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ABSTRACT 

The Water Table and Soil Moisture Response Following the Removal of Conifers from an 

Encroached Meadow 

 

Thomas W. Sanford 

 

 

 

Montane meadows play a key role in the physical and biologic processes of coniferous forests in 

the western United States. However, due to climate change, over grazing, and fire suppression, 

conifer encroachment into meadows has accelerated. In some western regions, nearly half of all 

meadow habitat has been loss due to conifer encroachment. To combat this issue, encroaching 

conifers can be removed in an attempt to increase meadow habitat and function. While multiple 

studies have assessed changes in soil structure and vegetation composition, few studies directly 

investigate changes in hydrology following meadow conifer removal projects. The goal of this 

study is to determine if the removal of conifers from an encroached meadow (Marian Meadow) 

has an effect on soil moisture and groundwater depth such that meadow hydrologic conditions 

are promoted.  This goal will be accomplished by the following objectives: 1) develop a water 

budget incorporating groundwater depth, soil moisture, and climate measurements to quantify 

the hydrologic processes prior to and after conifer removal, 2) conduct a statistical analysis of the 

project meadow’s wet season water table depth prior to and after conifer removal, 3) conduct a 

statistical analysis of the meadow’s soil moisture prior to and after conifer removal. Marian 

Meadow is located in Plumas County, CA at an elevation of 4,900 feet. This 45-acre meadow 

enhancement project is part of a 2,046-acre timber harvest plan implemented by the Collins Pine 

Company. Soil moisture and water table depth sensors were installed in Marian Meadow and a 

control meadow in September 2013. The soil moisture sensors were installed at one and three 

foot depths. Soil moisture and water table depth measurements used in this study span from 

September 2013 through June 2016. The removal of encroaching conifers from Marian Meadow 

occurred in July 2015. Evapotranspiration was estimated using the Priestly Taylor equation. 

Electrical Resistivity Tomography (ERT) was used to determine maximum water table depths. A 

groundwater recession curve equation was used to model water table depths between water table 

depth sensor measurements and ERT measurements. Standard least squared linear regression and 

ANCOVA was used to determine any statistical significant difference in soil moisture and water 

table depths prior to and after conifer removal. The water balance indicated that the majority of 

Marian Meadow and the control meadow’s water storage can be attributed to precipitation and 

not upland sources. This hydrologic characteristic is common in dry meadows. The statistical 

analysis indicated that measured water table depths increased on average by 0.58 feet following 

conifer removal. Relative to the control meadow, soil moisture in Marian Meadow initially 

decreased following conifer removal. However, from November 2015 through June 2016 soil 

moisture increased. On average soil moisture increased by 4% following conifer removal. Also, 

growing season (April through September) water table depths indicated that meadow vegetation 

communities could be supported in Marian Meadow following conifer removal.  The removal of 

conifers from an encroached meadow appears to promote soil moisture and water table depth 

conditions indicative of a meadow and meadow plant community types.  
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CHAPTER 1 INTRODUCTION 

Montane meadows play a key role in the physical and biologic processes of coniferous forests in 

the western United States (Roche et al., 2014). However, due to causes such as climate change, 

over grazing, and fire exclusion, conifer encroachment into meadows has accelerated. In some 

western regions, nearly half of all meadow habitat has been loss due to conifer encroachment 

(Miller and Halpern, 1998; Norman and Taylor, 2005).  To combat this issue, encroaching 

conifers can be removed in an attempt to increase meadow habitat and function (Halpern and 

Swanson, 2009). While multiple studies have assessed changes in soil structure and vegetation 

composition, few studies directly investigate changes in hydrology following meadow conifer 

removal projects (Halpern and Swanson, 2009; Halpern et al., 2012; Miller and Halpern, 1998; 

Norman and Taylor, 2005).  

The goal of this study is to determine if the removal of conifers from an encroached meadow 

(Marian Meadow) has an effect on soil moisture and groundwater depth such that meadow 

hydrologic conditions are promoted.  This goal will be accomplished by the following objectives: 

1) develop a water budget incorporating groundwater depth, soil moisture, and climate 

measurements to quantify the hydrologic processes prior to and after conifer removal, 2) conduct 

a statistical analysis of the restored meadow’s wet season water table depth prior to and after 

conifer removal, 3) conduct a statistical analysis of the restored meadow’s soil moisture prior to 

and after conifer removal. Marian Meadow is located near the town of Chester, CA, which is 

situated in the northern Sierra Nevada. This 45-acre meadow enhancement project is part of a 

2,046-acre timber harvest plan implemented by the Collins Pine Company.  
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Hydrologic and climate data analyzed for this study spans from September 2013 through June 

2016 and includes data collected from Marian Meadow, the meadow with encroached conifers, 

and a control meadow. The removal of all encroaching conifers from Marian Meadow occurred 

in July 2015.  
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CHAPTER 2 LITERATURE REVIEW  

2.1 Introduction 

In the western United States, meadows are a small but important component of forested 

ecosystems. They provide critical habitat for many species of plants and animals (Halpern et al., 

2012; McIlroy and Allen-Diaz, 2012; Viers et al., 2013) and play an important role in improving 

water quality, flood protection, and carbon storage (Norton et al., 2013). However, over the last 

century, meadows have reduced in size and number due to conifer encroachment. In areas where 

it has been assessed, such as the Cascade region of central Oregon, meadow habitat has 

decreased by nearly 50%; decreasing from 5.5% of the regions habitat to 2.5% (Takaoka and 

Swanson, 2008).  

 

Tree ring records indicate that conifer establishment within meadows accelerated during the 

1870s and peaked during the first decade of the 20th century (Norman and Taylor, 2005). During 

this time, changes in forest management policy such as fire suppression and grazing regulations 

were implemented. These policy shifts, along with changes in climate are believed to be the 

causes of conifer encroachment (Norman and Taylor, 2005; Roche et al., 2014).  

 

2.2. Causes of Conifer Encroachment 

2.2.1 Fire Suppression 

Historically, fires in western United States occurred more frequently and at a lower intensity than 

today. In a review that synthesized multiple studies from across the Sierra Nevada, it is estimated 

that the pre-1900 fire return interval for red fir, mixed conifer-fir, mixed conifer-pine, and pine 

forests types were 26, 12,15, and 11 years, respectively (Skinner and Chang, 1996). These small, 
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low intensity fires, often started by lightning strikes or Native Americans, resulted in a spatially 

complex pattern of montane meadows that had limited net conifer encroachment (Norman and 

Taylor, 2003). However, due to fire suppression polices that were implemented in the early 20th 

century, it is estimated that the fire return intervals of these forest types are now 1,644, 644, 185, 

and 192 years respectively (McKelvey et al., 1996). In a study that assessed the fire frequency 

directly adjacent to meadows in northeastern California, it was estimated that the mean fire 

frequency (fires per 100 years) from 1750 to 1849 was 7.7 fires. From 1850 to 1905, it was 

determined that the mean fire frequency was 5.1 fires, and from 1906 to 1996 it was determined 

that the mean fire frequency was 0.3 fires (Norman and Taylor, 2005). The effects of fire 

suppression on conifer establishment within meadows is believed to be amplified by historical 

grazing practices, especially during the first wave of accelerated conifer encroachment in the 

early 20th century. 

 

2.2.2 Livestock Grazing 

From the mid-19th century to the establishment of grazing allotments by the U.S. Forest Service 

in 1898, sheep grazing within the National Forests was intensive. These mostly unregulated 

grazing practices caused substantial environmental degradation such as excessive erosion and a 

reduction in vegetative cover. Following the establishment of grazing allotments, conifer 

establishment increased by nearly 300% in areas of the southern cascades and northern Sierra 

Nevada (Miller and Halpern, 1998; Norman and Taylor, 2005). It is believed that disturbed soil 

following high intensity livestock grazing and a lack of competing grasses and forbs created 

conditions more susceptible to conifer establishment. Also, sheep grazing may have reduced fuel 

continuity between the forest and meadow boundary. This may cause the inability of fire to 
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check conifer establishment within meadows. In a study that assessed conifer encroachment 

along the forest-meadow ecotone in Lassen National Forest, it was determined that fires abruptly 

stopped burning into the forest-meadow boundary during the mid-1800s although the fire 

frequency of the surrounding forest remained relatively high (Norman and Taylor, 2005).  

 

2.2.3 Climate 

Changes in climate can have a profound effect on conifer expansion. According to Miller and 

Halpern (1998), conifer expansion into meadows can increase with reduced wintertime 

precipitation. When precipitation is low, the snowpack melts earlier. This creates a longer conifer 

growing period providing greater opportunities for tree establishment. Reduced wintertime 

precipitation compounded with an increase in summertime rainfall can also result in an increase 

of conifer establishment. Elevated summertime moisture can accelerate seedling establishment 

by providing a more hospitable environment for seed germination, especially for lodgepole pine 

(Pinus contorta), which is a prolific meadow invader (Taylor, 1995). It has been found that 

lodgepole pine germination rates increase with higher soil moisture (Petrie et al., 2016). 

Although there is uncertainty regarding the effects of climate change on annual precipitation in 

California,  generally, projections indicate a reduction in annual precipitation (Mastrandrea and 

Luers, 2012). A reduction in precipitation can result in a lowering of the water table, which can 

cause a reduction in meadow specific plant communities (Hammersmark et al., 2009).  

 

In addition to potential changes in precipitation, climate change is expected to have a profound 

effect on temperature in the western United States and Sierra Nevada. Over the next century, 

summer temperatures are expected to increase by 4.1 to 6.5°F and winter temperatures are 
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expected to increase by 2.7 to 3.6°F (Pierce et al., 2013). This increase in temperature is 

expected to result in a greater percentage of Sierra Nevada annual precipitation to fall as rain and 

reduce snowpack by 48% to 65% by the year 2099 (Pierce and Cayan, 2013).  The reduction in 

snowpack has already caused shifts in timing of runoff on the Sacramento River. During the first 

half of the 20th century peak flow on the Sacramento River normally occurred in April. During 

the second half of the 20th century peak flow shifted a month earlier to March (California 

Department of Water Resources, 2015). Earlier snowmelt can result in reduced summer base 

flows and a reduction in growing season water tables (Peterson et al., 2005).  

 

2.3 Meadow Type 

Landform controls such as surrounding topography, location within the landscape, soil parent 

material, and depth to bedrock, influence meadow processes such as surface water and 

groundwater inputs/outputs, meadow vegetation, and meadow type. Meadows that receive the 

majority of their water from upland groundwater and surface water sources often exhibit elevated 

water table depths throughout the growing season. As a result, they tend to support a high 

proportion of obligate, facultative wetland, and facultative plant species. Meadows that receive 

the majority of their water surplus from precipitation, such as dry meadows, usually have 

growing season water table depths of less than 1 meter (3.28 feet), and as a result are usually 

dominated by facultative and facultative upland plant species (Weixelman et al., 2011).  

 

In order for a meadow to form and maintain the water table must be within the rooting zone, 

especially during the growing season, of meadow plant communities. In a study by 

Hammersmark et al., 2009 that reviewed growing season water table depths (WTD) among 
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various meadow community types, it was determined that the growing season water table depth 

for vegetation communities common in dry meadows ranged from 1.30 feet to 4.01 feet. For 

communities common in wet meadows water table depth ranged from 0.57 feet to 2.05 feet (). 

The duration of time the water table spends near the surface also influences vegetation 

community and meadow types. Hammersmark et al., 2009 estimated that meadows dominated by 

Eleocharis macrostachya and Eleocharis acicularis, both of which are obligate wetland species 

common in wet meadows, the water table was within 2.3 feet and 1.0 foot from the surface for 

91 days and 65 days, respectively. For meadows dominated by Poa pratensis and Bromus 

japonicas, both of which are facultative and facultative wetland plant species common in dry 

meadows, the water table was within 2.3 feet and 1.0 foot from the surface for 42 days and 22 

days, respectively (Table 2.2). 2.3 feet and 1.0 foot are typical rooting depths for plants common 

in dry and wet meadows. 
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Table 2.1: Growing season water table ranges for similar meadow vegetation community types. 

