
COMPLEMENTARY COMPANION BEHAVIOR IN VIDEO GAMES

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Gavin Scott

June 2017

c© 2017

Gavin Scott

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: Complementary Companion Behavior in

Video Games

AUTHOR: Gavin Scott

DATE SUBMITTED: June 2017

COMMITTEE CHAIR: Foaad Khosmood, Ph.D.

Professor of Computer Science

COMMITTEE MEMBER: Alexander Dekhtyar, Ph.D.

Professor of Computer Science

COMMITTEE MEMBER: Franz Kurfess, Ph.D.

Professor of Computer Science

iii

ABSTRACT

Complementary Companion Behavior in Video Games

Gavin Scott

Companion characters in are present in many video games across genres, serving

the role of the player’s partner. Their goal is to support the player’s strategy and

to immerse the player by providing a believable companion. These companions often

only perform rigidly scripted actions and fail to adapt to an individual player’s play-

style, detracting from their usefulness. Behavior like this can also become frustrating

to the player if the companions become more of a hindrance than they are a benefit.

Other work, including this project’s precursor, focused on building companions that

mimic the player. These strategies customize the companion’s actions to each player,

but are limited. In the same context, an ideal companion would help further the

player’s strategy by finding complementary actions rather than blind emulation.

We propose a game-development framework that adds complementary (rather

than mimicking) companions to a video game. For the purposes of this framework

a “complementary” action is defined as any that furthers the player’s strategy both

in the immediate future as well as in the long-term. This is determined through a

combination of both player-action and game-state prediction processes, while allowing

the companion to experiment with actions the player hasn’t tried. We used a new

method to determine the location of companion actions based on a dynamic set

of regions customized to the individual player. A user study of game-development

students showed promising results, with a seventeen out of twenty-five participants

reacting positively to the companion behavior, and nineteen saying that they would

consider using the framework in future games.

iv

ACKNOWLEDGMENTS

Thanks to Dr. Foaad Khosmood for his advice and assistance throughout the de-

velopment of this project. Further thanks to Dr. Franz Kurfess and Dr. Alexander

Dekhtyar for taking the time to review this thesis, and to Daniel Toy, who worked

in parallel on a related project and often offered assistance. Finally, I would like

to thank everyone that participated in the user study and everyone (listed in the

appendix) whose art we used in our example games.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . x

CHAPTER

1 Introduction . 1

1.1 Description of the Problem . 1

1.2 Overview of the Solution . 2

1.3 Outline of the Paper . 5

2 Background . 6

2.1 Learn by Observation . 6

2.2 Adaptive Gameplay & A.I. 7

2.3 Classifiers . 8

2.3.1 Decision Trees . 8

2.3.2 Naive Bayes . 9

2.3.3 Linear Regression . 9

2.4 Tools . 10

3 Related Work . 11

3.1 Game State Prediction . 11

3.2 Player Strategy Prediction . 12

3.3 Frameworks . 14

3.3.1 jLOAF . 14

3.3.2 MimicA . 15

3.4 Examples of Companions in Published Games 16

4 Defining “Complementary” . 18

5 System Design: Complementary Decision Making 20

5.1 Overview . 20

5.2 Main Process . 22

5.3 Final Decision Sequence . 24

5.4 Example Decision . 26

vi

6 System Design: Implementation . 27

6.1 Framework . 27

6.1.1 Lord of Towers & Lord of Caves 28

6.2 Dynamic Region System . 31

6.3 Player Action Prediction . 33

6.4 Game-State Prediction . 34

6.4.1 Location Determination with “Safe Regions” 36

7 Experimental Design . 38

7.1 Methodology . 38

7.2 Qualitative Question Coding . 39

8 Results & Evaluation . 41

8.1 General Questions . 43

8.2 Companion Behavior . 46

8.3 Framework Usefulness to Developers 51

8.4 The “Blackout” Limitation . 52

8.5 Final Questions . 53

9 Conclusions . 55

9.1 Summary . 55

9.2 Challenges . 55

9.3 Summary of Contribution . 56

10 Future Work . 58

BIBLIOGRAPHY . 61

APPENDICES

A FEEDBACK SURVEY . 66

B FULL DECISION FLOWCHART . 74

C LORD OF TOWERS ARTWORK CREDITS 76

C.1 Sprites . 76

C.2 Sounds . 77

D INTEGRATION INSTRUCTIONS 79

D.1 Recording Game Data . 79

D.2 Defining Possible Actions . 80

D.3 Enabling Saving & Loading . 80

vii

D.4 Retrieving Complementary Actions 81

E Decsion-Making Algorithm . 82

viii

LIST OF TABLES

Table Page

6.1 Events in Lord of Towers . 29

8.1 Example responses for each classification for the strengths (S) &
weaknesses (W) free-response questions 44

8.2 Example responses for each classification for the stand-out (SO) &
noteworthy (N) features free-response questions 45

8.3 Example responses for each classification of the companion-behavior
free-response question . 46

8.4 Example responses for each classification of the free-response ques-
tion about how the companion was programmed 50

8.5 Example responses for each classification of free-response question
about comparing the companion to other games 50

8.6 Example responses for each classification of free-response question
about comparing the companion to other games 52

8.7 Example responses for each classification of free-response question
about comparing the companion to other games 54

ix

LIST OF FIGURES

Figure Page

1.1 A simplified flowchart showing an overview of the complementary
decision-making process . 3

1.2 A summary of companion-focused response sentiments across all
questions, split by group. The numbers at the ends of the bars
represent the ratio of positive to negative comments in that group. 4

5.1 A simplified flowchart showing an overview of the complementary
decision-making process . 21

5.2 The first portion of the decision making process 22

5.3 The second portion of the decision making process 25

6.1 An example of gameplay in “Lord of Towers” 29

6.2 An example of gameplay in “Lord of Caves” 30

6.3 An example of the dynamic region system. The first image shows
the regions after the first three player actions, where the numbers
indicate the order. The second shows how the regions are updated
after the player performs four more actions. 32

6.4 An example of the state-prediction region system with N = 3. The
first image shows the initial region, trimmed to border the player’s
actions. The second shows the finished regions after the splitting
process is complete. 37

8.1 A summary of answer sentiments to free-response questions and the
multiple-choice question regarding the behavior of the companion AI 42

8.2 A summary of companion-focused response sentiments across all
questions, split by group. The numbers at the ends of the bars
represent the ratio of positive to negative comments in that group. 42

8.3 A summary of responses to questions regarding participant enjoy-
ment of the game . 43

8.4 A summary of the results of the question about the game’s general
strengths and weaknesses . 44

8.5 The results of the questions about stand-out features of the game
and noteworthy features of the AI 45

x

8.6 The results of the question asking participants to describe the com-
panion’s behavior . 46

8.7 The results of the “check all that apply” question about companion
behavior . 47

8.8 The results of the question about guessing how the companion was
programmed . 49

8.9 The results of the question about comparing this companion to others 49

8.10 A summary of responses to questions regarding the usefulness of the
framework . 51

8.11 A summary of responses to questions regarding the effect of the state-
prediction blackouts on participant impressions of the game 52

8.12 A summary of responses to the question asking if removing the black-
outs would change their previous answers 53

8.13 A summary of responses to the final survey questions 54

A.1 The Informed Consent form given to participants 67

A.2 The first set of questions given to participants 68

A.3 The second set of questions given to participants 68

A.4 The third set of questions given to participants 68

A.5 The fourth set of questions given to participants 69

A.6 The fifth set of questions given to participants 69

A.7 The sixth set of questions given to participants 70

A.8 The seventh set of questions given to participants 71

A.9 The eighth set of questions given to participants 72

A.10 The final set of questions given to participants 73

B.1 A flowchart representing the full decision-making process 75

E.1 An algorithm describing the complementary decision-making process 83

xi

Chapter 1

INTRODUCTION

1.1 Description of the Problem

As video games evolve they become more and more complex; AAA games have grown

from simple, two-dimensional games to complex, fully-explorable worlds with rich

stories and hundreds of hours of unique game-play. With this complexity the need

to integrate artificial intelligence (AI) into games has grown [40], in some cases to

adapt the game mechanics to the style of a particular player [27], and in others to

make the characters in the game more realistic. For a player to immerse themselves

in a game’s environment it needs to be believable, which often requires a vast amount

of computer-controlled “non-player characters” (NPCs) that must interact with both

each other and the player in intuitive ways [45].

These NPCs can be broadly divided into two categories: opponents or compan-

ions. Other NPCs include passive characters like shopkeepers or villagers, but they

generally don’t require the same level of intelligence because the level of player inter-

action with them is much lower. Much of the research related to video game AI has

been done to create believable and challenging opponents for the player. To keep the

player engaged in the game the developers strive to make their opponents as smart

as possible, preventing the game from becoming too easy or repetitive. As a result,

games are regularly published that have enemies with unpredictable, complex strate-

gies or with nuanced goals and hidden agendas that keep the player engaged with the

game every time they play [24].

It is more difficult to find research focused on creating believable — and most

importantly, useful — companion AI. The purpose of a companion in a video game is

1

to assist the player in whatever they are trying to accomplish, in some cases finding

complementary actions that help the player achieve their goal more easily than they

would have on their own. This is rarely attempted in most games, and the companion

is often relegated to a beast of burden or a lackey that follows and mimics the player at

every turn [23]. Unrealistic behavior like this can interfere with the game’s immersion.

In the worse case, a poorly-done companion can seriously worsen the overall game

experience and frustrate the player by constantly getting in their way.

A teammate should work with the player, changing their strategy to suit the

player and in the process make the game more interesting, engaging, and enjoyable.

Following a small, scripted set of decisions is not enough to promote this engagement,

and it can be detrimental to the quality of the game as a whole. Scripted behavior

only covers a finite set of situations, making it possible for situations to arise where

the character does not know how best to act. By using AI to dynamically make

decisions this can be avoided, resulting in more believable characters and a more

immersive game.

1.2 Overview of the Solution

This project extends the work started by Travis Angevine, who began a game devel-

opment framework that added an AI companion which learned from and mimicked

the player [15]. We modified this framework to further decouple it from its example

game, as well as to improve the effectiveness of the companion by looking for actions

that complement the players strategy rather than copy it. We defined a complemen-

tary action as any action (not necessarily the same as the player’s action at the time

of the decision) that is beneficial to the player’s strategy. Determining to what degree

one action is complementary to a strategy is very hard to quantify, so we used human

players to gauge the companion’s success.

2

Figure 1.1: A simplified flowchart showing an overview of the complemen-
tary decision-making process

Specifically, we developed a complementary decision making process that combines

evaluating the player’s current and past actions, predicting their likely next action,

predicting future game states through simulation, and experimenting with unseen

actions to increase the companion’s range of possibilities. This allows the actions

the companions take to be tailored to the behavior of the current player without

any need for scripted behaviors or previous training. A simplified version of this

process is shown in figure 1.1. We also implemented a new dynamic region system

for determining where actions should take place that balances putting the decision in

the hands of the framework while allowing the game designer the freedom to make

fine-tuned, game-specific location decisions.

3

Figure 1.2: A summary of companion-focused response sentiments across
all questions, split by group. The numbers at the ends of the bars represent
the ratio of positive to negative comments in that group.

