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ABSTRACT 

DC-DC Converter Control System for the Energy Harvesting from Exercise Machines System 

Alexander Sireci 

 

Current exercise machines create resistance to motion and dissipate energy as heat. Some 
companies create ways to harness this energy, but not cost-effectively. The Energy Harvesting 
from Exercise Machines (EHFEM) project reduces the cost of harnessing the renewable energy. 
The system architecture includes the elliptical exercise machines outputting power to DC-DC 
converters, which then connects to the microinverters. All microinverter outputs tie together and 
then connect to the grid. The control system, placed around the DC-DC converters, quickly 
detects changes in current, and limits the current to prevent the DC-DC converters and 
microinverters from entering failure states. 
 
An artificial neural network learns to mitigate incohesive microinverter and DC-DC converter 
actions. The DC-DC converter outputs 36 V DC operating within its specifications, but the 
microinverter drops input resistance looking for the sharp decrease in power that a solar panel 
exhibits. Since the DC-DC converter behaves according to Ohm’s Law, the inverter sees no 
decrease in power until the voltage drops below the microinverter’s minimum input voltage. Once 
the microinverter turns off, the converter regulates as intended and turns the microinverter back 
on only to repeat this detrimental cycle. Training the neural network with the back propagation 
algorithm outputs a value corresponding to the feedback voltage, which increases or decreases 
the voltage applied from the resistive feedback in the DC-DC converter. 
  
In order for the system to react well to changes on the order of tens of microseconds, it must read 
ADC values and compute the output neuron value quicker than previous control attempts. 
Measured voltages and currents entering and leaving the DC-DC converter constitute the neural 
network’s input neurons. Current and voltage sensing circuit designs include low-pass filtering to 
reduce software noise filtering in the interest of speed. The complete solution slightly reduces the 
efficiency of the system under a constant load due to additional component power dissipation, 
while actually increasing it under the expected varying loads. 
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Chapter 1. Introduction 

The Energy Harvesting from Exercise Machines system came to life in 2006 with a 

conversion process from a bicycle’s physical motion to electricity [1]. The project aims to fabricate 

an economically viable energy harvesting machine that also reduces greenhouse gas emissions. 

Multiple companies produce similar systems. ReRev produces systems which harvest electricity 

from elliptical machines, but some price estimates put each machine’s cost at $914 [2]. Due to 

the ReRev machines’ intermittent use in a gym, the payback period exceeds the machines’ 

lifetimes. Other companies in this sector, such as The Green Revolution and Plug Out, had seen 

some success, but their websites no longer operate, appearing that they no longer operate either 

[3]. Plug Out sells their energy capturing equipment at the same price as their standard 

machines, but their business model seems to have failed. Sports Art currently sells elliptical 

machines with microinverters integrated inside and claims the gym owner receives significant 

savings. However, no data support this claim, especially considering the model runs $2,200 more 

than their similar model without energy capturing capabilities [4]. The numerous attempts at 

viable solutions to capturing energy from exercise machines all fail in reaching viable return on 

investment periods. These companies do a great job selling their products to the green centric 

crowd; however, they fail to reach those gyms looking to maximize their profits. Cal Poly’s work 

strives to bring the cost of such machines down to create a return on investment under 7 years, 

meaning the energy harvesting system pays for itself over its lifetime. Gym owners buy the 

systems to save on operating costs, as well as attracting additional, sustainability focused 

members. 

From data obtained in 2009 and part of 2010, students and faculty use Cal Poly’s 

elliptical machines 57% of the time, during normal gym hours [5]. In 2014 and 2015, Cal Poly 

admitted record-breaking numbers of students to the school, which only increases the usage and 

shortens the payback period [6]. Due to an absence of current estimations of the usage, the old 

data must suffice. Once the REC Center implements the system, another study could provide 

more insight into the effectiveness of the EHFEM system to harness green energy from muscle 

power. Calculating the return on investment, using the 57% usage figure, shows that the REC 
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center would save $482.11 per year across 15 elliptical machines, assuming 100% efficiency [5]. 

This amounts to savings of $32.14 per year per elliptical. The system realistically contains some 

losses, but this gives a ballpark estimate proving such a system’s cost-effectiveness. 

Alvin Hilario’s master thesis motivates the implementation for the control system. He 

recommends using the control system to adjust the duty cycle of the DC-DC converter, improving 

its efficiency [7]. He also recommends adjusting the phase of the microinverter, but this nullifies 

the inverter’s approval for connection to the grid and eliminates this possibility. The control 

system needs a maximum power point tracking (MPPT) algorithm, similar to current systems 

capturing wind energy [8]. The control system also limits voltage and current spikes to prevent 

damage to any components. Another method of controlling the system most accurately, involves 

controlling the feedback loop inside the DC-DC converter. Therefore the converter needs to have 

the right external connections. This project makes modifications to a custom DC-DC converter 

created from Andrew Forster’s master’s thesis, to allow a microcontroller access to the feedback 

loop [9]. Michael DeSando’s thesis describes a universal battery charging circuit in this way, and 

the same principles he presents aid in the design of this control system [10]. The microcontroller 

measures the voltage and current output from the DC-DC converter and determines the voltage 

to present to the feedback pin. The voltage and currents are read with two ADCs, processed with 

the microcontroller, and then output to the feedback. The voltage could output to the feedback 

with a DAC, but a PWM signal and a low pass filter can also produce a DC voltage. DeSando 

uses a PWM signal, since the microcontroller he uses does not have an output pin connected to 

the internal DAC [10]. In this project, I use PWM to reduce number of hardware components. 

This control system improves the DC-DC converter response time. A DC-DC converter 

includes a feedback path that regulates the output voltage [7]. A microcontroller outputs to this 

feedback pin. The advantages include temperature adjustments, as well as optimizing the 

feedback to stabilize the loop. A feedforward implementation could increase the speed of the 

microcontroller. Feedforward reduces large disturbances on the output of the system [11]. The 

elliptical causes large changes in output power on the order of microseconds. Instead of waiting 

until the output changes, the feedforward helps the DC-DC converter counteract the disturbance 
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as it occurs. Additionally, the microinverter changes the output voltage of the DC-DC converter 

requiring a smart feedback loop. 

Feedforward neural networks commonly determine internal characteristics of 

complicated, nonlinear systems. Artificial Neural Networks (ANN) employ different learning 

algorithms to track voltages output in several different DC-DC converters [12]-[15]. This thesis 

applies ANN methodology to a specific DC-DC converter. 

The system level diagram appears in Figure 1, with the area of focus on the DC-DC 

converter. Although the converter itself lies outside of this project’s scope, the control system 

must interface with any DC-DC converter for optimal performance. The control system uses a 

microcontroller to adjust feedback loop gains. 

 

Figure 1. System Block Diagram [7] 

"Maximum Power Point Tracking Based Optimal Control Wind Energy Conversion 

System" describes a controller method for windmills tracking maximum power efficiency through 

the angular position [8]. Although this approach would work, it adds unnecessary hardware and 

reduces compatibility with exercise machines. In addition, more inputs require more hardware to 



4 

 

measure values, which increases cost and space the control system occupies inside the exercise 

equipment. Initially, this approach seems likely to improve system performance, but the extra 

sensors impact the system significantly in cost, volume, and compatibility specifications. 

1.1 Thesis Statement 

The Energy Harvesting for Exercise Machines (EHFEM) project must respond to real-

time changes with elliptical pedaling speeds. The fastest computation methods align with the 

most expensive ones, so exploring the limitations of microcontrollers with clocks around or above 

100 MHz directs future attempts in a more narrow direction. This thesis project studies the 

possibility of a neural network implementation into the EHFEM system and compares different 

neural network types. 

This project designs an artificial neural network and voltage and current sensing circuits 

that permit the use of the neural network in a feedback control system to regulate a four-switch 

buck-boost converter. This project also measures the impact on system conversion efficiency.  

With the thesis defined, the next chapter itemizes detailed specifications and customer 

needs. 
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Chapter 2. Customer Needs, Requirements, and Specifications 

This chapter defines the customers, lists the engineering specifications, and decides on a 

microcontroller that can meet the specifications. 

2.1 Customer Needs Assessment 

The customers involve anybody who either uses or buys the machines. In addition, since 

the utility company receives the captured electricity from the inverter, and Dr. Braun receives the 

designs, they are customers. The utility company needs to receive the electricity in a way to 

capture it and help generate more electricity at peak load times. Dr. Braun organizes the larger 

system, and needs this piece to fit seamlessly within the rest of the system. He also needs this 

piece, integrated within the rest of the system, to fit inside the machines and have a positive 

monetary return on investment. I must provide him with enough documentation for him to build 

copies of my project for future expansion projects. 

The REC Center Management, the most direct customer, focuses on safety. Machines in 

the REC Center experience heavy use, which makes them ideal places to capture energy, but 

also exposes them to spilled water. Depending on the implementation size and placement inside 

of the elliptical, the REC Center may require water resistant casing. Preventing spilled water from 

shorting circuit components protects users from experiencing unwanted exposure to high voltage 

and current levels within the EHFEM circuitry. Secondarily, the REC Center needs to reduce the 

running costs of the gym, reduce their carbon footprint, and the system to fit inside their current 

exercise machines. Everyone who uses the machines, which includes me, needs an unaltered 

workout experience to maintain their safety and enjoyment. The resistance must still relate to the 

numbered resistance on the display and not change suddenly. Sudden increases or decreases in 

resistance could cause injury to the user, such as pulled muscles, or cause their feet to slip off 

the pedals. Thinking about all human interactions on a system level determines these needs and 

the marketing requirements. 
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2.2 Requirements and Specifications 

Table 1. DC-DC Converter Control System Engineering Specifications 

Marketing 
Requirements 

Engineering 
Specifications 

Justification 

3 The system must improve actual 
efficiencies of the DC-DC converter 
and microinverter. 

DC-DC converter and microinverter 
datasheets usually cite the highest 
efficiencies achieved. The system’s 
practical efficiency improves as the 
time spent converting power increases. 

2,7 The peak current cannot exceed 5A 
into the DC-DC converter and 7.5 A 
out [7]. 

The current cannot cause the failure 
modes to trip, or exceed component 
absolute maximum ratings. 

5 The control system cannot consume 
more than 10 W of power during 
normal operation and less than 1 mW 
of power during standby. 

The controller must make the system 
more efficient and, therefore, cannot 
consume a substantial percentage of 
power. 

3-8 The controller must cost less than 
$50. 

The overall system needs to pay for 
itself over its life, and taking the other 
pieces of the product into 
consideration, a reasonable estimate 
uses about 1/5 of the project total 
price. 

3-8 The system must fit within a 
rectangular prism with dimensions 6 
inches wide, 6 inches long, and 4 
inches deep, measured inside the 
Precor elliptical. 

If the system does not fit inside the 
current exercise machine casing, 
building a casing increases cost and 
crowds the gym. 

4-6,8 The system must meet all 
specifications over a shelf life of 12 
years and a 10 year active life. 

It may take a long time until integration 
of the controller, and it still must work 
for a long time to ensure a reasonable 
payback time. 

3,7 The system must meet all 
requirements within a temperature 
range from 10 ºC to 60 ºC 

A gym’s temperature often exceeds 
room temperature due to the number 
of people in it. The system should run 
efficiently regardless of varying room 
temperatures. 

4-6,8 The system must receive power from 
an 11 to 13 V battery powering 
system present in the current elliptical 
trainer. 

Even if voltages need stepping down, 
using power already available keeps 
the system cost low and physical size 
minimized. 

9 The system must meet all NEC and 
IEEE 1547 requirements. 

These codes specify certain 
requirements to keep systems safe 
and reliable. 

2 Resistance levels displayed on the 
Precor elliptical must not change 
when the EHFEM system harnesses 
energy from when the resistor 
dissipates the energy as heat. 

During EHFEM failure states, the 
resistance to motion may drop out or 
change suddenly. Users want to use 
the same resistance levels normally 
available to them. 

1,8 The EHFEM system must reside 
within a NEMA 3R enclosure [16]. 

Users may spill water or other liquids 
on the EHFEM system and try to touch 
components. This NEMA class 
prevents dripping liquids from reaching 
electronics. 
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The marketing requirements determine the specifications to fulfill the project’s goal. The 

system must respond quickly, so the specifications list several different measurements of this 

response speed. Specifications, like cost and size restrictions, come from profitability goals and 

existing machine sizing. Environmental factors the control system must endure, determine other 

specifications. I cannot directly test the shelf life specification, but calculations and simulation 

adequately evaluate aging effects on performance. To ensure compliance with all laws and 

general good practice guidelines, the design follows several different sets of rules. Table 1 

includes a complete list of specifications and Table 2 contains the corresponding marketing 

requirements.  

Table 2. DC-DC Converter Control System Marketing Requirements 

Marketing Requirements 
1. Does not harm the user 
2. Maintain user experience 
3. Regulate varying input currents to maximize power generation 
4. Cheap parts cost 
5. Low power consumption 
6. Fit inside exercise machines 
7. Prevent the DC-DC converters and microinverters from entering failure states. 
8. The system must pay for itself over its life. 
9. Follow all laws and regulations 

 
The next section ensures the system meets these requirements through an initial design 

feasibility assessment. 

2.3 Design Challenges 

The main challenge presents itself in keeping costs sufficiently low to make the system 

pay for itself over its lifetime. Due to electricity’s low cost, the minimal amount of energy humans 

exert during exercise, and the non-constant usage, the EHFEM must last many years to become 

economically beneficial [5]. Another challenge arises from the variable power output that can 

cause voltage and current spikes every microsecond. As a result, the microcontroller must 

respond extremely quickly. 

Another difficulty lies in interfacing the controller to the rest of the system. The inputs to 

the ADC have magnitudes up to 51 V, which exceeds the microcontroller’s 2.4 V to 3.6 V range 
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[17], [18]. An attenuator reduces the magnitude and adds an offset voltage to meet this 

specification. Attenuating the voltage increases the need for high ADC resolution. 

Completing the system prototype and proving key functionality before key deadlines pose 

the last design challenge. 

2.4 Major Project Milestones 

Table 3 includes major milestones throughout the design of this project. 

Table 3. DC-DC Converter Control System Deliverables 

Delivery Date Deliverable Description 

2/14/2015 Design Review  

1/26/2015 EE 461 demo 

1/30/2015 Update cost analysis and method of cost reduction 

3/14/2016 EE 461 report 

11/2/2015 ABET Sr. Project Analysis 

6/15/2017 EE 462 demo 

6/16/2017 EE 462 Report 

6/16/2017 Email Final Thesis to Committee 

6/19/2017 Thesis Defense 

 
As the first step toward thesis completion, choosing a microcontroller quickly provides 

insight of the project possibilities and the environment to employ the final solution. 

2.5 Choosing a Microcontroller 

To control the power, voltage, and current in the EHFEM system, a microcontroller 

provides flexibility of control with software, ability to adjust gain in various temperatures, and 

parallel processing of inputs. The microcontroller must provide a platform to meet all 

specifications and, most notably, account for speed requirements. Many microcontrollers meet 

the minimum requirements, but examining two common microcontrollers closely determines the 

best one. The MSP430 series microcontroller uses a low-power design, but its low clock 

frequency of 16 MHz and high ADC conversion time disqualify it [10]. Due to the performance 

improvement, I consider the SAM4S Xplained Pro Evaluation Kit. DeSando uses a C2000 series 

controller from Texas Instruments to control a DC-DC converter, so this comparison investigates 

this controller for this similar application [10]. Faster microcontrollers exist, but only for extremely 

specific applications, so the next sections evaluate the performance of the previously mentioned 

C2000 and SAM4S microcontrollers. 
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2.5.1 C2000 EVALUATION  

The microcontrollers need to read analog voltages, execute a certain number of 

instructions on that value, and then output a change in duty cycle to the DC-DC converter. I 

determine the overall speed by the sum of the time it takes to complete each task. Moreover, two 

input values, current and voltage, need measuring, so an ideal microcontroller can process the 

inputs in parallel. The C2000 can process the inputs in parallel, which would slightly decrease 

error, since the controller samples voltage and current simultaneously and could use them to 

calculate power. The C2000 has optimization for power measurement algorithms, which can 

reduce the number of instructions needed to calculate power [19]. Table 4 shows the C2000 

system clock frequency and ADC frequency. Figure 2 shows the timing characteristics for the 

ADC, and shows that the sampling time of the ADC equals 7 clock cycles + 13 conversion A 

clocks + 13 conversion B clocks + 2 clock cycles. This sampling time of 777.7 ns, measures both 

current and voltage, so needs halving for comparison with the Atmel microprocessor. 

Table 4. C2000 Clock Frequencies [19] 

 

The overall speed of the C2000 microprocessor calculation uses equation 2.1. The 

datasheets specify ADC and PWM conversion times; however, the number of instructions 

requires estimation. The estimation determines the superior microcontroller in the microcontroller 

comparison section. 

𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑇𝑐𝑜𝑛𝑣_𝐴𝐷𝐶 + 𝑇𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 + 𝑇𝑐𝑜𝑛𝑣_𝑃𝑊𝑀 

 𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑇𝑐𝑜𝑛𝑣_𝐴𝐷𝐶 + 𝑛𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 × 𝑇𝑐𝑙𝑜𝑐𝑘 + 𝑇𝑐𝑜𝑛𝑣_𝑃𝑊𝑀 (2.1) 

The following section repeats the same calculations with a different microcontroller for 

close examination. 
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Figure 2. C2000 ADC Timing Diagram [19] 

2.5.2 ATMEL SAM4S EVALUATION 

The Atmel SAM4S does not have parallel sampling, but samples 1 µs apart likely contain 

minimal error. This controller catches some attention due to its high clock frequency. The 

impressive speed allows 33% more calculations per second than the C2000. This microcontroller 

runs faster relative to the C2000, as the number of instructions in the control routine increases. 

Atmel does not give much insight into the timing of the ADC, but includes the times to have an 

overall sampling frequency of 1.1 MHz as shown in Table 5 [20]. Therefore, the ADC conversion 

time equals 909.1 ns. Figure 3 gives insight into the ADC timing, but the hold time lacks 

specification. One can assume the max sampling frequency includes the hold time. 
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Table 5. SAM4S ADC Timing Characteristics [20] 

 

 

Figure 3. SAM4S ADC Timing Diagram [20] 

A direct comparison completes the picture relating both microcontrollers. 

2.5.3 MICROCONTROLLER COMPARISON 

First, I evaluate the speed of each microcontroller. To do this, equation 2.1 produces a 

number for each microcontroller, with n as the only unknown. The time to output a PWM wave 

through a low pass filter to take the average DC value follows the assumption that each controller 

produces an output in about the same time. The Atmel likely works slightly faster since it can 
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complete more instructions per second with the faster clock speed. In considering the extreme 

case of evaluating no instructions, the C2000 samples faster due to its shorter ADC sampling 

time. With a large number of instructions, the Atmel SAM4S’s speed becomes faster due to its 

fast clock speed. To find the number of instructions where the C2000 becomes slower, I equate 

the two equations set equal to each other, and solve for the number of instructions. This method 

determines the crossover point at 187 instructions. Basically if the interrupt subroutine completes 

in fewer instructions, then the C2000 becomes a faster solution. Since the lower bound likely sits 

around 500 instructions, the Atmel SAM4S produces quicker response times. 

Table 6 depicts a decision matrix to provide a clear picture of the microcontroller best 

suited for the project’s needs. 

Table 6. Microcontroller Decision Matrix 

 

The Atmel SAM4S ends up coming slightly ahead, which confirms the calculations that it 

performs faster. Since the scores come so close together, reasoning may promote choosing the 

C2000. For instance, parallel sampling minimizes power reading error. The Atmel can only 

sample sequentially, giving a power reading with voltage and current measured 1 µs apart. 

Assuming this does not cause any major issues or intolerable error, this consideration does not 

lend reason to choose the C2000 over the Atmel SAM4S. 

With the heart of the control system chosen, defining the interactions of the controls with 

the surrounding components becomes the next step. 

C2000 LaunchXL-F28069M Atmel ATSAM4SD32C-XPRO Weight (%)

Operating frequency 90 MHz 120 MHz 2 3 43

ADC 7 channel, 12-bit 16 channel, 10 or 12-bit 3 3 5

fADC 45 MHz 22 MHz 3 2 10

Parallel Sampling? Yes No 3 1 5

tconv 388.9 ns 909.1 ns 3 2 10

Data rate 3.46 MSPS 1.1 MSPS 3 1 10

PWM 90 MHz, 0 to 3.3 V 120 MHz, 0 to 3.3 V 2 3 15

Cost $24.99 $42.65 3 1 2

Total Score 2.42 2.46 100

Rank (1-3)
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Chapter 3. Functional Decomposition 

This chapter defines the interfaces between the new hardware and existing hardware 

using a top-down design approach. 

3.1 Level 0 Block Diagram 

 

Figure 4. Level 0 Block Diagram 

The block diagram in Figure 4 depicts the inputs and outputs to the controller. The 

controller measures output current and voltage of the Precor elliptical with a resistive divider and 

a current sense IC. The measurements then enable the system to control the duty cycle of the 

DC-DC converter described by Andrew Forster in his thesis [9]. The advantages to controlling his 

system are that since he had not made the final revisions during the start of my thesis, I had the 

ability to ask him to bring nodes out of the converter for me to control. 

Table 7. Functional Requirements of the Level 0 Block Diagram 

Module DC-DC Converter Controller 

Inputs -Voltage from Precor elliptical: 0 to 65 Vpeak 
-Current from Precor elliptical: 5 A maximum 
-Voltage from DC-DC converter: 36 V nominal 
-Current from DC-DC converter: 7 A maximum 

Outputs -Duty cycle feedback to DC-DC converter: 4% to 94% 

Functionality Regulate the duty cycle of the DC-DC converter with the 
feedback pin to control its output levels to match the 
microinverter’s desired levels. 

 
The input voltage from the Precor elliptical ranges from 0-65 V, protection limited to 51 

Vpeak [18]. The input current cannot exceed 5 A due to the Buck-Boost Converter design [9]. 

Assuming we use the Enphase M190 microinverter, the maximum power from the DC-DC 

converter cannot exceed 230W [20]. If the system interfaces with the Enphase M215 

microinverter, then the power limit increases to 270 W, which does not place a further constraint 
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on the voltage and current [20]. The duty cycle range from Alvin Hilario’s DC-DC converter project 

describes a range from 4% to 94% [7]. 

After further decomposition of this block diagram, the thesis becomes well defined. 

3.2 Level 1 Block Diagram 

Figure 5 shows the level 1 block diagram and Table 8 contains the functional 

requirements. The input power comes from the Precor elliptical and measurements come from 

voltage and current sensing circuits. The level 1 block diagram ignores conversions between 

analog and digital and vice versa. 