Adapted from (Hammersmark et al., 2010) 

Community Name 

Growing Season 

Water Table Depth 

Range (ft) 

Poa pratensis / Bromus japonicus 0.33 - 7.55 

Poa pratensis / Potentilla gracilis 0.85 - 2.03 

Moist meadow 0 - 1.64 

Dry meadow 0.66 - 2.79 

Mesic meadow (Corral Canyon)  2.95 - 4.92 

Moist bluegrass  1.15 - 3.94 

Dry bluegrass 2.62 - 4.59 

Mesic graminoid 1.8 - 4.59 

Average 1.30 - 4.01 

    

Carex nebrascensis / Juncus balticus -0.66 - 5.25 

Carex nebrascensis ecological type 0 - 0.66 

Wet meadow 0 - 0.98 

Wet meadow 0 - 0.98 

Deschampsia caespitosa / Carex nebrascensis 0.21 - 3.08 

Moist meadow 0.66 - 3.28 

Carex nebrascensis ecological type 1.64 - 1.64 

Carex nebrascensis community type 1.08 - 1.08 

Juncus balticus community type 2.17 - 2.17 

Average 0.57 - 2.05 

    

Downingia bacigalupii / Psilocarphus brevissimus -1.14 - 5.05 

Downingia bicornuta community type -1.08 

Navarretia community type 1.08 

Average -1.14 - 5.05 

  

Eleocharis macrostachya / Eleocharis acicularis -5.29 

Eleocharis macrostachya community type 0 

Average -2.65 
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Table 2.2: Growing season water table depths (WTD) for community types with varying 

compositions of wetland species  (Hammersmark et al., 2010) 

Community 

Eleocharis 

macrostachya / 

Eleocharis 

acicularis 

Downingia 

bacigalupii/ 

Psilocarphus 

brevissimus 

Carex nebrascensis/ 

Juncus balticus 

Poa pratensis/ 

Bromus japonicus 

WTD average (ft) 0.61 ± 0.92 1.92 ±0.65 1.98 ± 0.41 3.92 ± 1.46 

WTD minimum (ft) -2.17 ± -1.1 ± -0.73 ± 0.4 ± 0.79 

WTD maximum (ft) 3.11 ± 0.79 5.06 ± 0.36 4.51 ± 0.83 7.59 ± 2.43 

WTD range (ft) 5.28 ± 0.66 6.15 ± 1.31 5.23 ± 1.00 7.19 ± 2.19 

Days WTD < 2.3 ft 91.3 ± 20.5 65.4 ± 8.8 65.5 ± 7.5 41.6 ± 18.3 

Days WTD < 1.0 ft 65.4 ± 16.1 46.8 ± 18.0 42.4 ± 10.2 22.3 ± 11.4 

Days WTD < 0 ft 49.7 ± 17.2 33.7 ± 18.3 24.9 ± 8.4 9.8 ± 7.1 

 

 

2.4 Conifer Removal  

Techniques used to restore encroached meadows generally involve the removal of encroaching 

conifers with prescribed fire, mechanical removal, or a combination of both. These techniques 

have shown to be effective in quickly reestablish a functioning meadow vegetation community. 

However, it appears that the presence and disposal method of logging slash can influence the 

vegetation response following conifer removal. In studies where mechanical removal 

was followed by the pile burning of residual logging slash, there was subsequent natural 

reestablishment of meadow plant species. In studies where logging slash was broadcast burned 

over the entire meadow, there was extensive fire scaring, less responsive vegetation 

reestablishment, and higher nitrogen availability; which can cause an increase in weedy plant 

species. Meadow vegetation reestablishment success is also influenced by the presence of 

remnant meadow plant species and a viable seed bank in the soil.  Depending on the extent and 

duration of encroachment, remnant meadow plant species and a viable seedbank can be depleted, 

and a manual dispersion of meadow seeds maybe required (Halpern and Swanson, 2009; Halpern 

et al., 2012).  Because some of the causes of conifer encroachment, such as climate change and 
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fire suppression cannot be addressed in restoration plans, and because conifer encroachment is a 

natural phenomenon, encroachment will continue to following restoration. Therefore, periodic 

removal projects may be required. In order to reduce the reestablishment rate following 

restoration, it has been shown that tree removal should be maximized between the meadow and 

conifer seed sources by removing nearby large trees that are susceptible to seeding. (Halpern and 

Swanson, 2009; Halpern et al., 2012; Kremer et al., 2014).   

  

2.5 Forest Management and Water Yield 

A change in fire regime has also affected overall forest structure. Historically, coniferous forests 

in the western United States exhibited stand conditions that were less dense than what they are 

today. In areas in the Sierra Nevada, such as portions of the Sierra National Forest, average tree 

density is now 2.3 to 3.4 times greater than historical conditions and average basal areas is now 

44% greater (Meyer and Schroer, 2013). This increase in forest density has resulted in an 

increase in wildfire severity, individual wildfire size, and total annual burned area (Miller et al., 

2009).  To reduce the threat of catastrophic wildfire and insect infestation, the USFS intends to 

thin and/or treat 9 million acres of national forest lands over the next 15 to 20 years (United 

States Forest Service, 2013).  

 

Vegetation management activities have been shown to effect forest hydrology and water yield. 

Numerous studies have shown that timber harvests, fuels reduction, and controlled burns can 

result in an increase of stream peak discharge, water yield, and soil moisture. Generally, these 

hydrologic responses are most extreme directly after management activities and then the system 

returns to baseline conditions in subsequent years. The changes in hydrology are attributed to 



11 

 

decreases in evapotranspiration, interception, greater accumulation of snow in open areas, and 

changes in the timing of snowmelt. (Troendle et al., 2001; Watson et al., 2001; Hubbart et al., 

2007; Ryu et al., 2009). A paired watershed study that spanned from 1982 to 1992 in Colorado 

determined that snowpack was on average 9% greater and water yield increased 17% in forest 

harvest openings compared to unharvested areas (Troendle et al., 2001). In the Rocky Mountain 

region, a measurable hydrologic response occurs when as little as 15%  of the vegetation in a 

watershed is removed  (Stednick, 1996). It is believed that in the Sierra Nevada, a reduction of 

forest cover by 30% can increase water yields by 9% (Bales et al., 2011).  

 

From 2002 to 2012 the USFS thinned approximately 10% of the Feather River watershed in the 

Sierra Nevada. The estimated increase in water yield as a result of thinning operations was 2% to 

6% (97,000 to 285,000 acre feet). Thinning operations during the same time period in the Feather 

River, American River, Yuba River, Battle Creek, Butte Creek, Deer Creek Mill Creek, 

Mokelumne River, Truckee River, Cosumnes River, and Bear Creek watersheds resulted in an 

estimated increase water yield of 165,395 to 505,141 acre feet. The same study estimated that 

6% to 34% of the cost of thinning operations, for a low water yield response, could be offset by 

the increase of available water to downstream users (hydropower, irrigation, and municipal). For 

a high water yield response it was estimated that 17% to 101% of the cost could be offset by the 

increase in available water to downstream users (Podolak et al., 2015).  

 

Podolak et al., 2015 estimated that the total economic benefit of an increase in water yield for 

downstream users ranged from 254 million to 741 million dollars. For the Feather River 

watershed alone, the economic benefit ranged from 142 million to 415 million dollars. Scaling 



12 

 

the Feather River watershed values down, the economic benefits for downstream water users of a 

2,000-acre group selection timber harvest would range from 123,114 to 359,805 dollars. For a 

45-acre meadow restoration project, the economic benefit ranges from 2,770 to 8,097 dollars.  

 

2.6 Economic Benefit of Meadow Restoration 

There are multiple direct and indirect valuation techniques that can be used to estimate the 

economic benefit of meadows and meadow restoration. Each of these valuation techniques have 

their inherent advantages and disadvantages, and the selection and use of a valuation method 

depends on the availability of direct market prices, circumstantial evidence of market prices, 

and/or the use of surveys that express willingness to pay for the ecosystem service. One of such 

methods is the replacement cost method. The replacement cost method, which is an indirect 

method that employs circumstantial evidence, can estimate the value of meadows and meadow 

restoration by measuring the cost to acquire and restore alternative meadow locations. Using this 

method, and the estimated total cost of the 45 acre Marian Meadow restoration project ($78,750), 

the replacement cost of a similar meadow is $1,750/acre. (King and Mazzotta, 2000). The 

disadvantage of this valuation techniques is that it does not include direct measures of onsite and 

offsite services. Additional valuation methods can be utilized to quantify onsite and offsite 

economic services of meadow restoration. These economic services include an increase in 

productivity for rangelands, improved habitat for meadow-dependent plant and animal species, 

and improved water quality (Aylward and Merrill, 2012).   

 

Methods used to quantify the economic benefit meadow restoration has on rangeland 

productivity include the valuation of an increase in forage, the willingness to pay for grazing 
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permits, and quantifying the fees for substitute goods such as hay or alfalfa.  Utilizing these 

methods, Aylward and Merrill, 2012 estimated the on-site economic benefits to forage and beef 

production range from $600-$900/acre, $900-$2,500/acre, and $1,100-$4,500/acre for low, 

medium, and high economic scenarios, respectively. Aylward and Merrill, 2012 also estimated 

the off-site benefits from sediment reduction ranges from $1/acre, $10/acre, and $19/acre for 

low, medium, and high economic scenarios, respectively. These economic benefits are a result of 

a decrease in downstream dredging operations. Improved habitat for meadow-dependent plant 

and animal species can increase tourism and recreational (i.e. hunter, fishing, hiking, and 

birdwatching etc.) economic values. However, the on and off-site economic benefits to meadow 

habitat improvements have yet to be quantified (Aylward and Merrill, 2012).  Future valuation 

methods used to estimate ecosystem services associated with an increase in habitat and 

recreation potentially include the willingness to pay and travel costs methods.  
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CHAPTER 3 MATERIALS AND METHODS 

3.1 Study Area 

3.1.1 Location 

Marian Meadow (MM) is located in northwestern Plumas County, California approximately 5  

miles southwest of Chester, California. The MM project area is 45 acres and at an elevation of 

approximately 4,900 feet above sea level. Marian Creek, which flows though MM, is a tributary 

to the Upper North Fork Feather River. The contributing area of the Marian Creek Watershed 

above MM is approximately 7.5 square miles (Figure 3.1). The control meadow (CM) is located 

4 miles west of MM, and is approximately 20 acres. It is at an elevation of 4,800 feet above sea 

level and was previously dominated by conifers until restoration in 2012. CM is situated in the 

Deer Creek watershed (Figure 3.1). 

 

3.1.2 Climate 

In nearby Chester, CA, average annual precipitation is 31.8 inches and the average annual 

snowfall is 127.8 inches. The majority of precipitation occurs from October to May.  Average 

maximum and minimum temperatures are 62.3 °F and 31.3 °F respectively. Temperature ranges 

from 85.3 °F to 44.8 °F in the summer to 41.8 °F to 19.8 °F in the winter (Table 3.1: Average 

monthly climate data for Chester, CA (Western Regional Climate Center, 2016))  
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Figure 3.1: Project vicinity map 
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Table 3.1: Average monthly climate data for Chester, CA (Western Regional Climate Center, 

2016) 
 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual 

Ave. Max. 

Temperature 

(F) 

41.8 45.7 50.8 58.1 67.5 76.6 85.3 84.4 78.3 66.3 50.3 42.1 62.3 

Ave. Min. 

Temperature 

(F) 

19.8 22.3 25.2 28.4 34.5 40.7 44.8 43.3 38.1 31.5 25.8 20.7 31.3 

Ave. Total 

Precipitation 

(in.) 

6 5.15 4.15 2.22 1.53 0.82 0.27 0.26 0.64 1.88 3.77 5.16 31.83 

Ave. Total 

Snowfall (in.) 
35.4 26.2 20.6 7.1 1.4 0.1 0 0 0.1 0.8 10.5 25.7 127.8 

Ave. Snow 

Depth (in.) 
17 21 15 4 0 0 0 0 0 0 1 7 5 

 

  

3.1.3 Vegetation 

The surrounding forest is classified as Sierra Mixed Conifer and is mostly composed of 

ponderosa pine (Pinus ponderosa), lodgepole pine (Pinus contorta), sugar pine (Pinus 

lambertiana), white fir (Abies concolor), incense cedar (Calocedrus decurrens), and Douglas-fir 

(Pseudotsuga menziessii)  (Marian Creek Timber Harvest Plan, 2013).  Over 200 plant species 

are known to grow in the meadows of the Sierra Nevada. Common meadow plant species 

include, Nebraska sedge (Carex nebrascensis), Baltic rush (Juncus balticus), Kentucky bluegrass 

(Poa pratensis), Bacigalupi’s downingia (Downingia bacigalupii), and short wollyheads 

(Psilocarphus brevissimus var. brevissimus) (Ratliff, 1985).  