To evaluate the system a user study was conducted; twenty-five game-development

students split into two groups were asked to play a game using the framework, pro-

viding feedback through a survey. Survey questions focused primarily on the general

strengths and weaknesses of the game, the behavior of the companion, and how useful

the framework would be as a development tool. The results were promising; seventeen

participants reacted positively to the companion’s behavior, and nineteen indicated

that they would consider using the framework in their future games. Two users even

mentioned, before being asked specifically about the companion or knowing the pur-

pose of the project, that the companions actions matched what they would expect

from playing the game with another human.

As a basic overview of the results, figure 1.2 shows the number of comments about

the companion across all questions, broken down by sentiment and split into the two

groups of students. Each group had at least twice as many positive comments than

negative, and we expect this ratio may be able to be increased further if some technical

limitations are addressed, discussed later in the paper.

4

1.3 Outline of the Paper

Chapters 2 and 3 contain background information on the different components of

this project as well as related work. Chapter 4 describes the complementary decision

making process that the companion uses, and chapters 5 and 6 go into how that

process was implemented. Chapter 7 describes the user study we used to evaluate the

final product and chapter 8 analyzes its results. Finally, chapter 9 concludes with a

summary of contribution and some of the challenges faced during development, and

chapter 10 describes potential future work.

5

Chapter 2

BACKGROUND

This section provides an overview of some of the background research related to video

games and game AI. It discusses intelligent agents, how learn-by-observation methods

can be used to implement them, and how AI is used in video games to dynamically

change gameplay and create interesting companions. It also describes the classifiers

included in this framework, as well as some background information on Unity, the

game engine it’s built in.

2.1 Learn by Observation

This framework is based on “Learn by Observation” (LBO) techniques. LBO, also

referred to as “Learn by Demonstration,” is a method of supervised learning where an

intelligent agent learns how to behave by watching another agent. The agent being

watched is often a human, and in this case is the player while the observer is the

companion. In general, data is recorded as a human performs a task and after some

amount of time the agent begins performing the task as well. Recorded data will

contain a set of variables representing some state, as well as the action the human

took. Traditionally, when the agent is making a decision it evaluates the current state

and tries to identify which action the human would take based on the state-action

pairs in the recorded history [33, 32, 34].

A mimicking companion in a video game would use this technique to determine

which action to perform. However, because this framework’s purpose it to create a

complementary companion rather than a mimicking one, this technique is used dif-

ferently. Rather than recording unordered sets of vector-action pairs, the framework

6

orders the data and learns how to predict the player’s next action instead of what

they would do now. Their predicted future action is used in the decision-making

process instead of being returned as the companion’s decision, but the underlying

learn-by-observation process is the same.

2.2 Adaptive Gameplay & A.I.

Adaptive gameplay is a game-development technique that attempts to dynamically

change elements of the game based on the behavior of the current player [29], which

is often used to make the game more engaging and prevent player frustration. An

example of this technique is through “negative feedback” [38]. This process observes

the players progress, noting how quickly they are advancing or how often something

“bad” happens to them. If they are doing too well the difficulty is increased until

their progress falls below a level fixed by the developer. Similarly, if they are not

doing well enough the difficulty is decreased. This keeps the player from becoming

too bored or frustrated, and also gives the developer some more control over the pace

of the game.

The AI in a game can also be adapted to each player, further increasing the quality

of the gameplay. Adaptive game AI can be applied to a player’s teammates [13, 31, 43],

but is also often applied to the enemy AI [18]. In either case, the computer-controlled

character learn to react to each individual player differently; applied to teammates this

makes the relationship between the player and the team more useful and rewarding,

and applying it to enemies makes the game more challenging and immersive. This

project applied these techniques to the companion AI, to develop a teammate that is

more effective than one with statically-defined behavior.

7

2.3 Classifiers

This section overviews the supervised-learning classifiers that were implemented for

this framework. Decision Trees and Naive Bayes are potential methods for choosing

an action-location pair from the player’s data based on the current game state, and

Linear Regression is a potential alternative for predicting future game states. Only

one classifier, specified by the developer, is used at a time and a generic class is

included in the framework for a developer to extend if a different classifier is required.

All of the classifiers rely on player data to train them before they are used, and can

be retrained at any point during the gameplay to become updated with any new data

that has been gathered since they were last trained. In our example games, we used

the Decision Tree classifier.

2.3.1 Decision Trees

Decision trees, which are used in our example games, classify an input by traversing

a tree where each node represents a decision. The tree must be built beforehand

based on example data with matched input-output pairs. This process evaluates each

input feature vector, adding nodes as necessary such that traversing the tree with

the provided input vectors results in as few misclassifications as possible. Each node

represents a specific check on the data, evaluating to true or false based on a specific

value in the input. One of two branches is taken based on the outcome of each check,

and the next node in the tree determines the next decision. Leaf nodes at the ends of

branches represent classes, and are returned when the traversal reaches a leaf during

the classification process [36].

8

2.3.2 Naive Bayes

Naive Bayes classifiers use the statistical probabilities found in the training data to

perform classifications. Therefore, like Decision Trees, Naive Bayes classifiers also

require training with example data before they can be used. By evaluating both the

probability of each outcome class as well as the probability for each class given each

value present in the input vector the classifier is able to calculate which outcome is

the most likely. The most likely outcome based on these probabilities is returned

as the result. It should be noted that the multiplication of so many probabilities

can result in too small of a number; this is solved by summing the natural logs of

the probabilities rather than multiplying them. This ensures that the most likely

outcomes are returned while keeping the probabilities more manageable [37].

2.3.3 Linear Regression

Linear Regression is a technique to map a vector of numeric features to a numeric

class. Essentially, this process is done by examining example data and identifying

the best equation for a line that maps the input features (independent variables)

to the correct value. The equation for the line is found that most closely matches

the training data, minimizing the error between the output and the expected value.

After training, new input vectors can quickly be plugged in to this equation to find a

predicted value [42].

This framework’s Linear regression implementation was initially intended for pre-

dicting the state of the game by creating a separate classifier for each unique feature

in the input vectors, using the other features to predict it. However, due to the na-

ture of the data as well as its limited quantity (it must be gathered from each player

before a companion can enter the game), it was replaced by the simulation process

detailed in section 6.4. The simulation process was also favored over linear regression

9

because it doesn’t limit the game state features to numerical data, allowing the game

developer more freedom.

2.4 Tools

MimicA, the framework upon which this project was based, was built using the Unity

game engine [15, 11]. Unity is one of the more popular game engines on the market,

both for 2D and 3D games, so writing a framework that is compatible with it allows

a large audience to access it. It handles many of the tasks common to all games,

like creating “scenes,” populating them with objects (like the player character), and

managing sprites and animations. It should be noted that Unity supports multi-

threading through its “Coroutines,” but the management of game objects is limited

to the main thread. This prevents scenes from being cloned and game objects from

being instantiated without rendering them on the screen, leading to the “blackout”

limitation of the state-prediction process discussed in section 6.4.

10

Chapter 3

RELATED WORK

3.1 Game State Prediction

The vast majority of prediction research in video games has focused on either pre-

dicting the player’s or the opponent’s strategy. The primary focus of video-game AI

has been to create challenging and unpredictable AI opponents for a human player,

so the ability to identify and react to the strategy of the opponent (from the AI’s

perspective, either the human player or opposing AI characters) has been a strong

motivator [14, 16]. These techniques are often very similar to player strategy predic-

tion techniques (discussed in section 3.2). In many games, however, the opponent is

operating with imperfect and limited information of the player’s actions or positions,

often described in video games as the “fog of war” [44]. This mirrors the player’s

knowledge of opponent actions, so approaches that tolerate fog of war could be trans-

lated to a companion AI that tries to predict and react to the future game state as a

human player would.

One example of this that was shown to be relatively successful was in using various

machine learning and rule-based techniques to predict player actions in the popular

online game, “Starcraft” [44]. These researchers gathered game data from thousands

of professional Starcraft matches and used this data to predict when a player in a

new game would take an action (creating a specific unit or building in the game),

with a fog of war limiting the AI’s visibility of the game world to only areas near

where the AI had units stationed. It is important to note that they attempted to not

only predict the player’s next action but also predict when in time it would be taken.

The accuracy of their predictions was good, and increased as the game went on and

11

the similarities between the player’s strategy and the pre-recorded game strategies

were better identified. This shows that it is possible to accurately predict the player’s

actions even with a restricted view of the game world, leading to a more human-like

(and therefore less frustrating) opponent for the human player.

Predicting opponent position with limited information is an example of a more

speed-sensitive task. In first-person shooter (FPS) games, players are required to

very quickly predict where their opponents may be while they are out of sight, using

information like their last known location and direction of movement, as well as

possibly any paths through the game map that are known to be more likely. AI in

FPS games often have complete knowledge of player locations regardless of line-of-site

(which human players are reliant on); this is often frustrating to the players and seen

as the AI “cheating” [26].

An overview of models for predicting an opponent’s prediction without relying on

omniscience demonstrates that AI can remain relatively accurate in real-time scenar-

ios even with limited information [26]. Researchers used semi-hidden Markov Models

as well as particle filters to predict opponent (human player) positions in “Counter-

Strike: Source” [12], an online FPS game. While the accuracy was obviously less

than an AI given complete knowledge of player position, when their approaches’ pre-

dictions were compared to human predictions they were found to be more accurate,

and when errors were made they were seen as more human-like.

For this project we considered using similar techniques for predicting future game

states, but decided in favor of a new technique, detailed in section 6.4.

3.2 Player Strategy Prediction

Researchers have worked on identifying aspects of the player’s strategy for years.

Often the goal of player modelling is not to predict specific actions and when in

12

the future the player will do them, but something more simple. The most common

example is to use player behavior models taken from a large number of players,

compare them to the current player to find a group of others that behaved similarly,

and use the other player’s performance as a rough predictor of how the current one will

likely behave [19]. This can be used to dynamically adjust the difficulty of the game

to keep the player engaged without becoming frustrated [27], to predict something

about the future game such as how long it will take the player to finish the game [30]

or what actions they might take in the future without predicting the specific time at

which they’d be taken [25].

The vast majority of methods for identifying the player strategy rely on collect-

ing a large amount of data from a large number of people to find similar strategies

to a current player [30, 25, 23]. A simple example of this technique is shown in an

experiment where the researchers attempted to make a small set of predictions about

a player’s performance in “Tomb Raider: Underworld” [30]. In-game data was col-

lected from a large number of players, then as a new person played the game their

strategy was analyzed and various supervised learning classifiers (most successfully

linear regression and decision trees) were used to predict whether or not they would

finish the game, and how long it would take them to do so. Even with only a small set

of relatively simple factors to predict, their accuracy was fairly low and the author’s

concluded that their techniques would not be accurate enough for real-time game

adaptation, but could be useful as a source of feedback on the game design.

A more complex example of this strategy was demonstrated by evaluating game

data from the popular multiplayer online role-playing game, “World of Warcraft” [25].