 

Figure 5. Level 1 Block Diagram 

Table 8. Functional Requirements of the Level 1 Block Diagram 

Module Microcontroller 

Inputs -Digitized output voltage and current 
-Input voltage and current 

Outputs -Duty cycle adjust voltage 

Functionality Use the difference in outputs and inputs to adjust the DC-DC 
converter to the desired power output. 

  

Module Microinverter 

Inputs -DC-DC converter output voltage and current 

Outputs -AC power 

Functionality The microinverter converts the regulated DC voltage from the 
converter to AC power transferrable to the grid. 

  

Module DC-DC Converter 

Inputs -Input voltage and current 
-Duty cycle adjust voltage 

Outputs -Output voltage and current 

Functionality The DC-DC converter, designed separately, has a way to adjust 
the feedback and duty cycle as appropriate. The control system 
aims to adjust the feedback and duty cycle to provide a tuned 
response unachievable with static feedback. 

 
Upon defining the thesis’s technical requirements, the next chapter schedules tasks. 
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Chapter 4. Project Planning 

In every project, deadlines and key achievements dictate the completion pace. This 

thesis keeps a strict schedule as a useful progress gauge and to determine time from completion. 

This chapter also explores project cost, another key planning point. 

4.1 Projected Project Timeline 

To outline the project’s schedule, a Gantt chart portrays the project timeline as shown in 

Figure 6 and 7. Figure 6 shows the timeline for the 2015-2016 school year and its associated 

tasks, while Figure 7 shows the timeline for the 2016-2017 school year. The chart allows for the 

exploration of three different control implementations, as well as test and optimization phases for 

three different designs. The project plan and thesis defense documents experience continual 

updates to follow any changes made during the project. 

The actual Gantt chart progress differed from the ideal case due to unforeseen obstacles. 

Figures 8 and 9 show updated versions for each school year. Important research in neural 

networks, a field I only understood at an introductory level, delayed the design phases until the 

2016-2017 school year. 
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Figure 6. DC-DC Converter Control System Gantt Chart – 2015-16 School Year Initial Plan 

Fall 2015-Spring 2017 Fall 2015 Winter 2016 Spring 2016 Fall 2016

Task Duration Finish Date 14 21 28 5 12 19 26 2 9 16 23 30 7 14 21 28 4 11 18 25 1 8 15 22 29 7 14 21 28 4 11 18 25 2 9 16 23 30 6 13 20 27 5 12 19 26

Project Plan 12 wk 12/7/2015

Research 11 wk 12/7/2015

Full Revision 3 wk 12/7/2015

Update Project Plan 67 wk 4/24/2017

Design Review 1 day 2/6/2015

EE 461 Report Milestone 1 day 3/21/2015

EE 462 Report Milestone 1 day 6/13/2015

Senior Project Expo 1 day 6/23/2015

Design Phase I 4 wk 2/8/2016

Create Schematic Ideas 3 wk 2/1/2016

Control Commercial Converter 1 wk 1/18/2016

Control Custom Converter 1 wk 1/25/2016

Break Converter Feedback Loop 1 wk 2/1/2016

Simulate Various Designs 3 wk 2/1/2016

Order and Receive Parts 1 wk 2/8/2016

Implement on breadboard 1 wk 2/8/2016

Test Phase I 2 wk 2/22/2016

Fabricate Control System 1 wk 2/15/2016

Program Microcontroller 1 wk 2/15/2016

Test Full System 1 wk 2/22/2016

Design Phase II 2 wk 3/7/2016

Refine Schematic 1 wk 2/29/2016

Simulate Various Designs 1 wk 2/29/2016

Order and Receive Parts 1 wk 3/7/2016

Implement on breadboard 1 wk 3/7/2016

Test Phase II 2 wk 3/21/2016

Fabricate Control System 1 wk 3/14/2016

Program Microcontroller 1 wk 3/14/2016

Test Full System 1 wk 3/21/2016

Design Phase III 9 wk 5/30/2016

Adjust Design 2 wk 4/11/2016

Simulate 2 wk 4/25/2016

Determine Design Limitations 1 wk 5/2/2016

Reduce Cost 1 wk 5/9/2016

Simulate Again 1 wk 5/16/2016

Create PCB Layout 1 wk 5/23/2016

Order and Receive Parts 1 wk 5/30/2016

Test Phase III 3 wk 6/13/2016

Fabricate Control System 1 wk 5/30/2016

Program Microcontroller 1 wk 6/6/2016

Test Full System 1 wk 6/13/2016

Thesis 89 wk 5/31/2017

Draft 4 wk 10/1/2015

First Revision 35 wk 6/6/2016

Second Revision 19 wk 10/10/2016

Sep '15 Oct '15 Nov '15 Dec '15 Jan '16 Feb '16 Mar '16 Apr '16 May '16 Jun '16 Sep '16

DC-DC Converter Control System Gantt Chart
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Figure 7. DC-DC Converter Control System Gantt Chart – 2016-17 School Year Initial Plan 

Fall 2015-Spring 2017 Fall 2016 Winter 2017 Spring 2017

Task Duration Finish Date 19 26 3 10 17 24 31 7 14 21 28 5 12 19 26 2 9 16 23 30 6 13 20 27 6 13 20 27 3 10 17 24 1 8 15 22 29

Update Project Plan 67 wk 4/24/2017

Design Phase IV 9 wk 11/21/2016

Adjust Design 2 wk 10/3/2016

Simulate 2 wk 10/17/2016

Determine Design Limitations 1 wk 10/24/2017

Reduce Cost 1 wk 10/31/2016

Simulate Again 1 wk 11/7/2016

Adjust PCB Layout 1 wk 11/14/2016

Order and Receive Parts 1 wk 11/21/2016

Test Phase IV 3 wk 12/12/2016

Fabricate Control System 1 wk 11/28/2016

Program Microcontroller 1 wk 12/5/2016

Test Full System 1 wk 12/12/2016

Design Phase V 9 wk 3/13/2017

Adjust Design 2 wk 1/23/2017

Simulate 2 wk 2/6/2017

Determine Design Limitations 1 wk 2/13/2017

Reduce Cost 1 wk 2/20/2017

Simulate Again 1 wk 2/27/2017

Adjust PCB Layout 1 wk 3/6/2017

Order and Receive Parts 1 wk 3/13/2017

Test Phase V 6 wk 4/24/2017

Fabricate Control System 1 wk 3/20/2017

Program Microcontroller 1 wk 3/27/2017

Test Full System 1 wk 4/3/2017

Final System Integration 3 wk 4/24/2017

Analyze Improved Efficiency 6 wk 4/24/2017

Thesis 89 wk 5/31/2017

Draft 4 wk 10/1/2015

First Revision 35 wk 6/6/2016

Second Revision 19 wk 10/10/2016

Third Revision 16 wk 1/30/2017

Fall Report to Advisor 1 day 12/19/2016

Fourth Revision 9 wk 4/3/2017

Winter Report to Advisor 1 day 3/20/2017

Format Complete Report 4 wk 5/1/2017

Final Advisor Revision 1 wk 5/8/2017

Revise Report 1 wk 5/15/2017

Advisor Approval 1 wk 5/22/2017

Committee Approval 1 wk 5/30/2017

Thesis Defense 1 day 5/31/2017

Sep '16

DC-DC Converter Control System Gantt Chart

Mar '17 Apr '17 May '17Oct '16 Nov '16 Dec '16 Jan '17 Feb '17
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Figure 8. DC-DC Converter Control System Gantt Chart – 2015-16 School Year Actual Progress 

Fall 2015-Spring 2017 Fall 2015 Winter 2016 Spring 2016 Fall 2016

Task Duration Finish Date 14 21 28 5 12 19 26 2 9 16 23 30 7 14 21 28 4 11 18 25 1 8 15 22 29 7 14 21 28 4 11 18 25 2 9 16 23 30 6 13 20 27 5 12 19 26

Project Plan 12 wk 12/7/2015

Research 11 wk 12/7/2015

Full Revision 2 wk 12/7/2015

Update Project Plan 69 wk 5/8/2017

Design Review 1 day 2/6/2016

Continued Research 24 wk 6/27/2016

Design Phase I 9 wk 5/30/2016

Create Schematic Ideas 5 wk 5/2/2016

Write MATLAB toolbox code 3 wk 5/23/2016

Debug MATLAB code 2 wk 5/30/2016

Test Phase I 5 wk 9/12/2016

Focus on MATLAB issues 5 wk 9/12/2016

Design Phase II 5 wk 11/7/2016

Decompose MATLAB code 5 wk 11/7/2016

Thesis 93 wk 5/13/2017

Draft 4 wk 10/1/2015

First Revision 35 wk 6/6/2016

Second Revision 18 wk 10/10/2016

Third Revision 16 wk 1/30/2017

Fall Report to Advisor 1 day 12/19/2016

Fourth Revision 9 wk 4/3/2017

Winter Report to Advisor 1 day 3/20/2017

Format Complete Report 4 wk 5/1/2017

Final Advisor Revision 1 wk 6/15/2017

Revise Report 4 wk 6/15/2017

Advisor Approval 1 wk 6/15/2017

Committee Approval 1 wk 6/16/2017

Thesis Defense 1 day 6/19/2017

DC-DC Converter Control System Gantt Chart

Sep '15 Oct '15 Nov '15 Dec '15 Jan '16 Feb '16 Mar '16 Apr '16 May '16 Jun '16 Sep '16
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Figure 9. DC-DC Converter Control System Gantt Chart – 2016-17 School Year Actual Progress

Fall 2015-Spring 2017 Fall 2016 Winter 2017 Spring 2017

Task Duration Finish Date 5 12 19 26 3 10 17 24 31 7 14 21 28 5 12 19 26 2 9 16 23 30 6 13 20 27 6 13 20 27 3 10 17 24 1 8 15 22 29 5 12 19

Update Project Plan 69 wk 5/8/2017

Design Review 1 day 2/6/2016

Continued Research 24 wk 6/27/2016

Design Phase II 5 wk 11/7/2016

Decompose MATLAB code 5 wk 11/7/2016

Test Phase II 5 wk 11/28/2016

Fix MATLAB bugs 4 wk 11/21/2016

Produce documentation 3 wk 11/28/2016

Initial Optimization 1 wk 11/28/2016

Design Phase III 17 wk 4/3/2017

Revise harware schematics 12 wk 2/27/2017

Determine Design Limitations 1 wk 3/6/2017

Create Prototype Board Layout 1 wk 3/20/2017

Order and Receive Parts 1 wk 4/3/2017

Write microcontroller code 2 wk 4/3/2017

Test Phase III 2 wk 4/24/2017

Fabricate Protype Board 1 wk 4/17/2017

Program Microcontroller 1 wk 4/17/2017

Test Full System 1 wk 4/24/2017

Design Phase IV 2 wk 5/15/2017

Adjust Design 3 days 5/3/2017

Adjust Board Layout 1 wk 5/8/2017

Order and Receive Parts 1 wk 5/15/2017

Test Phase IV 5 wk 6/15/2017

Adjust Board Layout 1 day 5/8/2017

Reprogram Microcontroller 3 wk 5/29/2017

Test Full System 3 wk 5/29/2017

Tweak full system 5 wk 6/15/2017

Thesis 93 wk 5/13/2017

Draft 4 wk 10/1/2015

First Revision 35 wk 6/6/2016

Second Revision 18 wk 10/10/2016

Third Revision 16 wk 1/30/2017

Fall Report to Advisor 1 day 12/19/2016

Fourth Revision 9 wk 4/3/2017

Winter Report to Advisor 1 day 3/20/2017

Format Complete Report 4 wk 5/1/2017

Final Advisor Revision 1 wk 6/15/2017

Revise Report 4 wk 6/15/2017

Advisor Approval 1 wk 6/15/2017

Committee Approval 1 wk 6/16/2017

Thesis Defense 1 day 6/19/2017

June '17Apr '17 May '17Oct '16 Nov '16 Dec '16 Jan '17 Feb '17

DC-DC Converter Control System Gantt Chart

Sep '16 Mar '17
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Upon examining the project timeline, the project also estimates the costs. 

4.2 Preliminary Cost Estimates 

The parts cost and labor cost estimation in Table 9 assesses the feasibility of the project. 

The microcontroller constitutes one major cost, which needs to run fast enough to respond within 

one microsecond. Funsten and Kiddoo demonstrate that this microcontroller works, and my 

assessment confirms their findings [18].The labor hourly rate from my most recent internship offer 

estimates the corresponding field and number of hours equals about 1 hour per day. I budget $10 

for a custom voltage sense circuit, after a few unsuccessful attempts at finding an affordable and 

accurate one. Since the plan uses a breadboard to test my early designs, the budget allots only 

one PCB due to their high costs. 

Equation 4.1 determines cost estimates, as Ford and Coulston suggest in their design 

book [22]. I employ his equation for every item in Table 9. 

 𝐶𝑜𝑠𝑡 =
𝑐𝑜𝑠𝑡𝑜𝑝𝑡𝑖𝑚𝑖𝑠𝑡𝑖𝑐+4∙𝑐𝑜𝑠𝑡𝑚𝑜𝑠𝑡 𝑙𝑖𝑘𝑒𝑙𝑦+𝑐𝑜𝑠𝑡𝑝𝑒𝑠𝑠𝑖𝑚𝑖𝑠𝑡𝑖𝑐

6
 (4.1) 

Table 9. DC-DC Converter Control System Initial Cost Estimate 

 

The parts cost of $140 exceeds the maximum cost specification, but this cost should drop 

after multiple design revisions and integrated circuit prices continue to drop. Moreover, bulk 

discounts on a batch would slash component prices drastically. 

Item Optimistic Most Likely Pessimitic Quantity Total Cost Justification

Labor (per hour rate) $24.00 $30.89 $35.00 581 $17,677.89

Internship hourly rate and 1 

hour per week

ATSAM4S-XPRO-ND and SAM4S 

Xplained Pro Evaluation Kit $42.65 $42.65 $50.00 1 $43.88 From Funsten and Kiddoo [11]

Shipping Costs $0.00 $4.99 $10.00 3 $14.98

Estimated receiving parts once 

per design cycle

Resistors $0.08 $0.10 $0.15 20 $2.10

Ceramic Capacitors $0.20 $0.25 $0.50 12 $3.40

Electrolytic Capacitors $0.40 $0.50 $0.75 4 $2.10

Likely will need a few since my 

circuit needs to respond quickly

Voltage Sense Circuit (Custom?) $2.00 $10.00 $20.00 2 $20.67

Have not found a suitable 

voltage sense yet

Current Sense IC (LMP8481?) $0.60 $1.11 $5.00 2 $3.35 Digikey price

PCB $30.00 $40.00 $55.00 1 $40.83 Estimated from past projects

ADC (ADC122S706?) $2.00 $3.86 $5.00 2 $7.48 Digikey price

DAC (MCP47A1T-A0E/LT?) $0.40 $0.57 $1.00 2 $1.23 Digikey price

Parts Totals 49 $140.01

Total Project Cost $17,817.90

Price per unit
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4.3 Actual Project Costs 

The actual costs of this project come under the expected costs due to not implementing 

the board design on a PCB. A PCB might provide more accurate results and higher frequency 

applications, but the simplicity of the hardware and limited time allow the forgoing of this step. 

Table 10 lists the manufacturer part numbers for easy ordering of identical parts. The prices per 

unit of some values contain partial pennies when ordered in bulk. Labor costs come above 

expected values from working on this project more hours than originally budgeted.  

Table 10. DC-DC Converter Control System Actual Project Costs 

 

After completing the project planning and cost assessments, the focus shifts to the 

technical details. 

  

DC-DC Converter Control System Cost Estimate

Item Manufacturer Part Number Price Per Unit Quantity Total Cost
Labor (per hour rate) $30.89 723 $22,333.47

ATSAM4S-XPRO-ND and SAM4S Xplained Pro 

Evaluation Kit ATSAM4SD32C $42.65 1 $42.65

Shipping Costs $7.14 1 $7.14

Capacitor, ceramic, 8200 pF, 50 V, 5% FK18C0G1H822J $0.22 2 $0.45

Capacitor, ceramic, 1800 pF, 50 V, 5% FG18C0G1H182JNT06 $0.23 2 $0.46

Capacitor, ceramic, 0.012 uF, 50 V, 10% C322C123K5R5TA $0.22 2 $0.45

Capacitor, ceramic, 0.1 uF, 50 V, 10% K104K10X7RF5UH5 $0.13 2 $0.26

Capacitor, ceramic, 2.2 uF, 16 V, 10% FK18X5R1C225K $0.22 2 $0.45

Capacitor, ceramic, 0.1 uF, 100 V, 10% SR201C104KAR $0.17 1 $0.17

Capacitor, electrolytic, 100 uF, 100 V , 20% UVR2A101MPD $0.37 1 $0.37

Capacitor, electrolytic, 1 mF, 100 V , 20% UVR2A102MRD6 $1.49 1 $1.49

Capacitor, ceramic SMD, 10 nF, 1 kV, 10% C4532X7R3A103K200KA $0.58 2 $1.15

SOT23 to DIP Adapter BOB-00717 $0.95 6 $5.70

Male header, 40 pin vertical, 0.1" HDR100IMP40M-G-V-TH $0.69 2 $1.38

IC OPAMP, rail-to-rail amplifier MAX4322EUK+T $1.65 4 $6.60

IC OPAMP, current sense amplifier LTC6101HVCCS5#TRMPBF $3.15 2 $6.30

Prototyping board, 5 cm x 7 cm and jumper 

wires CF PCB 001a-1 $1.58 1 $1.58

Resistor SMD, 0.001 Ohm, 1%, 1 W CSR1206-0R001F1 $0.48 2 $0.95

Resistor, 100 Ohm, 1%, 1/4 W, through hole RNMF14FTC100R $0.07 2 $0.14

Resistor, 10 kOhm, 1%, 1/4 W, through hole RNF14FTD10K0 $0.07 4 $0.29

Resistor, 15 kOhm, 1%, 1/4 W, through hole RNF14FTD15K0 $0.07 2 $0.14

Resistor, 1 MOhm, 1%, 1/4 W, through hole RNMF14FTC1M00 $0.07 2 $0.14

Resistor, 5.6 kOhm, 1%, 1/4W, through hole RNMF14FTC5K60 $0.07 1 $0.07

Resistor, 100 kOhm, 1%, 1/4W, through hole RNF14FTD100K $0.07 1 $0.07

Tax $5.40

Parts Totals 46 $83.81

Total Project Cost $22,411.73
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Chapter 5. Hardware Design and Initial Testing 

This chapter explores the design approach and fully explains design tradeoffs. The DC-

DC converter throughout this section refers to the design by Andrew Forster using the LT8705 

buck/boost converter. Figure 10 shows the DC-DC converter used in testing [9]. 

 

Figure 10. DC-DC Converter Schematic [9] 

5.1 DC-DC Converter Theory of Operation 

The DC-DC converter used in this system changes operation regions depending on the 

difference in input and output voltages. Table 11 summarizes the operation regions. 

Table 11. DC-DC Converter Operation Regions [23] 

Voltage 
Range 

Vout >> Vin Vout ≈ Vin Vin >> Vout 

Region Boost Buck-boost Buck 

Transistor 
States 

M1 ON, M2 OFF 
PWM M3, M4 

4-switch 
PWM 

M4 ON, M3 OFF 
PWM M1, M2 

Relevant 
Equations 

𝐷𝐶(𝑀3,𝑏𝑜𝑜𝑠𝑡) = (1 −
𝑉𝑖𝑛

𝑉𝑜𝑢𝑡

)

× 100% 
𝐷𝐶(𝐴𝑏𝑠𝑚𝑖𝑛,𝑀3,𝑏𝑜𝑜𝑠𝑡)

= 𝑡𝑜𝑛(𝑀3,𝑚𝑖𝑛)

× 𝑓 × 100% 

See 
Operation 
section of 
datasheet 

𝐷𝐶(𝑀2,𝑏𝑢𝑐𝑘) = (1 −
𝑉𝑜𝑢𝑡

𝑉𝑖𝑛

) × 100% 

𝐷𝐶(𝐴𝑏𝑠𝑚𝑖𝑛,𝑀2,𝑏𝑢𝑐𝑘)

= 𝑡𝑜𝑛(𝑀2,𝑚𝑖𝑛) × 𝑓

× 100% 
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In Table 11, the typical value of ton in both cases is 260 ns, which provides a ballpark 

estimate for the limit of control. The microcontroller code needs to prevent the converter from 

attempting to surpass this limit, since its reaction becomes unpredictable in this region. 

In boost region and in buck region, calculations can produce open-loop transfer functions 

of the DC-DC converter, but in the buck/boost region, the open-loop transfer function becomes 

difficult to determine. A larger issue arises when determining the closed loop transfer functions. 

The DC-DC converter’s proprietary control scheme causes great difficulty in determining the 

feedback’s effects, except experimentally. Moreover, the control scheme could change slightly, if 

circuit component values change with aging effects. Therefore, an ideal controller design 

adaptively determines performance of the DC-DC converter and adjusts the feedback pin 

appropriately. Neural networks realize this possibility. Neural networks can regulate DC-DC 

converters more closely than with conventional control schemes [14]. A MATLAB model trains the 

neural network off-line to specific test data, and then also on-line, with the controller connected in 

the system to account for parasitic losses [13]. 

State averaging equations provide control in each mode due to the transistors’ pulse 

width modulation. State averaging would be useful if controlling transistor switching directly, but 

this project controls transistor gates indirectly through the LT8705 controller. 

5.2 Methods of Control of the DC-DC Converter 

Initially the controller used a state-space variable representation, since state-space 

allows controller pole placement anywhere, instead of only of the left hand plane of the s-plane. 

After realizing the specific controller contains inherent, difficult to characterize, nonlinearities of 

the system, the following sections examine a neural network approach. 

5.2.1 CURRENT CONTROL 

The DC-DC converter does not utilize the IMON_IN and IMON_OUT pins. To employ 

current control, these pins connect to the microcontroller, since when their voltages rise near 

1.208V typical, the Vcc pin voltage lowers, and the current decreases. This pin connects to an 

external resistor and the voltage is proportional to the resistance, but this produces constant 
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losses, decreasing efficiency. A large current appears to have the same effect as a large voltage 

to the converter controller, so the next section also examines voltage feedback. 

5.2.2 VOLTAGE FEEDBACK PIN 

The DC-DC converter integrated circuit regulates the output voltage with hardware. In 

hardware, comparators flip states to regulate the voltage, which regulates the voltage more 

loosely. The microcontroller advantages include the ability to react even with a minimal error 

signal and stronger regulation as the input and output voltages become further apart. 