 

3.1.4 Soils 

The predominant soil mapping unit for MM and its surrounding area is the Holland-Skalan 

families association (60% Holland soil series, 30% Skalan soil series). It is characterized as 

being deep to moderately deep and well drained. The Holland soil series is a fine-loamy, mixed, 
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semiactive, mesic, Ultic Haploxeralf. The Skalan soil series is a loamy-skeletal, isotic, mesic 

Vitrandic Haploxeralf. Both soil series are Alfisols and have weathered basalt as parent materials 

(Natural Resource Conservation Service, 2016). 

 

 Approximately 75% of the control meadow is composed on the Elam soil series. This soil series 

is composed of alluvium derived from igneous rock, moderately deep, and somewhat excessively 

drained. The Elam soil series is a loamy-skeletal, mixed, superactive, nonacid, frigid Typic 

Xerofluvent. The remaining 25% of the meadow is composed of the Cohasset soil series. This 

soil series is moderately deep and well drained. It is derived from weathered volcanic rock. The 

Cohasset soil series is a fine-loamy, mixed, superactive, mesic, Ultic Haploxeralf  (Natural 

Resource Conservation Service, 2016).  

 

3.2 Study Design 

3.2.1 Restoration 

MM and CM are located on the Collins Pine Company Almanor Forest (CAF) and MM is part of 

an approximate 2,000-acre group selection timber harvest (Figure 3.1). Prior to restoration, MM 

had a basal area of 111 ft2/ac (Marian Creek Timber Harvest Plan, 2013). The primary tree type 

within MM was lodgepole pine (Pinus contorta) and ponderosa pine (Pinus ponderosa) (Figure 

3.2). The meadow restoration phase of the timber harvest was performed during the month of 

July 2015. This included the mechanical removal of all lodepole pine and the majority of 

ponderosa pine from the 45-acre project area. Ponderosa pine that was established prior to 

lodgepole pine encroachment were not removed. The majority of logging slash was removed 
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from the site (Figure 3.3). The remaining upslope portion of the timber harvest began during the 

summer of 2016 and will continue through 2017. 

 

 
Figure 3.2: Meadow looking north near Hwy 36 prior to restoration; December 2014 
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Figure 3.3. Marian Meadow looking north from Hwy 36 after restoration; September 2015 

 

3.2.2 Instrument Deployment 

Within ArcMap (ESRI, 2015), a 1,250-foot line bisecting MM was created. Along this line, 10 

equally spaced points were established, and four of them were randomly selected (points 3, 4, 6, 

and 9). A line from these four randomly selected points, perpendicular to the bisection line, was 

extended to the meadow boundary. Along these lines and starting from the western edge of the 

meadow boundary, points every 25 feet were created. Four points along each line were randomly 

selected for instrument placement. Fourteen of the 16 points were used for instrumentation. This 

procedure was repeated for the control meadow (Van Oosbree, 2015). See  Figure 3.6: and 

Figure 3.7: for instrument placement locations. 
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In September 2013, 5 soil moisture sensors were deployed into MM and CM. The soil moisture 

probes were manufactured by Odyssey Dataflow Systems Limited and measure soil moisture by 

relating through calibration, the measured dielectric permittivity of the soil to known soil 

moisture values. The soil moisture sensors were installed at a depth of 1.0 foot, and the data 

loggers were housed in PVC pipe for additional weatherproofing. Throughout the study period, 

some sensors were temporarily removed due to instrument failure and in July 2015, four 

additional soil moisture sensors were installed at 1.0 foot depths. The timeline for each soil 

moisture sensor deployment is described in Figure 3.4. To quantify the soil moisture content 

below 1.0 foot depths, 5 additional soil moisture probes were installed at a depth of 3.0 feet. The 

additional soil moisture sensors were manufactured by Decagon Devices. These sensors come 

pre-calibrated from the manufacture. The data loggers and software were manufactured by Onset 

Computer Corporation.  

 

 
Figure 3.4: Soil moisture sensor deployment timeline (see figures 3.6 and 3.7 for the spatial 

location of measurement sites) 
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1.5-meter (4.92 feet) water table depth sensors manufactured by Odyssey Dataflow Systems 

Limited were deployed into MM and CM in September 2013. Additional water table depth 

sensors were deployed September, 2014 (Figure 3.5). On average, the water table depth sensors 

had the ability to measure a maximum depth of 4.0 feet. The maximum depth the sensors can 

measure depends on wellhead height, which was on average 0.9 feet. 5.0-foot-deep wells were 

dug using a manually pounded corer or auger. The wells were then outfitted with a 5.0 foot by 1 

inch perforated PVC well casing. Connected to the well casing, with a coupler, was a 0.5 foot by 

1.5 inch PVC pipe. This served as the water proof housing for the data logger. Nine non 

instrumented wells were installed in MM and CM. These wells were manually sounded during 

each site visit. Electrical resistivity tomography (ERT) derived data was utilized to model 

groundwater depths below the range of the sensors. See Table 3.2 for a description of the 

instruments deployed at each sites.  
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Figure 3.5: Groundwater depth sensor deployment timeline (see Figures 3.6 and 3.7 for spatial 

location of measurement sites). 
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Figure 3.6: Marian Meadow monitoring sites for soil moisture and/or groundwater level.  
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Figure 3.7: Control Meadow soil moisture and groundwater monitoring sites. 
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Table 3.2: Description of instrumentation deployed at monitoring site 

Site Soil Moisture Water Level Blank Well 
Current Soil Moisture Sensors 

Type and Depth Installed 

1-1* ✔     Onset: 1ft and 3ft 

1-Mar ✔ ✔   Odyssey: 1ft 

2-Mar     ✔   

4-Mar ✔ ✔   Odyssey: 1ft 

1-Apr ✔ ✔   Onset: 1ft 

2-Apr ✔     Odyssey: 1ft 

3-Apr     ✔   

4-Apr     ✔   

1-Jun     ✔   

2-Jun     ✔   

3-Jun ✔ ✔   Odyssey: 1ft 

4-Jun ✔ ✔   Odyssey: 1ft 

2-Sep ✔ ✔   Odyssey: 1ft, Onset: 3ft 

3-Sep ✔ ✔   Odyssey: 1ft, Onset: 3ft 

4-Sep     ✔   

C1-2 ✔ ✔   Odyssey: 1ft 

C1-3 ✔ ✔   Odyssey: 1ft 

C2-2     ✔   

C2-3     ✔   

C2-4 ✔   ✔ Odyssey: 1ft, Onset: 3ft 

C3-1 ✔ ✔   Odyssey: 1ft, Onset: 3ft 

C3-2 ✔ ✔   Odyssey: 1ft 

C4-1 ✔     Onset: 1ft 

C4-3 ✔ ✔   Odyssey: 1ft 

*Site added August 2015 

 

3.3 Water Budget 

To quantify and assess the hydrologic response following meadow restoration, a weekly water 

budget was constructed using the water balance equation below:  

 𝑃 = 𝐸𝑇 +△ 𝑆 +△ 𝐺 (1) 
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Where:  

P= Precipitation (ft)  

ET= Evapotranspiration (ft) 

△S= Change in soil moisture storage (ft)  

△G= Change in groundwater storage (ft) 

 

While surface water outflow was measured in MM, inflow was not. As a result, surface water 

flow will not be included in this water balance assessment. Precipitation (rain) data was 

downloaded from the California Data Exchange Center (CDEC) website from a gage maintained 

by Pacific Gas and Electric (PG & E) in Prattville, California, which is approximately 10 miles 

southeast from MM.  Accurate and/or operational snow depth sensors could not be located in the 

general proximity of MM and CM. Consequently, snowfall data was not included in this 

analysis. Evapotranspiration was modeled with the Priestly-Taylor method (Priestley and Taylor, 

1972).  

 

3.3.1 Change in Soil Moisture Storage 

3.3.1.1 Soil Moisture Sensor Calibration 

The Onset soil moisture sensors came pre calibrated and automatically provide volumetric soil 

moisture content. Each Odyssey soil moisture sensor was calibrated using a two-point calibration 

to convert raw values to gravimetric wetness. A manufacturer provided raw value corresponding 

to 0% soil moisture was used as a calibration point. After the soil moisture sensors were 

deployed, a 100-200 gram soil sample directly adjacent to each sensor was collected and placed 

into a Ziploc bag. In the lab, the soil samples were transferred to weighing tins, weighed, and 
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then oven dried for 24 hours at a temperature of 105 °C. The gravimetric wetness of each sample 

was calculated (equation 2 and 3). This value, along with the raw value measured at the time of 

the sample collection, was used as another calibration point. Equation 4 was then used to convert 

raw values to gravimetric wetness. Gravimetric wetness was then converted to volumetric soil 

moisture content (Equation 5). 

 
𝛳𝑔 =

𝑊

𝐷
 (2) 

Where: 

ϴg = gravimetric wetness of soil (
g

g
) 

W = mass of water in soil (g) 

D = mass of oven dry soil (g) 

 

Mass of water in soil was determined using the following equation: 

 𝑊 = 𝐹 − 𝐷 (3) 

Where: 

W = mass of water in soil (g) 

F = mass of soil sample (g) 

D = mass of oven dry soil (g) 

 

The soil moisture sensor raw values were then converted to gravimetric wetness values with the 

following equation: 

 

𝛳𝑔(𝑠𝑒𝑛𝑠𝑜𝑟) =
𝑉𝑟 (𝑠𝑒𝑛𝑠𝑜𝑟) − 𝑜𝑓𝑓

(𝑉𝑟𝑠 − 𝑜𝑓𝑓) × 𝛳𝑔(𝑠𝑎𝑚𝑝𝑙𝑒)
 

 

(4) 
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Where:  

𝛳𝑔(𝑠𝑒𝑛𝑠𝑜𝑟) = gravimetric wetness (
g

g
) 

Vr (sensor) = raw sensor value measured every two hours 

off = offset value (factory determined raw value at 0% moisture content) 

Vrs = raw value at time of field sample collection 

𝛳𝑔(𝑠𝑎𝑚𝑝𝑙𝑒)= gravimetric wetness of field sample (
g

g
) 

 

3.3.1.2 Gravimetric to Volumetric Soil Water Conversion 

The following equation was used to convert gravimetric wetness to volumetric water content: 

 𝛳v = 𝛳𝑔 ∗
𝑃𝑏

𝑃𝑤
 (5) 

Where:  

ϴv = volumetric water content (
g

cm3) 

ϴg = gravimetric wetness (
g

g
)  

Pb = soil bulk density (
 g

cm3) 

Pw = water density (
 g

cm3) 

 

In a previous analysis, the average bulk density of soil in MM was determined to be 1.48 
 g

cm3
 and 

the average bulk density of soil in CM was determined to be 1.59 
 g

cm3 (Van Oosbree, 2015). The 

gravimetric soil moisture content to volumetric soil moisture content conversion was applied to 

every two-hour soil moisture sensor reading. The average weekly volumetric soil moisture 

content was then calculated for MM and CM. 
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3.3.1.3 Equivalent Water Depth of Unsaturated Soil 

From 9/13/2013 to 8/7/2015 equivalent water depth of unsaturated soil was calculated with only 

1.0-foot-deep soil moisture sensors (Equation 6). The three-foot-deep sensors were not yet 

deployed. The soil moisture content of the entire unsaturated zone, including the capillary fringe, 

was assumed to be the soil moisture content measured at 1.0 foot depths. 

 𝑆𝐸𝑑 = 𝑉𝑤 ∗ 𝐺𝑑  (6) 

Where:  

SEd = equivalent depth of water in soil (ft) 

Vw = average weekly volumetric water content (
g

cm3) 

Gd = depth to water table (ft) 

 

After 8/7/2015, the 3.0-foot soil moisture sensors were incorporated into the unsaturated soil 

moisture equivalent water depth calculations (Equation 7). The soil moisture content from 0 to 

2.0 feet was assumed to be the soil moisture content measured at 1.0 foot depths. The soil 

moisture content from 2.0 feet to the water table, including the capillary fringe, was assumed to 

be the soil moisture content measured at 3.0 foot depths.  