Using a large amount of player data the authors were able to identify “cliques” of

achievements that tended to occur sequentially together. As a new player performed

actions and reached achievements the most likely clique was then identified and a

series of their next actions could be predicted. It is important to note that this

13

technique predicts an ordered series of actions, but not how much time will elapse

between any two actions.

This represents a much more complicated prediction than something like deter-

mining whether or not the player will finish a game, and would be much more useful

for a real-time AI agent. However, due to the amount of data this method requires

and the complexity of their predictions the computation time exceeded what would

be appropriate for a fast-paced real-time game, and would be better suited to games

where predicted actions or achievements span a longer time frame. This would also

prevent this approach from being directly translated into a framework, as the frame-

work must be kept generic enough that it could be applied to games regardless of the

pace at which they are played.

3.3 Frameworks

Due to the complexity of developing a well-made companion for a video game, it

would be useful to create a generic framework to help speed up the integration of AI

into a new game [17, 20, 15]. Such a framework would benefit game developers in two

ways; the time required to add a companion to the game would be greatly reduced, as

would the machine-learning and AI knowledge required to implement the companion,

opening up the framework to a larger group of developers [35]. Following are examples

of some previously created “Learning by Observation” (LBO) frameworks.

3.3.1 jLOAF

jLOAF (Java Learning by ObservAtion Framework) was developed as an effort to

minimize the effort required to create an agent in a video game [20, 22]. It enables

agents to learn by observing human players, saving their actions and some information

about the game state when the action was taken to use as a guide later on. The

14

AI then observes the current game state and acts how it thinks the player would

have based on the data. This allows the companion to learn when to perform an

action without explicit instructions from the developer. However, agents created using

jLOAF are purely mimicking rather than complementary, and it does not attempt to

keep track of the actual results of an action, nor does it measure the actions’ success

or usefulness to the player.

3.3.2 MimicA

“Lord of Towers” (LoT) is a top-down tower defense game featuring a companion

AI framework called “MimicA” [15]; this framework was used as the basis for the

framework discussed in this paper, and LoT was used as one of the game environments

for testing our framework. MimicA is a learn-by-observation framework that adds a

companion character that mimics the player’s decisions. It was chosen in part because

the source code was readily available and the game itself was simple but also largely

because it does not rely on data from previous gameplay, making it more useful for

new games.

Lord of Towers features a set of actions that the player can perform (see table

6.1), and an open map upon which the player can freely move. Waves of enemies

enter the game and the player’s goal is to prevent them from reaching a central base

for as long as possible. Game states are saved whenever the player makes an action

and after some time has passed an AI companion enters the game, having attempted

to learn the player’s strategy from this data. After it enters the game it does its best

to mimic the player, choosing actions based on the current game state and how the

player behaved in the past. At a set time in the game the player character dies and

the companion is left to survive for as long as it can.

MimicA requires a developer to provide a game state consisting of the player’s

15

chosen action and the relative position of all objects currently in play, as well as a

list of possible actions. Then, when the companion needs to decide which action

to perform it extracts features from the current game state and uses a classifier to

predict which action the player might take, based on the state-action pairs generated

before the companion’s arrival. The developer does not supply the framework with

any indicators of what effects an action might have; the companion blindly copies the

player’s action without knowing what the consequences of the action will be.

3.4 Examples of Companions in Published Games

Many commercial games feature one or more companion characters, with varying

degrees of importance to the game. Companions are most common in role-playing

games (RPGs) and first-person shooters, but they are present in many others as well.

Sports games that simulate real-life team sports, like the NBA [7] and Madden [5]

game series, would also benefit from high-quality teammate AI. In most games the

companion’s behavior is scripted and does not change player-to-player, and could be

improved by applying AI techniques discussed in this paper to create a more believable

companion. This section examines some popular commercial games and how their

companions affect their quality.

More RPGs contain companions than any other genre, often with many unique

companions available to the player, like the “Fallout” [4], “Star Wars: Knights of

the Old Republic” [10], and the “Mass Effect” [6] series. “Skyrim” [3] is often held

up as the standard by which modern RPGs are measured, including the quality of

their companion characters. While Skyrim was very well received in general, many

reviewers complained that the game’s companions left something to be desired; one

reviewer complained that the companion AI is “bad and frequently steps in front

of you to take friendly fire and just die” [9]. A mimicking companion could help

16

address these complaints, and a complementary companion could be even more useful.

Actions could be identified that assist the player’s immediate goals, like healing the

player if they’re weak or distracting enemies during a fight, resulting in a companion

that is more useful and appreciated.

Shooters, such as the Call of Duty [2] and Battlefield [1] franchises, also commonly

have a number of companion characters that typically act as the rest of the player’s

team or squad. Most games focus on using AI for creating interesting opponents,

so the majority of shooters have very predictable teammates that act according to a

well-known series of scripts. A few games, like “Star Wars: Republic Commando”

make the companions the focal point of the entire game, with very good results [8].

In “Commando” the player controls a unit of soldiers, directly controlling the team’s

strategy as a whole. The AI controlling the rest of the player’s squad in Commando is

often applauded, because the way the companion’s interact with each other to carry

out the player’s directives is very good. Unfortunately this still relies on the player

to dictate the team’s strategy very often; companions that decide for themselves how

to work together to further a player’s strategy could increase the immersiveness and

player’s enjoyment of the game even further.

17

Chapter 4

DEFINING “COMPLEMENTARY”

Little research within computer science has been done regarding complementary ac-

tions, but a working definition is required to serve as the basis for the companion

character’s behavior. To create a concrete definition, we studied psychology papers

regarding complementary [39] and “pro-social” [41] behavior, as well as “joint-action”

[28]. Briefly, complementary behavior have been defined as multiple agents coordi-

nating different actions to further a common goal [39]. Distinctions have also been

made between “planned” and “emergent” coordination between agents [28] and for

a companion character in a video game, both are required. “Planned” coordination

can be encoded by the game developer to keep the companion working towards the

overall goal of winning the game, and “emergent” coordination is required to tailor

the companion’s strategy to each individual player.

It is important to emphasize that complementary behavior is not necessarily im-

itative [39]. An agent performing an identical action to their teammate may further

the group’s overall goal, but it is quite possible that the goal would be better served

by a different one. In the context of a video game an imitative companion is limited

in their behavior; if the player has never performed an action the companion will

avoid it as well, neglecting potentially useful actions. However, if the companion does

not take into account the player’s set of actions at all they may repeatedly do some-

thing that the player was intentionally avoiding, negatively affecting their strategy.

Therefore, a balance must be struck between the two extremes.

It is also necessary for a complementary agent to attempt to predict the future

actions of the player as well as the effects that its actions might have [39]. Without

any predictive capability, an agent would be unable to judge how well a given action

18

meshes with the overall goal. Because a complementary companion is deferential

to the player rather than in a traditional multi-agent environment, it also needs

a predictive capability to prevent inadvertently doing an action that disrupts the

dominant agent’s plans. In a video game, the player serves as the dominant agent,

and all decisions that are made must prioritize them as much as possible.

These definitions provide a starting point, but they must be slightly adapted for

this project because a complementary companion in a video game necessarily has a

more subservient role than a traditional teammate. The overall team’s goal is not

often not as well defined; even when it is it’s secondary to the current player’s goal,

which must be regarded as more important and cannot be set by the developer ahead

of time. Therefore, our definition is as follows.

A companion’s actions will be considered complementary if:

• They identify the player’s strategy in the near-future whenever possible by

predicting the player’s next actions, removing obstructions to the strategy if

possible.

• If there are no obstructions or they cannot be removed, the companion will ben-

efit the player by improving the state of the game in their favor, as determined

by the developer (score, etc.).

• They do not jeopardize the player’s “near-future” strategy for the sake of other

perceived benefits, like an increased score.

• They do not limit themselves to mimicking the player’s behavior, but still prefer

similar actions to avoid unintentionally jeopardizing the player’s strategy.

19

Chapter 5

SYSTEM DESIGN: COMPLEMENTARY DECISION MAKING

5.1 Overview

This chapter details the overall decision making process used by the companion to

identify actions that are complementary to the player’s immediate and overall strat-

egy, based on the current game state. The developer’s game must initially define a

list of possible actions as well as a default action that will be done when the compan-

ion has no better options. When a new action is required the companion must call

the getDecision() method in the FrameworkCompanionLogic class, passing in a game

state vector representing the current state of the game.

The bulk of the decision making process is described in section 5.2; when that

process outputs an action it is passed through a final sequence, discussed in section

5.3. A graphical representation of the main and final decision making processes can be

seen in figures 5.2 and 5.3, while the combined full flowchart is included in appendix

B.1. For quick reference, a simpler version of the full flowchart can be seen in figure

5.1. An example of the companion making a decision is included in section 5.4.

There are multiple steps of the process where one of two branches is taken based on

a stochastic decision. In each of these cases the chance that one branch is taken over

the other is controlled by the developer, allowing them to fine-tune the parameters

to best fit their desired behavior.

Due to how parameterized and customizable the decision-making process is, it’s

not possible to quantify how often each branch of the tree is taken in a general sense.

These statistics depend entirely on how the framework is configured by the game

developer, as well as the types of actions present in a game and how the game itself

20

Figure 5.1: A simplified flowchart showing an overview of the complemen-
tary decision-making process

21

Figure 5.2: The first portion of the decision making process

is balanced. With a slight modification the framework could record this information,

which could potentially be used to dynamically reconfigure the inputs to make the

branch statistics match a developer-specified goal.

5.2 Main Process

The first step of the decision making process is to predict the action that the player

is likely to take after they finish their current action, based on their previous data.

This process is detailed in section 6.3. The abstract class FrameworkEvent, which

all possible actions must extend, defines a method that determines if an action is

possible in a given game state, represented by a game state vector. The companion

checks whether or not the predicted actions is possible in the current game state; if it

is not, they search for an action that results in a state where the action can be done,

using the state prediction process explained in section 6.4.

22

This choice was made because the companion’s fundamental goal is to further

the player’s strategy. The most basic level of this goal is to prevent situations from

arising that prevent the player from doing what they want to do and forcing them to

alter their plan. The importance of this goal is why attempting to enable the player’s

predicted next action is the first step in the companion’s decision making process.

If the player’s next action is possible in the current game state, the companion

next checks if they are able to assist with the player’s current action. Each action is

required to have a boolean field specifying whether or not multiple entities can perform

that action at a time; for example, healing themselves may be a one-character task,

while multiple might be able to work together to construct a building more quickly.

If the companion can assist with the player’s current action there is a chance that

they do so without any further deliberation. This was decided because finishing the

player’s current action more quickly, like preventing their next action from being

blocked, objectively helps further the player’s immediate goals.

If the companion cannot help the player perform their current action, the com-

panion’s decision next randomly chooses one of two paths. One of the two options

is for the process to return the player’s predicted next action. This was determined

to benefit the player’s strategy because they likely have a series of actions that they

would like to complete and that would need to be done serially if there were no com-

panion present. The companion doing the action for them allows for the series of

actions to be done in parallel, reducing the overall time required to complete them

and ultimately working toward the player’s goal. Again, the likelihood of taking one

branch over the other is set by the game developer.