As the voltage on the FBOUT pin becomes larger than its threshold of 1.207 V, the DC-

DC converter allows less current into the output, thereby reducing the voltage, and vice versa. 

Controlling the voltage on this pin with a microcontroller allows faster reaction times to rapidly 

changing input power. The hardware setup determines if the control occurs in a manner linearly 

proportional to the voltage above or below the threshold, or if the pin connects to a simple 

hysteretic comparator for bang-bang control. 

5.2.3 CHANGING CONVERTER MODES 

Once the controller properly regulates voltage, efficiency improves. One way to improve 

the efficiency of the DC-DC converter changes the mode between continuous and discontinuous. 

When the MODE pin falls below 0.4 V, continuous mode activates, while discontinuous mode 

activates when the voltage exceeds 2.3 V. Burst mode activates between 1 and 1.7 V [23]. While 

the pin connects to ground, the converter remains in continuous mode, but when the 

microcontroller outputs to that pin, the mode can change. Burst mode can increase efficiency as 

well, since it prevents unnecessary switching, which produces power losses [23]. Depending on 

performance, both discontinuous and burst mode can improve efficiency, so changing the mode 

from continuous could prove more efficient, but possibly more difficult to control from larger output 

voltage and current swings. 

5.2.4 SENSING CONVERTER OPERATION REGION 

As previously discussed and summarized in Table 11, the DC-DC converter changes 

transfer functions depending on output voltage. The luxury of neural networks enables the 

network to conclude the relationship at all points. 
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Controlling the DC-DC converter requires accurate voltage and current sensing. 

5.3 Sensing Voltage and Current Before and After the DC-DC Converter 

Initially, the neural network harnesses identical information as the DC-DC converter to 

determine its algorithms. The final neural network uses back propagation instead, correcting any 

undesired outputs as they appear. The Rsense resistor connects on the low-side of the converter 

switches, so the voltage node between the resistor and switches determines the current through 

the resistor, since the other side connects to ground. These sense resistors limit the maximum 

current flowing through the DC-DC converter to prevent overloading, but the current provides 

insight into the power and helps predict the inverter’s performance. The CSPIN, CSNIN, 

CSPOUT, and CSNOUT pins all help determine the current through the DC-DC converter. Since 

initially the converter does not use them, their traces need disconnecting and a sense resistor of 

the same 1 mΩ value needs connecting. However, measuring the current through the inductor 

would offer an alternative, which might provide sufficient information. If it does, then the input and 

output current pins could not need any modifications. 

To minimize modifications to the DC-DC converter, I designed separate current and 

voltage sensing circuits. The measurements must match the input neurons to the neural network. 

Therefore, the microcontroller measures the voltage and the current both before and after the 

DC-DC converter. A fifth input neuron would require current measurement inside the DC-DC 

converter and cutting traces, so excluding it avoids this need. Theoretically, the voltage and 

current ranges before and after the DC-DC converter differ. However, I designed all voltage and 

current measurement circuits identically, except for the filter capacitors.  

5.3.1 VOLTAGE SENSING CIRCUIT DESIGN AND INITIAL TESTING 

Simple voltage dividers drop the large voltage to a range the Atmel ADC can handle. I 

estimate the maximum voltage at 65 V in case the input protection circuit changes or starts 

passing through larger than the nominal 51 V limit. The 2.6 V reference voltage inside the Atmel 

microcontroller, set through the potentiometer, determines the maximum voltage the ADC could 

read. Desiring a maximum voltage of about half of this value, software sets the gain of the Atmel 

ADC to 2, which halves the reference voltage. The reference voltage cannot drop below 2.4 V for 
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proper operation of the ADC [17]. Standard resistor values dictate using a 15 kΩ resistor on 

bottom (R1 in Figure 11) and a 1 MΩ resistor on top to use 80% of the ADC range. The ADC 

reads the voltage as a 10 bit number to increase readout speed over 12 bit conversions. A 

capacitor in parallel across the bottom resistor limits the rate the voltage readings change. The 

bandwidth attenuates noise from the 200 kHz frequency of the DC-DC converter while allowing 

quick changes in measurement readings with minimal latency. The capacitor value of 8.2 nF sets 

the bandwidth at 1.31 kHz. Figure 11 shows the voltage sensing circuit, where Vin measures the 

voltage and Vout_V passes into the ADC in the Atmel Microcontroller. 

 

Figure 11. Voltage Sensing Circuit – Vin Ranges from 0 to 65 V Producing Vout Ranging 
from 0 to 0.96 V 

 
One design decision involved the need of the voltage follower to buffer the output 

voltage. Despite many arguments against needing the voltage follower, early testing with voltage 

supplies proved its need. The ADC from the Atmel SAM4S Xplained Pro superimposes a voltage 

on the node only during operation, which calibration could have accounted for, but the ADC would 

sometimes go haywire reading all four values as almost identical. Installation of the voltage 

buffers increases voltage reading consistency. This design chooses the MAX4322 to reuse the 

design from Dr. Braun. Heritage designs save development time since he used the voltage buffer 

on an Atmel microcontroller in the EHFEM system [24]. The input resistance to the MAX4322 of 

500 kΩ causes a voltage decrease of about 3%, which calibration also accounts for. The power 

rail connects to the 3.3 V power header pin from the microcontroller evaluation board. Since the 
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bottom rail connects to ground and voltages close to 0 V need accurate readings as well, the 

operational amplifier chosen must drive voltages rail-to-rail. 

 

Figure 12. Average ADC Count versus Voltage Supply for Voltage Sensing Circuits 

The voltage sensing circuit relates voltage on the input of the voltage divider to an ADC 

count reading. Figure 12 shows the relationships for both ADC circuits, input to the ADC pin they 

connect to in the final design. The top trend line equation corresponds to Vsense 1 and the 

bottom trend line equation corresponds to Vsense 2. The average count from three readings 

taken about a half second apart tests for consistency and mitigates any random variations. A 

change in 80 mV on the input to the divider causes an increase in the count by 1, determining the 

resolution. An ability to differentiate between values just 0.1 V apart proves this experimentally. 

The equations leave the data points at 0 V out, since the ADC count hits a minimum at 10 or 11, 

unable to reach 0. Ultimately, this minimally impacts the overall system, since the voltage should 

never reach below 5 V, and, if it does, the circuit still operates the same. 

5.3.2 CURRENT SENSING CIRCUIT DESIGN AND INITIAL TESTING 

The current sensing circuit, shown in Figure 13, must not dissipate large amounts of 

power through the sense resistor, so a 1 mΩ resistance offers this advantage. However, the 

voltage across this resistor even at the max current of about 5 A only reaches 5 mV. Due to this 
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small sensing voltage, a preamplifier or gain stage must increase this voltage. Considering the 

maximum voltage of 65 V, the LT6101HV current sensing chip meets the requirements. The input 

voltage range of 5 to 100 V exceeds the requirement. This integrated circuit allows for a gain of 

100 with a Rin value of 100 Ω and Rout of 10 kΩ. The current readings have shown spikes up to 

80 A, despite no part that can handle or source 80 A, suggesting the discrepancy arose from 

measurement error [9]. The capacitor from Vout to ground produces a cutoff frequency of 1.32 

kHz to match the bandwidth of the voltage sensing circuit. The circuit shown in Figure 13 only 

utilizes about 60% of the ADC range at a maximum of 7 A, but the extra room ensures accurate 

current spike measurements for future mitigation with the neural network and other circuitry. 

Additionally, soldering the sense resistor, although nominally 1 mΩ, adds contact resistance and 

increases this value. Vin comes from the DC-DC converter or input protection circuit, while 

maintaining R_LOAD of 10 Ω to the elliptical preserves identical workout conditions to the user. 

Vout_I connects to the ADC in the Atmel microcontroller. The voltage followers attempted to fix 

problems during testing, but after failing to fix the specific problem, desoldering the circuit seemed 

a waste of time. Future projects can skip those components if desired.  

 

Figure 13. Current Sensing Circuit 

The first current sensing circuit tests use a power supply to provide the voltage on the 

input and a 10 Ω resistor rated at 300 W. This resistor can replace the two 20 Ω resistors in 
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parallel in the EHFEM system, while testing the current sensing circuit to 5.1 A. This correctly 

produces a linear relationship between the current and voltage output from the sensing circuit as 

shown in Figure 14. As the graph shows, the resistance of each circuit appears slightly different, 

likely due to soldering the sense resistor on the second circuit upside down. This exposes the 

pads instead of connecting through the solder, decreasing the resistance since the current 

effectively travels a shorter distance between the ends of the resistor. 

 

Figure 14. Output Voltage from LT6101 versus Measured Current 

 

Figure 15. ADC Count Read versus Measured Current 
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Figure 15 then relates the current to the ADC count. The trend shows almost identical 

differences in slope for each line, proving consistent test data across two different test sessions. 

This test omits a resolution test of the current sense due to heat rapidly changing current levels 

with the 10 Ω test resistor. The data holds true, since the microcontroller takes ADC counts close 

together, and the measured current is recorded simultaneously to the ADC counts. 

5.4 Design to Prevent Current Overloading 

 

Figure 16. Harness Extra Current Schematic 

The EHFEM system experiences currents above accepted limits by the DC-DC 

converter. Instead of dissipating excess power as heat in standard current limiting circuits, energy 

from excess currents could get harnessed and output when the input power reduces. Figure 16 

gives one suggestion for what a current harnessing system might look like. Admittedly, 

overloading the capacitor presents some risk. To prevent this, another system, very similar to the 

capacitor system, connects in cascade to allow the microcontroller to bleed off some voltage from 
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the capacitor. This secondary system uses a resistor to dissipate excess energy as heat. Ideally, 

the cascaded system never engages, but provides a safety net. 

Upon this initial brainstorm, this project leaves this circuit design for future work, leading 

to Alec Robertson’s in-progress thesis project [25].  

5.5 Low Pass Filter Design 

Low pass filters convert the output of the microcontroller PWM outputs to constant 

voltages. The PWM outputs from the Atmel microcontroller at 120 MHz from 0 to 3.3 V as stated 

previously in Table 6. The bandwidth attenuates the PWM frequency and produces a DC value 

that can change quickly. The low pass filter achieves a bandwidth of 10 kHz with a capacitance of 

1.6 nF and a resistance of 10 kΩ according to equation (5.1). The closest 10% capacitor value of 

1.8 nF causes a slight decrease in bandwidth to 8.84 kHz. 

 𝑓3𝑑𝐵 =
1

2𝜋×𝑅𝐿𝑃𝐹×𝐶𝐿𝑃𝐹
 (5.1) 

This low pass produces a DC voltage on the voltage feedback pin of the LT8705, which 

also connects to the voltage divider. The voltage divider typically provides the only feedback 

source, but connecting a low pass filter through a PWM output allows the microcontroller to alter 

the feedback. This method to connect the two circuits uses an isolation resistor to prevent the 

capacitor in the low pass filter from excessively interfering with the feedback. The original thought 

entailed sizing this resistor to enable the microcontroller to swing the output voltage up or down 

even in the worst case conditions. After some experimental tests, higher resistance provided 

higher precision control since the output voltage changed in smaller increments. The original 5.6 

kΩ resistor increased to 105.6 kΩ for steady state testing to increase input voltage range on the 

DC-DC converter and neural network combination. This larger resistance limits the swing to 0.5 V 

on V_FB, which ranges from 0 to 2.5 V with the 5.6 kΩ resistor. During tests with the 

microinverter, the higher isolation resistance does not pass enough voltage to successfully 

control the DC-DC converter. For these tests, the originally calculated 5.6 kΩ resistor kept the 

microinverter powered on. Figure 17 shows the circuit where V1 represents the PWM output, 

V_OUT comes from the output of the DC-DC converter, and V_FB connects to the feedback node 

on the converter. 
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Figure 17. Connection between PWM Low-Pass Filter and Feedback Resistive Divider 

5.6 Inverter Characteristics 

The inverter sometimes behaves predictably. The inverter Maximum Power Point 

Tracking (MPPT) algorithms lower voltage and raise current, until they achieve the maximum 

power. This behavior normally benefits energy harvesting; however, lowering the voltage causes 

the DC-DC converter to run extremely inefficiently. The control system must give precedence to 

the DC-DC converter and fight any changes in voltage imposed by the inverter. Moreover, a drop 

below 22 V on the DC-DC converter output voltage node due to the microinverter MPPT turns the 

microinverter off. The control system keeps the DC-DC converter regulation steady to keep the 

system harvesting energy more consistently. 

5.7 Feedforward Artificial Neural Network 

A feedforward ANN designed for the DC-DC converter adjusts the duty cycle, improving 

performance characteristics. The inputs to the neural network include the input voltage, input 

current, difference between output voltage and nominal output voltage, and the load current. Most 

applications of neural networks to DC-DC converters directly control the duty cycle of the 

converter. However, an LT8705 controller chip contains many needed features, such as current 

protection. Therefore the implementation maintains functionality of this controller, which contains 

a feedback loop, and adds a learning aspect. The method ideally breaks the feedback loop, 

where a microcontroller measures the required values, but this thesis project opts to modify the 
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feedback voltage as previously discussed. An ANN then implements a feedforward path to adjust 

what the controller sees on the feedback pin. The feedback pin has a reference of 1.208 V. If the 

voltage on that pin exceeds the reference voltage, then the duty cycle adjusts based on Table 11. 

With similar voltages, the neural network does not act and outputs a reference voltage at 1.208 V. 

When the voltages deviate, the neural network controls the feedback pin to determine the 

appropriate voltage level. 

5.7.1 ANN BACKGROUND INFO AND LEARNING DISCUSSION 

Neural networks update the weights between each neuron with different types of 

learning. Two types of learning exist: supervised learning or learning with a teacher and 

unsupervised learning or learning without a teacher [26]. The neural network implementation 

adapts to varying settings on the elliptical trainer. Within the category of supervised learning lie 

many different algorithms, and each algorithm contains many variations. The main group of 

algorithms directly updates the weights of the neuron connections. Learning with a critic or 

reinforcement learning, an unsupervised learning method, supplies a reward or punishment to the 

ANN for an output within the specified range or not. The ANN then optimizes the weights to either 

maximize the rewards or minimize the punishments. This method could prove viable with some 

modification or precisely chosen parameters, but typically this learning slowly improves over time. 

A block diagram of reinforcement learning, Figure 18, shows the environment and the learning 

system inside the feedback loop. 

 

Figure 18. Reinforcement Learning Block Diagram [26] 
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Returning to supervised learning, the block diagram in Figure 19 shows how to place a 

learning system parallel to its teacher, and the error of the learning system updates the system 

modeling. Different algorithms use this error signal in different ways. 

 

Figure 19. Supervised Learning Block Diagram [26] 

Neural networks in this paper employ supervised learning to update the actual response. 

First, learning starts with a system randomly initializing conditions. The error signal is used to 

update the weights with a predefined algorithm, until the neural network outputs match the 

desired system outputs. Then, weights do not update until error exceeds the defined threshold. 

5.7.2 BACK-PROPAGATION ALGORITHM AND LEVENBERG-MARQUARDT METHOD 

In several other instances, researchers choose to use back-propagation algorithms to 

regulate constant voltages [12]-[14]. However, these do not include buck-boost topologies, but 

rather only buck converters. Studying the methods in these sources helps expand them to a 

buck-boost topology. One buck-boost topology, the flyback converter, produces good results from 

neural network control in one instance [15]. The downside to this topology includes lower 

efficiencies than with a four-switch buck/boost topology. This info points towards implementing an 

ANN to control the four-switch buck/boost topology. The back-propagation algorithm is a training 

algorithm for a feedforward neural network. It updates the weights backwards based on the error 

signals; the actual neurons only have forward connections. Figure 20 illustrates the direction of 

the error signals and neuron connections for an arbitrary, but simple neural network. 
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Neural networks easily map nonlinearities. To map nonlinear functions, the perceptron 

network must contain multiple layers. The network contains at least one hidden layer that helps 

map nonlinear patterns to a different space where they become linearly separable. The DC-DC 

converter’s nonlinearities require multilayer perceptron networks. 

 

Figure 20. Back-Propagation Neural Network Example [26] 

Equation 5.2 shows the general equation to update connection weights, with neuron 

connections going from j to i. The symbol wij then corresponds to the connection weight between 

neuron j and i. The symbol Δw(n) corresponds to the value the error signal back propagates to 

neuron n. The symbol η, the learning rate, is usually a constant value chosen between 0 and 1. 

 𝑤𝑖𝑗(𝑛 + 1) = 𝑤𝑖𝑗(𝑛) + 𝜂∆𝑤(𝑛) (5.2) 

The back-propagation method may converge slowly by itself. To increase the 

convergence speed, we use the Levenberg-Marquardt Method included as Equation 5.3 [12]. 

This method requires taking the inverse of a matrix. For the function this algorithm tries to 

optimize, g(n) corresponds to its gradient vector and H corresponds to its Hessian matrix. The 

symbol I represents the identity matrix of the same dimensions as H and λ ensures that the sum 

[H + λI] is positive and definite [26].One problem with this method relates to the inverse matrix 

calculation speed. If the matrix becomes larger than 5x5, then calculation time could dramatically 

increase. 

 ∆𝑤(𝑛) = [𝐻 + 𝜆𝐼]−1𝑔(𝑛) (5.3) 

The back-propagation algorithm uses the chain rule from calculus to find the gradient 

vector g(n) in Equation 5.4. The symbol ε refers to the cost function, included in Equation 5.5 [26]. 

The symbol e denotes the error signal for neuron n.  
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 𝑔(𝑛) = −
𝜕ℰ

𝜕𝑤𝑖𝑗
 (5.4) 

 𝜀 =
1

2
𝑒2(𝑛) (5.5) 

5.7.3 NEURAL NETWORK STRUCTURE 

The optimal structure of an ANN is never obvious. Many beginners in the field start by 

changing the number of neurons in each layer by trial and error. Certain models may only work 

for very specific scenarios. Having too many neurons may reduce the calculation efficiency. 

First, start with the input. In [13], input voltage Vin, load current IL, and deviation on output 

voltage [Vout(t)-Vout(t-1)] each account for one input neuron, used in this structure as well. Since 

that DC-DC converter only steps down voltages, these inputs allow good regulation. 

To expand this to a buck/boost converter, the neural network needs two more inputs to 

detect the operation region of the converter. Examining Table 11, transistor M1 turns on in boost 

mode and M4 when in buck mode. When in the middle region, we want the neural network to do 

nothing, so the weights do not adjust, and the voltage keeps adjusting in the same direction. We 

move forward with the assumption that it passes through this region quickly, and, in this region, 

the control switches between each mode quickly counteracting the effects of each. Additionally, 

the mode should not matter, so the neural network ignores it. 

Instead, I add two other inputs, measuring the input current to the DC-DC converter Iin 

and the input current to the inverter Iinv. The Iinv current differs from the current out of the DC-DC 

Converter IL by the capacitor current between the two. If the inverter tries increasing the current, it 

can pull current from the capacitor, which then causes the inverter to increase the current further, 

since the power reads higher at that current level. This forms a positive feedback loop, where 

current increases until the capacitor cannot source any current or until reaching the DC-DC 

Converter’s current limit. To keep the DC-DC Converter’s current limit below the absolute 

maximum, the neural network limits it. The input current Iin can help the neural network infer the 

output current, to maintain power in about equal to power out, while taking varying efficiency into 

account. 
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The network also needs one hidden layer, which allows simpler calculations than having 

two hidden layers. The network only needs two layers, if one layer does not provide acceptable 

results. This hidden layer contains 10 neurons, a half arbitrary and half guessed number from 

typical neuron numbers in other systems. These neurons then feed to the duty cycle of the 

transistors in normal applications. In our case, the output neuron feeds to the feedback voltage 

pin. This neuron correlates to a range of voltages from 0 to 2.5 V after some post processing, 

which uses the opposite calculation when normalizing the inputs. The feedback strength 

increases as the voltage moves away from the 1.208 V threshold voltage of the LT8705 converter 

chip. The proposed neural network architecture, shown in Figure 21, fits within the overall block 

diagram in the level 1 diagram. 

 

Figure 21. Initial Neural Network Structure 

I abandoned the initial structure, since measuring the current before the DC-DC 

converter’s output capacitance required cutting traces to insert a sense resistor. The revised 

neural network in Figure 22 reflects this change. Experimental data determines the number of 
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hidden neurons, eliminating arbitrary estimation. The hidden layer contains 18 neurons for fastest 

calculation speed and least error. 

 

Figure 22. Final Neural Network Structure – 18 Hidden Neurons 

5.7.4 OUTPUTS 

In this topology, several options exist for the output neuron depending on the control 

method. To decide the control method, one must have a comprehensive understanding of the 

entire system. The elliptical trainer and input protection circuitry gives the DC-DC Converter some 

input power. The converter then aims to modify the output power, by keeping either output current 

or voltage constant. In our specific application, either could work. The inverter adjusts the output 

voltage and current to achieve its maximum power point, known to pull voltage lower to increase 

the current in nominal conditions. Therefore, the control limits the currents from rising above their 
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absolute maximum ratings. The maximum current out of the converter must not exceed 7 A and 

the voltage must not go outside the 5-60 V range previously determined for the input voltage. To 

prevent overshooting the 7 A maximum, the neural network keeps the current below 5 A to allow 

for overshoot and maintain the DC-DC converter’s optimal current range. This analysis focuses 

on current limits more than voltage, making a case for current control. Additional reason to use 

current control comes from the Enphase solar panel inverter used. 

 

Figure 23. LT8705 Block Diagram [23] 

Enphase designed the M215 inverter for use in photovoltaic (PV) systems. PV systems 

normally expect nearly constant current inputs, since solar panels output DC current. The inverter 
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may raise or lower the voltage to seek higher current and power. In this application with the DC-

DC converter, lowering voltage can cause an excessive overcurrent. So, we must create a 

feedback control to prevent the inverter from receiving too much power as it decreases current. 

The method to do this drops the voltage across the inductor, decreasing the current output. The 

LT8705 chip allows for this control in the IMON_OUT pin. When the voltage on this pin rises 

above 1.208 V, the voltage pin Vc drops, limiting the current through the inductor. Therefore, the 

algorithms train the neural network to limit this current when the output current IL differs from the 

input current to the inverter, Iinv by more than 15%. This prevents large amounts of current from 

the capacitance between the DC-DC Converter and inverter adding into the inverter when it tries 

to increase current. If it increases current and gets significantly more power, then it continues to 

do so until the DC-DC Converter can no longer handle the current. By throttling the current 

through the DC-DC converter, the inverter stops increasing current since power starts 

decreasing. The neural network also reduces output current, if it reaches more than about 6.5 A, 

under the 7 A absolute maximum. 