𝑆𝐸𝑑 = (𝑉𝑤 (1 𝑓𝑡 𝑠𝑒𝑛𝑠𝑜𝑟𝑠) ∗ 2) + (𝑉𝑤 (3 𝑓𝑡 𝑠𝑒𝑛𝑠𝑜𝑟𝑠) ∗ (𝐺𝑑 − 2)) (7) 

The change in soil moisture storage was determined with the following equation: 

 ∆𝑆 = 𝑆  𝐸𝐷
1 − 𝑆  𝐸𝐷

0  (8) 

Where:  

SED
1= Current soil moisture equivalent water depth (ft)  

SED
0= Preceding soil moisture equivalent water depth (ft) 

 



30 

 

3.3.2 Change in Ground Water Storage 

3.3.2.1 Groundwater Depth Sensor Calibration 

Initially the water level sensors were calibrated following the instructions of the manufacture. 

However, after manually sounding the wells and comparing those values to the calibrated 

instrument values, it was determined that the calibration points used were insufficient. The 

sensors were then recalibrated with manually sounded well values and their corresponding raw 

values. The following equation was used for instrument calibration: 

 𝑉𝑐 =
(𝑉𝑢 − 𝑂)

𝛥
  (9) 

Where:  

Δ= Slope of the calibration curve 

 ∆ =
𝑉 − 𝑉𝑜

𝑋 − 𝑋𝑜
 (10) 

Vc = Calibrated Value (mm) 

Vu = Raw value  

V = Raw value at 1500 mm  

Vo = Raw value at sounding depth 

X = 1500 mm – instrument height above ground (mm) 

Xo = sounding depth 

 

3.3.2.2 Electrical Resistivity Tomography (ERT) 

Periodic ERT transects were conducted to determine groundwater depths below the range of the 

groundwater sensors. A SYSCAL Kid Switch resistivity meter manufactured by IRIS 

Instruments was used to conduct the surveys.  A Wenner PRF switch array using 24 electrodes 
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was used for all resistivity measurements. PROSYSII (IRIS Instruments, 2015) software was 

used to transfer raw data to a computer and RES2DINV (Geotomo Software, 2011) software was 

used to invert the field data. The produced two-dimensional cross-sections depict resistivity 

values along the length of the transect versus depth. The Wenner array allows for a maximum 

depth of approximately 20% of the transect length. The first ERT surveys conducted on MM and 

CM took place on 9/10/2013 and 5/6/2014, respectively. See Table 3.3 for a description of these 

initial surveys as well as subsequent surveys.   In MM, the water table was interpreted as the 

region where resistivity was below 45Ω∙m and the base of the aquifer was interpreted as the 

region above 110-120 Ω∙m. In the CM, the water table was interpreted as the region where 

resistivity was below 100-180 Ω∙m (Van Oosbree, 2015). 

 

In general, ERT surveys with 5-meter spacing were conducted in the center of each meadow. 

These surveys provided imaging depths of approximately 20 meters. ERT surveys with 1.5-meter 

spacing were conducted perpendicular to these center lines. These surveys provided imaging 

depths of approximately 7 meters. Various other survey lines with varying lengths and node 

spacing’s were conducted (Table 3.3).  
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Table 3.3: ERT survey descriptions  

Date Meadow Survey # Survey Line Lat (°) Long (°) 
Azimuth towards 

Node 1 (°) 

Survey Length 

(m) 

Node Spacing 

(m) 

9/10/2013 Marian 1 Upper bisecting long line 40.26413 -121.31631 65 115 5 

9/10/2013 Marian 2 Upper bisecting short line 40.26413 -121.31631 65 34.54 1.5 

9/10/2013 Marian 3 Marian transect 40.26416 -121.31636 340 51.75 1.5 

9/10/2013 Marian 4 Lower bisecting transect 40.2639 -121.31616 230 51.75 1.5 

5/3/2014 Control 5 Ecotone boundary 40.265071 -121.394067 55 56 5 

5/3/2014 Marian 6 Marian transect 40.26325 -121.314062 220 175 5 

5/3/2014 Marian 7 Upper bisecting line 40.263952 -121.316121 245 56 1.5 

9/6/2014 Control 8 Ecotone boundary 40.264983 -121.394165 70 47 2 

9/6/2014 Control 9 Center transect 40.264117 -121.394534 335 175 1.5 

9/6/2014 Control 10 Upper bisecting line 40.263404 -121.394209 60 34.5 5 

9/6/2014 Control 11 Lower bisecting line 40.264091 -121.39442 60 34.5 1.5 

9/6/2014 Marian 12 Upper bisecting line 40.263962 -121.316015 272 51.75 1.5 

9/6/2014 Marian 13 Marian transect 40.263462 -121.315577 345 115 5 

9/6/2014 Marian 14 Lower bisecting line 40.263286 -121.315321 25 51.75 1.5 

9/6/2014 Marian 15 
Lower Marian Creek 

bisecting line 
40.261006 -121.3117 278 34.5 1.5 

9/6/2014 Marian 16 Lower Marian Creek line 40.261443 -121.311618 15 92 4 
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Date Meadow Survey # Survey Line Lat (°) Long (°) 
Azimuth towards 

Node 1 (°) 

Survey Length 

(m) 

Node Spacing 

(m) 

3/27/2015 Control 17 Center transect 40.264117 -121.394534 335 175 5 

3/27/2015 Control 18 Lower bisecting line 40.264091 -121.39442 60 34.5 1.5 

3/27/2015 Control 19 Upper bisecting line 40.264801 -121.394897 85 46 2 

3/27/2015 Marian 20 Upper bisecting line 40.261081 -121.311715 68 51.75 1.5 

3/27/2015 Marian 21 Marian transect 40.263462 -121.315577 345 115 5 

3/27/2015 Marian 22 Lower bisecting line 40.263286 -121.315321 25 51.75 1.5 

3/27/2015 Marian 23 
Lower Marian Creek 

bisecting line 
40.261006 -121.3117 278 34.5 1.5 

3/27/2015 Marian 24 Lower Marian Creek line 40.261443 -121.311618 15 92 4 

9/9/2015 Control 25 Center transect 40.264117 -121.394534 335 175 5 

9/9/2015 Control 26 Lower bisecting line 40.263384 -121.394385 84 34.5 1.5 

9/9/2015 Control 27 Upper bisecting line 40.264801 -121.394897 85 46 2 

9/9/2015 Marian 28 Upper bisecting line 40.263962 -121.316015 272 51.75 1.5 

9/9/2015 Marian 29 Marian transect 40.263731 -121.315723 315 115 5 

9/9/2015 Marian 30 Lower bisecting line 40.263281 -121.315309 25 34.5 1.5 

9/9/2015 Marian 31 Lower Marian Creek line 40.261366 -121.311697 0 92 4 

9/9/2015 Marian 32 
Lower Marian Creek 

bisecting line 
40.26119 -121.311757 95 34.5 2 
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Figure 3.8: September 2013 ERT surveys. No ERT survey was conducted on CM Sept. 2013.



35 

 

 
Figure 3.9: May 2014 ERT surveys 
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Figure 3.10: September 2014 ERT surveys 
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Figure 3.11: March 2015 ERT surveys 
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Figure 3.12: September 2015 ERT surveys  
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ERT derived water table depths were used to model water table elevations during periods when 

the water table was below the range of the sensors. The recession curve equation below, which 

accounts for precipitation, was used for the modeling (Beschta et al., 2000). During periods when 

the groundwater depth was receding, the last average weekly sensor measurement was fit to ERT 

derived depths measured during the summer. The recession coefficient was chosen so that the 

last weekly modeled depth was similar to that of the ERT derived depth. During periods of 

recession, the recession coefficient is greater than one. During periods of groundwater recovery, 

the ERT derived summer groundwater depth was fit to the first average weekly sensor 

measurement. During periods of groundwater recovery, the recession coefficient is less than one. 

This modeling technique was applied to each sensors weekly average.  

 𝐺𝑑 = (𝑘 ∗ 𝑚) − 𝑃 (11) 

Where:  

Gd =Depth to water table (ft)  

k=Recession coefficient 

m=Measured depth (ft) 

P= precipitation (ft) 

 

3.3.2.3 Soil Porosity 

Soil porosity was used to calculate equivalent water depth of the saturated zone. The soil 

porosity in CM and MM was calculated using the equation below that relates soil bulk density 

and particle density to soil porosity. The particle density was assumed to be 2.65 g/cm3 for both 

MM and CM. Average porosity in MM was calculated to be 44.3% and average porosity in CM 

was calculated to be 47.0% (Van Oosbree, 2015). 
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 𝑛 = (1 −
𝑃𝑏

𝑃𝑠
) ∗ 100% (12) 

Where:  

n =porosity (%),  

Pb = Bulk density of soil (
g

cm3)  

Ps =Particle density of soil (2.65 
g

cm3
). 

 

3.3.2.4 Change in groundwater storage 

Equivalent groundwater content was determined by multiplying the thickness of the saturated 

zone by soil porosity.  

 𝐺𝐸𝑑 = 𝑛 × (𝐺𝑐−𝐺𝑑)  (13) 

Where:  

GEd = equivalent depth of water stored in groundwater (ft)  

 n= porosity  

Gd= average weekly depth to groundwater (ft) 

Gc= base of the aquifer (ft) 

 

Saturated zone thickness was determined by subtracting the depth to the base of the aquifer by 

the depth to groundwater. ERT was used to determine the depth to base of the aquifer, which was 

determined to be 66 feet. Using measured groundwater depth values and recession curve 

estimated values, total average weekly groundwater depth was calculated for each meadow. 

Change in groundwater storage was calculated with the following equation: 

 ∆𝐺 = 𝐺  𝐸𝑑
1 − 𝐺  𝐸𝑑

0   (14) 
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Where:  

GED
1= Current groundwater equivalent water depth (ft)  

GED
0= Preceding groundwater equivalent water depth (ft) 

 

3.3.3 Evapotranspiration 

Daily evapotranspiration values were calculated using the Priestley-Taylor method. On August 

8th 2015, an Onset Computer Corporation weather station, equipped with a tipping bucket rain 

gauge, temperature sensor, relative humidity sensor, anemometer, wind direction sensor, 

incoming and outgoing shortwave solar radiation sensors was deployed near the control meadow. 

Temperature and solar radiation data measured with this weather station were incorporated into 

the Priestly-Taylor analyses. For time periods prior to the deployment of the CM weather station, 

the data was extended with standard least-squares regression equations using solar radiation and 

temperature data from Chester and Buntingville, California. These sensors are maintained by US 

Forest Service and the California Irrigation Management Information System (CIMIS) 

respectively. The parameter estimates below were used to extend average, minimum, and 

maximum temperature data measured in the CM from 09/13/2013 to 08/15/2015 (Table 3.4). 
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Table 3.4: Parameter estimates used to correct Chester, CA daily average, minimum, and 

maximum temperatures.  

Daily Average Temperature Parameter Estimates     

Term Estimate Std Error t Ratio Prob>|t| 

Intercept -0.96 0.13 -7.22 <.001 

Chester 0.93 0.01 86.92 <.001 

Daily Minimum Temperature    

Term Estimate Std Error t Ratio Prob>|t| 

Intercept -1.12 0.16 -6.98 <.001 

Chester 0.85 0.03 29.31 <.001 

Daily Maximum Temperature    

Term Estimate Std Error t Ratio Prob>|t| 

Intercept -1.78 0.24 -7.3 <.001 

Chester 1.03 0.01 93.58 <.001 

 

There was a significant difference between average daily net solar radiation values between CM 

and Buntingville, CA (P value <0.001). The parameter estimates below were used to extend 

average daily net solar radiation data measured in the CM from 9/13/2013 to 8/15/2015 (Table 

3.5). 

 

Table 3.5: Parameter estimates used to correct CM temperature from 9/13/2013-5/15/2015 

Term Estimate Std Error t Ratio Prob>|t| 

Intercept -2.61 0.38 -6.85 <.001 

Chester 0.77 0.2 35.5 <.001 

 

 

 Albedo was calculated using CM weather station data from August 8th to December 15th, 2015. 

A Priestley-Taylor (PT) coefficient of 0.35 was used for all CM evapotranspiration calculations. 

A PT coefficient of 0.35 was calculated for sparse vegetation or bare soil in a study that utilized 

remotely sensed temperature data and Normalized Difference Vegetation Index (NDVI) values 

(Khaldi and Hamimed, 2014). A PT coefficient of 0.65 was used for MM calculations from 
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09/13/2013 to 7/31/2015. Following restoration, a PT coefficient of 0.35 was used for MM 

evapotranspiration calculations. A PT  coefficient of 0.65 was the mean value (n = 35) for 

temperature coniferous forests in a study that summarized data from previous research 

(Komatsu, 2005).  