If the other branch is taken the companion enters the state-prediction sequence is

explained in section 6.4, similar to what would happen if the player’s predicted action

had not been possible in the current state. Differing from the first state-prediction

23

sequence, which evaluated states based on whether or not they allowed the player’s

next action to be performed, this sequence evaluates them based on the scores of the

future states alone. A list of possible actions is returned, ordered by descending state

score. The first option is checked to ensure that it doesn’t prevent the player’s future

action from being taken; if it does the next one in the list is checked, if it doesn’t

it is returned as the companion’s next action. This allows the companion to assist

the player’s overall goal even though they are currently unable to help with their

immediate strategy.

If the list of options is exhausted, meaning all of them prevent the player’s pre-

dicted action, the companion takes a last resort of looking for any actions that it knows

are possible but that the player has not performed yet. The state-prediction process

only evaluates actions that the companion has seen the player perform, keeping the

companion’s behavior in line with the player’s in case any actions were deliberately

avoided. At this point the companion could not do any of those actions without

harming the player’s strategy so they must choose a random new action. If there are

no unseen actions the decision making process returns the default action, specified

by the developer. In Lord of Towers, the default action is to wait and do nothing for

a set amount of time before trying to find a new action again.

5.3 Final Decision Sequence

The final step of the decision making process is called the “Final Decision Sequence.”

During this sequence the choice of action is finalized and returned to the developer.

It is a simple process; the actions that have previously been performed by either

the player or the companion is compared against the list of all available actions. If

there are any actions that have never been seen there is a random chance set by the

developer that a new action will be tried in a random region (region calculation is

24

Figure 5.3: The second portion of the decision making process

discussed in section 6.2). A diagram of this process can be seen in figure 5.3.

This step allows the companion to occasionally experiment, ideally exposing the

player to strategies that they had not considered. A human teammate would likely

not restrict themselves to actions the player has seen; this approach was chosen to

make the companion act more realistically. If an unseen action is tried, it is not

added to the list of seen actions until the player performs it as well. This prevents

unwanted, intentionally-avoided actions from entering the data used during the rest

of the decision-making process. For example, if the player was avoiding chopping

down trees to keep a natural barrier between them and their enemies, the companion

chopping one tree down to get desperately-needed wood would not increase their

likelihood of chopping down more.

25

5.4 Example Decision

Imagine a simple game with three possible actions available to the player and the

companion: Fight, Build, and Gather Resources. When the game starts the player

begins to perform actions which are recorded, eventually trying every action. Once

the companion is introduced, it begins its first decision-making sequence based on the

current game state. In this game state, the player is performing Gather to get more

resources, which can only be done by one entity at a time.

First, it uses the players recorded data and the current state to predict what the

player will do next; it predicts that the player will want to Build. Build requires

100 resources; in the current game state the player has 200, so Build is possible.

If it hadn’t been possible, the companion would have entered the state prediction

process to determine if any action would make it possible, which in this case would

be Gather. Because Build is already possible, the companion moves to the next step

of the decision-making process. Because the player’s current action, Gather, can only

be done by one character at a time, the next step is skipped. If multiple people could

Gather at once, there would have been a random chance that the companion would

have gone to assist the player.

Next, a stochastic chance determines whether or not the player will do the Build

action on the player’s behalf. In this example, chance determines that the companion

should not do this, instead continuing the decision process. Now the companion enters

the state-prediction process again, trying each action and finding the one that results

in the game state vector with the highest score. Here, the simulation process returns

Fight. If doing Fight prevented the player from doing Build the companion would

have looked for an unseen action to try, and returned the default action when none

were found. Now, the companion enters the final decision sequence with Fight as the

chosen action; no unseen actions are available to try, so the companion will Fight.

26

Chapter 6

SYSTEM DESIGN: IMPLEMENTATION

6.1 Framework

One of the secondary goals of this system is for it to be portable. Originally, Mim-

icA had significant coupling between the code controlling the companion’s decision

making process and the rest of the game. This made the prospect of porting the frame-

work from Lord of Towers to another game unnecessarily daunting. We modified the

existing code to separate the framework from the game, preventing the framework

from accessing any game code while providing an easy-to-use interface for the game

to interact with the framework. This makes the framework as portable as possible,

hopefully allowing other developers to integrate it with their projects. The system

is currently closely tied to Unity, but it would be feasible to transition it to a more

generic system that could be used in multiple video game engines. The easiest step

would be to export it as a C library to be used in other C engines, but it could be

ported to other languages as well.

We designed the framework with ease-of-integration in mind, keeping it as easy as

possible to either add the functionality to an existing game or build a new one from

scratch. A rough outline of the steps to integrate a game with the framework are as

follows:

• Define a list of events that the companion and player can perform, extending

the FrameworkEvent abstract class.

• Define an extension of FrameworkGameStateVector, which represents the cur-

rent game world.

27

• Add an instance of the FrameworkGameData GameObject to the Unity scene.

• Each time the player takes an action, send the current game state vector along

with the player’s event and location to the FrameworkGameData object.

• Add the “Resettable” interface to any GameObject’s that require it (the player,

buildings, etc.)

• Create an instance of a FrameworkCompanionLogic object; this will be the

companion’s “brain.”

• When your companion needs to make a decision, call the getDecision() method

in FrameworkCompanionLogic. This will return an object that contains a list

of events to perform, along with a FrameworkRegion object that determines

where in the game the action should be done.

• Determine where in the given region to perform the action, perform it, and

repeat.

A more detailed description of the steps required to integrate the framework into

a game is provided in appendix D.

6.1.1 Lord of Towers & Lord of Caves

Lord of Towers was originally developed to test MimicA. It’s a simple tower defense

game, where the player can build and upgrade defensive buildings (walls, towers

that shoot at enemies, etc.) to defend a castle from incoming waves of enemies.

Periodically, companion characters enter the game that attempt to mimic player

behavior based on the current game state. After a fixed amount of time the player’s

character dies, and the companions try to continue the player’s strategy to survive as

long as possible.

Some changes to the game were required because this framework’s purpose differs

28

Figure 6.1: An example of gameplay in “Lord of Towers”

from MimicA’s. Because the companion’s actions in relation to the player are the

primary focus we no longer force the death of the player character, instead ending

the game when the player dies or the castle falls. We also limited the number of

companions to one at a time due to technical infeasibility. This is discussed further

in the “Future Work” section of the conclusion. A new action, “Mining,” was also

added, offering players a different method of generating resources other than the

deaths of enemies. We also made general improvements to the game’s artwork. Table

6.1 shows a list of the possible actions in Lord of Towers. Lord of Towers gameplay

is shown in figure 6.1.

Table 6.1: Events in Lord of Towers

Event List in Lord of Towers
AOE Upgrade Heal Themselves Repair Wall
Build Tower Mine Slow Upgrade
Build Trench Move Upgrade Tower Ability
Build Wall Range Upgrade Upgrade Tower Fire Rate
Damage Upgrade Repair Tower Wait (Default)
Delete Tower Repair Trench

To demonstrate the system’s portability we developed a second game alongside

29

Figure 6.2: An example of gameplay in “Lord of Caves”

Lord of Towers, called “Lord of Caves.” Lord of Caves was an integration of Lord

of Towers and a separate project on constrained procedural map generation for 2D

games. It has similar gameplay to Lord of Towers and shares much of its artwork,

but the code-base is separate and demonstrates the portability of the new framework.

The genre is different as well; rather than defending their base for as long as possible

the player must search for and destroy an enemy base instead. In Lord of Caves, the

player is placed randomly on a generated map, and a fog of war prevents them from

seeing areas that they have not explored. An enemy castle that spawns zombies is

also placed on the map, and the player’s objective is to fight their way to the castle

and destroy it. They can build towers like in Lord of Towers, and they can find a

companion hidden elsewhere in the level that joins them. An example of a map in

Lord of Caves is shown in figure 6.2.

30

6.2 Dynamic Region System

Lord of Towers was originally implemented with a fixed-size map split into six equally-

sized sectors. The player’s actions were saved along with the sector that in which they

occurred, and this data was used in MimicA [15] to train the companion. When the

companion chose an action to perform it returned an action-sector pair and Lord of

Towers determined where in that sector to perform the action. By returning a sector

rather than a global coordinate, the framework allows the game designer to fine-tune

the result in a way that may make more sense within the context of their game.

This posed a problem with respect to the companion’s choices. Static and prede-

termined sectors severely limit the granularity of the companion’s choices; for Lord of

Towers in particular, players have a strong tendency to perform the majority of their

actions in the sectors closest to the tower. This effectively lowered the number of

different sectors present in the data from six down to two or three. This limited the

usefulness of the framework’s location decision and offloaded a large amount of the

decision-making process to the game. From a developer standpoint, defining useful

regions for a potentially large number of maps is tiresome; a dynamic region system

would alleviate this burden as well.

An alternative, dynamic region system was adopted to address this issue and give

more power to the framework while still leaving the details to the developer. In

this system the map is initially set to one large region rather than six sectors. As

the player takes actions they are stored in the framework along with their global

position, rather than which region or sector they occurred in. Along with recording

the player’s action, new regions are created with each action the player takes. The

region containing a new action is split in half along it’s longest axis, and the global

list of regions is updated accordingly. Figure 6.3 shows an example of how a map’s

regions could be created; the map on the left shows the region layout after the first

31

Figure 6.3: An example of the dynamic region system. The first image
shows the regions after the first three player actions, where the numbers
indicate the order. The second shows how the regions are updated after
the player performs four more actions.

three actions, and the map on the left shows it after four more. When the companion

makes a decision it chooses a global coordinate based on those recorded from the

player, which is translated to a region based on the most up-to-date distribution

before the decision is returned to the game.

This results in a constantly updating set of uneven, rectangular regions that is

customized based on the behavior of the current player rather than being fixed at the

beginning of the game. As the game progresses and more regions are created their

sizes become smaller and smaller; a limit to the minimum area of a region can be set

if the developer wishes, but in the case of Lord of Towers the tiled map imposes a

minimum size without the need to explicitly specify one. The benefit of this system

is that the regions returned from the framework have much more usefulness than the

previous large sectors, but still allow the game designer the leeway to decide where

exactly within a region an action should take place. It also adds very little overhead;

identifying which region contains a global coordinate is trivial, and when a new action

is taken only the relevant region is changed without recalculating the rest of the list of

regions. It also lends itself well to choosing a random region, something that happens

when previously-unseen actions are tried; an areas that the player has focused their

32

actions more densely in will be broken up into more regions, so a randomly chosen

location will follow the same distribution of the player’s actions and be more likely

to be in a similar place. This still allows for the companion to experiment because

the larger, less populous regions can still be chosen.

6.3 Player Action Prediction

Prediction over the player’s likely next action is handled using a decision tree classifier

trained on the player’s previous data. The data requirement prevents the game from

introducing the companion until enough data has been recorded, so the companion

cannot be present when the game starts. There is not a fixed amount of data that

is considered “enough;” this is decided by the developer, and more data will result

in more accurate predictions. The data is stored as an ordered list of pairs of game

state vectors and events with a global coordinate attached that indicates where on

the map the player took the action.