Now we have two instances that decrease the DC-DC Converter’s output current: 1. if the 

output current approaches the absolute maximum and 2. if the inverter’s current receives too 

much current from the DC-DC Converter’s output capacitance. Both types of control require 

current control, which the LT8705 chip allows. In addition, the converter may need voltage 

control, depending if the output voltage regulates near the nominal 36 V output. The LT8705 chip 

allows for this control as well in a separate node. In an effort to reduce hardware, the network 

may combine the logic of these two connections into one. Since the LT8705 datasheet shows all 

nodes connected to its own buck/boost logic box, it may not matter which node sends an 

overcurrent or overvoltage signal, as shown in Figure 23. Since the datasheet does not clarify 

this, hardware must test it and determine the results. 

5.7.5 NETWORK TRAINING DATA 

Neural networks need some set of data to train the connections to achieve the desired 

performance. Training data must not get confused with the network verification data, described in 

the next section. The network training data contain input-output pairs of data. 
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These data work best when all data have similar ranges. The data collected do not 

initially have the same ranges, but normalization fixes this discrepancy. A few basic ways exist to 

normalize data. Since the transfer function of the activation layer uses the hyperbolic tangent 

sigmoid function, the data should span from negative one to one. One method centers the data in 

this range on the mean, another way centers on the median and the chosen method linearly 

scales all values according to the minimum and maximum values [26]. 

5.7.6 NETWORK VALIDATION DATA  

Network validation data shows if the network trains sufficiently. The input neurons all 

receive realistic values across some representative data set, and the user compares the neural 

network’s outputs against their expectations. This does not show that the overall feedback system 

works, just that the training data trained the neural network as intended. Usually, the training data 

contains some subset of about 70 to 80% of all data; while validation contains 10 to 15% and a 

test set consist of about the same size. In this application, testing obtains new data on the 

experimental hardware. Training and validation datasets do not differ in collection methods. 
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Chapter 6. ANN Offline Training 

Chapter 6 focuses on artificial neural network (ANN) offline training. Offline training refers 

to training the network with a set of previously collected data points. This teaches the artificial 

network to work perfectly on that data, and interpolates those points for untrained data when used 

in the real system. The real system uses online training to improve its response. 

6.1 Introduction to Offline Training 

Chapter 5.7 describes offline training data sets, neural network structure, and other 

issues from the perspective of initial design. This structure slightly changes throughout later 

chapters for possible or necessary performance improvements. 

6.2 ANN Implementation Using MATLAB Neural Network Toolbox 

First, the quickest approach implements the neural network, which uses preexisting 

toolboxes and functions in MATLAB software packages. This creates issues, however, since 

debugging or examining individual functions becomes difficult. The issues arise when the 

preexisting functions do not behave as expected or desired; therefore, this approach only helps 

approach the right solution. Additionally, these first tests only include load currents of 1 and 2 A, 

as the rest falls into place once these work correctly and avoids special difficult cases for the 

start. 

6.2.1 MATLAB CODE 

The code in MATLAB modifies a previous homework assignment employing an ANN. The 

code specifies a neural network with five input neurons, a hidden layer of a certain number of 

neurons, and one output neuron. Varying the number of hidden layer neurons determines the 

optimal layer size, but for now assume the layer must contain a minimum of 5 neurons, 

corresponding to the number of input neurons, and a maximum of some large number of neurons. 

The next sections show that this upper limit approaches 30 neurons, whereas some networks 

may employ much larger hidden layers. 

The first two blocks of code included in Appendix B define the neural network. The 

number of neurons in each layer, the training algorithm, and activation functions all affect the 

performance. Chapter 5 discusses the number of neurons in each layer and training algorithms. 
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This code allows changes in the activation functions. This project only considers two activation 

functions. This project first considers the default activation functions, the hyperbolic tangential 

sigmoid function ‘tansig’ for the hidden layer and the linear function for the output neuron. These 

seem to produce the most accurate results. The other option changes the output neuron layer to 

the logarithmic sigmoid function ‘logsig’ since the network outputs either 0 or 1. This activation 

function increases the mean squared error (MSE). The increase in MSE should make the ANN 

run additional epochs, but the network does not seem to run as many epochs as expected. Later 

sections discuss possible reasons. The network randomly initializes bias and weights of each 

neuron, following standard procedure. 

Next, I train and test the neural network, and then compare the neural network’s output to 

the desired output. Two different plots appear. The first plot shows the neural network properly 

initialized and its untrained output, while the second plot shows the trained output overlaid on the 

desired output. When training the neural network, the code sets the RMSE of the error threshold, 

so after training the actual RMSE is examined to ensure proper training. Sometimes, the error 

greatly exceeds the value set, so this serves as a good check on the training algorithms. 

6.2.2 PERFORMANCE WITHOUT NORMALIZED DATA 

Theoretically, no data needs normalizing since the network changes its weights 

appropriately. In practice, this usually does not hold true. Regardless, examining the response 

before normalizing the data helps get a sense of the network. 

Because the network does not train to small MSE values as desired, no validation data 

set is used for these. The same training data validates the network to illustrate its training. 
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Figure 24. Initial Output with Neural Network Toolbox, Example 1 – Ideal Output of ANN 
(Red), Actual Output of ANN (Blue) 

 

 
Figure 25. Trained Output with Neural Network Toolbox, Example 1 – Ideal Output of ANN 

(Red), Actual Output of ANN (Blue) 
 

In the first example, the network initializes to Figure 24 as shown with the flat blue line. 

The network goes through 7 iterations, and appears as shown in Figure 25 with the jagged blue 
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trend. In this run the MSE of 0.0867 exceeds the set goal of 0. The MSE typically is set to a small 

number, but setting it at 0 results in the best response for the meantime. 

In a separate run, the neurons initialize differently as shown in Figure 26 and the network 

trains in a different manner. In this case, the MSE of just 0.007 after 18 iterations comes close to 

the training data shown in Figure 27. This example shows the correlation between smaller MSE 

values and increased resemblance of the network to the training data. This notably gives a strong 

case that once the network actually trains to the specified MSE as intended, the network 

classifies inputs properly. 

These two examples summarize the endpoints of the network behavior, with many results 

in the middle. At this point, not using normalized data appears to throw the standard MATLAB 

functions off since they expect similar ranges in each data set. The next test normalizes the data 

to see if the neural network toolbox learns correctly. 

 

Figure 26. Initial Output with Neural Network Toolbox, Example 2 – Ideal Output of ANN 
(Red), Actual Output of ANN (Blue) 
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Figure 27. Trained Output with Neural Network Toolbox, Example 2 – Ideal Output of ANN 

(Red), Actual Output of ANN (Blue) 
 
6.2.3 PERFORMANCE WITH NORMALIZED DATA 

This simulation normalizes the data by linearly scaling numbers down to fit within the 

desired range. This entails finding the minimum, maximum, and using equation 6.1 to find the 

normalized data points. 

 𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑥−𝑥𝑚𝑖𝑛

0.5∙(𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛)
− 1 (6.1) 

Using normalized data in the MATLAB toolbox did not give different responses than 

previously non-normalized data, so the next step develops lower level MATLAB code. Future 

neural network implementations use the normalized data. 

6.3 ANN Implementation Using Low Level MATLAB Code 

Low level MATLAB code allows full control over the learning algorithm. MATLAB’s neural 

network toolbox works great theoretically, but when experiencing inadequate responses, no way 

exists to investigate where the issues arise. The starting point for my back propagation learning 

algorithm adapts an online blog post [27]. Using pre-existing code as a starting point saves time 

and reduces the number of errors. I proofread every line of their code and compared its 

functionality to the equations to ensure it operates properly. I learned part-way through early 
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simulations of one incorrect equation. I also replace the sigmoid activation function with a 

hyperbolic tangent function since the initial simulations show this produces adequate results and 

converges faster. 

The first step tests the code to see if it works. Teaching the neural network the XOR 

function serves as a preliminary test. This function contains desirable features including its 

simplicity, small dataset, and is linearly inseparable. This simple function verifies important 

capabilities essential for the intended application. The output neuron ideally output 0, 1, 1, and 0 

to mimic the XOR function. 

The next step adds an iteration stop limit to the code. This calculates the error after every 

iteration of the learning algorithm and stops, if the error becomes less than the desired error 

threshold. Appendix F contains the earliest simulation iterations discovering coding errors and 

training the XOR function to test the code. The next section includes optimization using the final 

low level MATLAB code. 

6.4 Determining Initial Connection Weights for Steady State Tests Using Offline Training in 

MATLAB 

To use the neural network on hardware, it needs to start with weights close to their ideal 

values. These simulations determine those initial weights. These tests prove the neural network 

functions properly for steady state tests, replacing the static feedback with the neural network 

control. Passing this test enables more complex control for dynamic tests with the microinverter in 

the next section. This method of control directly translates to one operation condition of the 

dynamic tests, providing an integral building block. Therefore, finding the minimum hidden neuron 

layer size for this test provides a minimum for future tests. 

These tests differ from early tests found in Appendix F after determining the feedback pin 

of the LT8705 chip acts as proportional gain instead of a comparator as previously assumed. 

6.4.1 RESULTS FROM 16 HIDDEN NEURONS  

Optimization starts with 16 neurons after all previous simulations hit the iteration limit of 

40,000 every time. Fewer iterations from the randomly initialized weights correlates to the time 

the neural network takes to correct itself in the microcontroller implementation, so minimization 
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improves system performance. The RMSE of the error equaled 0.0772 after the last iteration, 

above the 0.07 threshold, so this simulation hit the iteration limit. 

 

Figure 28. Training Data – Steady State Optimization 16 Neurons, Eta of 0.03 – Ideal Output 
of ANN (Red), Actual Output of ANN (Blue) 

 

 
Figure 29. RMSE of Error after Each Training Data Iteration – Steady State Optimization 16 

Neurons, Eta of 0.03 

A
N

N
 O

u
tp

u
t 

Training Data Point Number 

 



49 

 

Figure 28 shows the network trained well, showing no obvious deviation from the 

expected and actual outputs, while Figure 29 shows the RMSE of the error decreasing with each 

iteration ran. The initial learning coefficient value of 0.03 undergoes optimization after optimizing 

the hidden neuron layer. The neural network fit the data nicely considering the validation data, 

data not part of the training dataset, produced a MSE of 0.0014 and shown in Figure 30. 

 

Figure 30. Network Validation Data – Steady State Optimization 16 Neurons, Eta of 0.03 – 
Ideal Output of ANN (Red), Actual Output of ANN (Blue) 

 
In this test, a decrease in just one hidden neuron decreases accuracy. The plots show 

one example from the many runs of this test to ensure repeatability. 

6.4.2 OPTIMIZED CASE EMPLOYING 18 HIDDEN NEURONS 

After many tests adjusting the hidden neuron layer and the leaning rate, this test 

determines 18 hidden neurons as the optimal case. The number of iterations greatly decreases 

while the validation dataset error stays about the same at 0.0012. Figure 31 shows the network 

trained well and Figure 33 shows the performance on the validation data. 
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Figure 31. Training Data – Steady State Optimization 18 Neurons, Eta of 0.04 – Ideal Output 
of ANN (Red), Actual Output of ANN (Blue) 

 

 
Figure 32. RMSE of Error after Each Training Data Iteration – Steady State Optimization 18 

Neurons, Eta of 0.04 
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Figure 33. Network Validation Data – Steady State Optimization 18 Neurons, Eta of 0.04 – 
Ideal Output of ANN (Red), Actual Output of ANN (Blue) 

 
After some optimization, this run shows a more optimal neural network for this 

application. With 18 hidden neurons, the validation data set shows a small MSE of 0.0014 and a 

number of iterations to achieve that performance less than most other runs. The number of 

iterations decreases with larger values of eta, in this case, 0.04 works well without causing 

validation data wellness of fit to decrease. Furthermore, setting the error threshold slightly higher 

would greatly decrease number of iterations shown by the error graph in Figure 32. However, 

during offline training a closer fit takes priority over fewer iterations as a better fit allows less error 

in the experimental run. 

This stops optimization, since more neurons provide similar results, but decrease 

computational speed on the microcontroller. 

  

A
N

N
 O

u
tp

u
t 

Validation Data Point Number 

 



52 

 

Chapter 7. Hardware Testing 

This chapter explains configuration of the microcontroller that connects to the voltage and 

current sensing circuits, which then implements the neural network to control the buck-boost 

converter. 

7.1 Atmel SAM4S Xplained Pro Configuration 

The SAM4S Xplained Pro evaluation board contains an interface to program the 

SAM4SD32C at the heart of the board. The AREF adjustment potentiometer in Figure 34 

produces an AREF measurement of 2.6 V, after tuning, that the current amplifier output voltage 

range and AREF minimum voltage determine. Other features in Figure 34 and their functions 

include: extension header 1 (pins 3:4 ADC out Channels 0:1, pin 7 PWM output), extension 

header 2 (pins 3:4 ADC out Channels 4:5), power header (pin 2 ground reference, pin 4 3.3 V 

output voltage), and LED0 (UART test).  

 

Figure 34. SAM4S Xplained Pro Evaluation Board (SAM4SD32C) [28] 
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7.2 Atmel Software Framework 

This project uses Atmel Studio 6.2, since the website for this microcontroller directs to 

downloading version 6.2. Before discovering this, I tried using version 7, but after working initially 

it mysteriously stopped reading the correct ADC values after no code changes. This experience 

echoes the recommendations from Crivelli’s senior project, which also provides the starting point 

for my code along with Funsten and Kiddoo’s senior project [18], [29]. My code starts with running 

their code, then stripping it down to just the real time timer (RTT), ADC, UART, and general 

housekeeping code before adding in unique code. To get started in Atmel Studio 6.2, Crivelli’s 

senior project report contains a great guide which I followed as well to change the required 

header file [29]. Atmel Studio contains a number of software modules, listed below, that need 

including to run the code in Appendices D and E. 

ASF modules needed: 

 Generic board support (driver) 

 System Clock Control (service) 

 Delay routines (service) 

 GPIO – General Purpose Input/Output (service) 

 IOPORT – General Purpose I/O service (service) 

 USART – Serial interface (service) 

 Standard serial I/O (stdio) (driver) 

 ADC – Analog-to-Digital Converter (driver) 

 DACC – Digital-to-Analog Converter (driver) 

 PIO – Parallel Input/Output Controller (driver) 

 PWM – Pulse Width Modulation (driver) 

 RTT – Real Time Timer (driver) 

 TC – Timer Counter (driver) 

 WDT – Watchdog Timer (driver) 
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The UART responds to the commands in Table 12. The UART helps debug and test 

primarily, since it cannot output as fast as the microcontroller runs. 

Table 12. UART Command List 

Command Response 

‘a’ Toggles LED0, prints a to UART 

‘p’ Prints all 4 ADC values to UART 

‘f’ Data capture mode: only used to collect 
monitoring ADC data directly to terminal 

‘r’ Runs neural network program 

‘v’ Tests PWM output at 10% duty cycle, then 
50%, then off 

‘s’ Stores ADC readings (0.125 seconds of data 
max) 

‘o’ Outputs stored data 

‘m’ Captures median data 

‘w’ Outputs median data to terminal 

 
7.3 Atmel Studio and Microcontroller Quirks 

Sometimes, programming the microcontroller may seem less than trivial. When the 

microcontroller fails to program new code, pressing the reset button on the SAM4S Xplained Pro 

evaluation board then reprogramming the device easily solves this issue. 

Additionally, the usual warnings from Atmel Studio sometimes disappear without any 

reason. Upon creating an error in the code then fixing that error, the warnings reappear as 

expected. Without usual warnings, I do not have confidence that Atmel Studio built the project 

properly, although behaviors seemed unchanged. 

7.4 Summary of Prototyping Board to Measure Voltages and Currents 

The board created for this thesis attempted to employ color schemes for ease of use and 

male header pins to easily connect to any microcontroller male headers. After adding additional 

ground wires, the color code became less clear. Figure 35 and Table 13 show each header and 

protruding wire’s uses. Any headers not circled or labeled provided intermediate nodes used for 

testing purposes only. The green wires connect to ground along with the header at the almost 

exact center of the board. The Blue wires on the left side of the board connect to the positive 

current sense nodes, while the orange wires connect to the negative nodes. The header pin in the 

middle right allows easy connection of power from the 3.3 V voltage of the Atmel Xplained Pro 

evaluation board or an external power supply. The header pin on the top right connects to the 
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PWM output of the microcontroller to create a DC voltage on the wire on the right side of the 

prototyping board. The four light and dark turquoise circles around the ground header connect to 

the ADC pins of the microcontroller. The white wires on the top and bottom of the board connect 

to the voltages measured before and after the DC-DC converter. 

 

Figure 35. Prototyping Board with 2 Voltage and 2 Current Sense Circuits 

Table 13. Pin Descriptions of Prototyping Board – 2 Voltage and 2 Current Sense Circuits 

Color Description Correlated Connection 

Green Wires and Circled Header Ground 

Red Circled Header 3.3 V Power to Voltage Followers from 
Microcontroller 

Orange Protruding Wires Negative Side Current Sense Resistor 

Blue Protruding Wires (behind 
capacitors) 

Positive Side Current Sense Resistor 

Light 
Turquoise 

Circled Headers Current Sense Voltage Outputs to ADCs 

Dark 
Turquoise 

Circled Headers Voltage Sense Voltage Outputs to ADCs 

Purple Circled Header PWM Low Pass RC Filter from Microcontroller 

White Protruding Wires Top and 
Bottom 

Input Voltage to Voltage Sense Dividers 

Gray Protruding Wire Top Right PWM + Isolation Resistor Output to DC-DC 
Converter 
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With the prototype board complete and each component working during calibration, the 

next steps integrate the board into the full system. 

7.5 Monitoring Input Neuron Data 

To monitor data for the input neurons of the ANN, the test setup emulates the actual 

EHFEM circuitry. The problem observed in Andrew Forster’s thesis, is the microinverter pulls the 

output voltage down until the inverter shuts off below 22 V, which allows the DC-DC converter to 

properly regulate only for the cycle to repeat [9]. The neural network training attempts to eliminate 

this cycle, reacting to the microinverter to keep the DC-DC converter’s output voltage more 

consistent. 

7.5.1 MONITORING METHODS AND BACKGROUND 

Ideally, the system monitoring works at the same speed the code runs in the final 

implementation. Unfortunately, the UART interface only runs at 115,200 baud, drastically slower 

than the ADC value sampling. The most obvious work around slows down the system to a speed 

the UART could handle. In doing so, data packet size output to the UART decreases by stripping 

down print statements and UART code to the bare minimum. For instance, decreasing the size of 

the ADC values sampled with the 10 bit ADCs to 16 bit unsigned integers instead of 32 bits, 

saves memory writing time. Then printing only the necessary ADC values decreases the number 

of characters output to the terminal. Adding timestamps with Realterm produces a time scale 

without significantly increasing communication through the UART. The desire for timestamps with 

millisecond resolution necessitated coding custom timestamps in the command prompt, which 

only Realterm 3.0.0.31 beta version supports. This version has slight bugs, but no bugs without 

easy workarounds for this use. 

One issue with terminal timestamps is that the timestamps occur as the terminal receives 

the print statement, rather than when the ADC actually takes its measurements. Assuming a 

consistent delay between the print statement and ADC readings, coded as close together as 

possible, the relative time holds true. An attempt at double checking timestamps against a more 

precise timer employs the RTT code once again. The RTT claims the measurements take 5.565 

seconds to complete, while the timestamps show a difference of 5.8 seconds. Upon measuring 
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values of a saw tooth and sine wave as outlined in section 7.5.2 at 1 Hz, the timestamps correlate 

to a period of 0.999 seconds and the RTT correlates to a period of 0.953 seconds. Due to the 

unknown source of the RTT speed increase, this test concludes the UART attaches more 

accurate timestamps from recording waveform frequencies consistent with the function generator. 

An alternative solution explores the Live Watch feature inside Atmel Studio 6.2. This 

method should work as Atmel claims near real-time monitoring of variables when output to a text 

file. In practice, this feature slows down the code, since Atmel Studio essentially pauses the code 

to update all ADC values and then resumes. Each attempt to solve this feature led to new tests 

and ultimately ended with Atmel Studio crashing on my computer. I ran Atmel Studio in Windows 

10 on an older laptop. I think, although likely less common, having a newer laptop with at least an 

i5 or equivalent processor running Windows 7, since Atmel likely designed and supported Atmel 

Studio 6.2 on Windows 7, would increase functionality of this feature. 

Later, I program a timer since the RTT clock of 32 kHz does not provide accurate 

timestamping when sampling in the 10 microsecond range. This code, commented out in the final 

version, provides timestamps for data capturing. It also provides a method for timing neural 

network calculations, since, depending on the inputs, the calculation time varies drastically. The 

timer ran at 1.875 MHz and makes four ADC readings as well as storing the timestamp among 

other less significant functions in about 20.34 clock cycles. This means reading the ADC values 

takes 10.85 microseconds. This value exceeds the time measured with the RTT in section 7.7, 

but justifiably so, considering the additional code and hence instructions to take this 

measurement. Incrementing the index takes time as well as additional if statements, which justify 

the increase of about 6 microseconds. 

7.5.2 TESTING MONITORING SPEED CAPABILITIES 

Although monitoring the data directly to the terminal and storing the data each have their 

own theoretical speeds, timers determine the actual speed. First, the RTT timer measured the 

speed of outputting the ADC values directly to the terminal. Due to function generator limitations, 

waveforms only span from 0 to 10 V. I choose a sinewave input to one voltage channel and a 
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sawtooth to the other, providing some insight into the filtering on each channel. Due to function 

generator low current source capabilities, this method only allows voltage channel tests. 

7.5.3 MONITORING TESTS FOR POWER SUPPLY INPUT AND ELECTRONIC LOAD 

The easiest test case uses a test setup where all voltages and currents remain steady. 

This test aims to use the electronic load, but upon failing easy test cases, the 10.3 Ω, 300 W 

resistor replaces the electronic load momentarily. The resistive load keeps values consistent with 

calibration tests. Figure 36 measures current with differential voltage measurements across 1 mΩ 

sense resistors. Using short leads whenever possible minimizes noise from long wire 

inductances. 