 𝑃𝐸𝑇 =
∆𝑠𝑣𝑝𝑐(𝑅𝑛−𝐺𝑓)

△𝑠𝑣𝑝𝑐+𝛾
 ∙ α (15) 

Where: 

𝑅𝑛 = 𝑁𝑒𝑡 𝑠𝑜𝑙𝑎𝑟 𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 (
𝑚𝐽

(𝑑𝑎𝑦)𝑚2
) , 𝑅𝑛𝑠 − 𝑅𝑛𝑙 (16) 

𝑅𝑛𝑠 = 𝑁𝑒𝑡 𝑠ℎ𝑜𝑟𝑡𝑤𝑎𝑣𝑒 𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 (
𝑚𝐽

(𝑑𝑎𝑦)𝑚2
) , (1 − 𝛼) ∙ 𝑅𝑠 (17) 

𝛼 = 𝐴𝑙𝑏𝑒𝑑𝑜,
𝑅𝑆 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑 𝑎𝑣𝑒𝑟𝑎𝑔𝑒

𝑅𝑆 𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔 𝑎𝑣𝑒𝑟𝑎𝑔𝑒
 (18) 

𝑅𝑠 = 𝐼𝑛𝑐𝑜𝑚𝑖𝑛𝑔 𝑠ℎ𝑜𝑟𝑡𝑤𝑎𝑣𝑒 𝑠𝑜𝑙𝑎𝑟 𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 (
𝑚𝐽

(𝑑𝑎𝑦)𝑚2
) (19) 

𝑅𝑛𝑙 = 𝑁𝑒𝑡 𝑙𝑜𝑛𝑔𝑤𝑎𝑣𝑒 𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 (
𝑚𝐽

(𝑑𝑎𝑦)𝑚2
) , 𝑓𝑐 ∙ 𝑓ℎ ∙ 𝜎 ∙ 𝑓(𝑇𝐾) (20) 

𝑓𝑐 = 𝐶𝑙𝑜𝑢𝑑𝑖𝑛𝑒𝑠𝑠 𝑓𝑎𝑐𝑡𝑜𝑟, 1.35
𝑅𝑠

𝑅𝑎
− 0.35 (21) 

𝑅𝑎 = 𝑒𝑥𝑡𝑟𝑎𝑡𝑒𝑟𝑟𝑒𝑠𝑡𝑟𝑖𝑎𝑙 𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 (
𝑚𝐽

(𝑑𝑎𝑦)𝑚2
), 

 
24 ∙ 60

𝜋
∙ 𝐺𝑠𝑐 ∙ 𝑑𝑟(𝜔𝑠 ∙ 𝑠𝑖𝑛 𝜑 ∙ 𝑠𝑖𝑛 𝛿 + 𝑐𝑜𝑠 𝜑 ∙ 𝑐𝑜𝑠 𝛿 ∙ 𝑠𝑖𝑛 𝜔𝑠) 

(22) 

𝐺𝑠𝑐 = 𝑠𝑜𝑙𝑎𝑟 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 0.0820
𝑚𝐽

(𝑚𝑖𝑛)𝑚2
  

𝑑𝑟 = 𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑟𝑒𝑙𝑎𝑡𝑜𝑣𝑒 𝑑𝑜𝑠𝑡𝑎𝑚𝑐𝑒 𝐸𝑎𝑟𝑡ℎ − 𝑆𝑢𝑛, 1 + 0.033 𝑐𝑜𝑠
2𝜋

365
∙ 𝐽 (23) 

𝐽 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑦 𝑖𝑛 𝑦𝑒𝑎𝑟 (1 − 365)  
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𝜔𝑠 = 𝑠𝑢𝑛𝑠𝑒𝑡 ℎ𝑜𝑢𝑟 𝑎𝑛𝑔𝑙𝑒 (𝑟𝑎𝑑), 𝑎𝑟𝑐𝑐𝑜𝑠( −𝑡𝑎𝑛 𝜑 ∙ 𝑡𝑎𝑛 𝛿) (24) 

𝜑 = 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 (𝑟𝑎𝑑)  

𝛿 = 𝑠𝑜𝑙𝑎𝑟 𝑑𝑒𝑐𝑖𝑚𝑎𝑡𝑖𝑜𝑛 (𝑟𝑎𝑑), 0.409 𝑠𝑖𝑛(
2𝜋

365
∙ 𝐽 − 1.39) (25) 

𝑓ℎ = 𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟, 0.34 − 0.14√(𝑒𝑎) (26) 

𝑒𝑎 = 𝑣𝑎𝑝𝑜𝑟 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 (𝑘𝑃𝑎)  

𝜎 = 𝑆𝑡𝑒𝑓𝑎𝑛 − 𝐵𝑜𝑙𝑡𝑧𝑚𝑎𝑛𝑛 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 4.903 ∙ 10−9
𝑚𝐽

(𝑑𝑎𝑦)𝑚2
 (27) 

𝑓(𝑇𝐾) = 𝑇𝑑𝑎𝑖𝑙𝑦 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 °𝐾
4  (28) 

𝐺𝑓 = 𝑠𝑜𝑖𝑙 ℎ𝑒𝑎𝑡 𝑓𝑙𝑢𝑥,
𝑚𝐽

(𝑑𝑎𝑦)𝑚2
= 0 𝑓𝑜𝑟 𝑑𝑎𝑖𝑙𝑦 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠 (29) 

△ 𝑠𝑣𝑝𝑐 = 𝑆𝑙𝑜𝑝𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑣𝑎𝑝𝑜𝑟 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑐𝑢𝑟𝑣𝑒 (
𝑘𝑃𝑎

℃
),  

4098(0.6108 ∙ 𝑒(
17.27𝑇

𝑇+237.3
))

(𝑇2 + 237.32)
 

(30) 

𝑇 = 𝑑𝑎𝑖𝑙𝑦 𝑚𝑒𝑎𝑛 𝑎𝑖𝑟 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 ℃  

𝛾 = 𝑃𝑠𝑦𝑐ℎ𝑟𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (
𝑘𝑃𝑎

°𝐶
) ,

𝐶𝑝 ∙ 𝑃

𝜀 ∙ 𝜆
 (31) 

𝐶𝑝 = 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 ℎ𝑒𝑎𝑡 𝑎𝑡 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒, 0.001013 (
𝑚𝐽

𝑘𝑔 ∗ °𝐶
)  

𝑃𝑎 = 𝐴𝑡𝑚𝑜𝑠𝑝ℎ𝑒𝑟𝑖𝑐 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑘𝑃𝑎, 𝑃0 ∙ (
𝐿 ∙ ℎ

𝑇0
)

𝑔∙𝑀
𝑅∙𝐿  (32) 

𝑃0 = 𝑆𝑒𝑎 𝑙𝑒𝑣𝑒𝑙 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑎𝑡𝑚𝑜𝑠𝑝ℎ𝑒𝑟𝑖𝑐 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒, 101.325 𝑘𝑃𝐴  

𝑇0 = 𝑆𝑒𝑎 𝑙𝑒𝑣𝑒𝑙 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 288.15 𝐾  

𝐿 = 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑙𝑎𝑝𝑠𝑒 𝑟𝑎𝑡𝑒, 0.0065 
𝐾

𝑚
 (33) 
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ℎ = 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑚𝑒𝑎𝑑𝑜𝑤 𝑚  

𝑔 = 𝑒𝑎𝑟𝑡ℎ 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑔𝑟𝑎𝑣𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛, 9.80665 (
𝑚

𝑠2
) (34) 

𝑀 = 𝑚𝑜𝑙𝑎𝑟 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑑𝑟𝑦 𝑎𝑖𝑟, 0.0289644 
𝑘𝑔

𝑚𝑜𝑙
  

𝑅 = 𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙 𝑔𝑎𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 8.31447
𝐽

𝑚𝑜𝑙 ∙ 𝐾
  

𝜆 = 𝐿𝑎𝑡𝑒𝑛𝑡 ℎ𝑒𝑎𝑡 𝑜𝑓 𝑣𝑎𝑝𝑜𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 (
𝑚𝐽

𝑘𝑔
) , 2.501 − 0.002361𝑇 (35) 

𝑇 = 𝑑𝑎𝑖𝑙𝑦 𝑚𝑒𝑎𝑛 𝑎𝑖𝑟 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 ℃  

𝜀 = 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟 𝑣𝑎𝑝𝑜𝑟 𝑡𝑜 𝑑𝑟𝑦 𝑎𝑖𝑟, 0.622 (36) 

𝑎 = 𝑃𝑟𝑖𝑒𝑠𝑡𝑙𝑒𝑦 − 𝑇𝑎𝑦𝑙𝑜𝑟 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡  

 

3.3.4 Marian Meadow Surface Water Outflow (Q) 

To quantify outflow from MM an Odyssey water level sensor was installed in Marian Creek, 

directly downstream of the project meadow (Figure 2). The sensor was installed adjacent to a 57” 

x 38” steel pipe-arch culvert with 2 2/3” x 1/2” corrugations. Outflow from MM into the culvert 

was calculated using Manning’s equation based on measured depth, cross section area of the 

culvert and roughness coefficient for a corrugated metal pipe. 

𝑄 =
1.486

𝑛
∙ 𝐴 ∙ 𝑅0.667 ∙ 𝑆0.5 (37) 

Where: 

𝑄 = 𝑜𝑢𝑡𝑓𝑙𝑜𝑤 (𝑐𝑓𝑠) 

𝑛 = 𝑀𝑎𝑛𝑛𝑖𝑛𝑔′𝑠 𝑟𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡, 0.025 (Wilke et al., 2008) 

𝐴 = 𝑐𝑟𝑜𝑠𝑠 − 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑓𝑙𝑜𝑤, 𝑓𝑡2 

𝑅 = ℎ𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐 𝑟𝑎𝑑𝑖𝑜𝑢𝑠, 𝑓𝑡 
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=
𝐴

𝑊𝑃
 

𝑊𝑃 = 𝑤𝑒𝑡𝑡𝑒𝑑 𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟, 𝑓𝑡 

𝑆 = 𝑠𝑙𝑜𝑝𝑒 (
𝑓𝑡

𝑓𝑡
) 

 

3.4 Statistical Analysis 

Standard least squared regression and ANCOVA was used to test changes in weekly average 

groundwater depth and volumetric soil moisture content. Only sensor measured groundwater 

values, not modeled values, were included in this analysis. Volumetric soil moisture content was 

analyzed in the wet (October 1st-March 31st) and dry (April1st-September 30th) seasons. All 

assumptions of regression were tested including linearity, serial autocorrelation, normal 

distribution, and homoscedasticity. The pre-restoration time period assessed in this analysis was 

09/13/2013-07/31/2015. The post-restoration time period assessed in this analysis was 8/1/2015-

6/24/2016. In order to account for serial autocorrelation a lag of 3 weeks was used for all soil 

moisture and water table depth analysis.    
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CHAPTER 4 RESULTS 

The three main sections of this chapter are: 4.1) results of each component of the water balance 

equation, 4.2) the water balance results, and 4.3) the results of the statistical analysis. Unless 

otherwise stated, the monitoring period used in this assessment starts 9/13/2013 and ends 

6/24/2016, and all calculations are based on weekly averages.  

 

4.1 Components of Water Balance 

The following subsections describe the results for each component of the water balance 

including soil moisture content, water table depth, precipitation, evapotranspiration and surface 

water flow. 

 

4.1.1 Volumetric Soil Moisture Content 

4.1.1.1 Marian Meadow 

Weekly average soil moisture content measured from sensors buried 1.0 foot below the surface 

ranged from 10.6% to 47.4%.  Prior to restoration, the average weekly soil moisture content was 

24.3%. Following restoration, the average weekly soil moisture content was 34.5%. The average 

weekly soil moisture content during the entire monitoring period was 27.5%. The peak weekly 

average soil moisture content for water years 2014, 2015, and 2016 was 32.4%, 36.7%, and 

47.4% respectively. The lowest weekly average soil moisture for water years 2014 and 2015 was 

17.2% and 19.5% respectively (Figure 4.1, Table 4.1). On Average, February had the highest 

average soil moisture content of 38.0% while September and October had the lowest; 17.9% and 

17.6% respectively (Figure 4.2). 
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The average weekly soil moisture from instruments buried 3.0 feet below the surface ranged 

from 21.4% to 47.9%. Average volumetric soil moisture content during the entire monitoring 

period (8/7/2015-6/24/2016) was 36.9%. During the same time period, average soil moisture 

content for the 1.0 foot sensors was 34.5%. During the dry season and prior to the first 

significant precipitation event, the 3.0-foot soil moisture sensors exhibited a higher and earlier 

peak soil moisture content than the 1.0 foot sensors. Peak average soil moisture content (47.9%) 

for the 3.0 foot sensors occurred in March 2016, although soil moisture content greater than 45% 

occurred by mid-January. During the same time period, peak soil moisture measured by 1.0 foot 

sensors was 47.4%, which occurred in April 2016 (Figure 4.3).  