When the classifier is trained (either the first time it is needed or when the de-

veloper requests a retrain), a secondary data set is built from the player’s data and

used to fit the classifier. By default the entire game state vector is used but the game

developer has the option to choose from a number of ways to manipulate this data,

specified by an Enum passed to the classifier. These are as follows, and could be ex-

panded in the future: use the entire vector (the default), use only the previous action,

use the previous three action, or use the previous five action. This allows the game

designer some further leeway to choose how the data is used, in case something about

their full vector makes it a bad data source in its raw form. A method is provided to

try multiple trials of each on a set of player data, returning the method that had the

highest average accuracy. For Lord of Towers, we used the full data vector.

Once the classifier is trained the current game state vector can be used to predict

33

an action-location pair. Rather than return the location to the developer as a single

point in global coordinates, the region containing the point is returned based on

the current global set of regions (see section 6.2). This is then used later in the

companion’s decision-making process.

6.4 Game-State Prediction

Multiple parts of the companion’s decision making process require the companion to

predict how each possible action will affect future game states, choosing an action

based on which results in the best foreseen outcome. To facilitate the comparison of

the predicted game states the FrameworkGameStateVector class specifies a method

that returns a numerical score; once a mapping of possible events to predicted vectors

is created, the action with the highest-scoring vector is chosen.

To build the mapping of action to vector, we chose to have the companion actually

perform each action and then wait for a given amount of time to allow the effects

of the action to be felt. Initially we planned on using a traditional machine learning

technique to predict future game states; particularly, linear regression. This would

have limited the game states to only numeric data, which we decided would limit

the developer too much. Furthermore, the accuracy of any machine learning method

seemed too low, particularly with the likely small quantity of data available. To

avoid these issues we chose to have the companion perform each action and calculate

the actual game state’s score, rather than predict it based on previous data. We

implemented a state-saving and loading process, so the state can be saved before the

prediction and reset before each new action. To integrate the state-saving process

into the game the developer must simply add the Resettable interface to any relevant

object, which will handle the saving and resetting of the object as necessary. How

long the companion waits after trying each action is set by the developer. Games

34

where the effects of actions are not felt for some time should have longer wait times

to increase the usefulness of the simulation. A balance between simulation-quality

and efficiency needs to be struck, because increasing the time the companion waits

also increased how long the entire set of simulations takes to complete.

These predictions would ideally be performed in a separate thread, as they can

take a few seconds to complete, particularly with the UI updating. Unfortunately,

Unity does not allow for the GameObject methods to be called from a separate

thread, limiting us to trying the actions in the visible main thread. This limitation

is discussed further in section 10. However, Unity does allow for the speed of the

game to be increased up to one hundred times the base rate. Using this, the state

prediction process goes as follows:

1. The companion decision-making process enters the state-prediction phase.

2. The game state is saved, and the time scale is increased to it’s maximum speed

3. Get the list of previously-seen events from the FrameworkGameData object,

and the list of regions from the state-prediction location determination system

discussed in section 6.4.1.

4. Return the first event-region pair to the game, along with a “wait” action. Only

return action-region pairs where the action has been determined to be possible

in the region.

5. Wait for the companion to request another action.

6. Record the new game state (paired with the previous action), reset the game

state and return the next action-region pair.

7. Repeat until all events have been tried in all possible regions.

8. Identify the highest scoring action, reset the game and the time scale, and return

the best action.

35

6.4.1 Location Determination with “Safe Regions”

The maximum number of locations the companion tries each event at during the

prediction process (N) is determined by the game developer. The map is then split

into that number of smaller regions. These regions will be referred to as “safe regions”

to differentiate them from the global regions discussed in section 6.2, because they

limit the companion’s actions to a tighter area around where the player has performed

actions. The global region system results in a much larger number of regions than

required for the state prediction process; trying each action in each global regions

would extend the length of the prediction time to too great an extent. This system is

similar, but simpler. First, a single safe region is created that borders all of the player’s

previous action locations. This region starts a process where the list of current safe

regions, starting with just the one, is progressively grown until the required number of

regions is met. To grow the number of safe regions, the one in the list that contains the

most player actions is split in half, increasing the total number by one. An example

of this process is shown in figure 6.4.

The abstract class that all actions in a game must extend specifies a method that

returns whether or not an action is possible at a given time and place, specified by

a game state vector and a region. Each action is taken in each of the safe regions

where it is possible, so the number of action-region pairs per action is capped at N

but could be zero if the action is not currently possible.

This is preferable to the global region system for state prediction for multiple

reasons. First, it results in a precise number of regions that still approximate the

physical distribution of the player’s actions, ensuring that the companion’s actions

remain synced with the player’s overall strategy. Furthermore, because the initial

region is trimmed to border the player’s actions the companion will not choose a

location that is drastically far from where the player has acted previously. The global

36

Figure 6.4: An example of the state-prediction region system with N = 3.
The first image shows the initial region, trimmed to border the player’s
actions. The second shows the finished regions after the splitting process
is complete.

region system allows for more experimentation, whereas during the state-prediction

process we determined that it would be more beneficial to try events in a tighter

group that more closely matches the player’s behavior.

37

Chapter 7

EXPERIMENTAL DESIGN

7.1 Methodology

We conducted a user study of one twenty-five person class of undergraduate college

students in a intro-level video game design class. The class was divided into two

groups, half tested this project first and half testing another project, also based on

Lord of Towers. The group testing this project first played Lord of Towers with our

companion for twenty minutes total, repeating the game when they lost as many

times as possible within the given time. After the time limit, they filled out a survey

asking for feedback, then the halves switched and the process repeated.

Participants were not aware that the focus of the project was the companion

AI, and the survey given afterwards was designed to mask that fact for as long as

possible. Questions asking for general feedback (strengths, weaknesses of the game,

etc.) were asked before more specific ones relating to the behavior of the companion.

Eventually, they were given a description of the project, the framework, and the

companion’s decision making process and were asked questions regarding how useful

the framework would be to them as game developers. The questions on the survey

were focused on the following topics:

• How much they enjoyed the game, and their familiarity with Tower Defense

games.

• The perceived strengths and weaknesses of the game.

• General feedback on the AI in the game

• The behavior of the companion

38

• The potential usefulness of the framework to developers (they were given a

description of the framework).

• The effect the blacking-out of the screen during the prediction process on the

gameplay and their other opinions.

• An open-ended section for general comments and suggestions was also included.

The full text of the questions is included in appendix A.

7.2 Qualitative Question Coding

This section specifies how the answers to the free-response will be grouped when the

results of the survey are evaluated in section 8.

Answers to the questions about the general strengths and weaknesses will be

grouped into the one of three categories. Responses that mention the companion

will be in one category, ones that mention the gameplay mechanics in another, and

all other comments in an “other” category. The questions asking about noteworthy

aspects of the AI and what stood out about the game as a whole will be categorized

similarly, but broken into five groups because the question allows for both positive

and negative comments. There will be a category for positive comments about the

companion and one for negative, another pair for positive/negative comments about

the gameplay, and an “other” category for the rest of the responses.

In the section asking questions specifically about the companion, the question

asking the participants to describe the companion’s behavior will be grouped into

positive, negative, and neutral comments. The question asking participants to guess

how the companion was programmed will be broken into five groups. Any response

that indicates that the companion learned from the player will be in one category,

and any that mention scripted behavior will be in another. Answers that mention

39

the companion acting randomly will be grouped separately, and the rest will be in an

“other” category. The question asking how the Lord of Towers companion compares

to other tower defense games will be grouped based on the differences in the returned

results.

The free-response question in the section about the effect of the blackouts during

the state-prediction process that asks how the participants earlier answers might have

changed will be grouped into two groups. Answers that indicate that earlier answers

would have been more positive will be in one category, the rest in another. The final

question, asking for general feedback and suggestions, will be categorized after the

results have been examined.

40

Chapter 8

RESULTS & EVALUATION

Overall, the results of the user study were very positive. This section breaks down

and evaluates the results of each set of questions asked to the participants. For

a brief overview, a summary of sentiment for the free response questions and the

multiple-choice question is provided in figure 8.1. This shows the number of unique

participants that made comments of particular sentiments in any of the open-ended

questions in the survey. Any comment that mentioned that the companion was useful,

human-like, or seemed to learn from the player’s strategy was recorded as positive

and complaints about the companion were recorded as negative.

A number of people also commented that the companion seemed to act randomly,

and these were counted separately from the other categories. We attribute the number

of comments about the companion appearing to act randomly to the relatively small

set of actions that the companion can perform which may have made it hard to

determine its motives. A number of players also mentioned that they were unable

to play too close attention to the companion during the gameplay because they were

absorbed with their character.

For reference, the full text of all questions is provided in appendix A. No significant

difference was seen for any questions in the survey between the two groups of students

(those that played this version of Lord of Towers first versus those that played it

second). Figure 8.2 shows an summary of the total sentiment counts of companion-

focused responses across all questions, broken down by group. Group 1 played this

version of Lord of Towers first, and Group 2 played it second. The ratio of positive

to negative responses (2.8:1 and 2.4:1 respectively) are very similar, implying that

there were no large differences between the two groups overall. It should also be noted

41

Figure 8.1: A summary of answer sentiments to free-response questions
and the multiple-choice question regarding the behavior of the companion
AI

Figure 8.2: A summary of companion-focused response sentiments across
all questions, split by group. The numbers at the ends of the bars represent
the ratio of positive to negative comments in that group.

42

Figure 8.3: A summary of responses to questions regarding participant
enjoyment of the game

that a small number of participants had technical difficulties that caused the game to

frequently crash; these problems had not been encountered during development and

likely had a very negative effect on the participants’ responses.

8.1 General Questions

The first set of questions focused on their overall enjoyment of the game. The ma-

jority of the participants enjoyed playing, although not (on average) more than most

tower defense games. However, as it was not our intent to build a production-worthy

game but to showcase the companion behavior, these results are satisfactory for our

purposes. A summary of the participants responses to the questions regarding their

enjoyment of the game as a whole is shown in figure 8.3.

Regarding the free-response questions about the games strengths and weaknesses,

a number of participants singled out the companion. The results of these questions,

43

Figure 8.4: A summary of the results of the question about the game’s
general strengths and weaknesses

Table 8.1: Example responses for each classification for the strengths (S)
& weaknesses (W) free-response questions

CLASS EXAMPLE RESPONSE
(S) Companion “The companion AI was pretty good and helpful in most

cases”
(S) Gameplay “Upgrading was cool and varying enemies required different

setups”
(S) Other “Having to make decision under pressure”
(W) Companion “Screen would go black occasionally. Lives would then rapidly

fluctuate up and down. Had no idea what was going on.
Not sure what companions did as they did not seem to do
anything.”

(W) Gameplay “Takes far too long to construct towers/emplacements”
(W) Other “Needs more effects”

split into the categories outlined in section 7.2, are shown in figure 8.4. Example

responses for each type of response classification are shown in table 8.1. Most of these

responses were unrelated to companion AI (focused mostly on the gameplay), but four

of the participants singled out the companion as a strength, writing comments such as

“the companion AI was pretty good and helpful in most cases” and “the companion

would actively help you.” This is encouraging, showing that the companion behavior

44

Figure 8.5: The results of the questions about stand-out features of the
game and noteworthy features of the AI

was of a high-enough quality to be noteworthy before singling out the companion in

more specific questions.