 

Figure 36. Test Setup to Monitor Current and Voltages from Power Supply to Electronic 
Load 

 
Required equipment:  

 BK Precision Power Supply 540 W 

 BK Precision Electronic Load 1200 W (or 10 Ω power resistor for initial check) 

 Agilent 3630A Triple Output DC Power Supply 

 Andrew Forster’s Buck-Boost DC-DC Converter 

 Prototyping Board with Current and Voltage Sense Circuitry 

 Atmel SAM4S Xplained Pro Evaluation Board 

 5 digital signal wires 

 4 banana-to-spade wires 

 5 banana-to-grabber wires 

 4 alligator clips 

 1 bag of short leads 
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Calibration proves using 1 or 2 ADC channels simultaneously correctly measures 

voltages on the corresponding sense circuits. Due to the limitations in number of high power 

resistors in my possession, calibration initially only measures current with one current sense 

circuit at a time. When measuring on all 4 ADC channels simultaneously, the values of 512, 328, 

and 256 appear consistently. These numbers suspiciously correspond to one high bit in a binary 

representation. After extensive troubleshooting, I notice the first channel ADC, corresponding to 

the input voltage, would not exceed 512 consistently despite it doing so during calibration. 

Therefore, this test returns to calibration once again to see if the code limits this channel to a 

differential ADC measurement. This test suspects differential mode due to its accuracy at 30 V 

input voltage, where all channels read fairly accurately, and its maximum value of 512 at 40, 45, 

and 50 V input voltage. The initial reference voltage of 1.2 V on the ADC AREF pin constituted 

the primary problem. Increasing the voltage to 2.6 V places the reference voltage comfortably 

above the required 2.4 V minimum. Then modifying microcontroller code set ADC gain values for 

all channels to 2 to read the values closer to full range. 

A second issue with this test setup came to light after fixing the previous problem. I return 

to calibration of the ADC channels with the new reference voltage. During this test, the ADCs 

sometimes read steady voltages and currents inconsistently, appearing as voltage and current 

ripple expected from a DC-DC converter, with magnitudes outside the BK Precision DC power 

supply’s specifications. Troubleshooting determined the power supply causes the ripple and the 

ripple creates a whining noise from the power supply. The voltage ripples occur most often after 

starting up the power supply, while rarely occurring when changing the power supply voltage. 

Waiting for the power supply to regulate with smaller ripple solves this issue, which takes over 15 

minutes sometimes. After realizing this issue, I always keep oscilloscope probes on the measured 

values during steady state tests to help recognize this problem. Figure 37 shows the voltage 

ripple seen on my voltage divider circuit at a 5 V power supply voltage, which translates to 35.7% 

of the average output voltage and causes headaches while calibrating. When running tests not at 

steady state, I make sure to listen for the whining noise from the power supply. 
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Next, this test implements timestamping with a 1.875 MHz clock to monitor and capture 

data with the microinverter connected. This provides about 0.13 seconds of data with less than 11 

microsecond resolution. To test the data capturing with known values first, this test has a power 

supply on input and electronic load on output. The DC-DC converter supplies a constant 36 V out, 

giving a good value to check for consistency while changing the others and taking data. At steady 

state the test primarily captures ripple current passing through the RC filter on my current 

measurement circuit at max load. 

 

Figure 37. Scope Capture of Power Supply Voltage Ripple Seen on Voltage Divider Circuit 

Initially the ADC reads currents somewhat correlated to the actual current, but nowhere 

near similar to calibration. Troubleshooting determines that various sources of noise prevent the 

LT6101 from receiving an adequate power supply. The chip receives power from the positive 

current sense side, which becomes noisy after connecting the DC-DC converter. Reducing the 

noise involves replacing all long banana-to-banana wires with short leads, adding 0.1 µF 

capacitors directly across the LT6101 power terminals for higher frequency noise, and large 

capacitors across the power terminals local to the current sensing circuits to act as charge 

reservoirs. Capacitor placement puts them in parallel with the input and output capacitance of the 

DC-DC converter, effectively increasing these values. Adding smaller 10 nF capacitors on the 

DC-DC converter directly attempt to remove very high frequency noise, but their effects prove 

difficult to quantify. These noise mitigation techniques reduce ground plane noise to 400 mVp-p. 
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The largest noise spikes only last tens of nanoseconds, making further reduction difficult with 

inductance from relatively long leads between circuit components dominating any smaller 

capacitances. Noise reduction prevents needing to take the median of data points, increasing 

speed. Taking the median of three data points increases measurement time about fourfold, but 

reduces measurement error to tens of counts. The neural network implementation avoids taking 

the median, since so few samples read incorrectly, and the neural network helps mitigate noise. 

7.5.4 MONITORING TESTS FOR POWER SUPPLY INPUT AND MICROINVERTER LOAD 

 

Figure 38. Test Setup to Monitor Current and Voltages from Power Supply to Microinverter 

Required equipment: 

 BK Precision Power Supply 540 W 

 Enphase M215 Microinverter 

 Agilent 3630A Triple Output DC Power Supply 

 Andrew Forster’s Buck-Boost DC-DC Converter 

 Prototyping Board with Current and Voltage Sense Circuitry 

 Atmel SAM4S Xplained Pro Evaluation Board 

 5 digital signal wires 

 2 banana-to-spade wires 

 5 banana-to-grabber wires 

 3 banana-to-banana wires 

 4 alligator clips 

 1 bag of short leads 

The next test setup takes data using a power supply to replace the elliptical, as a 

stepping stone to the full system. Upon completing the previous test, integration of the 

microinverter as the load obtains detailed data on the microinverter’s effects on the EHFEM 
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system. This test uses the detailed connection diagram from the microinverter to the 240VAC wall 

from James Ralston’s senior project report [30]. Figure 38 shows the full test setup diagram. The 

ground of the sensing circuit connects to the power supply ground. The ground before the DC-DC 

converter cannot connect to the ground after the converter without tripping the ground fault 

interrupt (GFI) of the microinverter as described in Andrew Forster’s thesis [9]. Figures 39 through 

42 show data captures for one test, noting the suspected issue presents itself as the clear issue 

through this test. 

 

Figure 39. Input Voltage Monitor with Microinverter Load to DC-DC Converter –       
(Voltage = [Count + 0.5972] / 11.621) 

 
The current graphs both hit max values of 1023, which correlates to currents above 12 A 

on the output of the DC-DC converter and 9.1 A on the input, despite the input power supply 

current limit set to 7 A. The microinverter must change its input resistance fast enough that the 

power supply cannot regulate fast enough, since its voltage dips and current exceeds its limit. 

The power supply current also only supplies current up to 9.1 A, which could limit the input 

current to that value, but since this coincides with the maximum value that current sense circuit 

can measure, this test cannot determine the cause. The large amount of capacitance on the DC-

DC converter and current sensing circuits likely cause large currents for short durations without 
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as large of currents coming from the power supply. The current and voltage sensing circuit 

enables capturing this data since scope probes ground the reference, tripping the GFI of the 

microinverter. 

 

Figure 40. Input Current Monitor with Microinverter Load to DC-DC Converter –       
(Current = [Count + 8.1723] / 112.67) 

 
 

 

Figure 41. Output Voltage Monitor with Microinverter Load to DC-DC Converter –    
(Voltage = [Count + 0.9844] / 11.646) 
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Figure 42. Output Current Monitor with Microinverter Load to DC-DC Converter –    
(Current = [Count - 4.1987] / 85.093) 

With the issues characterized neural network code implements one attempted solution. 

7.6 Neural Network Implementation in C Code 

Neural networks provide the control to react to changes in currents and voltages to 

undesired levels. Since Chapter 6 simulates the neural network to acceptable performance levels, 

this test adds similar code to the microcontroller. The basics include converting the ADC count 

readings to normalized values compatible with the neural network, asking the neural network 

what the duty cycle should change to, and using the performance to refine the weights further. 

This code employs online learning, but does not update neuron weights if the neural network 

performs as desired to save computation resources. 

7.6.1 COMPILER SETTINGS 

Initial checks to prove the neural network code worked on the microcontroller found the 

microcontroller had issues regarding floating point numbers and using math functions. The ANN 

uses the hyperbolic tangent function, for which Atmel Studio provides a faster approximation, but 

it defaults to disabled. To fix the problem in Atmel Studio 6.2 go to Project -> “Project name” 

Properties -> Toolchain -> ARM/GNU Linker -> Miscellaneous. In the linker flags field type “--

specs=nano.specs -lc -u _printf_float” to enable the proper compiler settings. The printf support 

for float numbers enables easier debugging and verification of code operation, if desired. In the 
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same toolchain window scroll to the folders ARM/GNU C Compiler and ARM/GNU Linker and find 

the folder called Optimization in each. Check the box labelled “Enable fast math (-ffast-math)” to 

define the faster tanh() function used in the code in Appendix E. Now that the floating point 

numbers compute correctly, steady state tests start using the neural network control. 

7.6.2 STEADY STATE EXPERIMENTAL RESULTS WITH ANN 

 

Figure 43. Steady State Test Setup to Control DC-DC Converter Feedback – from Power 
Supply to Electronic Load 

 
Required equipment:  

 BK Precision Power Supply 540 W 

 BK Precision Electronic Load 1200 W 

 Agilent 3630A Triple Output DC Power Supply 

 Andrew Forster’s Buck-Boost DC-DC Converter 

 Prototyping Board with Current and Voltage Sense Circuitry 

 Atmel SAM4S Xplained Pro Evaluation Board 

 6 digital signal wires 

 4 banana-to-spade wires 

 6 banana-to-grabber wires 

 5 alligator clips 

 1 bag of short leads 
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This test compares system efficiency and operation with and without the neural network. 

Figure 43 shows the test setup, which adds the microcontroller to control the feedback voltage pin 

of the DC-DC converter. The PWM passes through a low pass filter and isolation resistor as 

shown in Figure 43. Figure 17 contains the schematic for this block interfaced with the feedback 

voltage divider. The isolation resistor starts at 105.6 kΩ, reducing the pull of the microcontroller to 

only a 0.5 V range. This range noticeably affects the output voltage of the DC-DC converter when 

the PWM initializes to 100% duty cycle, pulling the output voltage down to about 31 V. Running 

the neural network code restores the 36 V operating voltage even as input voltage and load 

currents change.  

 

Figure 44. Efficiency Comparison with and without Neural Network Controller – 105.6 kΩ 
Isolation Resistance 

 
Figure 44 shows the efficiency comparison with the neural network controller using a 105 

kΩ isolation resistance. Most noticeably are decreased efficiencies, likely caused by control 

speed. Figure 45 shows the same results, but with the 5.6 kΩ isolation resistance as planned and 

used in microinverter testing. The smaller isolation resistance correlates to lower efficiencies at 

input voltages that the converter and neural network could properly regulate, although, during 

microinverter testing, the input voltage varied though these levels without the same regulation 

issue. Figures 44 and 45 show the possibilities of future neural network implementations with 
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additional optimization. The test with only a 5.6 kΩ resistor does not regulate the voltage on as 

wide of an input voltage range. Employing PWM with finer voltage increments could allow more 

precise control, which most likely causes this reduced input voltage range, along with higher 

efficiencies. The neural network test points have two additional 1 mΩ sense resistors in the power 

path, not helping efficiency, although they affect it minimally. With the high amount of noise that 

necessitated filtering capacitors, come losses through ESR of capacitors especially in the high 

frequency range.  

 

Figure 45. Efficiency Comparison with and without Neural Network Controller – 5.6 kΩ 
Isolation Resistance 

 
Figure 46 validates the neural network control as not causing the input resistance of the 

converter to vary significantly. Theoretically, the neural network could try to maintain a 10 Ω 

resistance on the input of the DC-DC converter, but this does not align with the conventional DC-

DC converter IV curves. Maintaining a 10 Ω input resistance requires current control as well, 

separate from voltage, which requires additional inputs to the converter. 
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Figure 46. Input Resistance to DC-DC Converter with and without Neural Network 
Controller 

 
7.6.3 DYNAMIC EXPERIMENTAL RESULTS WITH ANN 

 

Figure 47. Lab Bench Setup at Cal Poly in 20-150 – ANN and Microinverter Tests 
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Required equipment:  

 BK Precision Power Supply 540 W 

 Enphase M215 Microinverter 

 Agilent 3630A Triple Output DC Power Supply 

 Andrew Forster’s Buck-Boost DC-DC Converter 

 Prototyping Board with Current and Voltage Sense Circuitry 

 Atmel SAM4S Xplained Pro Evaluation Board 

 Yokogawa WT310E Digital Power Meter 

 6 digital signal wires 

 2 banana-to-spade wires 

 6 banana-to-grabber wires 

 5 alligator clips 

 1 bag of short leads 

 

Figure 48. Dynamic Test Setup to Control DC-DC Converter Feedback – from Power 
Supply to Microinverter 

 
Figure 47 contains the test setup on the lab bench for testing the ANN with the 

microinverter and Figure 48 contains the detailed block diagram. The microinverter changes its 

input resistance to find the maximum power point, making these tests change dynamically. Due to 

the variance of all voltages and currents, individual data points become difficult to record, while 

maintaining any type of general meaning. The power supply current limit of 7 A helps reduce 
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large currents, but current can rise above 7 A momentarily before the power supply can reduce it. 

Additional current limits under the same test did not achieve the same results, which imply the 

current limit aids in system functionality. 

Without the neural network controller, the converter clicks at about 1 Hz, converting no 

power. About an additional 1 minute after the microinverter turns on, the converter then attempts 

to regulate the voltage, but only for the microinverter to turn off when the voltage on its input 

drops below 16 V [9], [30]. 

With the ANN controller, the inverter doesn’t turn off, or at least not long enough to cause 

it to act negatively. I only run tests at 60 V on the input, since that seems optimal for the neural 

network and DC-DC converter combination. The power supply voltage varies from 15 to 60 V and 

the output voltage sits around 22 V. The current protection code, that lowers output voltage when 

current is too high, most likely determines this voltage. After regulating at 22 V for over 20 

seconds, the converter output voltage momentarily drops to 18 V for a few seconds. Attempting to 

raise the output voltage at this point allows excessive currents, disqualifying any proposed 

solutions. The microinverter starts up at 22 V across its input terminals and turns off at 16 V, but 

the correlation of these levels to observed levels does not produce an argument for causation. 

The voltage never drops below 16 V on the voltmeter, which means the microinverter doesn’t turn 

off. The system ran as described at a 7 A current limit for 6 minutes without the microinverter 

turning off, and, after the inductor got hot, I decided to end testing. 

In this test, the converter converts more power. When the ANN code runs, currents rise 

to maximums of 8 A, although they usually do not exceed the 7 A current limit, and do not often 

go below 1 A. Finding the average power converted becomes unreasonable since the 

microcontroller cannot collect data long enough to get a meaningful result. However, this test 

measures power sent to the grid and power from the supply to produce Table 14. These values 

do not necessarily represent the average power due to the inability to monitor voltages and 

currents with the microcontroller without slowing the neural network down, therefore altering its 

performance. This method uses a Yokogawa power meter to measure the output power and the 

table finds input power from the voltage and current readings on the power supply. Due to quickly 
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changing values, taking pictures of readings then transferring data to the table produces more 

accurate results. Still, this test achieves efficiencies over 100%, most likely due to a moving 

average feature on the Yokogawa power meter. 

Table 14. Power Data from Microinverter Load Tests with the ANN Controlling the DC-DC 
Converter 
 

 

Vin (V) Iin (A) Input Power (W) Vout (V) Iout (A) PFout Output Power (W) Efficiency (%)

39.7 0.59 23.46 236.16 0.388 0.8851 81.01 345.3

47.7 1.71 81.77 236.19 0.386 0.8888 82.98 101.5

23.4 0.59 13.76 236.20 0.362 0.8712 74.50 541.3

37.6 5.88 220.62 236.24 0.378 0.8849 78.93 35.8

30.0 8.28 248.55 236.20 0.363 0.8837 75.75 30.5

39.6 8.03 318.07 236.17 0.356 0.8688 73.10 23.0

47.4 7.89 374.23 236.17 0.356 0.8748 71.79 19.2

59.6 6.81 406.16 236.25 0.365 0.8487 73.11 18.0

80.1 3.03 243.01 236.27 0.386 0.8695 79.25 32.6

38.9 0.61 23.60 236.24 0.348 0.8061 66.20 280.5

23.1 0.73 16.79 236.27 0.366 0.864 74.70 444.8

24.1 2.41 58.01 236.22 0.360 0.8635 73.43 126.6

22.3 2.47 55.04 236.21 0.360 0.8726 74.24 134.9

21.8 3.24 70.55 236.21 0.332 0.8388 65.83 93.3

34.2 6.00 205.31 236.24 0.362 0.8671 74.14 36.1

37.1 7.25 269.07 236.25 0.352 0.8684 72.31 26.9

59.0 7.09 418.11 236.13 0.362 0.881 75.35 18.0

55.1 3.90 214.86 236.14 0.363 0.8631 73.89 34.4

23.5 0.98 23.01 236.27 0.365 0.884 76.33 331.8

46.8 7.22 338.05 236.39 0.366 0.8838 76.50 22.6

59.2 6.72 397.43 236.32 0.357 0.8632 72.90 18.3

27.1 3.42 92.52 236.38 0.360 0.8786 74.83 80.9

52.8 3.71 195.91 236.43 0.384 0.8862 80.41 41.0

36.2 2.88 104.04 236.36 0.361 0.8517 72.72 69.9

29.7 7.07 209.89 236.43 0.383 0.905 82.05 39.1

39.7 6.00 238.45 236.40 0.369 0.8784 76.61 32.1

57.9 5.77 333.89 236.34 0.376 0.8765 77.94 23.3

45.8 7.94 363.49 236.38 0.373 0.8835 77.93 21.4

32.5 1.05 34.20 236.28 0.350 0.8489 70.13 205.0

40.9 1.33 54.33 236.31 0.360 0.8822 75.10 138.2

37.2 0.95 35.37 236.29 0.377 0.8825 78.71 222.5

30.7 4.95 152.10 236.24 0.385 0.8816 80.21 52.7

57.2 7.62 436.34 236.28 0.369 0.8793 76.69 17.6

32.7 5.93 193.93 236.27 0.367 0.8795 76.19 39.3

50.6 6.69 338.90 236.25 0.382 0.8816 79.55 23.5

27.7 1.18 32.57 236.22 0.368 0.8853 76.88 236.1

44.6 5.39 240.74 236.33 0.362 0.8847 75.72 31.5

7076.13 2797.91 39.5Totals:
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During testing the output power on the Yokogawa power meter seemed to remain too 

constant, considering the quickly changing input power. Since this test suspects a moving 

average on the output, Table 14 sums the input and output power of all measurements to find the 

overall efficiency. This efficiency of 39.5% represents only an estimate of what the overall 

efficiency might be, so future work must develop an accurate method of measuring power. The 

easiest solution might just use two Yokogawa power meters to measure input and output power 

consistently with identical equipment, but at the submission time of this project, no other power 

meters were available. 

This test suggests the system might work better with current control, but ideally voltage 

and current stay more constant and within maximum efficiency points. Current likely carries more 

weight in the MPPT, and enabling direct control of it, we could create the knee in a solar panel IV 

curve. The MPPT algorithm would then want to stay at the same point the EHFEM system 

achieves highest efficiency. 

During testing, the Atmel board occasionally shuts down. It appears to happen during 

high currents or voltages, possibly providing too much voltage on those ADC pins, and triggering 

overvoltage or overcurrent conditions. My computer might have also decided to act up, causing 

this issue itself. This problem did not appear during any efficiency tests, but did after trying the 

microinverter tests and returning to high current tests with the electronic load. It also happened at 

low currents, though rarely, so this further shrouds the root cause. 

7.7 Timing Speed of Control  

To accurately control the converter, the controller must respond to changes in input 

neurons quickly. For this, the Atmel microcontroller uses the real time timer (RTT). The RTT 

counts clock cycles of the internal 32.768 kHz crystal oscillator. To determine the base point, the 

RTT reads 4.3 µs as the time the microcontroller takes to read all four ADC values. 

When running the steady state tests, the RTT allows counting clock cycles similarly to 

before. The RTT timer determines the average run time for the neural network across 1,000 

weight updates to be 1.12 milliseconds. Decreasing this time would provide faster reaction times, 

since this time resides within a borderline acceptable region. 
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Several attempts to increase floating point speed ended in the DC-DC converter 

accepting a smaller input voltage range. The first attempt used the -funroll-loops optimization flag 

in the ARM/GNU C Compiler to step through the embedded loops faster. The second attempt set 

-funsafe-math-optimizations in the optimization settings in both the ARM/GNU C Compiler and 

the AM/GNU Linker toolchains. Both decreased neural network regulation and all tests omitted 

them. 
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Chapter 8. Conclusion and Future Work 

This thesis project explores and confirms neural networks can regulate the voltage on the 

LT8705 DC-DC converter chip. Despite the datasheet not describing exactly what each input 

node does inside the control architecture, experiments determine the general effects. At steady 

state, the neural network worked consistently, which supports future work optimizing the neural 

network to improve efficiency. 

The neural network ran into many issues, with not enough time to fix every one. Upon 

Andrew Forster completing the DC-DC converter, only one quarter remained for lab experiments. 

Unfortunately a few incorrect assumptions about the LT8705 control scheme prevented hardware 

interfaces from working perfectly the first design iteration. After fixing each hardware design, 

setbacks limited neural network optimization time. Neural network optimization could continue 

indefinitely and refining the initial network weights could prevent converter output voltage 

overshoot upon startup. Additional optimization could increase the Atmel microcontroller code 

execution speed, or a digital signal processor could interface with the Atmel SAM4S to handle 

floating point operations quicker. This project explored some compiler optimization to increase 

operation speed, but the microcontroller also caused the DC-DC converter to accept a smaller 

input range. 

Another idea lowers the PWM low pass filter cutoff frequency, then slowing the PWM 

switching speed down to allow finer adjustments on the output voltage. A gain stage would allow 

a higher isolation resistor value, which reduces the effects of the larger low pass filter 

capacitance. 

Creating additional hardware to control the current and voltage in the LT8705 chip could 

enable neural network regulation to find proper output voltage and current to maintain a near 10 

Ω resistor on the input of the DC-DC converter. This would drastically change the purpose of the 

neural network, but could improve workout consistency for the EHFEM system end user. 
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APPENDICES 

Appendix A. Analysis of Senior Project Design 

Project Title: DC-DC Converter Control System for the Energy Harvesting from Exercise 

Machines System 

Student’s Name: Alexander Sireci 

Advisor’s Name: Dr. David Braun 

1. Summary of Functional Requirements 

The control system limits the voltage and current, and hence the power going into the 

DC-DC converter and inverter. The controller changes the duty cycle of the DC-DC converter to 

keep it running at an optimal point. In the ideal design, the controller implements the DC-DC 

converter’s feedback. This allows increased control of the transfer function to change during 

operation, instead of limiting the feedback to discrete components. The system must accurately 

control changing inputs within microseconds, making a quick response time essential. Chapter 

2.2 contains a complete explanation of the functional requirements. 

