ ), the observed dis-x(tp
tance to that galaxy at the present time, is equally likely to be any of the values 
{a, a + δ, a + 2δ, a + 3δ, . . . , a  + Nδ} for some a >  0, δ >  0, and integer N ≥ 1. 

Suppose that the observed distance at time tp is a + nδ for some 0 ≤ n ≤ N ; 
i.e., ˆ ) = a + nδ. By equation (5), it follows that x(t0), the actual distance to the x(tp
galaxy at the base time t0, satisfies � � � � ��δn a 

x(t0) = (a + δn) exp H exp −H tp − t0 − = α(a + δn)bn, (10) 
c c 

� � � � �� a δ 
where α = exp −H tp − t0 − > 0 and  b = exp H > 1 . 

c c 
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It may be assumed without loss of generality that b is not a rational power of 
10. (This follows since the Lebesgue measure of the set of rational powers of 10 is 
a null set, that is, has probability zero under any absolutely continuous probability 
distribution. Alternatively, change δ by an arbitrarily small amount, if necessary, so 
that log H(δ/c)  is irrational; since the Hubble constant H is not known exactly, this 
is not an issue.) 

By claim (9), with p(n) = a + δn, the sequence ((a + δn)bn) is Benford, so 
by the scale-invariance relation for sequences (8), (α(a + δn)bn) is also a Ben-
ford sequence. By claim (6) and equation (10), this implies that if ˆ ) is equally x(tp

likely to be any of the values {α(a + δ)b, α(a + 2δ)b2, . . . , α(a  + Nδ)bN }, then  
the actual distance x(t0) at the base time is a Benford random variable in the 
limit as N → ∞. By equation (3) and the scale-invariance relation for random 
variables (7), this implies that the actual distance x(t) is Benford at all times 
t > t0, which completes the argument. Thus, the above galaxy-distance law 
predicts that as more data on distances to galaxies become available, the distribu-
tion of the significant digits of that data will become even closer to the Benford 
distribution. 

To relate this law to the empirical data on first digits of distances to galaxies 
described above, it follows from the Glivenko–Cantelli theorem, the fundamental 
theorem of statistics, that a large random sample of galaxy distances will have 
an approximately Benford distribution, which is exactly what Alexopoulos & 
Leontsinis (2014) observed (see Figure 1(a)). The fact that this data is a somewhat 
less-than-stellar fit to the exact logarithmic distribution of Benford’s law may follow 
from the relatively small data set (702) of galaxy distances considered, and/or from 
truncation of a Benford sequence whose rate of convergence to Benford is unknown 
(see the remark following claim (9)). 

Note: The above model for galaxy distances was predicated on a snapshot of time 
(present time) where the galaxy distance data is available (to humans). If, instead, 
galaxy distances are determined at random times over an astronomically large time 
period (by definition unavailable to humans), it again follows from Hubble’s law that 
the resulting galaxy distance data will also approach Benford’s law, simply because 
every non-constant exponential function is Benford (Example 4.9(i) of Berger & 
Hill 2015). 

Figure 1. Comparison of first digits of (a) 702 galaxy distances (red) with Benford’s law 
(blue); and (b) 115,256 star distances (red) with Benford’s law (blue). Data courtesy of 
T. Alexopoulos and S. Leontsinis. 
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5. Benford distribution of star distances 

Hubble’s law is generally applied only to intergalactic distances, i.e., distances of 
the order of magnitude of megaparsecs or gigaparsecs, which are calculated using 
completely different methods (such as redshift techniques) than those methods (e.g., 
parallax) used to calculate star distances. However, Hubble’s law presumably also 
has a very tiny effect in the much shorter kiloparsec ranges at which star distances are 
measured, and the above argument applied mutatis mutandis to the resulting internal 
expansion of our own galaxy which implies that the significant digits of the distances 
to stars should also approach the Benford distribution. 

Star-distance law: If the  observed distance to a star at any given time is equally 
likely to be any of the values in a finite lattice, then the actual distance at that time 
approaches a Benford distribution as the number of points increases. 

In fact, the distances to stars listed in the 2011 HYG database (Nash 2011) is  
an even better fit to Benford’s law (see Figure 1(b)) than the distances to galaxies, 
perhaps since the sample size (115,256) is so much larger. Thus, the empirical evi-
dence that star distances are close to Benford’s law discovered in Alexopoulos & 
Leontsinis (2014) may be viewed as indirect evidence that galaxies are also expand-
ing at a Hubble-like exponential rate internally, perhaps with a different constant that 
reflects the gravitational forces involved. 

6. Robustness of the laws 

The Benford distribution is remarkably robust, which perhaps helps explain its 
widespread ubiquity in empirical data (see Berger et al. 2009). With regard to the 
galaxy- and star-distance laws above, several different aspects of this robustness are 
relevant. 