Table 8.2: Example responses for each classification for the stand-out (SO)
& noteworthy (N) features free-response questions

CLASS EXAMPLE RESPONSE
(SO) Pos. Comp. “Companions! They were smarties.”
(N) Pos. Comp. “The AI actively tried helping me and would mine”
(SO) Neg. Comp. “Not sure what companions did as they did not seem to do

anything”
(N) Neg. Comp. “Could have been better”
(SO) Pos. Game. “The generous amount of starting resources”
(N) Pos. Game. “The path finding for the enemies is cool”
(SO) Neg. Game. “Skipping ahead. Didn’t like it.”
(N) Neg. Game. “Stupid black outs”
(SO) Other “There was not a consistent art style to the game”
(N) Other “Didn’t have a chance to see the AI much due to time con-

straint”

The other two open-ended questions in this section asked participants to list any-

thing that stood out about the game as a whole or was noteworthy about the behavior

45

Figure 8.6: The results of the question asking participants to describe the
companion’s behavior

of any AI in the game. A summary of the answers to these questions is shown in

figure 8.5, categorized as specified in section 7.2 with example responses shown in

table 8.2. These results were also generally positive, and there were twice as many

comments mentioning the companion favorably than mentioned it negatively.

8.2 Companion Behavior

Table 8.3: Example responses for each classification of the companion-
behavior free-response question

CLASS EXAMPLE RESPONSE
Positive “What I would expect from a friend playing the game (like a

slower version of a human player)”
Negative “Stupid. He messes everything up!”
Neutral “I’m not sure what to say. I did not pay much attention to

them.”

The next section asked questions specifically about the behavior of the companion

character. The first question asked participants to describe its behavior, and the

results of this are shown in figure 8.6. Example responses are given in figure 8.3.

These were grouped according to sentiment, and the results are very evenly spread

46

Figure 8.7: The results of the “check all that apply” question about com-
panion behavior

between the three categories. The results for this question lacked the same positive

skew that later questions in this section have. This might be able to be explained by

the participants not understanding what exactly the question was asking and being

confused; if the experiment were to be conducted again this question would be either

reworded or asked at a later point of the survey.

Two participants even noted that the companion appeared to act how they would

expect a human teammate to behave, saying “[it behaved how] I would expect from a

friend playing the game (like a slower version of a human player)” and “it felt almost

like half of a player. His actions were as beneficial as my own (to some extent) and did

not feel like a pet or random NPC that you’d usually ignore.” This is very promising,

as one of the goals for our framework was to create believable companion characters.

The next question presented the participants with a number of descriptions of the

companion and asked them to check all of the options that were in line with their

experience. A summary of these results is shown in figure 8.7. Many of the options

47

were chosen by a similar number of play-testers, with the obvious stand-outs being

the “the companion was useful” and “the companion was acting randomly” options.

Again, we attribute the high number of responses indicating random behavior to the

relatively small number of actions available to the companion.

The rest of the results were relatively positive, with a high number of participants

saying that that companion was useful and more users saying that the companion’s

actions complemented theirs and that it learned from their actions than the other

more negative options. A small group of users complained that the companion was

annoying and wasted their resources, but a number of these users also expressed a

desire to be able to tell the companion to only gather resources, leaving all other

actions to the player. This may have colored their opinion of the companion, as it is

possible that they dislike the idea of a fully autonomous companion character.

The disparity in player opinions of the companion’s behavior is interesting. While

most participants thought that the companion was helpful, some viewed their actions

as wasting resources or not doing the actions in a helpful way. We assume that the

strong differences in opinion may be a result of how the companion’s behavior differs

player to player. It is possible that certain play-styles, at least in Lord of Towers,

were better suited to the framework than others and led to more useful actions. This

could be remedied by incorporating player feedback in-game or having a base level of

scripted behavior that constrains the actions returned by the framework. A number

of players also mentioned that while they found the companion’s actions helpful, they

would have liked to be able to constrain the set of possible actions in-game (limiting

the companion to repairing buildings, for example). This further suggests that a

method for the player to interact with the player could be useful; as the framework

already supports being given a list of possible actions separate from what the player

can do, this would be trivial to implement on the game-specific side.

48

Figure 8.8: The results of the question about guessing how the companion
was programmed

Figure 8.9: The results of the question about comparing this companion
to others

49

Table 8.4: Example responses for each classification of the free-response
question about how the companion was programmed

CLASS EXAMPLE RESPONSE
Learning “Check patterns that you build in, then try to assist in said

patterns”
Scripted “I think the AI was programmed to target enemies”
Random “It randomly moves around sometimes”
Other “Can’t really say. didn’t get to see much of them on each

play-through”

Table 8.5: Example responses for each classification of free-response ques-
tion about comparing the companion to other games

CLASS EXAMPLE RESPONSE
Better “This one learns as opposed to already having a set behavior”
Same “Uh, pretty equivalent. Killed lot of stuff, able to survive fair

amount of attacks.”
Worse “Less useful”
Other “I haven’t played a lot of games with companions”

The final questions in this section asked the users how they guessed the compan-

ion’s AI was programmed and to compare these companions to the companions in

other games. The results of these questions are shown in figures 8.8 and 8.9, and

example responses are shown in tables 8.4 and 8.5. The “other” answers mostly indi-

cated the participant being unsure or leaving the answer blank. Both questions had

mostly positive answers, showing that the framework has promise and can potentially

improve upon the current norm for companion characters.

A number of participants mentioned that they appreciated the companion mining

resources for them while they built defenses. This was a side-effect of the predic-

tion processes that we noticed while the framework was under development as well.

Because the player tends to perform resource-spending actions and the companion

predicts their next action accordingly, the companion often chooses to mine to ensure

that the player’s next action is possible. While this action is new to this version

50

Figure 8.10: A summary of responses to questions regarding the usefulness
of the framework

of Lord of Towers a mimicking companion would not have prioritized this to the

same extent, instead mining about as often as the player does and leading to more

complaints about wasted resources.

Regarding the new dynamic region system for location decisions, the feedback was

positive as well. A number of participants noted that the companion seemed to build

in helpful locations, leaving comments such as “the AI built towers where I would

have,” and that the companion would “check patterns that you build in, then try to

assist in said patterns.”

8.3 Framework Usefulness to Developers

The participants were then given a description of the framework and a summary of the

decision making process and asked questions about its perceived usefulness to them

as game developers. The results of these questions are summarized in figure 8.10.

51

Figure 8.11: A summary of responses to questions regarding the effect of
the state-prediction blackouts on participant impressions of the game

Most participants reacted favorably, indicating that the framework could indeed be

useful in a general sense. The majority of participants also indicated that the largest

weakness of the system was (as expected) the blackouts during the state-prediction

process, and that without that the framework would be more appealing.

8.4 The “Blackout” Limitation

Table 8.6: Example responses for each classification of free-response ques-
tion about comparing the companion to other games

CLASS EXAMPLE RESPONSE
Improve “Yes, I feel like the blackouts and skipping of time threw me

off a lot”
Not Improve “I do not think they would have changed”

Because we expected the blacking out of the screen during the state-prediction

process to adversely affect the user’s opinions on the game, the final questions of the

52

Figure 8.12: A summary of responses to the question asking if removing
the blackouts would change their previous answers

survey regarded this issue. The answers to these are summarized in figure 8.11, and

most of the participants agreed that the blackouts caused problems with gameplay

and the usefulness of the framework as a whole. An open-ended questions also asked

the users if and how their earlier answers might have been different had the blackouts

not been present. The results of this question is summarized in figure 8.12, and

example responses are shown in table 8.6. It should be noted that the participants

are likely unable to accurately predict whether or not their answers would have been

different, but the results of the question were so strongly in favor of a positive change

that it is likely that earlier answers would have improved at least slightly.

8.5 Final Questions

The final questions of the survey asked for general suggestions for the project as well

as any other comments. Most of these focused on improving the gameplay (game

balancing, improving the artwork, etc.) or general compliments of the project. Only

one participant recommended more work be done on the companion AI at all; the

rest of the participants mentioned that the blackouts were confusing and that they

viewed them as a glitch in the game rather than an intentional feature. This further

53

Figure 8.13: A summary of responses to the final survey questions

Table 8.7: Example responses for each classification of free-response ques-
tion about comparing the companion to other games

CLASS EXAMPLE RESPONSE
Remove Blackouts “Get rid of blackouts. Upgrade art assets, would go a long

way.”
Improve Gameplay “Maybe add a feature that shows the range of the towers when

you go to place them”
Improve AI “I like the game idea, but the AI is a place that could use

some more work. It was really fun though!”
Compliments “Great game!”

solidifies our conclusion that the results of the other questions would have improved

in at least some cases had the blackouts not been present. A summary of the answers

to the final questions is given in figure 8.13, and example responses are provided in

table 8.7.

54

Chapter 9

CONCLUSIONS

9.1 Summary

We propose a game-development framework for adding novel complementary com-

panions to video games. A complementary action was defined as one that furthers

the individual player’s strategy, and are determined through a combination of player-

action and game-state prediction. The framework is designed to adapt companion

behavior to each individual player, and primary importance is given to ensuring that

the companion does not jeopardize the player’s perceived strategy in any way. We

also propose a method of determining where the companion’s potential actions should

take place that both offloads the majority of the burden onto the framework while

still adapting to player strategy and allowing the game developer to make fine-tuned

decisions.

We conducted a user study where participants played “Lord of Towers,” a game

containing companions using our framework, and received promising results: many

participants singled out the companion as a strength of the game without prompting,

and a majority of participants agreed that the framework would be useful to them as

developers. We would like to continue this project to further improve it and remove

some technical limitations we encountered with this version.

9.2 Challenges

At the start of the project a serious amount of time had to be invested in separating

the original framework from the Lord of Towers code, as time constraints had led to

55

more coupling. This ate in to development time, pushing back when the meat of the

project could be started. The largest challenge was working with Unity; this was our

first time working with the platform as well as the language and a steep learning curve

needed to be overcome. Furthermore, while Unity does support multi-threading with

its “Coroutines,” it does not allow for GameObject-specific code (cloning elements

in the game, updating objects, etc.) from happening outside of the main thread. As

discussed before, this forced us to perform the state-prediction in the same thread,

leading to the blackouts that negatively effected our results.

9.3 Summary of Contribution

We provide a proof-of-concept framework that demonstrates that complementary be-

havior can be automated. We provided a working definition of a “complementary”

action customized to each individual player, based on how it affects both their near-

future and long-term goals. The framework was designed to allow for flexibility

and ease-of-integration, specifically by performing the majority of the computation

in the framework and providing parameters for fine-tuning the process. A new dy-

namic map-regioning system was implemented that allows the framework to make

action-location decisions while giving the designer the leeway to make specific deci-

sions within a returned region. We also refactored the original design of the MimicA

framework, simplifying the integration process and decoupling the framework from

the example game. We used two separate example games to demonstrate this flexi-

bility; “Lord of Towers” is a modified version of MimicA’s original game, and “Lord

of Caves” is a similar game featuring procedurally-generated maps.