2. Primary Constraints 

The main challenge presents itself in keeping costs low enough to make the system pay 

for itself over its lifetime. Due to electricity’s low cost, the minimal amount of energy human exert 

during exercise, and the non-constant usage, the EHFEM must last many years to become 

economically beneficial [5]. Another challenge arises from the variable power output that can 

cause voltage and current spikes every microsecond. As a result, the microcontroller must 

respond extremely quickly. 

Another difficulty lies in interfacing the controller to the rest of the system. The inputs to 

the ADC can have magnitudes up to 51 V, which exceeds the microcontroller’s 2.4 V to 3.6 V 

range [17], [18]. An attenuator reduces the magnitude and adds an offset voltage to meet this 

specification. Attenuating the voltage increases the need for a high ADC resolution. Section 2.2 

outlines the full specification list and expands on the requirements. 
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These constraints come from the customers’ needs, which Section 2.1 fully explains. Cal 

Poly’s REC Center places the biggest constraint on safety of gym goers, so they require a proper 

enclosure that seals the electronics from possible spillage. 

3. Economic 

The project directly impacts the REC Center, where they buy the EHFEM to save on 

electricity costs. Since they capture energy instead of dissipating it as heat, they save money on 

air cooling systems as well. The electricity savings cause the utility company’s profits to decline 

slightly, but also helps prevent blackouts by reducing the load at peak times. Preventing 

blackouts could cause a positive economic advantage for supplying uninterrupted service [31]. 

Buying the system gives the university most profits, since they sponsored project development. In 

the short run, profits remain minimal since the system sells almost at-cost. Since Dr. Braun leads 

the project, he sees the most compensation, primarily since Cal Poly pays him for some of his 

time spent working on the project. The Earth’s resources benefit from the project, reducing the 

consumption of fossil fuels destroying the atmosphere. Cal Poly reimburses up to $150 of 

development costs and the rest comes out of my pocket, or companies donate the parts the 

project needs. 

During the product’s lifecycle, ideally the REC Center only benefits. The system should 

start reducing carbon emissions and REC Center costs immediately after installation. Costs only 

increase if components require extensive maintenance. Due to the system’s intentionally robust 

design, very few systems should need maintenance after initial testing. The system specifications 

specify a lifetime of at least 7 years after installation, currently slated for after the 2017-2018 

school year. Overall project development time would therefore span about 12 years, with the 

control system development lasting 20 months according to the Gantt chart in Figures 6 and 7. 

Upon the project’s completion, the system gets installed at the Cal Poly REC Center as the beta 

testing version. I anticipate several senior projects simplifying the system, combining PCB boards 

to cut costs, and redesigning past projects to improve reliability. 
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As stated previously, Cal Poly largely funds development costs. The project’s continual 

advances over many years complicate development cost estimates for the entire project. I 

estimate the control system development costs at $18,072, but labor wages contribute to most 

costs. Considering only the parts costs, the entire project estimates cost at $140. Cal Poly’s 

Senior Project Fund exceeds this amount, so they cover these costs. The equipment present in 

the EHFEM system already works, so no needs for additional equipment arise. 

4. Commercial Manufacturing 

At first, only 6 to 10 elliptical machines at Cal Poly’s REC Center utilize this new 

technology, but once the system proves high reliability and cost effectiveness, as many as 1,000 

gyms could utilize this technology totaling 10,000 units. Production takes time to ramp up, but at 

full scale, sales can reach about 1,000 units. The projected life of 7-10 years implies at least 

7,000 units simultaneously producing electricity. The current goals keep the parts cost below 

$250, which makes the system cost about $400 after manufacturing costs. Installation costs run 

around $50 per unit, assuming at least 10 simultaneous installations. The estimated purchase 

price around $500 allows for some investment into cheaper manufacturing processes in the 

future. Profit can therefore reach $50,000 per year using the same 1,000 units per year 

assumption. The user should have no cost to operate the device, only electricity generation 

during equipment use. 

5. Environmental 

The overall system uses a battery, so mining the lithium produces the most carbon 

emissions and demands the scarcest material. The controller uses silicon, copper, and ceramics, 

among other plentiful resources. All parts follow RoHS compliant requirements to minimize 

environmental impacts disposing of any materials after their lives. During production and 

transportation of the components, carbon emissions hurt the atmosphere, but these negatives get 

more than offset over the products’ lifetimes. All living species continue to face challenges 

adapting to global warming’s increased effects on the environment, but this project aims to 

reduce these long-term effects. A case study performed at University of California, Berkeley, 

evaluates the effects of installing 28 ReRev machines at their recreation center [32]. Although the 
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EHFEM system provides both a cheaper and more efficient solution, the analysis supplies a 

bearish estimate. The study concludes that production of the 28 systems produces 9.9 metric 

tons (MT) of carbon dioxide emissions, which offsets the emissions in just 3 years [32]. Since the 

EHFEM project projects a useful lifecycle of at least seven years, harnessing the electric energy 

saves over twice the emissions produced during system production. As global warming becomes 

one of the biggest problems of the modern world, the ability to save the environment provides 

enough reason to invest in such systems. Evidence that climate change is a large problem 

includes the Paris United Nations climate conference and that the carbon dioxide levels continue 

to surpass 33% higher than ever in the last 650,000 years [32]. 

6. Manufacturability 

Most components bought from existing manufacturers have no manufacturability issues. 

The only problem arises while assembling the PCB if components cannot be wave-soldered. 

Installation into the elliptical machines requires an electrician to run the wires and place the 

EHFEM system inside the elliptical. No issues arise from finding an electrician to install the 

systems, since we can provide detailed installation instructions, distributed with each system sold. 

Wiring the elliptical machines to the grid requires a path from each elliptical machine to the 

central circuit breaker in each gym. This wiring causes complications to reduce obstructions to 

the walkway. 

7. Sustainability 

The product achieves complete sustainability in the near term. In the long term, lithium 

ion abundance decreases, but new battery technology reduces the use of lithium in batteries. In 

addition, the system reduces the carbon dioxide emissions by over double the emissions created 

during system production [32]. Upgrading the system requires a complete redesign due to 

compatibility issues, unless the new parts use consistent interfaces with the current design. Some 

possible upgrades include tuning the control code for faster response times, using a higher speed 

microcontroller, and reducing the number of instructions needed to calculate the feedback 

adjustment. 
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8. Ethical 

This project aligns with the IEEE Code of Ethics. For instance, the focus on health and 

safety to the gym goers aligns with the first and ninth planks [22]. Since the EHFEM system 

positively preserves the environment, contrary to the norm for new technology, it reinforces the 

first plank further. The IEEE code of ethics also requires engineers to present all claims in honest 

light, based on data [22]. This senior project and master’s thesis document presents all data and 

claims as realistic as possible to improve the readers’ understanding of the project. Helping 

others involved in the EHFEM project improvement aligns with the sixth and tenth planks [22]. I 

also seek a tremendous amount of technical advice through every avenue available to me. I have 

Dr. Braun, a professor in electrical engineering at Cal Poly, who knows the EHFEM system well, 

as the first reviewer of my work. Additionally, multiple other professors offer advice in their 

specialties, such as Dr. Helen Yu, who specializes in control systems. Before completion of my 

degrees, I must also defend my thesis, which means at least three other industry experts or 

professors review my work. The high amount of peer review causes my reliability to increase, 

although I have no reputation in industry yet. Producing a comprehensive project and report 

bolters my reputation for future endeavors. 

This product also follows good ethics according to Ethical Principlism. The EHFEM 

system has non-maleficence due to its sustainable design and RoHS compliant materials. The 

product has beneficence to many, providing cleaner air for the public to breathe. In addition, the 

REC Center’s electricity costs see reductions. Following the fairness aspect, the gym buying the 

system rightly saves more money than they invest in the product, essentially paying them to keep 

the air clean. The system also treats users fairly by offering a system to capture energy without 

altering their workouts. The EHFEM system grants freedom to every gym goer to decide if they 

want to use the machines or not. In the early stages of the project, choice between standard 

elliptical machines and ones outfit with the EHFEM system forces no one to use this product. 

9. Health and Safety 

No health or safety concerns exist from specific usage of this product, except those 

already there from strenuous workouts. Strenuous workouts can cause dehydration and dizziness 
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due to low water and oxygen levels, but the EHFEM system does not increase the risk of such 

experiences. The user must factor in the possibility of these experiences before using the 

equipment provided by their local gym. The project maintains the user experience, so no 

additional safety concerns appear. A chance for harm exists for drivers transporting the product, 

but this project does not increase any risk already present. Wiring may cause safety hazards if 

not properly routed, but strategic placement with floor or wall wiring connections can reduce 

obstructions to the walkway. Other issues arise if water spills reach the electrical components, 

producing possible shocks to the user. The system design does not provide any paths for water 

to reach the electronics, creating no shocking hazard. Moreover, a safety issue arises from 

unexpectedly fast cycling speeds, causing capacitors and integrated circuits to receive too much 

power and the possibility of explosions or even fire. The overvoltage and overcurrent protection 

circuits throughout the system prevent overloads on any of the electronics. When these protection 

circuits trigger, they create another safety issue from the physical resistance reducing to almost 

nothing. The user’s pedaling speed increases under such conditions immensely, possibly causing 

feet to leave the pedals and muscles to cramp. The control system measures all voltages and 

currents and strives to reduce the possibility of such experiences. In the future, adding a possible 

warning message to the elliptical user interface increases safety. 

This project reduces the carbon emissions into the atmosphere, so actually benefits the 

health and safety of the public. Since the air is cleaner, citizens in cities with a large amount of 

EHFEM systems could see real reductions in pollution. Reduction in pollution causes reduction in 

children with asthma, among other respiratory problems. 

10. Social and Political 

The EFHEM project does not present many social or political issues, since its design 

helps reduce the issue of global warming. The design, produced through university funds and 

student time, has no political or social effects. The manufacturing of most parts come from China, 

which may produce some resistance to activists striving for domestically made products. 

Politically, every citizen supports capturing of clean energy already produced. Instead of throwing 
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it into the atmosphere as heat, the EHFEM system captures it. Socially, it provides cleaner air in 

high density populations, since cities contain more gyms and normally higher pollution rates. 

The project impacts almost everyone, but in a positive way: reducing carbon emissions. 

The direct stakeholders include the REC Center, users of the elliptical machines, and everyone 

near the energy production facilities. The REC center saves money from the systems, while the 

users receive the motivation of producing clean energy. Everyone who breathes air near non-

renewable energy plants benefits from a decrease in energy production and therefore cleaner air 

to breathe. Producers of every integrated circuit in the design and the PCB manufacturers receive 

increases in revenue. Since California requires 33% of all energy to come from renewable 

sources by 2020, California benefits in reaching this goal more easily [34]. PGE also benefits 

from their requirement to meet these restrictions and the project simplifies issues with meeting 

peak demand. California and PGE have indirect stakes in this project. 

Cal Poly, another direct stakeholder, benefits from articles and publicity showing it invests 

in industry leading solutions to climate change. The general population of college applicants 

hears about their support, and becomes more likely to both apply and accept admission to the 

university. 

11. Development 

This project requires attaining new knowledge in digital controls as well as feedforward 

design techniques to speed up response times. Feedforward systems produce stability issues, so 

I perform the appropriate stability analysis. I need to learn the Atmel software to implement the 

microcontroller as well. I learn a great deal designing the electrical system to write estimates 

down and determine the parts that work best for my application. Instead of having one unknown 

in a problem, many unknowns exist, as well as design tradeoffs between every choice made. 

I learn more types of sources can help offer more insight into design of any system. I 

already use the internet, books, datasheets, and databases to find reliable information, but now I 

additionally use patent literature, IEEE journal articles, and past senior projects and theses to 

offer more specific knowledge as shown from the literature search in the References section. In 

addition, I determine the quality and accuracy of each source before citing it, to ensure I use only 
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the best information. In my literature search, I find many other companies producing products to 

solve the same problem the EHFEM system addresses. Learning about the competition allows 

me to shoot for performance levels above current systems. DeSando controls a DC-DC converter 

in a similar fashion to how I control one, so learning his approach and some problems he had to 

solve, simplifies my approach. 
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Appendix B. MATLAB Code Using Neural Network Toolbox 

net = feedforwardnet(5,'trainlm');    %# hidden neuron, Leven-Marq 
net.inputs{1}.size = 5;     %set number of input neurons 
% net.layers{1}.transferFcn = 'logsig'; 
% net.layers{2}.transferFcn = 'logsig'; 

  
net.initFcn = 'initlay'; 
net.layers{1}.initFcn = 'initwb'; 
net.layers{2}.initFcn = 'initwb'; 
net.inputWeights{1,1}.initFcn = 'rands'; 
net.inputWeights{2,1}.initFcn = 'rands'; 
net.biases{1,1}.initFcn = 'rands'; 
net.biases{2,1}.initFcn = 'rands'; 
net = init(net); 
% generate input/output pair 
p1 = (20*rand(1,500)); 
p0 = (20*rand(4,500)); 

  
% Normalized 
M = csvread('C:\Users\Alex\Documents\Senior Project\Trial_data1- 

    CCMResults-norm_mean.csv',11,1,[11 1 43  9]); 
N = csvread('C:\Users\Alex\Documents\Senior Project\Trial_data1- 

    CCMResults.csv',1,14,[1 14 11 22]); 

  
% normalized training data 
dv_out = M(:,4)'; 
i_out  = M(:,2)'; 
v_in   = M(:,1)'; 
i_inv  = M(:,5)'; 
i_in   = M(:,3)'; 
t1 = M(:,9)'; 
t = M(:,9)'; 

  
%validation data 
dv_out_V = N(:,5)'; 
i_out_V  = N(:,2)'; 
v_in_V   = N(:,1)'; 
i_inv_V  = N(:,6)'; 
i_in_V   = N(:,4)'; 

  
p2 =[dv_out;i_out;v_in;i_inv;i_in]; 
ps = 0:1:32; 
p = p2; 

  
net = configure(net, p2, t1); 
initial_output = net(p); 
net.trainParam.epochs = 100; 
%net.performFcn = 'sse'; 
%net.trainParam.goal = 1e-07;    % sets MSE??? 
net = train(net,p2,t1); 
test_output = net(p); 

 
%plot desired output red, actual blue 
figure(1) 
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plot(ps,t,'r',ps,initial_output,'b') 
title('Before Training') 
figure(2) 
plot(ps,t,'r',ps,test_output,'b') 
title('After Training') 

  
%check MSE 
%MSE = immse(t,test_output)    %either method works 
MSE = mse(net,t,test_output)     
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Appendix C. Final  MATLAB Neural Network Code without Toolboxes 

% Max-min normalized data 
M = csvread('C:\Users\Alex\Documents\Senior Project\Trial_data1-

CCMResults_new_out.csv',11,1,[11 1 378 6]); 
input = M(:,1:4); 
N = csvread('C:\Users\Alex\Documents\Senior Project\Trial_data1-

CCMResults_new_out.csv',379,1,[379 1 415 6]); 
valid = N(:,1:4); 

  
% Desired output of XOR 
output = M(:,6); 
outputv = N(:,6); 
% Initialize the bias 
bias = -1; 

  
coeff = 0.04;            % Learning coefficient eta << 1 typically 
iteration_limit = 40000;     % Number of learning iterations 
error_threshold = 0.07; % Desired iteration endpoint 
iterations = 0;    % initialization 
scale = 1;    %scales activation function to make steeper 
num_in = 4; 
num_hid = 18; 

  
% predetermine sizes for speed; removes warning 
err = zeros(1,iteration_limit); 
delta2 = zeros(num_hid,1); 
H = zeros(num_hid,1); 
x2 = zeros(num_hid,1); 
Ht = zeros(num_hid,1); 
x2t = zeros(num_hid,1); 
Hv = zeros(num_hid,1); 
x2v = zeros(num_hid,1); 

  
%- Calculate weights randomly using shuffle. 
rng('shuffle');    %ensure truly random numbers 
weights = -1 + 2.*rand(num_hid,num_in);  %random weight matrix, -1 to 1 
weightb = -1 + 2.*rand((num_hid+1),1);   %random bias matrix, -1 to 1 
weighto = -1 + 2.*rand(1,num_hid);       %random output matrix, -1 to 1 

  
for i = 1:iteration_limit 
    out = zeros(368,1); 
    numIn = length(input(:,1));    %detect input data size 
%out = zeros(numIn,1); % doing this here breaks code 
   r = randperm(numIn); 
   for j = 1:numIn 
      % Hidden layer 
      for h = 1:num_hid 
        H(h) = bias*weightb(h,1) + input(r(j),1)*weights(h,1)... 
               + input(r(j),2)*weights(h,2) + 

input(r(j),3)*weights(h,3)... 
               + input(r(j),4)*weights(h,4); 
        % edit number of terms to match number input neurons 
        % Send data through hyperbolic tangent function 
        x2(h) = (exp(2*scale*H(h))-1)/(exp(2*scale*H(h))+1); 
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      end 
      % Output layer 
      x3_1 = bias*weightb((num_hid+1),1); 
      for h = 1:num_hid 
         x3_1 = x3_1 + x2(h)*weighto(1,h); 
      end 
         % edit number of terms to match number of hidden neurons 
      out(r(j)) = (exp(2*scale*x3_1)-1)/(exp(2*scale*x3_1)+1); 

       
      % Adjust delta values of weights 
      % For output layer: 
      % delta(wi) = xi*delta, 
      % tanh: delta = (1-actual output)*(1+actual output)* 
      %    (desired output - actual output)  
      delta3_1 = (1-out(r(j)))*(1+out(r(j)))*(output(r(j))-out(r(j))); 
      % Propagate the delta backwards into hidden layers 
      for h = 1:num_hid 
        delta2(h) = (1-x2(h))*(1+x2(h))*weighto(1,h)*delta3_1; 
      end 
      % Add weight changes to original weights  
      % And use the new weights to repeat process. 
      % delta weight = coeff*x*delta 
      % 
      % Bias cases 
      for h = 1:num_hid 
        weightb(h,1) = weightb(h,1) + coeff*bias*delta2(h); 
      end 
      weightb((num_hid+1),1) = weightb((num_hid+1),1) + ...  

          coeff*bias*delta3_1; 

       
      for k = 1:num_in % input layer size 
        % Input cases to neurons 
        for h = 1:num_hid 
          weights(h,k) = weights(h,k) + coeff*input(r(j),k)*delta2(h); 
        end 
      end 

       
      for h = 1:num_hid % hidden layer size 
            weighto(1,h) = weighto(1,h) + coeff*x2(h)*delta3_1; 
      end 
   end 
   iterations = iterations + 1; 
   error = output - out; 
   err(i) = sqrt(sum(error.*error)); 
   if err(i) < error_threshold 
       break; 
   end 

    
end 

  
err(i) 
% error 
MSE = immse(out,output) 
figure(1); 
plot([out output]); 
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iterations 

  
% plot error vs. iterations to see if approaching some small value 
    % used to set neuron #, coeff, etc. 
x = 1:1:iterations; 
figure(2); 
plot(x,err(1:iterations)); 
xlabel('iteration'); 
ylabel('Error(desired-output)'); 

  
outt = zeros(368,1); 
% Training verification 
for j = 1:numIn 
      % Hidden layer 
      for h = 1:num_hid 
        Ht(h) = bias*weightb(h,1) + input(j,1)*weights(h,1)... 
               + input(j,2)*weights(h,2) + input(j,3)*weights(h,3)... 
               + input(j,4)*weights(h,4); 
        x2t(h) = (exp(2*scale*Ht(h))-1)/(exp(2*scale*Ht(h))+1); 
      end 
      % Output layer 
      x3_1t = bias*weightb((num_hid+1),1); 
      for h = 1:num_hid 
          x3_1t = x3_1t + x2t(h)*weighto(1,h); 
      end 
      outt(j) = (exp(2*scale*x3_1t)-1)/(exp(2*scale*x3_1t)+1); 
end 
errort = output - outt; 

  
MSEt = immse(outt,output) 
figure(3); 
plot([outt output]); 

  
figure(4); 
plot(errort); 

  
numInv = length(valid(:,1));    %detect input data size 
outv = zeros(37,1); 
% Validation 
for j = 1:numInv 
      % Hidden layer 
      for h = 1:num_hid 
        Hv(h) = bias*weightb(h,1) + valid(j,1)*weights(h,1)... 
               + valid(j,2)*weights(h,2) + valid(j,3)*weights(h,3)... 
               + valid(j,4)*weights(h,4); 
        x2v(h) = (exp(2*scale*Hv(h))-1)/(exp(2*scale*Hv(h))+1); 
      end 
      % Output layer 
      x3_1v = bias*weightb((num_hid+1),1); 
      for h = 1:num_hid 
          x3_1v = x3_1v + x2v(h)*weighto(1,h); 
      end 
      outv(j) = (exp(2*scale*x3_1v)-1)/(exp(2*scale*x3_1v)+1); 
end 
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MSEv = immse(outv,outputv) 
figure(5); 
plot([outv outputv]); 
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Appendix D. Microcontroller Code for Monitoring Voltages and Currents 

This appendix contains the microcontroller code used while only monitoring voltages and 

currents. At one point, the code took the median over 3 data points, which essentially eliminated 

noise. The median code appears commented out here after deciding against this approach due to 

slower response times. 