 

4.1.1.2 Control Meadow 

Weekly average soil moisture content measured from sensors buried 1.0 foot below the surface 

ranged from 11.4% to 40.0%. Prior to restoration, the average weekly soil moisture content was 

21.5%. Following restoration, the average weekly soil moisture content was 30.0%. The average 

weekly soil moisture content during the entire monitoring period was 24.1%. The peak weekly 

average soil moisture content for water years 2014, 2015, and 2016 was 30.4%, 34.0%, and 

40.3% respectively. The lowest weekly average soil moisture for water years 2014 and 2015 was 

11.4% and 13.8% respectively (Figure 4.1).  On average, March had the highest average soil 

moisture content of 35.0% while September had the lowest, 13.5% (Figure 4.2). 

 

The average weekly soil moisture content for the 3.0 foot sensors ranged from 16.6% to 46.4%. 

Average volumetric soil moisture content during the entire monitoring period was 36.9%. During 

the same time period, average soil moisture content for the 1.0 foot sensors was 30.7%. During 
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the dry season and prior to the first significant precipitation event, the 3.0-foot soil moisture 

sensors exhibited a higher soil moisture content than the 1.0 foot sensors. During the dry season 

and prior to the first significant precipitation event, the 3.0-foot soil moisture sensors exhibited a 

higher and earlier peak soil moisture content than the 1.0 foot sensors. Peak soil moisture content 

(43.4%) measured by the 3.0 foot sensors occurred in February. During the same time period 

peak soil moisture for the 1.0 foot sensors was 40.47%, which occurred in March 2016 (Figure 

4.3). 

 

 
Figure 4.1: MM and CM weekly percent volumetric soil moisture content (%) and weekly 

rainfall total (in.). The error bars depict the standard deviation of MM and CM weekly average 

sensor values. 

 

Table 4.1: MM and CM average volumetric soil moisture content (%) for 1 ft. sensors 

 2014 

WY 

2015 

WY 

2016 

WY 

Pre 

Restoration 

Post 

Restoration 

Entire Monitoring 

Period 

Marian 

Meadow 
21.3 27.3 37.4 24.3 34.5 27.5 

Control 

Meadow 
20.0 22.6 31.5 21.5 30.0 24.1 
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Figure 4.2: MM and CM average monthly volumetric soil moisture content (%) 

 

 

 
Figure 4.3: MM and CM 1ft and 3ft depth volumetric soil moisture content and rainfall (in.) 
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4.1.2 Water Table Depth 

4.1.2.1 Electrical Resistivity Tomography 

September 10th, 2014 EMT surveys yielded an approximate depth of 41.0ft (12.5m) to the 

bottom of MM’s aquifer.  This depth was used as a reference datum to calculate the equivalent 

depth of water stored in the aquifer. The depth to the bottom of the aquifer in CM was greater 

than the maximum penetration depth of the ERT equipment used; which was approximately 66ft 

(Figure 4.4). For consistency and comparison of the two meadows the depth to the bottom of the 

MM aquifer was also used to calculate equivalent depth of water in CM. ERT surveys conducted 

on 9/10/2013, 9/7/2014, and 9/9/2015 yielded depth to ground water values of approximately 9.2 

feet, 8.5feet, and 10.4 feet respectively for MM (Figure 4.5). ERT surveys conducted on 

9/6/2014 and 9/9/2015 yielded depth to groundwater values of approximately 10.7 feet and 8.5 

feet for CM (Figure 4.7). 
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a. 

 
b. 

 
c. 

 

Figure 4.4: ER values in Ω ∙ m vs. depth (m) and distance (m) used to determine depth to bottom of aquifer. a: Control Meadow, 

survey #9 (9/6/2014); b. Marian meadow transect, survey #13 (9/7/2014), C. Lower Marian creek transect, survey #16 (9/7/2014) 
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a. 

 
b. 

 
c. 

 

Figure 4.5: ER values in Ω∙m vs. depth (m) and distance (m) used to determine depth to top of aquifer. a: Marian Meadow, survey #3 

9/10/2013; b: Marian Meadow lower transect, survey #14 (9/7/2014); c. Upper Marian Meadow, survey #28 (9/9/2015) 
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a. 

 

 
b. 

 

Figure 4.6: ER values in Ω∙m vs. depth (m) and distance (m) used to determine depth to top of aquifer. a: Lower Control Meadow, 

survey #11 (9/6/2014); b: Lower Control Meadow, survey #26 (9/9/2015) 
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4.1.2.2 Marian Meadow 

Average weekly depth to the water table, including measured and modeled values, ranged from 

0.21 feet to 10.40 feet. Average weekly depth to the water table for the monitoring period was 

4.06 feet. Average weekly depth to the water table prior to conifer removal was 4.29 feet. 

Average weekly depth to the water table following conifer removal was 3.29 feet. Peak water 

table depths for each water year were 0.96 feet, 0.65 feet, and 0.21 feet for water years 2014, 

2015, and 2016 respectively. Maximum depth for each water year was assumed to be the 

measured depth using electrical resistivity tomography which was 8.26 feet, 8.87 feet and 8.53 

feet respectively (Figure 4.7,  

 

Table 4.2). Average growing season water table depth for the 2014, 2015, and 2016 water years 

was 4.02 feet, 4.81, feet, and 0.98 feet. During the 2014, 2015, and 2016 growing seasons, water 

table was at or above 2.3 feet for 46 days, 7 days, and 85 days respectively ( 

Table 4.3). 

 

4.1.2.3 Control Meadow 

Average weekly depth to the water table, including measured and modeled values, ranged from 

0.15 feet to 10.70 feet. Average weekly depth to the water table for the monitoring period was 

3.93 feet. Average weekly depth to the water table prior to conifer removal was 4.17 feet. 

Average weekly depth to the water table following conifer removal was 3.08 feet. Peak 

groundwater elevations for each water year were 0.16 feet, 0.25 feet, and 0.15 feet for water 

years 2014, 2015, and 2016 respectively. Maximum depth for 2014 and 2015 water years was 

assumed to be the measured depth using electrical resistivity tomography which was 8.5 feet for 
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both years. Because ERT measurements were not measured in September 2013, the initial rising 

limb (9/27/2013-2/21/2014) of the CM’s groundwater hydrograph was modeled. Maximum 

modeled depth for CM in water year 2013 was 9.91 feet (Figure 4.7,  

 

Table 4.2). Average growing season water table depth for the 2014, 2015, and 2016 water years 

was 3.68 feet, 4.32, feet, and 1.06 feet. The number of days the water table was at or above 2.3 

feet was 53, 24, and 71 for the 2014, 2015, and 2016 water years respectively. During the 2014, 

2015, and 2016 growing seasons, water table was at or above 2.3 feet for 53 days, 24 days, and 

71 days respectively ( 

Table 4.3).  

 

 
Figure 4.7: Depth to groundwater (ft.) for MM and CM and rainfall (in.). The error bars depict 

the standard deviation of MM and CM weekly average sensor values. 
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Table 4.2: Average depth to groundwater (ft.) for MM and CM 

 2014 

WY 

2015 

WY 

2016 

WY 

Pre 

Restoration 

Post 

Restoration 

Entire Monitoring 

Period 

Marian 

Meadow 
4.88 4.12 2.61 4.29 3.29 3.99 

Control 

Meadow 
5.10 3.52 2.57 4.17 3.08 3.84 

 

 

Table 4.3: Growing season (April 1st through August 31st) water table depths (ft) 

  Marian Meadow Control Meadow 

 2014 WY 2015 WY 2016 WY Total 2014 WY 2015 WY 2016 WY Total 

WTD average 4.02 4.81 0.98 3.63 3.68 4.32 1.06 3.33 

WTD minimum 0.96 2.01 0.39 0.39 0.17 1.46 0.19 0.17 

WTD maximum 8.14 9.11 2.2 9.11 7.94 7.55 2.79 7.94 

WTD range 7.18 7.1 1.81 8.72 7.77 6.09 2.6 7.77 

Days WTD < 2.3 46 7 85 138 53 24 71 148 

Days WTD < 1.0 4 0 50 54 25 0 50 75 

 

 

4.1.3 Total Equivalent Water Stored in Unsaturated Soil and Groundwater 

4.1.3.1 Marian Meadow 

In MM, the weekly average equivalent water depth stored in the unsaturated soil ranged from 

0.10 feet to 2.34 feet. For the entire monitoring period, the average equivalent water depth stored 

in the unsaturated soil was 0.90 feet. The peak equivalent water depth stored in the unsaturated 

soil for water years 2014, 2015, and 2016 was 1.33 feet, 1.56 feet, and 2.34 feet respectively. 

The lowest equivalent water depth stored in the unsaturated soil for water years 2014, 2015, and 

2016 was 0.31 feet, 0.13 feet, and 0.03 feet respectively (Figure 4.8).  

 

The weekly equivalent water depth stored in the groundwater ranged from 15.26 feet to 19.14 

feet. For the entire monitoring period, the average equivalent water depth stored in the aquifer 

was 17.40 feet. The peak equivalent water depth stored in the groundwater for water years 2014, 
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2015, and 2016 was 18.83 feet, 19.03 feet, and 19.14 feet respectively. The lowest equivalent 

water depth stored in groundwater for water years 2014, 2015, and 2016 was 15.26 feet, 15.30 

feet, and 14.39 feet respectively (Figure 4.9).  

 

The total weekly water depth stored in the unsaturated soil and groundwater ranged from 16.18 

feet to 19.14 feet. For the entire monitoring period, the average equivalent water depth stored in 

unsaturated soil and the aquifer was 18.31 feet. The peak equivalent water depth stored in 

unsaturated soil and groundwater for water years 2014, 2015, and 2016 was 19.09 feet, 19.22 

feet, and 19.29 feet respectively. The lowest equivalent water depth stored in unsaturated soil 

and groundwater for water years 2013, 2014, and 2015 was 16.18 feet, 16.86 feet, and 16.73 feet 

respectively. On average, groundwater was 95.4% of total equivalent water depth stored in 

unsaturated soil and groundwater combined (Figure 4.10). 

 

4.1.3.2 Control Meadow 

In CM, the weekly average equivalent water depth stored in the unsaturated soil ranged from 

0.00 feet to 1.67 feet. For the entire monitoring period, the average equivalent water depth stored 

in the unsaturated soil was 0.72 feet. The peak equivalent water depth stored in the unsaturated 

soil for water years 2013, 2014, and 2015 was 1.67 feet, 1.01 feet, and 1.36 feet respectively. 

The lowest equivalent water depth stored in the unsaturated soil for water years 2014, 2015, and 

2016 was 0.04 feet, 0.04 feet, and 0.00 feet respectively (Figure 4.8).  

 

The weekly equivalent water depth stored in the groundwater ranged from 12.54 feet to 16.31 

feet. For the entire monitoring period, the average equivalent water depth stored in the aquifer 
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was 14.83 feet. The peak equivalent water depth stored in the groundwater for water years 2014, 

2015, and 2016 was 16.29 feet, 16.31 feet, and 16.28 feet respectively. The lowest equivalent 

water depth stored in groundwater for water years 2014, 2015, and 2016 was 12.54 feet, 12.97 

feet, and 13.09 feet respectively (Figure 4.9).  

 

The total weekly water depth stored in the unsaturated soil and groundwater ranged from 13.98 

feet to 16.34 feet. For the entire monitoring period, the average equivalent water depth stored in 

unsaturated soil and the aquifer was 15.54 feet. The peak equivalent water depth stored in 

unsaturated soil and groundwater for water years 2014, 2015, and 2016 was 16.35 feet, 16.34 

feet, and 16.40 feet respectively. The lowest equivalent water depth stored in unsaturated soil 

and groundwater for water years 2013, 2014, and 2015 was 14.05 feet, 13.98 feet, and 14.38 feet 

respectively. On average, groundwater was 95.4% of total equivalent water depth stored in 

unsaturated soil and groundwater combined (Figure 4.10). 
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Figure 4.8: Equivalent Depth of Water Stored in Unsaturated Soil (in.) 