We performed a user study to quantify the quality of the companion’s behavior

as well as the usefulness of the framework to game developers, with positive overall

results. Of the twenty-five participants, nine mentioned the companion as a stand-out

56

feature of the game before being asked about the companion, where only four men-

tioned it negatively. Two of these mentioned that they thought the companion was

acting how they would expect another human to act, indicating that the companion’s

actions were believable. Seventeen users mentioned the companion positively in their

answers to the free-response and multiple-choice questions, as opposed to eleven that

were negative. Nineteen indicated that the framework could be useful, and twenty

said that they would consider using it if the blackouts during the state-prediction

process were removed. We expect that the results would be improved further if the

blackouts were removed; fifteen participants indicated that it would have made their

earlier answers more positive, out of twenty responses. Overall, the large majority

of responses were positive and indicated a general satisfaction with the companion’s

behavior and the framework as a whole.

57

Chapter 10

FUTURE WORK

The largest roadblock towards this system’s usefulness is the single-thread limitation

imposed by Unity that forces the game-play to halt when a companion uses state-

prediction to choose an action. This reduces the playability of the game enough that

it would be unacceptable in a commercial video-game, and likely colors the player’s

impression of the quality of the companion’s choices. Before any other future work

could reasonably be done, the system should be migrated to an environment that

does not present this problem. The game could potentially be hosted on a separate

server, allowing for companion decisions to be calculated in parallel to the player’s

actions.

More interesting extensions of the system become possible when that obstacle

is removed. While the system currently only supports one companion at a time, it

would be interesting to modify it to allow more. This would be an interesting exper-

iment, hopefully resulting in the emergence of complementary team dynamics in the

companions’ behavior. Technically, the system allows for any number of companions

but the data from which they would draw their decisions would be shared, resulting

in duplicate choices. To fully support this modification each companion would re-

quire a separate data set with customized game-state vectors; for example, a vector

given to one companion may reflect the locations of the other companions and not

their own. Without surpassing the multi-threading limitation it would be infeasible

to implement this improvement (one companion is bad enough).

The choice of the probabilities for the randomized aspects of the companion’s

decisions would also potentially benefit from further investigation. The current values

are static and were set by hand after trying multiple values and subjectively choosing

58

the best. It would be possible to allow these values to change dynamically during

game-play as the companion learned from its decisions. For example, one of the

probabilities controls whether or not the companion will do the player’s predicted

next action for them or use state-prediction to choose the most valuable action. This

value could potentially change depending on the predicted action; each action could be

ranked based on the companions previous predictions of future game states and the

probability could be adjusted to reflect higher-ranked actions. Alternatively, some

method of player feedback could be introduced allowing them to prioritize certain

actions over others, and the probability could be modified accordingly.

A similar method could be used to determine the time the companion spends

waiting after each action during the state-prediction process. That time is currently

set by the developer, and in our case was set to what seemed appropriate for Lord of

Towers. It would be interesting to try to set this time dynamically by attempting to

measure how long after an action takes place are the effects of it are still felt. The

state-prediction process could also be extended to have the companion try sequences

of actions rather than one at a time. This would result in a longer but less frequent

process, action sequences that go particularly well together (creating a building and

then repairing it to full health, for example) could be identified and paired together

into a new “single” action.

More detailed analysis could be done if the framework also included a method

of recording and saving gameplay for later use. As this framework evolves it could

become a useful research tool for other companion-focused projects, and the ability

to record the experiences of the participants in the user study would allow for more

in-depth conclusions to be drawn. For instance, had this capability been present

during this user study for this project we could have analyzed the games played by

those that liked the companion and those that didn’t. Potentially, this could have led

to interesting findings about what types of behavior players tend to enjoy, allowing

59

future work on the framework to constrain the companion to those actions.

To make the framework and “Lord of Towers” more useful to future researchers,

upgrading the artwork and gameplay would be a benefit. Many of the user responses

in the study focused on increasing the quality of the gameplay; the responses might

have been more focused on the companions if the production quality of the game was

better.

Lastly, as the system is designed to be a portable framework nothing within it

is tied to the types of games we used to demonstrate and test it on. It would be

interesting to port the logic to other, more complicated games, to further evaluate its

usefulness.

60

BIBLIOGRAPHY

[1] Battlefield 1 - official site. https://www.battlefield.com/. (Accessed on

05/28/2017).

[2] Call of duty. https://www.callofduty.com/. (Accessed on 05/28/2017).

[3] The elder scrolls official site — home. https://elderscrolls.bethesda.net/. (Ac-

cessed on 05/28/2017).

[4] Fallout — home. https://fallout4.com/. (Accessed on 05/28/2017).

[5] Madden nfl 18 - football video game - ea sports official site. https://www.

easports.com/madden-nfl. (Accessed on 05/28/2017).

[6] Mass effect. http://masseffect.bioware.com/agegate/?url=%2F. (Accessed on

05/28/2017).

[7] Nba. http://www.nba.com/videogames/nbalive10 overview.html. (Accessed on

05/28/2017).

[8] A review of star wars: Republic commando. http://www.reaxxion.com/3250/a-

review-of-star-wars-republic-commando. (Accessed on 05/28/2017).

[9] Skyrim is disappointing : why do reviewers ignore its problems ? - the

elder scrolls v: Skyrim - giant bomb. https://www.giantbomb.com/the-

elder-scrolls-v-skyrim/3030-33394/forums/skyrim-is-disappointing-why-do-

reviewers-ignore-it-529212/. (Accessed on 05/28/2017).

[10] Star wars: The old republic. http://www.swtor.com/. (Accessed on 05/28/2017).

[11] Unity - game engine. https://unity3d.com/. (Accessed on 05/26/2017).

61

[12] Valve. http://valvesoftware.com/games/css.html. (Accessed on 05/29/2017).

[13] A. T. Abraham and K. McGee. Ai for dynamic team-mate adaptation in games.

In CIG, pages 419–426. Citeseer, 2010.

[14] F. Aiolli and C. E. Palazzi. Enhancing artificial intelligence in games by learning

the opponents playing style. In New Frontiers for Entertainment Computing,

pages 1–10. Springer, 2008.

[15] T. Angevine. Mimica: A general framework for self-learning companion ai be-

havior. 2016.

[16] S. Butler and Y. Demiris. Using a cognitive architecture for opponent target

prediction. In Proceedings of the Third International Symposium on AI & Games,

pages 55–62, 2010.

[17] G. Chaslot, S. Bakkes, I. Szita, and P. Spronck. Monte-carlo tree search: A new

framework for game ai. In AIIDE, 2008.

[18] A. Dahlbom. An adaptive ai for real-time strategy games. 2004.

[19] M. Etheredge, R. Lopes, and R. Bidarra. A generic method for classification

of player behavior. In Proceedings of the Second AIIDE Workshop on Artificial

Intelligence in the Game Design Process, MJ NELSON, AM SMITH, and G.

SMITH, Eds. AAAI Press, Palo Alto, CA. Citeseer, 2013.

[20] M. Floyd and B. Esfandiari. Building learning by observation agents using jloaf.

In Workshop on Case-Based Reasoning for Computer Games: 19th international

conference on Case-Based Reasoning,(Figure 1), pages 37–41, 2011.

[21] M. W. Floyd. A comparison of case acquisition strategies for learning from

observations of state-based experts. 2013.

62

[22] M. W. Floyd and B. Esfandiari. A case-based reasoning framework for devel-

oping agents using learning by observation. In 2011 IEEE 23rd International

Conference on Tools with Artificial Intelligence, pages 531–538. IEEE, 2011.

[23] Q. Gemine, F. Safadi, R. Fonteneau, and D. Ernst. Imitative learning for real-

time strategy games. In 2012 IEEE Conference on Computational Intelligence

and Games (CIG), pages 424–429. IEEE, 2012.

[24] J. Gilroy. Hidden agendas and improved ai in civilization 6 -

ign. http://www.ign.com/articles/2016/08/03/hidden-agendas-and-improved-

ai-in-civilization-6, August 2016. (Accessed on 11/25/2016).

[25] B. Harrison and D. L. Roberts. Using sequential observations to model and

predict player behavior. In Proceedings of the 6th International Conference on

Foundations of Digital Games, pages 91–98. ACM, 2011.

[26] S. Hladky and V. Bulitko. An evaluation of models for predicting opponent

positions in first-person shooter video games. In 2008 IEEE Symposium On

Computational Intelligence and Games, pages 39–46. IEEE, 2008.

[27] R. Hunicke. The case for dynamic difficulty adjustment in games. In Proceedings

of the 2005 ACM SIGCHI International Conference on Advances in computer

entertainment technology, pages 429–433. ACM, 2005.

[28] G. Knoblich, S. Butterfill, and N. Sebanz. 3 psychological research on joint

action: theory and data. Psychology of Learning and Motivation-Advances in

Research and Theory, 54:59, 2011.

[29] R. Lopes and R. Bidarra. Adaptivity challenges in games and simulations: a

survey. IEEE Transactions on Computational Intelligence and AI in Games,

3(2):85–99, 2011.

63

[30] T. Mahlmann, A. Drachen, J. Togelius, A. Canossa, and G. N. Yannakakis.

Predicting player behavior in tomb raider: Underworld. In Proceedings of the

2010 IEEE Conference on Computational Intelligence and Games, pages 178–

185. IEEE, 2010.

[31] K. McGee and A. T. Abraham. Real-time team-mate ai in games: A definition,

survey, & critique. In proceedings of the Fifth International Conference on the

Foundations of Digital Games, pages 124–131. ACM, 2010.

[32] M. Mehta, S. Ontanón, T. Amundsen, and A. Ram. Authoring behaviors for

games using learning from demonstration. In Proceedings of the Workshop on

Case-Based Reasoning for Computer Games, 8th International Conference on

Case-Based Reasoning (ICCBR 2009), L. Lamontagne and PG Calero, Eds.

AAAI Press, Menlo Park, California, USA, pages 107–116, 2009.

[33] C. L. Moriarty and A. J. Gonzalez. Learning human behavior from observation

for gaming applications. In FLAIRS Conference, 2009.

[34] S. Ontanón, K. Bonnette, P. Mahindrakar, M. A. Gómez-Mart́ın, K. Long,

J. Radhakrishnan, R. Shah, and A. Ram. Learning from human demonstra-

tions for real-time case-based planning. 2009.

[35] S. Ontanón, K. Bonnette, P. Mahindrakar, M. A. Gómez-Mart́ın, K. Long,

J. Radhakrishnan, R. Shah, and A. Ram. Learning from human demonstra-

tions for real-time case-based planning. 2009.

[36] J. R. Quinlan. Induction of decision trees. Machine learning, 1(1):81–106, 1986.

[37] I. Rish. An empirical study of the naive bayes classifier. In IJCAI 2001 workshop

on empirical methods in artificial intelligence, volume 3, pages 41–46. IBM New

York, 2001.

64

[38] K. Salen and E. Zimmerman. Rules of play: Game design fundamentals. MIT

press, 2004.

[39] B. S. Sartori L. Complementary actions. 2015.