 /** 
 * Median code commented out. Index edits and variable changes are needed to 
 * insert median back in. 
 */ 
/** 
 * \mainpage User Application template doxygen documentation 
 * 
 * \par Empty user application template 
 * 
 * This is a bare minimum user application template. 
 * 
 * For documentation of the board, go \ref group_common_boards "here" for a link 
 * to the board-specific documentation. 
 * 
 * \par Content 
 * 
 * -# Include the ASF header files (through asf.h) 
 * -# Minimal main function that starts with a call to board_init() 
 * -# Basic usage of on-board LED and button 
 * -# "Insert application code here" comment 
 */ 
/* 
 * Include header files for all drivers that have been imported from 
 * Atmel Software Framework (ASF). 
 */ 
/* 
 * Support and FAQ: visit <a href="http://www.atmel.com/design-support/">Atmel  
 * Support</a> 
 */ 
#include <asf.h> 
#include <stdbool.h> 
#include <stdio.h> 
#define ADC_CLOCK 22000000 
#define PWM_FREQ 1000000 
#define PWM_PERIOD 5 
#define FALSE 0 
#define TRUE !(FALSE) 
#define PWM_DAC IOPORT_CREATE_PIN(PIOA, 23) 
#define TIMER_TC0 IOPORT_CREATE_PIN(PIOA, 29) 
#define TIMER_OUT IOPORT_CREATE_PIN(PIOA, 24) 
#define SHADOW_SIZE 6000 // 12300 almost fills RAM takes < 0.13 seconds of data 
#define MEDIAN_COUNT 3 // take median of 3 ADC readings to mitigate noise 
#define MEDIAN_LOCATION ((MEDIAN_COUNT-1)/2)  // assumes MEDIAN_COUNT is odd 
#define TC_CAPTURE_TIMER_SELECTION TC_CMR_TCCLKS_TIMER_CLOCK3 
 
int counter; 
uint32_t j = 0; 
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//uint32_t k = 0;  // median index 
_Bool FEED = FALSE; 
_Bool STORE = FALSE; 
//_Bool MEDIAN = FALSE; 
_Bool VALUE = 0; 
uint16_t v_in_default; 
uint16_t i_in_default; 
uint16_t v_out_default; 
uint16_t i_out_default; 
//uint16_t v_in_med; 
//uint16_t i_in_med; 
//uint16_t v_out_med; 
//uint16_t i_out_med; 
//uint16_t v_in[MEDIAN_COUNT] = {0}; 
//uint16_t i_in[MEDIAN_COUNT] = {0}; 
//uint16_t v_out[MEDIAN_COUNT] = {0}; 
//uint16_t i_out[MEDIAN_COUNT] = {0}; 
uint16_t v_in_shadow[SHADOW_SIZE] = {0}; 
uint16_t i_in_shadow[SHADOW_SIZE] = {0}; 
uint16_t v_out_shadow[SHADOW_SIZE] = {0}; 
uint16_t i_out_shadow[SHADOW_SIZE] = {0}; 
uint32_t timestamp_shadow[SHADOW_SIZE] = {0}; 
 
//volatile int duty_calc=0;//debugging, check internal ADC readings match terminal 
 
pwm_channel_t pwm_channel_instance; 
 
static void configure_rtt(void) 
{ 
    uint32_t ul_previous_time; 
    // configure RTT for an interrupt per slow clock (32.768 kHz) period 
    rtt_init(RTT, 1); 
    ul_previous_time = rtt_read_timer_value(RTT); 
    while (ul_previous_time == rtt_read_timer_value(RTT)); 
} 
 
// configure UART console 
static void configure_console(void) 
{ 
    const usart_serial_options_t uart_serial_options = { 
 .baudrate = CONF_UART_BAUDRATE, 
 .paritytype = CONF_UART_PARITY}; 
    // configure console UART 
    sysclk_enable_peripheral_clock(CONSOLE_UART_ID); 
    pio_configure_pin_group(CONF_UART_PIO, CONF_PINS_UART, CONF_PINS_UART_FLAGS); 
    stdio_serial_init(CONSOLE_UART, &uart_serial_options); 
} 
 
/*Use to find median */ 
void swap(uint16_t *p,uint16_t *q) 
{ 
    uint16_t t; 
 
    t=*p; 
    *p=*q; 
    *q=t; 
} 
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void sort(uint16_t arr[]) 
{ 
    int l,m; 
 
    for(l=0;l<MEDIAN_COUNT;l++) 
    { 
        for(m=0;m<MEDIAN_COUNT-l-1;m++) 
        { 
            if(arr[m]>arr[m+1]) 
            swap(&arr[m],&arr[m+1]); 
        } 
    } 
} 
 
/** * ADC Interrupt Handler * Reads in from 4 ADC channels */ 
void ADC_Handler(void) 
{ 
    // Check the ADC conversion status 
    if ((adc_get_status(ADC) & ADC_IER_EOC5) == ADC_IER_EOC5) 
    { 
        //adc_disable_interrupt(ADC, ADC_IDR_EOC5); // slows interrupt for UART 
        if (STORE == TRUE) 
        { 
            /* store data locally before output */ 
            /* comment out channel disable/enables in this ISR */ 
   
            /* Get latest digital data value from ADC and can be used by  
             * application */ 
            // for median code 
            //v_in[k] = adc_get_channel_value(ADC, ADC_CHANNEL_0); 
            //i_in[k] = adc_get_channel_value(ADC, ADC_CHANNEL_1); 
            //v_out[k] = adc_get_channel_value(ADC, ADC_CHANNEL_4); 
            //i_out[k] = adc_get_channel_value(ADC, ADC_CHANNEL_5); 
    
            v_in_shadow[j] = adc_get_channel_value(ADC, ADC_CHANNEL_0); 
            i_in_shadow[j] = adc_get_channel_value(ADC, ADC_CHANNEL_1); 
            v_out_shadow[j] = adc_get_channel_value(ADC, ADC_CHANNEL_4); 
            i_out_shadow[j] = adc_get_channel_value(ADC, ADC_CHANNEL_5); 
            timestamp_shadow[j] = (unsigned int) tc_read_cv(TC, 
                TC_CHANNEL_CAPTURE); 
            j++; 
            //k++; 
            //if (k >= MEDIAN_COUNT) 
            //{ 
                //sort(v_in); 
                //v_in_shadow[j] = v_in[MEDIAN_LOCATION]; 
                //sort(i_in); 
                //i_in_shadow[j] = i_in[MEDIAN_LOCATION]; 
                //sort(v_out); 
                //v_out_shadow[j] = v_out[MEDIAN_LOCATION]; 
                //sort(i_out); 
                //i_out_shadow[j] = i_out[MEDIAN_LOCATION]; 
                //timestamp_shadow[j] = (unsigned int) tc_read_cv(TC, 
                //    TC_CHANNEL_CAPTURE); 
                //j++; 
                //k = 0; 
      //} 
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      if (j >= SHADOW_SIZE) 
      { 
                STORE = FALSE; 
                puts("Stored\r"); 
                tc_disable_interrupt(TC, TC_CHANNEL_CAPTURE, TC_SR_COVFS); 
                j = 0; 
            } 
        }    
  //else if (MEDIAN == TRUE) 
  //{ 
      ////adc_disable_interrupt(ADC, ADC_IDR_EOC5); 
      //// Get latest value from ADC and can be used by application 
      //v_in[k] = adc_get_channel_value(ADC, ADC_CHANNEL_0); 
      //i_in[k] = adc_get_channel_value(ADC, ADC_CHANNEL_1); 
      //v_out[k] = adc_get_channel_value(ADC, ADC_CHANNEL_4); 
      //i_out[k] = adc_get_channel_value(ADC, ADC_CHANNEL_5); 
      //k++; 
      //if (k >= MEDIAN_COUNT) 
      //{ 
    //MEDIAN = FALSE; 
    //puts("Median\r"); 
    //k = 0; 
      //} 
  //} 
  /*Data capture only - Comment out if controlling hardware*/ 
  //else if (FEED == TRUE) 
  //{ 
      //printf("%04u %04u %04u %04u\n\r", v_in_default, i_in_default, 
                v_out_default, i_out_default); 
  //} 
  else 
  { 
      v_in_default = adc_get_channel_value(ADC, ADC_CHANNEL_0); 
      i_in_default = adc_get_channel_value(ADC, ADC_CHANNEL_1); 
      v_out_default = adc_get_channel_value(ADC, ADC_CHANNEL_4); 
      i_out_default = adc_get_channel_value(ADC, ADC_CHANNEL_5); 
  } 
   
  adc_start(ADC); 
  //adc_enable_interrupt(ADC, ADC_IER_EOC5); // slows interrupt for UART 
   
  /* uncomment for RTT timing */ 
  /* time = rtt_read_timer_value(RTT) / [counter=10000] / [SCLK=32.768kHz]*/ 
        //if(++counter == 10000) 
  //{ 
  //printf("Time: %u\n\r", (unsigned int)rtt_read_timer_value(RTT)); 
  //counter = 0; 
  //configure_rtt(); 
        //} 
    } 
} 
 
// configure ADC 
static void adc_setup(void) 
{ 
    sysclk_enable_peripheral_clock(ID_ADC); 
    adc_init(ADC, sysclk_get_cpu_hz(), ADC_CLOCK, 8); 
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    adc_configure_timing(ADC, 0, ADC_SETTLING_TIME_3, 1); 
    adc_set_resolution(ADC, ADC_MR_LOWRES_BITS_10); 
    adc_enable_channel(ADC, ADC_CHANNEL_0); 
    adc_enable_channel(ADC, ADC_CHANNEL_1); 
    adc_enable_channel(ADC, ADC_CHANNEL_4); 
    adc_enable_channel(ADC, ADC_CHANNEL_5); 
    adc_disable_anch(ADC); //sync Gain, Offset and Differential mode values to Ch0 
    //set gain of 2 for all channels 
    adc_set_channel_input_gain(ADC, ADC_CHANNEL_0, ADC_GAINVALUE_2); 
    NVIC_EnableIRQ(ADC_IRQn); 
    adc_enable_interrupt(ADC, ADC_IER_EOC5); 
    adc_configure_trigger(ADC, ADC_TRIG_SW, 0); 
    //adc_configure_trigger(ADC, ADC_TRIG_SW, ADC_MR_FREERUN_ON); 
}    
 
/* PWM Handler * updates PWM duty cycle */ 
void PWM_Handler(void) 
{ 
    static uint32_t ul_duty = 0; 
    uint32_t ul_status; 
    static uint8_t uc_count = 0; 
    static uint8_t uc_flag = 1; 
    ul_status = pwm_channel_get_interrupt_status(PWM); 
    if ((ul_status & PWM_CHANNEL_0) == PWM_CHANNEL_0) 
    { 
        uc_count++; 
  if (uc_count == 10) 
  { 
     if (uc_flag) 
         { 
       ul_duty++; 
       if (ul_duty == 100) 
           uc_flag = 0; 
   } 
   else 
   { 
       ul_duty--; 
       if (ul_duty == 0) 
           uc_flag = 1; 
   } 
   uc_count = 0; 
   pwm_channel_instance.channel = PWM_CHANNEL_0; 
   pwm_channel_update_duty(PWM, &pwm_channel_instance, ul_duty); 
  } 
    } 
} 
 
static void pwm_setup (void) 
{ 
    pio_configure_pin(PWM_DAC, PIO_TYPE_PIO_PERIPH_B); 
    sysclk_enable_peripheral_clock(ID_PWM); 
    pwm_channel_disable(PWM, PWM_CHANNEL_0); 
    pwm_clock_t clock_setting = { 
        .ul_clka = PWM_FREQ * PWM_PERIOD, 
  .ul_clkb = 0, 
  .ul_mck = sysclk_get_cpu_hz() 
    }; 
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    pwm_init(PWM, &clock_setting); 
    pwm_channel_instance.ul_prescaler = PWM_CMR_CPRE_CLKA; 
    pwm_channel_instance.polarity = PWM_HIGH; 
    pwm_channel_instance.ul_period = PWM_PERIOD; 
    pwm_channel_instance.ul_duty = 0; 
    pwm_channel_instance.channel = PWM_CHANNEL_0; 
    pwm_channel_init(PWM, &pwm_channel_instance); 
    pwm_channel_enable_interrupt(PWM, PWM_CHANNEL_0, 0); 
} 
 
// Configure TC TC_CHANNEL_CAPTURE in capture operating mode 
static void tc_capture_initialize(void) 
{ 
    sysclk_enable_peripheral_clock(ID_TC_CAPTURE); 
    // Initialize TC to capture mode 
    tc_init(TC, TC_CHANNEL_CAPTURE,TC_CAPTURE_TIMER_SELECTION); 
} 
 
// Interrupt handler for the TC TC_CHANNEL_CAPTURE 
void TC_Handler(void) 
{ 
    // do nothing - needs this in handler to work properly 
    if ((tc_get_status(TC, TC_CHANNEL_CAPTURE) & TC_SR_COVFS) == TC_SR_COVFS) 
    { 
        /*uncomment to output timer frequency to Ext 1 pin 5*/ 
  /*timer frequency = [frequency on pin 5] * [2^16=counter overflow value]*/ 
  //VALUE = !VALUE; 
  //ioport_set_pin_level(TIMER_OUT, VALUE); 
    } 
} 
 
static void tc_setup (void) 
{ 
    pio_configure_pin(TIMER_TC0, PIO_TYPE_PIO_PERIPH_B); 
    tc_capture_initialize(); 
    NVIC_DisableIRQ(TC_IRQn); 
    NVIC_ClearPendingIRQ(TC_IRQn); 
    NVIC_SetPriority(TC_IRQn, 0); 
    NVIC_EnableIRQ(TC_IRQn); 
} 
 
int main (void) 
{ 
    int PWM_count = 0; 
    int index; 
  
    sysclk_init(); 
    board_init(); 
  
    // disable watchdog 
    WDT->WDT_MR = WDT_MR_WDDIS; 
  
    // to measure timer frequency only 
    ioport_init(); 
    ioport_set_pin_dir(TIMER_OUT, IOPORT_DIR_OUTPUT); 
  
    // insert application code here, after the board has been initialized 
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    configure_console(); 
    adc_setup(); 
    pwm_setup(); 
    tc_setup(); 
  
    // output example information 
    puts("Hello World!\r"); 
    printf("Clock: %u\n\r", sysclk_get_cpu_hz()); 
    counter = 0; 
    adc_start(ADC); 
    pwm_channel_enable(PWM, PWM_CHANNEL_0); 
  
    char input; 
  
    while (1) 
    { 
        input = getchar(); 
        switch(input) 
        { 
      // test serial connection 
      case 'a': 
      printf("%c\n\r", input); 
      ioport_toggle_pin_level(LED_0_PIN); 
      break; 
    
      //Print out the 4 ADC values 
      case 'p': 
      printf("ADC Values: %u %u %u %u\n\r", v_in_default, i_in_default, 
                v_out_default, i_out_default); 
      //duty_calc = (int) ((2.6/1024*V_in*2)/3.3*100); 
      //pwm_channel_update_duty(PWM, &pwm_channel_instance, duty_calc); 
      break; 
    
      //case 'm': 
      //MEDIAN = TRUE; 
      //break; 
    
      //case 'w': 
      //for(index=0;index<MEDIAN_COUNT;index++) 
      //{ 
          //printf("%u %u %u %u\n\r",v_in[index],i_in[index],v_out[index], 
                //    i_out[index]); 
            //} 
            //sort(v_in); 
            //v_in_med = v_in[MEDIAN_LOCATION]; 
            //sort(i_in); 
            //i_in_med = i_in[MEDIAN_LOCATION]; 
            //sort(v_out); 
            //v_out_med = v_out[MEDIAN_LOCATION]; 
            //sort(i_out); 
            //i_out_med = i_out[MEDIAN_LOCATION]; 
            //for(index=0;index<MEDIAN_COUNT;index++) 
            //{ 
                //printf("Sort %u %u %u %u\n\r", v_in[index], i_in[index],  
                //    v_out[index], i_out[index]); 
            //} 
            //printf("Med %u %u %u %u\n\r", v_in_med, i_in_med, v_out_med,  
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            //    i_out_med); 
      //break; 
    
      //Data capture only 
      //Comment out if controlling hardware 
      //case 'f': 
      //if (FEED == FALSE) 
      //{ 
          //configure_rtt(); 
    //printf("Time: %u\n\r", (unsigned int)rtt_read_timer_value(RTT)); 
      //} 
      //FEED = !FEED; 
      //if (FEED == FALSE) 
      //{ 
          //printf("Time: %u\n\r",(unsigned int) rtt_read_timer_value(RTT)); 
    //configure_rtt(); 
      //} 
      //break; 
    
      // store SHADOW_SIZE number of ADC values at max speed 
      case 's': 
      tc_enable_interrupt(TC, TC_CHANNEL_CAPTURE, TC_SR_COVFS); 
      tc_start(TC, TC_CHANNEL_CAPTURE); 
      STORE = TRUE; 
      break; 
    
      // output stored data to terminal 
      case 'o': 
      for (index = 0; index < SHADOW_SIZE; index++) 
      { 
          printf("%04u %04u %04u %04u %u\n\r", v_in_shadow[index],  
                    i_in_shadow[index], v_out_shadow[index], i_out_shadow[index],  
                    timestamp_shadow[index]); 
      } 
      break; 
    
      //Output PWM voltage to test 
      case 'v': 
      PWM_count++; 
      if (PWM_count == 1) 
          pwm_channel_update_duty(PWM, &pwm_channel_instance, 1); 
      else if (PWM_count == 2) 
          pwm_channel_update_duty(PWM, &pwm_channel_instance, 4); 
      else 
      { 
          pwm_channel_update_duty(PWM, &pwm_channel_instance, 0); 
          PWM_count = 0; 
      } 
      puts("PWM Duty Cycle Changed\r"); 
      break; 
    
            default: 
      ioport_set_pin_level(LED_0_PIN, !LED_0_ACTIVE); 
        } 
    } 
} 
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Appendix E. Microcontroller Code Final ANN Implementation 

/** 
 * ANN Network Code - press 'r' to enter network mode 
 * Excess deleted for readability 
 * Some features explored during experiments are commented out since didn't show 
 * significant improvements. 
 */ 
/** 
 * \mainpage User Application template doxygen documentation 
 * 
 * \par Empty user application template 
 * 
 * This is a bare minimum user application template. 
 * 
 * For documentation of the board, go \ref group_common_boards "here" for a link 
 * to the board-specific documentation. 
 * 
 * \par Content 
 * 
 * -# Include the ASF header files (through asf.h) 
 * -# Minimal main function that starts with a call to board_init() 
 * -# Basic usage of on-board LED and button 
 * -# "Insert application code here" comment 
 * 
 */ 
/* 
 * Include header files for all drivers that have been imported from 
 * Atmel Software Framework (ASF). 
 */ 
/* 
 * Support and FAQ: visit <a href="http://www.atmel.com/design-support/">Atmel  
 * Support</a> 
 */ 
#include <asf.h> 
#include <stdbool.h> 
#include <stdio.h> 
#include <math.h> 
#include <arm_math.h> // needed for float32_t typedef 
#define ADC_CLOCK 22000000 
#define PWM_FREQ 1000000 
#define PWM_PERIOD 50 
#define FALSE 0 
#define TRUE !(FALSE) 
#define PWM_DAC IOPORT_CREATE_PIN(PIOA, 23) 
#define TIMER_TC0 IOPORT_CREATE_PIN(PIOA, 29) 
#define TIMER_OUT IOPORT_CREATE_PIN(PIOA, 24) 
#define TC_CAPTURE_TIMER_SELECTION TC_CMR_TCCLKS_TIMER_CLOCK3 
 
#define NUM_HID 18 
#define NUM_IN 4 
#define BIAS -1 
#define ETA 0.01 // learning coefficient 
 
// Define resistor values (kOhms), reducing math in ANN loop 
#define R2 270 // top feedback DC-DC converter 
#define R1 10  // bottom feedback 
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#define R3 5.6 // isolation resistor 
#define R4 10  // PWM R of Low-pass filter 
 
uint16_t p = 0; 
 
float32_t r1_par_r2; 
float32_t r1_par_r2r3; 
float32_t a, b; 
float32_t c; 
 
float input[NUM_IN] = {0}; 
float32_t H[NUM_HID] = {0}; 
float32_t x2[NUM_HID] = {0}; 
float32_t x3_1; 
float32_t out; 
float32_t weightb[(NUM_HID+1)] = {-1.1289, -0.4050,  0.5334, -0.9252, -0.1694, 
                                  -0.9923,  0.2232, -1.3877, -0.1787, -2.3424, 
                                  -0.4919,  1.2214,  0.8009,  0.0282, -0.0374, 
                                   0.0108,  0.3165, -0.2409, 
                                  -0.0010}; // output neuron bias in last index 
float32_t weights[NUM_HID][NUM_IN] = { {-0.8723, -0.4713, -0.4880, -1.0827}, 
                                       { 0.5521, -0.1729,  0.6203,  0.4431}, 
                                       { 1.0083,  0.4620, -0.1606, -0.4845}, 
                                       {-0.5788,  0.0004,  1.0885, -0.7678}, 
                                       {-0.0694, -0.4512,  0.2015, -0.8104}, 
                                       { 0.2729, -0.4276, -0.2746, -0.3278}, 
                                       {-0.8403,  0.9638,  0.1556, -0.5760}, 
                                       { 0.2155, -0.1364,  0.8861, -0.3022}, 
                                       { 0.0820,  0.8244, -0.6873, -0.1296}, 
                                       { 0.1107, -0.1501,  0.0814,  2.1392}, 
                                       { 0.0859,  0.6584, -0.1520, -0.4005}, 
                                       { 0.5715,  0.7339, -0.8521,  0.2963}, 
                                       { 0.0797,  0.1608,  0.4125, -0.0641}, 
                                       { 0.5481, -0.1283, -0.8556,  0.2243}, 
                                       {-0.7602, -0.2452,  0.1496,  0.1151}, 
                                       {-0.0841,  0.9460,  0.6869, -0.4156}, 
                                       { 0.6410,  0.1255, -0.3265, -0.4245}, 
                                       { 0.1217,  0.5005,  0.8240,  0.2095} }; 
float32_t weighto[NUM_HID] = {-0.8557, -0.3514,  0.2440, -0.4725,  1.1281, 
                               0.8227,  0.3846,  1.2816, -0.0343, -2.0152, 
                               0.3341, -0.9898, -0.3077,  0.5729, -0.1583, 
                              -0.1631, -0.6019,  0.4574}; 
float32_t delta2 [NUM_HID]; 
float32_t delta3_1; 
float32_t des_output; 
uint8_t duty = PWM_PERIOD; 
float32_t duty_NN; 
float32_t v_out; 
float32_t v_pwm; 
float32_t v_feedback_des; 
float32_t v_feedback_NN; 
float32_t v_FB_norm; 
 
int counter; 
uint32_t j = 0; 
volatile _Bool DONE = 1; 
uint16_t v_in_default; 
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uint16_t i_in_default; 
uint16_t v_out_default; 
uint16_t i_out_default; 
uint16_t v_in_buf; 
uint16_t i_in_buf; 
uint16_t v_out_buf; 
uint16_t i_out_buf; 
 
pwm_channel_t pwm_channel_instance; 
 
static void configure_rtt(void) 
{ 
    uint32_t ul_previous_time; 
    // configure RTT for an interrupt per slow clock (32.768 kHz) period 
    rtt_init(RTT, 1); 
    ul_previous_time = rtt_read_timer_value(RTT); 
    while (ul_previous_time == rtt_read_timer_value(RTT)); 
} 
 
// configure UART console 
static void configure_console(void) 
{ 
    const usart_serial_options_t uart_serial_options = { 
        .baudrate = CONF_UART_BAUDRATE, 
        .paritytype = CONF_UART_PARITY 
    }; 
    // configure console UART 
    sysclk_enable_peripheral_clock(CONSOLE_UART_ID); 
    pio_configure_pin_group(CONF_UART_PIO, CONF_PINS_UART, CONF_PINS_UART_FLAGS); 
    stdio_serial_init(CONSOLE_UART, &uart_serial_options); 
} 
 