 

 
Figure 4.9: Equivalent Depth of Water Stored in Groundwater and Unsaturated Soil (ft.) 
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Figure 4.10: Equivalent Depth of Water Stored in Groundwater and Unsaturated Soil (ft.) 

 

4.1.4 Evapotranspiration, Temperature, Precipitation, and Surface Water Flow 

Albedo and average daily net solar radiation are required inputs into Priestly-Taylor method for 

estimating evapotranspiration. Albedo was calculated to be 0.21. Average daily net solar 

radiation ranged from -2.01 MJ/kg to 18.30 MJ/kg. The average daily net solar radiation for the 

entire monitoring period was 7.50 MJ/kg. The peak daily average net solar radiation for water 

years 2014, 2015, and 2016 is 16.00 MJ/kg, 16.8 MJ/kg, and 18.3 MJ/kg respectively. The 

lowest daily average net solar radiation for water years 2014, 2015, and 2016 is -0.70MJ/kg, -

0.70MK/kg, and -2.01 MJ/kg respectively (Figure 4.11).  
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Figure 4.11: Net solar radiation in (MJ/kg) used in Priestly Taylor Analysis for MM and CM 
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evapotranspiration estimated for water years 2013, 2014, and 2015 was 0.01 in/week, 0.02 

in/week, and 0.00 in/week (Figure 4.12).  

 

 
Figure 4.12: Evapotranspiration (in./day) for MM and CM estimated using Priestly Taylor 
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Figure 4.13: CM daily average, minimum, and maximum temperature values (°C) 
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Figure 4.14: Total accumulated rainfall per water year (in.) and daily rainfall totals (in.) 
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During the 2014 water year there was no measurable flow exiting MM. During the 2015 water 
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2016 water year (Figure 4.16).  
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Figure 4.15: Marian Meadow outflow in CFS 

 

 
Figure 4.16: Marian Meadow weekly outflow in feet 
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4.2 Water Balance 

In this water balance analysis flow into and out of MM and the CM are not included. The MM 

outflow measurements will be used to help interpret results and errors associated with the water 

balance. Total water available to meadow storage was calculated by subtracting 

evapotranspiration from precipitation. This was calculated for the entire monitoring period, for 

each water year, and for the wet season and dry season of each water year. Positive values 

indicate there is a water surplus available for meadow water storage. Negative values indicate 

that evapotranspiration is greater than precipitation and there is a water deficit. A positive change 

in storage indicates that total meadow water storage (groundwater and soil water), increased. 

This was calculated for the entire monitoring period, for each water year, and for the wet season 

and dry season of each water year. A negative change in storage indicates that total meadow 

water storage (groundwater and soil water), decreased. This was calculated for the entire 

monitoring period, for each water year, and for the wet season and dry season of each water year.  

 

4.2.1 Marian Meadow 

Throughout the monitoring period, MM exhibited a total water surplus of 4.19 feet and a 3.06-

foot change of storage. This resulted in an error of 1.13 feet. Because surface runoff was not 

included into this analysis, some of this error can be associated with surface water flow coming 

into and out of the meadow. During the 2014 water year, total water surplus was 0.22 feet and 

total change in storage was 0.31 feet. The 2015 water year had a total water surplus of 0.91 feet 

and 1.91 foot decreases in water storage; the only water year with a negative change in storage.  . 

During the 2016 water year, total water surplus was 3.12 feet and total change in storage was 

4.75 feet (Table 4.4).  
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Throughout the monitoring period, MM exhibited a greater range in monthly water storage 

values and greater water storage responses as a result of precipitation. MM monthly water 

storage values ranged from +2.43 feet to -1.53 feet, while the CM water storage values from 

+0.76 to -0.73 feet (Figure 4.17, Figure 4.18). Although MM exhibited greater positive and 

lower negative water storage values than the CM, the timing in groundwater storage change are 

similar (Figure 4.17 and Figure 4.18).  

 

4.2.2 Control Meadow 

Throughout the monitoring period, CM exhibited a total water surplus of 5.44 feet and a 2.03 

foot change in storage. This resulted in an error of 3.41 feet. During the 2014 water year, total 

water surplus was 0.84 feet and total change in storage was 0.51 feet. The 2015 water year had a 

total water surplus of 1.48 feet and 0.07 foot decreases in water storage; the only water year with 

a negative change in storage.  During the 2016 water year, total water surplus was 3.12 feet and 

total change in storage was 1.59 feet (Table 4.4).  

 

4.2.3 Post Restoration Comparison 

Water surplus is assumed to be the same in both MM and CM in the 2016 water year due to our 

shared precipitation values and modelled ET values.  Therefore, only a change in water storage 

would indicate a change due to conifer removal.  In the 2016 water year, following conifer 

removal restoration, the MM change in storage was 3.16 feet higher than CM (Table 4.4, Figure 

4.19). Prior to conifer removal, 2014 and 2015 water years, MM change in storage was below 

CM (Figure 4.19). Additionally, the increase in change in storage for MM is greater than the 
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water balance error of -1.63 feet in MM suggesting a positive change in soil and groundwater 

following conifer removal.   

 

Table 4.4: MM and CM water budget components, sum of  

Marian Meadow 
Water Surplus 

(P-ET) 

Water Deficit 

(P-ET) 

Total Water Surplus/Deficit 

(P-ET) 

Change in 

Storage (ΔS) 
Error 

Total 6.39 -2.20 4.19 3.06 1.13 

WY2014 1.20 -1.08 0.22 0.31 -0.09 

Oct 1st-Mar 31st 1.14 -0.14 1.00 3.99 -2.99 

Apr 1st-Sep3th 0.06 -0.93 -0.87 -3.68 2.90 

WY2015 1.82 -0.88 0.94 -1.91 2.85 

Oct 1st-Mar 31st 1.64 -0.15 1.49 3.21 -1.72 

Apr 1st-Sep3th 0.18 -0.73 -0.55 -5.12 4.57 

WY2016 3.37 -0.24 3.12 4.75 -1.63 

Oct 1st-Mar 31st 3.07 -0.04 3.03 6.22 -3.19 

Apr 1st-Sep3th 0.29 -0.20 0.09 -1.47 1.56 

Control 

Meadow 

Water Surplus 

(P-ET) 

Water Deficit 

(P-ET) 

Total Water Surplus/Deficit 

(P-ET) 

Change in 

Storage (ΔS) 
Error 

Total 6.68 -1.24 5.44 2.03 3.41 

WY2014 1.35 -0.51 0.84 0.51 0.33 

Oct 1st-Mar 31st 1.22 -0.07 1.15 2.27 -1.11 

Apr 1st-Sep3th 0.13 -0.44 -0.31 -1.76 1.44 

WY2015 1.96 -0.48 1.48 -0.07 1.55 

Oct 1st-Mar 31st 1.71 -0.06 1.65 1.63 0.02 

Apr 1st-Sep3th 0.25 -0.42 -0.17 -1.70 1.53 

WY2016 3.37 -0.24 3.12 1.59 1.53 

Oct 1st-Mar 31st 3.07 -0.04 3.03 1.84 1.20 

Apr 1st-Sep3th 0.29 -0.20 0.09 -0.25 0.34 
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Figure 4.17: Monthly MM evapotranspiration, precipitation, and total change in storage 

 

 
Figure 4.18: Monthly CM evapotranspiration, precipitation, and total change in storage 
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Figure 4.19: Change in storage in MM and CM for 2014-2016 water years.  The 2016 water year 

is following conifer removal in MM. 
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restoration and post restoration were significantly different from one another indicating a 0.60 

foot increase in groundwater for MM (P <0.0001) (Table 4.6). The slopes of pre and post 
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restoration depth to groundwater regression models were not significantly different (p-value: 

0.4775). With an 𝑅2 of 0.93, the regression equation used to predict MM depth to groundwater 

prior to restoration is: 

𝑀𝑀 𝑑𝑒𝑝𝑡ℎ 𝑡𝑜 𝑔𝑟𝑜𝑢𝑛𝑑𝑤𝑎𝑡𝑒𝑟 (𝑓𝑡) = 0.81 + 0.74 ∗ (𝐶𝑀 𝑑𝑒𝑝𝑡ℎ 𝑡𝑜 𝑔𝑟𝑜𝑢𝑛𝑑𝑤𝑎𝑡𝑒𝑟 (𝑓𝑡)) 

The regression equation used to predict MM depth to groundwater following restoration is: 

𝑀𝑀 𝑑𝑒𝑝𝑡ℎ 𝑡𝑜 𝑔𝑟𝑜𝑢𝑛𝑑𝑤𝑎𝑡𝑒𝑟 (𝑓𝑡) = 0.21 + 0.74 ∗ (𝐶𝑀 𝑑𝑒𝑝𝑡ℎ 𝑡𝑜 𝑔𝑟𝑜𝑢𝑛𝑑𝑤𝑎𝑡𝑒𝑟 (𝑓𝑡)) 

These equations are formulated from all significant parameter estimates with an α value <0.05 

(Table 4.6).  

 
Figure 4.20: Pre restoration and post restoration depth to groundwater regressions 

𝑅2=0.93 

 

Pre: + 

Post: 
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Table 4.5: Pre restoration and post restoration depth to groundwater ANOVA 

Source df SS MS F p 

model 2 40.30 20.15 22.81  

error 35 3.17 0.09    

total 37 43.48     <.0001  

 

Table 4.6: Pre restoration and post restoration depth to groundwater parameter estimates 

Term Estimate Std Error t Ratio Prob>|t| 

Intercept 0.81 0.09 2.13 <.0406 

CM Depth to Groundwater (ft.) 0.74 0.04 17.90 <.0001 

Intercept Post – Pre  -0.60 0.11 -5.72 <.0001 

 

4.3.2 Soil Moisture Content 

Throughout the monitoring period, MM generally had higher soil moisture values than the CM. 

However, from September 2013 through February 2014, MM exhibited lower soil moisture 

values. While we are fairly confident that MM and the CM receive similar precipitation amounts 

for a given period of time, it is clear that from September 2013 through February 2014 they did 

not. For that reason, soil weekly moisture values from September 2013 through February 2014 

were not included in this statistical analysis. 

 

The mean CM and MM soil moisture content prior to and following restoration are significantly 

different from one another (P value < 0.0001) (Figure 4.5).  The intercept and slope of MM soil 

moisture content pre restoration and post restoration were significantly different from one 

another (P value < 0.0001) (Figure 4.6). With an 𝑅2of 0.96, the regression equation used to 

predict MM soil moisture content prior to restoration is:  

 

𝑀𝑀 𝑠𝑜𝑖𝑙 𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 (%) = 12.39 + 0.63 ∗ 𝐶𝑀 𝑠𝑜𝑖𝑙 𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 (%) 
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The regression equation used to predict MM soil moisture content following restoration is:  

𝑀𝑀 𝑠𝑜𝑖𝑙 𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 (%) = 3.15 + 1.09 ∗ 𝐶𝑀 𝑠𝑜𝑖𝑙 𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 (%) 

These equations are formulated from all significant parameter estimates with an α value <0.05 

(Figure 4.6). 

 

 
Figure 4.21: Pre restoration and post restoration soil moisture content regressions.  

 

 

 

Table 4.7: Pre restoration and post restoration soil moisture ANOVA 

𝑅2=0.96 

 

Pre: + 

Post: 
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Source df SS MS F p 

model 3 2731.59 910.53 292.40  

error 38 118.33 3.11    

total 41 2849.93     <.0001  

 

Table 4.8: Pre restoration and post restoration soil moisture estimates 

Term Estimate Std Error t Ratio Prob>|t| 

Intercept 12.39 1.23 10.09 <.0001 

CM Depth to Groundwater (ft.) 0.63 0.05 12.14 <.0001 

Pre/Post 2.27 0.63 3.58 0.0010 

Slope (CM%-25.02)*-
0.46(pre1/post0) 

0.46 0.07 6.55 <.0001 
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CHAPTER 5 DISCUSSION 

5.1 Water Table depth 

Prior to restoration, the average weekly (measured with sensors) water table depth in MM and 

CM was 1.90 feet and 1.35 feet, respectively. Following restoration, the average weekly 

(measured with sensors) water table depth in MM and CM was 0.97 feet and 1.02 feet, 

respectively. Utilizing the pre restoration groundwater depth regression equation and the average 

weekly post restoration CM water table depth, the predicted average weekly water table depth in 

MM was 1.55 feet. The 0.58-foot difference between the measured and predicted groundwater 

depth represents a 63% increase in measured values and a gain of 12.7 acre feet of water stored 

as groundwater as a result of restoration activates. The difference between predicted and 

measured groundwater depth values ranged from 0.3 feet to 1.21 feet. The greatest variability in 

the model appeared to occur when water table levels were increasing (December through 

February) (Figure 5.1).  