[40] J. Schaeffer and H. J. Van den Herik. Games, computers, and artificial intelli-

gence. Artificial Intelligence, 134(1-2):1–7, 2002.

[41] I. B. W. Theodore Millon, Melvin J. Lerner. Handbook of Psychology, volume 5.

John Wiley & Sons, Inc., 2003.

[42] M. Tranmer and M. Elliot. Multiple linear regression. The Cathie Marsh Centre

for Census and Survey Research (CCSR), 2008.

[43] J. Tremblay. Improving behaviour and decision making for companions in modern

digital games. In Ninth Artificial Intelligence and Interactive Digital Entertain-

ment Conference, 2013.

[44] B. G. Weber and M. Mateas. A data mining approach to strategy prediction. In

2009 IEEE Symposium on Computational Intelligence and Games, pages 140–

147. IEEE, 2009.

[45] S. Yildirim and S. B. Stene. A survey on the need and use of ai in game agents.

In Proceedings of the 2008 Spring simulation multiconference, pages 124–131.

Society for Computer Simulation International, 2008.

65

APPENDICES

Appendix A

FEEDBACK SURVEY

This section includes the survey that was given to the participants of the study.

66

Figure A.1: The Informed Consent form given to participants

67

Figure A.2: The first set of questions given to participants

Figure A.3: The second set of questions given to participants

Figure A.4: The third set of questions given to participants

68

Figure A.5: The fourth set of questions given to participants

Figure A.6: The fifth set of questions given to participants

69

Figure A.7: The sixth set of questions given to participants

70

Figure A.8: The seventh set of questions given to participants

71

Figure A.9: The eighth set of questions given to participants

72

Figure A.10: The final set of questions given to participants

73

Appendix B

FULL DECISION FLOWCHART

The following page contains the combined flowchart that visualizes the companion’s

full decision making process.

74

Figure B.1: A flowchart representing the full decision-making process

75

Appendix C

LORD OF TOWERS ARTWORK CREDITS

C.1 Sprites

• Archer: http://www.sprites-unlimited.com/game/?code=HMM2

• Bomb: https://www.spriters-resource.com/genesis 32x scd/kidchameleon/sheet/

51148/

• Golem: http://opengameart.org/content/golem-animations

• Knight (Companion): http://www.gameart2d.com/the-knight-free-sprites.html

• Mage: http://spritedatabase.net/file/14024

• Dwarf (Player): http://www.sprites-unlimited.com/game/?code=HMM2

• Skeleton: http://opengameart.org/content/skeleton-animations

• Default Tower: taken from Mimica’s Lord of Towers

• AOE Tower: http://opengameart.org/content/brick-tower-large-sprite

• Damage Tower: http://ayene-chan.deviantart.com/art/RPG-Maker-VX-Tower-

382044826

• Slow Tower: http://cityville.wikia.com/wiki/File:Wizard Tower-SW.png

• Range Tower: http://opengameart.org/content/cannon-tower

• Vampire: http://opengameart.org/content/vampire-animations

• Zombie: http://opengameart.org/content/zombie-animations

• Ball: taken from Mimica’s Lord of Towers

• Castle: taken from Mimica’s Lord of Towers

76

• Cave Border: https://www.pinterest.com/pin/439312138627253428/

• Cave Wall: http://allacrost.org/staff/user/bigpapan0z/ss browncave.png

• Blue Tile: http://www.iconsdb.com/caribbean-blue-icons/square-icon.html

• Gold Mine: http://ageofempiresonline.wikia.com/wiki/File:GoldMine.png

• Green Grass: https://www.pinterest.com/lcvick/atmospheric-textures/

• Health Center: https://www.reddit.com/r/pokemon/comments/1px3bb/the advancement

of the pokemon center/

• House: http://www.deviantart.com/morelikethis/297406876

• Log: taken from Mimica’s Lord of Towers

• Stone Quarry: http://opengameart.org/content/2d-platform-ground-stone-tiles

• Wall: taken from Mimica’s Lord of Towers

• Tree: Ms. Jensen Welton, Artist Extrordinaire

C.2 Sounds

• Ball bouncing: https://www.youtube.com/watch?v=qCm-hjMWnFg

• Basketball bounce: https://www.youtube.com/watch?v=aYvjZSYmkT8

• Bats: https://www.youtube.com/watch?v=nM0InF4UNqU

• Bow String: https://www.youtube.com/watch?v=KW8cSQ3nUj4

• Collapsing Bones: https://www.youtube.com/watch?v=qU 9lnQvLhk

• Death Scream: https://www.youtube.com/watch?v=AGce8M-MZxs

• Evaporating Water: https://www.youtube.com/watch?v=-IqKCSPH-SE&t=123s

• Evil Laugh: https://www.youtube.com/watch?v=ywtjxen2n1A

• Explosion: https://www.youtube.com/watch?v=nRwM7UEQ8Q0

77

• Fire Sound: https://www.youtube.com/watch?v=vOtzPWx7HXU

• Hammer hit: https://www.youtube.com/watch?v=xcDVBwaI-V0

• Hammer Sound: https://www.youtube.com/watch?v=y5Mw0O0BdwU

• Icicles: https://www.youtube.com/watch?v=Vi6Q86r2UPQ

• Man Scream: https://www.youtube.com/watch?v=H3vSRzkG82U

• Monster Growl: https://www.youtube.com/watch?v=Ii5MaHYlFzw

• Ouch Sound: https://www.youtube.com/watch?v=ZG32UnCzhqE&list=PL6i13PMXG

TezMEGVz6KD UVINI0FN sf&index=

• Sizzling Sound: https://www.youtube.com/watch?v=TVyth8uu-w4&t=2s

• Sword Slash: https://www.youtube.com/watch?v=X3liPsg21Cg

• Wand Sounds: https://www.youtube.com/watch?v=FmEiTpMCur8

• Yoga Ball: https://www.youtube.com/watch?v=xeifyIoD6RU

• Zombie Dying: https://www.youtube.com/watch?v=BjirvbYuq7c

• The Dragon Valley by Peter Crowley: https://www.youtube.com/watch?v=

HSsO 9DbtOM

• The Kingdom Above the Sky by Peter Crowley: https://www.youtube.com/

watch?v=dDwYzJBtv9w

• Peter Crowley’s Youtube Channel: https://www.youtube.com/user/PeterCrowley83

78

Appendix D

INTEGRATION INSTRUCTIONS

This section contains detailed instructions on how to integrate this framework into a

new or existing game. This includes descriptions of interfaces and abstract classes

that must be extended, and how to fine-tune the framework parameters to best fit

an individual game.

D.1 Recording Game Data

The framework requires data to be gathered from the player and statically stored

where it can be used during the decision-making process. To facilitate the data

storage, the “FrameworkGameData” class is included in the framework. It is also

one of Unity’s GameObjects, allowing it to be placed in a scene. For it to be used as

a data repository a single instance should be added to the scene with the name

“DATA”, and the addGameStateVector() method should be used to record the

player’s actions whenever they are taken. Recorded actions must come with the

current game state as well as the global coordinates of the action. The player must

complete at least one action before a companion can be introduced, but the more

actions recorded the better the companion’s performance will be.

Game states must extend the abstract FrameworkGameStateVector class, which

requires a method to be implemented that returns a numerical score representing

the desirability of the game state. A higher score will be considered better than a

lower one during the state-prediction process. The game state vector should also

include any information required to encapsulate the game state, stored as public

79

global variables that will be accessed using reflection. These variables could include

factors like the player’s health and location, the number of enemies on the screen, or

anything else that is important to the game. These parameters should be fine-tuned

by the developer to give the best results.

D.2 Defining Possible Actions

An abstract class “FrameworkEvent” is included in the framework; each action that

the companion or player can take must extend this class. This class requires each

event to have a unique name and a method for creating a duplicate event. By

default, the location of the event is used during the decision making process, but

this can be turned off by setting the “trainOnLocation” variable to “false.” It also

requires a isPossible() method, which takes in a FrameworkGameStateVector and a

FrameworkRegion and returns whether or not the action is possible in that region

with the conditions specified in the state vector.

A default action must also be specified (in the FrameworkCompanionLogic class),

and a “wait” event is required for the state simulation process and for inserting

delays between actions. The duration of the wait action is set to the developer, and

should be as short as possible while still allowing for enough time for the effects of

an action to be set.

D.3 Enabling Saving & Loading

The state-prediction process requires the companion to simulate multiple actions to

judge their outcomes. The game must be saved before this begins, resetting it after

each attempted event. This was implemented using the Resettable interface, which

must be extended by every object(the player, the companion, enemies, buildings,

80

etc.) in the scene that must be reset. The interface is simple; the most important

methods are saveState() and resetState() which are called during the simulation

process on any objects in the scene that extend the interface.

D.4 Retrieving Complementary Actions

Once the framework has been integrated it can be used to get actions for the

companion to perform. To use it, create an instance of a

“FrameworkCompanionLogic” with your desired parameters. The probabilities for

all stochastic chances can be specified, along with a classifier and a method of

extracting features from game state vectors if only a subset is required. Am abstract

classifier class is also included if custom classifiers are required.

Decisions can be retrieved by the getDecision() method, which requires the players

current action and the current game state vector. The first time this is called the

classifier will be trained; retraining will only occur when an optional “retrain” flag is

passed in to getDecision(). The method will return a “FrameworkEventsToDo”

object representing a sequence of actions. In its current form, this is always the

complementary action and a “wait” event. Each element in the

FrameworkEventsToDo object contains a FrameworkEvent and a FrameworkRegion

representing where it should take place. It is up to the developer to determine

where exactly in that region to perform the event. Regions are rectangular, and

represented by their bottom left and top right corners in global coordinates.

81

Appendix E

DECSION-MAKING ALGORITHM

82

Figure E.1: An algorithm describing the complementary decision-making
process

83

	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Description of the Problem
	Overview of the Solution
	Outline of the Paper

	Background
	Learn by Observation
	Adaptive Gameplay & A.I.
	Classifiers
	Decision Trees
	Naive Bayes
	Linear Regression

	Tools

	Related Work
	Game State Prediction
	Player Strategy Prediction
	Frameworks
	jLOAF
	MimicA

	Examples of Companions in Published Games

	Defining ``Complementary"
	System Design: Complementary Decision Making
	Overview
	Main Process
	Final Decision Sequence
	Example Decision

	System Design: Implementation
	Framework
	Lord of Towers & Lord of Caves

	Dynamic Region System
	Player Action Prediction
	Game-State Prediction
	Location Determination with ``Safe Regions"

	Experimental Design
	Methodology
	Qualitative Question Coding

	Results & Evaluation
	General Questions
	Companion Behavior
	Framework Usefulness to Developers
	The ``Blackout" Limitation
	Final Questions

	Conclusions
	Summary
	Challenges
	Summary of Contribution

	Future Work
	BIBLIOGRAPHY
	FEEDBACK SURVEY
	FULL DECISION FLOWCHART
	LORD OF TOWERS ARTWORK CREDITS
	Sprites
	Sounds

	INTEGRATION INSTRUCTIONS
	Recording Game Data
	Defining Possible Actions
	Enabling Saving & Loading
	Retrieving Complementary Actions

	Decsion-Making Algorithm