/*Start ANN Functions */ 
// normalize input neurons 
void precalculate_constants (void) 
{ 
    r1_par_r2 = (float32_t) (R1 * R2) / (R1 + R2); 
    a = r1_par_r2 / (R4 + R3 + r1_par_r2); // V out of PWM scaler 
    r1_par_r2r3 = (R1 * (R3 + R4)) / (R1 + R3 + R4); 
    b = r1_par_r2r3 / (R2 + r1_par_r2r3); // Vout scaler 
    c = (float32_t) R1 / (R2 + R1); // feedback resistor voltage divider 
} 
void normalize_inputs(void) 
{ 
    //Normalized values=1 when Currents are 8.68 A (in) or 8.23 A (out), 
        //Voltages to 70 V 
    input[0] = (((float32_t) v_in_buf) / 454) - 1.0; // v_in_buf normalized 
    input[1] = (((float32_t) i_in_buf) / 428) - 1.0; // i_in_buf normalized 
    input[2] = (((float32_t) v_out_buf) / 454) - 1.0; // v_out_buf normalized 
    input[3] = (((float32_t) i_out_buf) / 352) - 1.0; // i_out_buf normalized 
} 
// Correlate Feedback Voltage to Duty Cycle 
void update_duty (void) 
{ 
    v_feedback_NN = (out + 1) * 1.25; 
    v_pwm = (v_feedback_NN - (v_out * b)) / a; 
    duty = (uint8_t) ((v_pwm / 3.3 * PWM_PERIOD) + 0.5); 
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    if (duty < (.9*PWM_PERIOD) && (i_out_buf > 425)) 
        duty = PWM_PERIOD; 
    if ((duty>PWM_PERIOD) || (v_out_buf>523) || (i_out_buf>480) || (i_in_buf>600)) 
        duty = PWM_PERIOD; 
    else if (duty < 0) 
        duty = 30; 
    pwm_channel_update_duty(PWM, &pwm_channel_instance, duty); 
} 
// Calculate desired output 
void update_output_des (void) 
{ 
    v_feedback_des = (v_out * c); //v feedback desired 
    des_output = (v_feedback_des / 1.25) - 1.0; 
} 
// update output 
void update_out(void) 
{ 
    uint8_t i_h; 
    uint8_t i_x1; 
 
    // Hidden layer 
    for (i_h=0;i_h<NUM_HID;i_h++) 
    { 
        H[i_h] = BIAS * weightb[i_h]; 
        for(i_x1=0;i_x1<NUM_IN;i_x1++) 
        { 
            H[i_h] += input[i_x1] * weights[i_h][i_x1]; 
        } 
        x2[i_h] = tanhf(H[i_h]); //hyperbolic tangent function 
    } 
    // Output layer 
    x3_1 = BIAS * weightb[(NUM_HID+1)]; 
    for(i_h=0;i_h<NUM_IN;i_h++) 
    { 
        x3_1 += x2[i_h] * weighto[i_h]; 
    } 
    out = tanhf(x3_1); 
    update_duty(); 
    update_output_des(); 
} 
// update weights and bias values 
void update_WnB(void) 
{ 
    uint8_t i_h; 
    uint8_t i_x1; 
 
    if ((v_out_buf > 411) && (v_out_buf < 425)) 
    { 
        return; // if voltage regulated well don't correct 
    } 
    // Adjust delta values of weights for output layer: 
    // delta(wi) = xi*delta 
    delta3_1 = (1-out)*(1+out)*((des_output)-out); 
    // Propagate the delta backwards into hidden layers 
    for (i_h=0;i_h<NUM_HID;i_h++) 
    { 
        delta2[i_h] = (1-x2[i_h])*(1+x2[i_h])*weighto[i_h]*delta3_1; 
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    } 
    // Add weight changes to original weights; use new weights to repeat process 
    // delta weight = coeff*x*delta 
    // Bias cases 
    for (i_h=0;i_h<NUM_HID;i_h++) 
    { 
        weightb[i_h] += ETA * BIAS * delta2[i_h]; 
    } 
    weightb[NUM_HID+1] += ETA * BIAS * delta3_1; 
    for (i_x1=0;i_x1<NUM_IN;i_x1++) 
    { 
        for (i_h=0;i_h<NUM_IN;i_h++) 
        { 
            weights[i_h][i_x1] += ETA * input[i_x1] * delta2[i_h]; 
        } 
    } 
    for (i_h=0;i_h<NUM_HID;i_h++) 
    { 
        weighto[i_h] += ETA * x2[i_h] * delta3_1; 
    } 
} 
 
/** * ADC Interrupt Handler * Reads in from 4 ADC channels */ 
void ADC_Handler(void) 
{ 
    // Check the ADC conversion status 
    if ((adc_get_status(ADC) & ADC_IER_EOC5) == ADC_IER_EOC5) 
    { 
        v_in_default = adc_get_channel_value(ADC, ADC_CHANNEL_0); 
        i_in_default = adc_get_channel_value(ADC, ADC_CHANNEL_1); 
        v_out_default = adc_get_channel_value(ADC, ADC_CHANNEL_4); 
        i_out_default = adc_get_channel_value(ADC, ADC_CHANNEL_5); 
        adc_start(ADC); 
  
        if (!DONE) 
        { 
            v_in_buf = v_in_default; 
            i_in_buf = i_in_default; 
            v_out_buf = v_out_default; 
            i_out_buf = i_out_default; 
            DONE = TRUE; 
        } 
  
        /* uncomment for RTT timing */ 
        /* time = rtt_read_timer_value(RTT) / [counter=10000] / [SCLK=32.768kHz]*/ 
        //if(++counter == 10000) 
        //{ 
        //printf("Time: %u\n\r", (unsigned int)rtt_read_timer_value(RTT)); 
        //counter = 0; 
        //configure_rtt(); 
        //} 
    } 
} 
 
// configure ADC 
static void adc_setup(void) 
{ 
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    sysclk_enable_peripheral_clock(ID_ADC); 
    adc_init(ADC, sysclk_get_cpu_hz(), ADC_CLOCK, 8); 
    adc_configure_timing(ADC, 0, ADC_SETTLING_TIME_3, 1); 
    adc_set_resolution(ADC, ADC_MR_LOWRES_BITS_10); 
    adc_enable_channel(ADC, ADC_CHANNEL_0); 
    adc_enable_channel(ADC, ADC_CHANNEL_1); 
    adc_enable_channel(ADC, ADC_CHANNEL_4); 
    adc_enable_channel(ADC, ADC_CHANNEL_5); 
    adc_disable_anch(ADC); //sync Gain, Offset and Differential mode values to Ch0 
    //set gain of 2 for all channels 
    adc_set_channel_input_gain(ADC, ADC_CHANNEL_0, ADC_GAINVALUE_2); 
    NVIC_EnableIRQ(ADC_IRQn); 
    adc_enable_interrupt(ADC, ADC_IER_EOC5); 
    adc_configure_trigger(ADC, ADC_TRIG_SW, 0); 
    //adc_configure_trigger(ADC, ADC_TRIG_SW, ADC_MR_FREERUN_ON); 
} 
 
/* PWM Handler * updates PWM duty cycle */ 
void PWM_Handler(void) 
{ 
    static uint32_t ul_duty = 0; 
    uint32_t ul_status; 
    static uint8_t uc_count = 0; 
    static uint8_t uc_flag = 1; 
    ul_status = pwm_channel_get_interrupt_status(PWM); 
    if ((ul_status & PWM_CHANNEL_0) == PWM_CHANNEL_0) 
    { 
        uc_count++; 
        if (uc_count == 10) 
        { 
            if (uc_flag) 
            { 
                ul_duty++; 
                if (ul_duty == 100) 
                    uc_flag = 0; 
            } 
            else 
            { 
                ul_duty--; 
                if (ul_duty == 0) 
                    uc_flag = 1; 
            } 
            uc_count = 0; 
            pwm_channel_instance.channel = PWM_CHANNEL_0; 
            pwm_channel_update_duty(PWM, &pwm_channel_instance, ul_duty); 
        } 
    } 
} 
 
static void pwm_setup (void) 
{ 
    pio_configure_pin(PWM_DAC, PIO_TYPE_PIO_PERIPH_B); 
    sysclk_enable_peripheral_clock(ID_PWM); 
    pwm_channel_disable(PWM, PWM_CHANNEL_0); 
    pwm_clock_t clock_setting = { 
        .ul_clka = PWM_FREQ * PWM_PERIOD, 
        .ul_clkb = 0, 
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        .ul_mck = sysclk_get_cpu_hz() 
    }; 
    pwm_init(PWM, &clock_setting); 
    pwm_channel_instance.ul_prescaler = PWM_CMR_CPRE_CLKA; 
    pwm_channel_instance.polarity = PWM_HIGH; 
    pwm_channel_instance.ul_period = PWM_PERIOD; 
    pwm_channel_instance.ul_duty = PWM_PERIOD; // start PWM driving voltage down 
    pwm_channel_instance.channel = PWM_CHANNEL_0; 
    pwm_channel_init(PWM, &pwm_channel_instance); 
    pwm_channel_enable_interrupt(PWM, PWM_CHANNEL_0, 0); 
} 
 
// Configure TC TC_CHANNEL_CAPTURE in capture operating mode 
static void tc_capture_initialize(void) 
{ 
    sysclk_enable_peripheral_clock(ID_TC_CAPTURE); 
    // Initialize TC to capture mode 
    tc_init(TC, TC_CHANNEL_CAPTURE,TC_CAPTURE_TIMER_SELECTION); 
} 
 
// Interrupt handler for the TC TC_CHANNEL_CAPTURE 
void TC_Handler(void) 
{ 
    // do nothing - needs this in handler to work properly 
    if ((tc_get_status(TC, TC_CHANNEL_CAPTURE) & TC_SR_COVFS) == TC_SR_COVFS) {} 
} 
 
static void tc_setup (void) 
{ 
    pio_configure_pin(TIMER_TC0, PIO_TYPE_PIO_PERIPH_B); 
    tc_capture_initialize(); 
    NVIC_DisableIRQ(TC_IRQn); 
    NVIC_ClearPendingIRQ(TC_IRQn); 
    NVIC_SetPriority(TC_IRQn, 0); 
    NVIC_EnableIRQ(TC_IRQn); 
} 
 
int main (void) 
{ 
    uint8_t PWM_count = 0; 
    int index; 
 
    sysclk_init(); 
    board_init(); 
 
    // disable watchdog 
    WDT->WDT_MR = WDT_MR_WDDIS; 
 
    // to measure timer frequency only 
    ioport_init(); 
    ioport_set_pin_dir(TIMER_OUT, IOPORT_DIR_OUTPUT); 
 
    // insert application code here, after the board has been initialized 
    configure_console(); 
    adc_setup(); 
    pwm_setup(); 
    tc_setup(); 
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    precalculate_constants(); 
 
    // output example information 
    puts("Hello World!\r"); 
    printf("Clock: %u\n\r", sysclk_get_cpu_hz()); 
    counter = 0; 
    adc_start(ADC); 
    pwm_channel_enable(PWM, PWM_CHANNEL_0); 
 
    char letter; 
 
    while (1) 
    { 
        letter = getchar(); 
        switch(letter) 
        { 
            // test serial connection 
            case 'a': 
            printf("%c\n\r", letter); 
            ioport_toggle_pin_level(LED_0_PIN); 
            //printf("e: %.50f\r\n", tanh(.5)); 
            break; 
    
            //Print out the 4 ADC values 
            case 'p': 
            printf("ADC Values: %u %u %u %u\n\r", v_in_default, i_in_default, 
                v_out_default, i_out_default); 
            break; 
    
            /** run ANN **/ 
            case 'r': 
            puts("Running ANN\r"); 
            // fill buffers 
            DONE = FALSE; 
            while(!DONE){} 
            //let converter reach nominal output voltage; soft start 
            //while((v_out_buf < 405) && (duty > 0)) 
            //{ 
                //DONE = FALSE; 
                //while(!DONE){} 
                //duty--; 
                //pwm_channel_update_duty(PWM, &pwm_channel_instance, duty); 
                //delay_ms(10); //delay some time preventing duty cycle undershoot 
            //} 
            puts("main loop\r"); 
            while(1) 
            { 
                /* uncomment for RTT timing */ 
                /*time=rtt_read_timer_value(RTT)/[counter=1000]/[SCLK=32.768kHz]*/ 
                //if(++counter == 1000) 
                //{ 
                    //printf("Time: %u\n\r", (unsigned int)  
                    //    rtt_read_timer_value(RTT)); 
                    //counter = 0; 
                    //configure_rtt(); 
                //} 
                DONE = FALSE; 
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                while(!DONE){} 
                v_out = (((float32_t) v_out_buf) + 0.9844) / 11.646; 
                normalize_inputs(); 
                update_out(); 
                update_WnB(); 
            } 
            break; 
   
            //Output PWM voltage to test 
            case 'v': 
            PWM_count++; 
            if (PWM_count == 1) 
                pwm_channel_update_duty(PWM, &pwm_channel_instance,PWM_PERIOD/10); 
            else if (PWM_count == 2) 
                pwm_channel_update_duty(PWM, &pwm_channel_instance, PWM_PERIOD/2); 
            else 
            { 
                pwm_channel_update_duty(PWM, &pwm_channel_instance, PWM_PERIOD); 
                PWM_count = 0; 
            } 
            puts("PWM Duty Cycle Changed\r"); 
            break; 
    
            default: 
                ioport_set_pin_level(LED_0_PIN, !LED_0_ACTIVE); 
        } 
    } 
} 
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Appendix F. Early ANN Simulations Discovering Errors and Training XOR 

This appendix includes early ANN simulations, before confirming the feedback pin to the 

LT8705 chip acts as proportional gain. Here the simulations assume the feedback connects to a 

comparator providing only high or low values to the buck-boost logic. Throughout this appendix 

the training and validation data graphs follow the pattern that the red data series contains the 

ideal output, while the blue has the actual ANN output. If the graphs do not contain color, the 

ideal output data series corresponds to the data series with corners or clear discontinuities. 

F.1 Performance of Neural Network for XOR Function 

The first attempt to learn the XOR function only uses 2 hidden neurons since this 

theoretically works. These simulations often work, but the main function continually decreases 

mean-squared error, as the error plots show in working simulations. In the first run, the output 

neuron shows -0.0024, 0.9916, 0.9819, and -0.0469. These values come close to the ideal 

values, but the MSE of 6.5e-04 after 100,000 iterations still exceeds the desired level after more 

than enough iterations. 

 

Figure 49. RMSE of Error after Each Iteration – Training XOR Function on Low Level Code 
with 2 Hidden Neurons, Example 1 
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Examining the error plotted against the number of iterations in Figure 49, the error moves 

up and down sporadically, which explains the large number of iterations without a smaller MSE. 

This run shows that more hidden neurons would help the neural network characterize the function 

quicker and closer to the theoretical values. 

The next attempt to train the neural network increases the hidden neurons number to 4. 

The error threshold maintained at 0.01 still corresponds to a MSE of 2.5e-05. Running this code 

30 times testing repeatability, each run achieved the error threshold before reaching the max 

iterations. The code also corrects updating of weights connecting from the input neurons to the 

hidden layer. Figure 50 shows the ideal error graph shape, where the error decreases with more 

iterations. Still the network could train with less than 72,620 iterations. This run demonstrates the 

hidden layer needs additional neurons to quickly characterize the XOR function. 

 

Figure 50. RMSE of Error after Each Iteration – Training XOR Function on Low Level Code 
with 4 Hidden Neurons 

 
At this point, learning how to debug a simple function teaches me the same techniques 

that I need to employ to teach this same neural network to mimic my application specific data. 

Previously, I thought a steeper activation function would help produce binary output values as I 

want, but with this example, this seems unnecessary. To decrease convergence time for this 
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function, I could have tried optimizing the learning rate, also known as the η value, but I reserve 

this step for the actual dataset. 

F.2 Performance of Neural Network for dVout Data with 4 Hidden Neurons 

The next run aligns with a normal operation of neural networks with DC-DC converters. 

Usually the network regulates the voltage instead of using a controller chip. This run only uses 4 

input neurons, excluding the inverter current. However, it uses all data points with load currents 

varying from 1 to 4 A as obtained from Andrew Forster’s tests [9]. The error threshold increased 

to 0.1 allows the simulation to end sooner. I found this allows the simulation to reach this goal 

sooner, and the small MSE deems this test as adequate. The algorithm achieved a MSE of just 

8.13e-05, while the only running 3,922 iterations. 

 

Figure 51. Training dVout Data on Low Level Code with 4 Hidden Neurons – Output 

Figure 51 shows the output of the neural network after passing the inputs in. The red 

waveform, which has perfectly sharp corners, denotes the desired output, while the blue, which 

shows some ripple, denotes the output of the network. This simulation shows the ease with which 

this network controls the output voltage of the system. This response employs only 4 hidden 
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neurons, which shows the pattern is easily recognized by the network. To input the inverter 

current next, the input and hidden layers each must increase by one. 

 

Figure 52. RMSE of Error after Each Iteration – Training dVout Data on Low Level Code 
with 4 Hidden Neurons 

 
F.3 Performance of Neural Network for CCM Data with 5 Hidden Neurons 

This revision on the neural network uses 5 input neurons for the input data, including the 

current into the inverter. The hidden layer usually exceeds the input layer in size, so the hidden 

layer is increased to keep it the same size as the input layer. Figure 53 shows the output of the 

neural network plotted on top of the desired output after reaching the error threshold of 0.1 at 

20,122 iterations. The actual output does not have clean edges, since the training algorithm does 

not need to achieve perfection. This shows the neural network trained the specific data points to 

output the correct values. After running the code 10 times, the highest number of iterations hit a 

maximum at 100,000 and a minimum at 15,090. Therefore the network does not reach the error 

threshold once, but in all cases, the MSE is about 8.13e-05. The network output shows it clearly 

learns the right relationship between the inputs and outputs, supported by the small MSE. The 

neural network takes a long time to converge, however, so the next test investigates 

improvements. 
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Figure 53. Training Dataset on Low Level Code with 5 Hidden Neurons – Output 

 

Figure 54. RMSE of Error after Each Iteration – Training Dataset on Low Level Code with 5 
Hidden Neurons 
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F.4 Performance of Neural Network for CCM Data with 6 Hidden Neurons 

This test increases the hidden neuron layer size by one neuron. The added neuron 

enables the neural network to fit the data easier in less time. As Figure 55 shows, the data fits; 

however, the maximum number of iterations needed to reach the same error threshold is 64,454. 

The network never reaches the maximum iteration limit, and the network achieves 15,375 as the 

least number of iterations. Interestingly, the minimum numbers for the network with 6 neurons lie 

slightly higher than with 5 neurons, but the iteration number varies across a smaller range with 6 

neurons. 

 

Figure 55. Training Dataset on Low Level Code with 6 Hidden Neurons – Output 

At this point, optimization could continue, but this network does not test the real goal. The 

issue lies in that the output of the neural network only is tested at the point of training samples. 

Therefore the network always shows good output data. Moreover, the network could just 

memorize the order of the data samples and regurgitate them correctly without actually learning 

the desired patterns. The next section fixes these issues before optimizing the network to achieve 

the lowest number of iterations. 
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Figure 56. RMSE of Error after Each Iteration – Training Dataset on Low Level Code with 6 
Hidden Neurons 

 
F.5 ANN Implementation Using Low Level MATLAB Code and Validation Data 

To train the network and verify the training properly, a validation data set must test the 

neural network ability. This test found a number of issues simultaneously. First, the use of training 

data to test the neural network makes the training much easier, since the neural network already 

minimizes the error at those specific data points. When creating a validation dataset, I realized 

the normalization and dVout data was flawed. The dVout data only includes values at steady 

state of the DC-DC converter, which does not include large voltage drops the inverter causes to 

the output voltage of the converter. The solution to this issue changes the output voltage on some 

of the data points. Some points must lie above and some below 0 V with an estimated possible 

range of 30 V. This means the normalization changes as well. Second, the code did not employ a 

random training data order. The network therefore learns the data, but could have just memorized 

the order of the data. To help ensure the network learns the actual patterns, the network presents 

training data in a random order to the input neurons for each iteration. Third, the code had some 

copy-paste bugs, which improperly updated neuron weights. To fix this problem and prevent this 
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mistake from repeating, this version adds for loops to step through the hidden neurons. The code 

becomes significantly shorter due to this edit, but completes the same tasks. 

F.6 Low Level MATLAB Code with Validation Data Set and Small dVout Variation 

The next iteration runs the validation data and corrected code. The validation data ideally 

passes through the neural network without updating the weights between neurons, but a copy-

paste error left one variable name unchanged. Therefore the validation data output produced 

combined input data from the training data. This step produces more graphs during debugging 

and examination of training, but these additional graphs do not show any additional information. 

Rather, they just verify the neural proper network training at an intermediate step. Figure 57 

shows the output of the neural network during the last iteration. During this run, the training 

dataset doubled from previous runs due to the duplicated data. In the duplicated set, dVout 

changes to the negative of the previous value so the network could learn that dVout may vary 

above or below the desired voltage at any data point. The change in dVout causes the input 

current of the DC-DC converter to update. 

Additionally, this test reduces learning rate to 0.01. The low rate meant the simulation 

runs until it hits the iteration limit of 100,000 rather than the error threshold. Later simulation 

optimize the learning rate, but for now, choosing a small rate prevents the error from changing so 

much each data point that the output never converges to the desired output. Figure 58 shows this 

smaller learning rate decreasing the RMSE of the error slower than in previous iterations. 

The validation data set, fit by the neural network and shown in Figure 59, produces a 

mean-squared error of 0.0046. This number likely would increase if the neural network reached 

the error threshold of 0.1, while the error only reaches 0.26. The validation data and the training 

data do not surpass 4 A, which correlates to the largest current data taken reliably from the DC-

DC converter. The network learns these characteristics well, but training and validation data must 

encompass dVout more realistically for the next simulation. 
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Figure 57. Training 246 Point Dataset on Low Level Code with 6 Hidden Neurons – Output 

 

Figure 58. RMSE of Error after Each Iteration – Training 246 Point Dataset on Low Level 
Code with 6 Hidden Neurons 

 

Training Data Point Number 

 

A
N

N
 O

u
tp

u
t 



119 

 

 

Figure 59. Training 246 Point Dataset on Low Level Code with 6 Hidden Neurons – 
Validation 

 
The previous tests collectively prove the ANN code functions as desired and preserves 

the possibility of a working ANN controller in the EHFEM system. 
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