 

The timing of the last significant rainfall appears to influence groundwater depth, especially 

during the growing season. While the 2014 WY and the 2015 WY were both drought years and 

the 2015 WY had greater annual precipitation amounts, the 2014 WY exhibited greater growing 

season groundwater depths. This is likely due to the fact that the last significant rain event during 

the 2014 WY was March 29, 2014 and in the 2015 WY it was February 6, 2015.  
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Figure 5.1: Post restoration predicted - observed weekly average groundwater depth values.  

 

During the 2014 growing season and prior to restoration, MM and the CM experienced 

groundwater depths indicative of a dry meadow as classified by Weixelman et al. (2011). 

Groundwater elevations were on average deeper than 3.28 feet (1 meter), and although it was a 

drought year, there were significant periods of time that the groundwater was within the rooting 

zone of 2.3 feet of common dry meadow plant species (Hammersmark et al., 2010). During the 

2015 growing season, MM and the CM did not experience groundwater depths indicative of 

meadows. The ground water spent an insufficient amount of time within the rooting zone (2.3 

feet) of common dry meadow plant species. However, if the post restoration water table depth 

regression equation is applied to the 2015 average growing season water table depth, it is 

predicted that in MM the average growing season water table depth would have reduced from 

4.81 feet (measured average value) to 3.39 feet (predicted average value). Therefore, it is 

suggested that even in a drought year where a significant amount of the precipitation fell prior to 
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January, MM would have exhibited growing season water table depth elevations of a dry 

meadow. 

 

Following restoration, MM exhibited similar growing season water table depths to meadows that 

are dominated by Poa pratensis and Bromus japonicas (Table 2.2), which are facultative and 

facultative upland species and common in dry meadows (Hammersmark et al., 2010). While the 

average growing season water table depth following restoration of 0.98 feet may strongly suggest 

the hydrologic characteristics of a wet meadow, these calculations do not include water table 

depth values from July and August 2016. Future analyses of the entire post restoration water 

year, and subsequent water years, will determine what type of meadow the average groundwater 

depth suggests. However, utilizing the MM water table depth recession rate in May and June 

2016, the predicted maximum water table depth for the end of the 2016 growing season was 

approximately 4.25 feet. This depth is indicative of a meadow with a high proportion of obligate, 

facultative wetland, and facultative plant species (Table 2.2). 

 

When assessing the number of days the water table depth was within 2.3 feet and 1.0 feet of the 

surface, MM exhibited growing season water table depths indicative of a meadow with a high 

proportion of obligate, facultative wetland, and facultative plant species. In a study 

(Hammersmark et al., 2010) that assessed meadow vegetation plots with varying levels of 

obligate, facultative wetland, facultative, facultative upland, and upland plant species with water 

table depths, MM exhibited growing season water table depths similar to plots with a high 

proportion of Downingia bacigalupii,  Psilocarphus brevissimus, Carex nebrascensis, and 

Juncus balticus; all of which are obligate and facultative wetland species. In the study conducted 
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by Hammersmark et al. (2010) the water table was within 2.3 feet from the surface for 

Downingia bacigalupii, Psilocarphus brevissimus, Carex nebrascensis, and Juncus balticus 

dominated community types for approximately 65 days, and the water table was within 1.0 foot 

from the surface for 42-47 days. (Table 2.2). In this study, the post restoration water table of MM 

was within 2.3 feet and 1.0 foot from the surface in MM for 85 days and 50 days, respectively ( 

Table 4.3).  

 

Within the first 3 feet, MM tended to have lower water table depth elevations than CM.  

However, MM exhibited greater water stored as groundwater. This was likely due to differences 

in soil porosity. Soil porosity heavily influences the total amount of water stored in saturated 

soil. Saturated soils with higher porosity (MM: 47%) are able to hold more water than soils with 

lower porosity (CM: 40%).  The effect of soil porosity was apparent on MM and CM. 

Throughout the monitoring period MM exhibited lower groundwater elevations but had 

significantly more water stored as groundwater. The effect of soil porosity on water stored as 

groundwater was especially apparent when water table elevations were near the surface in both 

meadows. February through May 2016 MM and CM groundwater depth levels were within 0.25 

feet from the surface. However total water stored in the aquifer was greater in MM by nearly 3 

feet during that same period.  

 

Lower soil porosity in CM may have also influenced peak groundwater elevation levels. CM 

consistently exhibited greater peak groundwater elevations. As given amount of water fills empty 

pore space within a soil column, the soil type with greater porosity exhibits a lower saturated 

zone elevation. Also, MM appears to drain less quickly than the CM. Within the first 3 feet, 
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water table elevations in CM decreased more rapidly than MM, even though MM has greater soil 

porosity. During the spring of 2014 and 2015 water table elevations depleted to 3 feet at 

approximately the same time for MM and CM, but CM had greater peak elevations. Following 

restoration and during the spring of 2016, the water table in MM and CM were near the surface, 

however the CM water table was able to deplete to 3 feet before MM.  

 

5.2 Soil Moisture 

Initially, the soil moisture response to meadow restoration was assessed independently between 

dry season (October 1st-March 31st) and wet seasons (April 1st-September 30th).  However, it was 

determined that there was no statistical significant difference in the relationship between MM 

and CM soil moisture content among wet and dry seasons. This can be attributed to presence of 

high and low soil moisture values and fewer data points in the dry season and wet season time 

periods.  However, Figure 4.21 indicates that MM soil moisture values decreased during periods 

with relatively low soil moisture. This was likely caused by an increase in direct sunlight and 

higher soil temperatures following restoration. Figure 4.21 also indicates that during periods with 

elevated soil moisture content, soil moisture increased in MM. The increase was likely attributed 

to a decrease in tree interception. The switch from a decrease in soil moisture to an increase in 

soil moisture occurred in November (Figure 5.2). On average, soil moisture decreased on by 

1.4% during the months of August through October and increased by 6.1% during the months of 

November 2015 through June 2016. Overall, there was an increase of volumetric soil moisture 

content of approximately 4.0%.  Assuming that the 4.0% increase measured 1.0 foot below the 

surface was consistent from the surface to the water table, and with an average water table depth 
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of 3.29 feet following restoration, this increase represents an increase of 5.92 acre-feet of water 

stored in the soil as a result of removing the conifers.  

 

 
Figure 5.2: Post restoration predicted - observed weekly average percent soil moisture values.  

 

 

5.3 Water Budget 

Again, in this water budget analysis, snowfall and surface water flow into and out of MM and the 

CM were not included. The water budget results do indicate that this caused errors in this 

analysis. During the 2014 water year, where there was no measurable surface water flow coming 

from MM and precipitation was far below average, errors in the water budget analysis were at 

their lowest.  

 

While MM had an increase in soil and groundwater storage, and exhibited water table depths 

indicative of a meadow, especially after restoration, the water budget suggests that MM is 

susceptible to climactic variability. The timing and extent of precipitation had a great effect on 
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MM water storage. Although the 2014 water year was an extreme drought year, MM and the CM 

both showed a modest increase in water storage. It appears that because precipitation occurred 

through the end of March, water table depths and soil moisture were high enough to result in a 

net increase in water storage. Also, the water budget indicates that MM water storage and 

depletion are more variable than in CM. MM shows a greater response following precipitation 

events and greater magnitudes of depletion during the dry season (Figure 4.17, Figure 4.18). This 

is likely a result of differences in soil porosity in the two meadows.  

 

However, during the 2015 water year, MM lost 1.91 feet of groundwater storage, while the CM 

only lost 0.07 feet. Although the 2015 water year was slightly below normal in terms of total 

precipitation, the majority of precipitation that did fall occurred before January 2015. During the 

2016 water year, and after restoration, MM exhibited a 4.75 foot increase in water storage while 

the CM had a 1.59 foot increase in water storage. Because of the statistically significant increase 

in groundwater elevation following restoration, it is reasonable to assume that some of this 

increased storage is a result of restoration, in addition to the increase in precipitation. 

 

Although this budget analysis did not assess flow into and out of MM and the CM, the water 

budget suggests that during drought years the majority of the meadow inputs in from 

precipitation and not upland sources such as surface and groundwater flow. However, during the 

first half of 2016 water year, the change in groundwater storage was 3.19 feet greater than the 

water available. This suggests that during a normal to wet year, groundwater storage in MM 

relies heavily on upland sources.  
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CHAPTER 6 CONCLUSION AND SUMMARY 

Removing conifers from an encroached meadow is not a new practice. The National Park 

Service has been conducting conifer removal projects within meadows in Yosemite National 

Park for over a century (National Park Service, 2016).  While these projects were taking place, it 

was unknown if the hydrologic characteristics of meadows were encouraged. The methods and 

analysis employed in this study provided enough insight and understanding to indicate that the 

removal of conifers from an encroached meadow can encourage the hydrologic characteristics 

indicative of a meadow and meadow plant communities.  

 

The statistical analysis of soil moisture and water table depth proved to be an important 

component to this study. It detected changes the water balance alone could not measure. The 

statistical analysis indicated that following conifer removal, soil moisture decreased by 1.4% 

during the months of August 2015 through October 2015 and increased by 6.1% during the 

months of November 2015 through June 2016. Overall, there was an increase of volumetric soil 

moisture content of approximately 4.0%. The initial decrease in soil moisture was an unexpected 

result in this study. A consistent increase throughout the post restoration monitoring period was 

expected. The initial decrease is perhaps a result in greater soil temperatures and evaporation of 

antecedent soil moisture. The 6.1% increase was likely a result of a reduction of tree interception 

and perhaps greater snow accumulation in the open area. As meadow vegetation establishes and 

soil temperatures decline, future soil moisture conditions during the months of August through 

October will likely revert back to pre-conifer removal levels. The elevated soil moisture 

conditions observed from November through June will likely decrease as meadow vegetation 

establishes and interception increases, but will likely remain higher than pre-conifer removal 
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levels. The statistical analysis also indicated that following conifer removal, the depth to the 

water table decreased on average by 0.58 feet. Again, this was likely a result of a reduction in 

tree interception and perhaps greater snow accumulation in the open area. As meadow plants 

establish within Marian Meadow, the depth to water table will likely increase, but will likely 

remain higher than pre conifer removal levels.   

 

The use of shallow water table sensors appeared to be satisfactory in measuring the hydrologic 

properties of MM and the CM especially during the growing season, when water table depths 

were within the sensors range. If quantifying growing season water table depths are the main 

objectives of a study, the use of deeper sensors and wells may not be necessary.  Prior to 

restoration, it appeared that Marian Meadow periodically had the growing season hydrologic 

characteristic of a dry meadow dominated with facultative and facultative wetland plant species. 

Following restoration, Marian Meadow exhibited growing season water table depths that can 

support wet meadow plant species.  

 

Even with the hydrologic characteristics indicative of a dry to wet meadow, periodic removal of 

encroaching conifers within Marian Meadow are recommended. Periodic removal of conifers 

may especially be needed during the immediate years following the initial project.  Prior to the 

recolonization of meadow plant species, elevated soil moisture conditions may provide more 

susceptible conditions for conifer establish, especially for lodgepole pine.  If these newly 

established conifers go unchecked, additional colonization and conversion back to forest is 

inevitable. Also, depending on the rate of future meadow plant establishment, re-seeding of 

meadow flora maybe required. 
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The water balance in this study did not include surface water flow into and out of MM and the 

CM and neglected precipitation in the form of snow. Although there were errors associated with 

this, the water balance did suggest that the majority of water contributing to meadow water 

storage is a result of precipitation and not upland surface water or groundwater sources, which is 

a characteristic of dry meadows. If the MM and the CM relied more heavily on upland water 

sources and if the water years were significantly above average in terms of precipitation, these 

errors would have been exponentially greater and interpreting the water budget would be more 

difficult. It is recommended that future water budget analyses for similar projects include snow 

measurements and surface water flow measurements.  These measurements are likely to be more 

important than measuring soil moisture storage because in this study, 95% of the equivalent 

depth of water was held in groundwater and only 5% as soil water. Nonetheless, the water 

balance, growing season water table depth analysis, and statistical analysis of this study provided 

enough insight to conclude that the removal of conifers from an encroached meadow encourages 

the hydrologic characteristic of a meadow. 
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