(i) Since the Benford distribution (on significant digits) is scale-invariant (see (7) and  
(8)), the identical galaxy- and star-distance laws hold regardless of what length units 
are employed – exactly the same logarithmic proportions occur with distances given 
in inches or furlongs as those that occur with light years. Similarly, since the Ben-
ford distribution is the unique distribution of significant digits that is scale-invariant 
(Theorem 5.3 of Berger & Hill 2015), it follows that if there is any universal statisti-
cal distribution at all of the significant digits of galaxy distances, by Hubble’s law it 
must be Benford. 

(ii) Since the Benford distribution is base-invariant as well (Theorem 5.13 of Berger 
& Hill 2015), the analogous galaxy- and star-distance laws also hold with respect to 
all non-decimal integer bases as well. 

(iii) The hypothesis that the possible observed distances are all equally likely can also 
be relaxed considerably. If the likelihoods of observed distances are decreasing with 
distance x, say proportional to 1/x, or are increasing proportional to a−1/x, then the 
actual star distances will again be exactly Benford. The likelihood probabilities may 
even be oscillating, as might be the case when passing through successive clusters of 
galaxies and intergalactic regions. For example, if the first thousand distance points 
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in the lattice are equally likely but with low probability, the second thousand are also 
equally likely but with higher probability, and so on alternating in this fashion, the 
distribution of actual galaxy distances will again be exactly Benford. These three 
assertions all require proof; the decreasing case is straightforward using (9) since  
every Benford sequence is also ‘logarithmic Benford’ (Massé & Schneider 2011), 
and the increasing and oscillating cases follow by analogous but longer arguments, 
and are beyond the scope of this article. 

(iv) The same galaxy- and star-distance laws hold if there are limited (random or 
deterministic) additive errors in the calculations, since the resulting sequence with 
errors is also exactly Benford. This is clear from the following observation about 
Benford sequences, an immediate corollary of Theorem 4.12(i) of Berger & Hill 
(2015): 

If (xn) is Benford and xn →∞, then  (xn ± �n) is Benford for all 
0 ≤ �n ≤ M , where  M is any arbitrary positive number. 

(v) Both laws are also unaltered by independent random multiplicative errors, since 
the Benford distribution is an attracting distribution in that if X and Y are indepen-
dent positive random variables, and either X or Y is Benford, then their product XY 
is also Benford (Theorem 8.12 of Berger & Hill 2015). Thus 

If X is Benford and E is any independent error with |E| < 1, 
then (1 ± E)X is also Benford. 

(vi) A key part of the above argument involved solution of the differential equa-
tion (2) under the assumption that Hubble’s constant H is in fact constant. Benford’s 
law, however, is also robust in this respect – the solution of every differential equa-
tion sufficiently close to equation (2), e.g., one where H may vary slightly depending 
on time or space, is also exactly Benford; this can be seen using Theorem 5.3 and 
Corrollary 6.5 of Berger et al. (2005), respectively. 

(vii) The above argument is also robust with respect to the magnitudes of the speed 
of light and Hubble’s constant; in fact, Hubble’s constant could even be negative and 
the Universe contracting. 

7. Different distance measures 

In cosmography there are many ways to specify the distance between two points, and 
many methods for determining those measures of distances. For example, the 2015 
NASA/IPAC Master List of Redshift-Independent Extragalactic Distances (Steer 
& Madore 2015) provides 94959 distances for 26989 galaxies (note that on aver-
age there are more than three different published distances for each galaxy), and 
these distances are based on 75 different methods for measuring distance, including 
standard candle (luminosity), standard ruler (angular diameter), and secondary (e.g. 
Tully-Fisher) methods. 

As noted by Hogg (1999) in p. 1, “The unifying aspect is that all distance measures 
somehow measure the separation between events on . . .  trajectories of photons which 
terminate at the observer”. This implies that the arguments given for the galaxy- and 
star-distance laws above are independent of the particular method used to measure 
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distances, since they only rely on two physical assumptions, namely Hubble expan-
sion of the Universe and a finite and constant speed of light. These arguments, 
however, do not apply to meta-datasets by Steer & Madore (2015) that combine 
numerical data from different methods, and the statistical analysis of the leading 
digits of particular subsets of those published galaxy distances will be left to the 
interested reader. 

8. Conclusions 

Using Hubble’s law and mathematical properties of Benford’s law, this article derives 
a galaxy-distance law which predicts a logarithmic distribution of the significant dig-
its of the distances to galaxies, thereby lending theoretical support to recent empirical 
findings. The stated galaxy-distance law is robust with respect to change of scale 
or base, to possible variability of Hubble’s constant, and to additive and multiplica-
tive errors in computations. Thus, with the logical derivation of the galaxy-distance 
law given here, the observations of Alexopoulos and Leontsinis may be viewed as 
a new independent empirical evidence of the validity of Hubble’s law. Similarly, 
with the analogous logical derivation of the above star-distance law, the close fit of 
star distances to Benford’s law found in Alexopoulos & Leontsinis (2014) may  be  
viewed as a new empirical evidence that galaxies are also expanding internally at an 
exponential rate. 
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