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ABSTRACT

Mass Estimation Through Fusion of Astrometric and Photometric Data Collection

with Application to High Area-to-Mass Ratio Objects

Matthew J Richardson

This thesis work presents the formulation for a tool developed in MATLAB to

determine the mass of a space object from the fusion of astrometric and photometric

data. The application for such a tool is to better model the mass estimation method

used for high area-to-mass ratio objects found in high altitude orbit regimes. Typ-

ically, the effect of solar radiation pressure is examined with angles observations to

deduce area-to-mass ratio calculations for space objects since the area-to-mass ratio

can greatly affect its orbital dynamics. On the other hand, photometric data is not

sensitive to mass but is a function of the albedo-area and the rotational dynamics of

the space object. Thus from these two data types it is possible to disentangle intrinsic

properties using albedo-area and area-to-mass and ultimately determine the mass of

a space object. Three case studies were performed for the different orbit regimes:

geosynchronous, highly elliptic, and medium earth orbit. The position states were

either initialized with a two line element set or with initial orbit determination meth-

ods to simulate data which was run through an unscented Kalman filter to estimate

the translational and rotational states of the space object as well as the mass and

albedo area. In the geosynchronous and highly elliptic cases the tool was able to

accurately predict the mass value to within ±5kg of the true value based on a 95%

confidence interval which will allow applications to understanding high area-to-mass

objects with high certainty.
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1. INTRODUCTION

1.1 High Area-to-Mass Ratio Objects

Deep space optical surveys of the near geosynchronous (GEO) orbit regime have

given rise to a new class of objects called HAMR or high area-to-mass ratio objects.

First observed in 1999, it was hypothesized that this class of objects originated from

explosions, collisions, or deterioration of resident space objects (RSO) over time [13].

HAMR objects are a particularly important set of space objects to study because their

motions can pose collision hazards with GEO objects due to their large variations in

eccentricity and inclination. Unfortunately, their intrinsic characteristics are unknown

except for the properties for which they got their name. Their area-to-mass ratios,

CrA
m

, can range anywhere from 0.1 to 20 m2

kg
[11]. HAMR objects are prone to solar

radiation pressure (SRP) on a much more significant scale than any other object in

their locality. This poses a challenge for consistent cataloguing and tracking of such

objects. A site might catch a passing glimpse of a HAMR object without intending to

capture it, but follow up identification and association tracks prove to be non-trivial

from the significant perturbation effects combined with their dim apparent time-

varying reflective light intensity magnitudes. HAMR objects have difficult to predict

orbit tracks that can cause potential collision hazards with the active GEO population.

Thus, in order to create a reliable catalogue of the HAMR object population, it is

important to accurately deduce intrinsic characteristics such as area, albedo, and

mass.
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1.2 Mass Estimation Methods

Commonly, mass is determined indirectly using the effective albedo area-to-mass ratio

that comes out of current orbit determination processes. This value is based on

solar radiation pressure. That value is then divided by albedo area that is based

on photometry. Due to dynamic mismodeling of space objects this can sometimes

lead to inconsistent predictive results. The issue for mass estimation methods is to

accurately fuse astrometric data and photometric data together to extract where each

has its strengths.

The angles measurements are very sensitive to the effective albedo area-to-mass

ratio when it comes to solar radiation pressure while the photometry is sensitive to

albedo area products where the albedo area is not solar pressure albedo but instead

the observed albedo. This observed albedo area will always be a fraction of the solar

pressure albedo area, but they are not the same. These two quantities are only the

same at zero phase angle or if the observer is standing on the sun. An example of this

is illustrated in Figure 1.1. It is evident that the area which is facing an observer will

be different than the side exposed to the incident flux of the Sun. Thus, due to the

material properties and the exposed area of the space object, the albedo value from

the optical site will measure one thing which would be different from if the observer

were to measure the albedo of the space object from the point of view of being on

the Sun.

This topic has importance to the entire orbital space community due to the un-

predictable nature of HAMR objects. Methods of initial orbit determination need a

survey of multiple nights worth of consistent data to stitch together a hypothesized

orbit track for a certain space object. Due to the significant effect of solar radiation

pressure on these HAMR object’s eccentricities and inclinations, they can be within

a field of view one night and thrown into a completely different orbit by the next ob-
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Figure 1.1: Albedo Area Differences Between Observer on Earth and on
Sun

serving time frame. Thus it is important to identify and catalog these objects within

as short of a period of time as possible as to not lose sight of them. Once that feat

is accomplished, keeping track of a particular HAMR object and studying its charac-

teristics will allow further information to be gained about this class of space debris.

Additionally, studying these objects more closely will provide further information into

the origin and dynamics of other similar space objects.

1.3 Approach

1.3.1 Sphere

The approach to determining mass of an unknown space object requires numerous

assumptions and simplifications about the unknown nature of the observed object.

To begin this journey a simple spherical model of an object was used to test the set up

the proper passing of information through the unscented Kalman filter (UKF). Details

3



of the UKF will be detailed in Section 3.6. Solar radiation pressure was modeled by

aIsrp =
−psrp(1 + a)A

m
usun, (1.1)

where psrp is the pressure due to solar radiation, a is the albedo of the uniform sphere,

A is the area, m is the mass, and usun is the unit vector pointing from the object

towards the Sun.

The photometric flux was measured by

F = Φsun
RdiffA

r2
(1 + uobs · usun), (1.2)

where Φsun is the average incident radiant flux density from the Sun at 1 AU, given

by Φsun = 1, 367W/m2, Rdiff is the diffuse coefficient of reflectively which is just

equal to the albedo for this calculation, uobs is unit direction the observer is viewing

the space object from, and r =‖r‖.

It follows that the equations of motion were then represented by

f (x) =



ṙI = vI

r̈I = − µ
r3

rI + aIsrp

Ȧ = 0

ṁ = 0


(1.3)

where µ is the gravitational parameter of Earth and aIsrp represents the acceleration

perturbation due to SRP in the inertial frame. The state vector x carried with

it the position, velocity, area, and mass of the sphere. For this case, ṁ = 0 and

Ȧ = 0. While these simplifications were not able to produce significant results, the

development of this mass estimation tool started with understanding how to properly

code a UKF. Thus, they were used as a double check that the UKF was properly

running and providing results where the 3σ error bounds were converging within an

appropriate time frame and the measurements were staying well within those bounds.
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The details of how the UKF was coded can be found in Section 3.6 but the

approach was to take an a priori estimate for time step tk−1, pass that through

the equations of motion for astrometric information, use the updated a posteriori

information and a measurement value from the photometric information to produce

an updated measurement of the state at time tk, update that with a Kalman gain,

and proceed to the next time step using that new state vector as the a priori data

value. Figure 1.2 is an example output from the UKF and how the rest of the

work will determine the validity of the model. The red dots in this figure are the

difference in estimated values from the UKF output state and what is considered to

be the ’truth’ state. If the UKF was accurate and working properly we should see a

convergence to the value 0 as the UKF would be picking up the true value. Again,

more details will be discussed in Section 3.6 but this is the general overview and was

an important step in the approach because the UKF needed to be working before any

more state information could be added and more complex equations of motion could

be propagated.

1.3.2 Cuboid

Once certain the UKF was working properly, Equations (1.1) and (1.2) would be

extended to a more robust shape model that would be more indicative of a true

spacecraft as well as one that could be fed attitude and spin information to discern

one face from another. For these purposes, a cuboid model was chosen to evolve from

the spherical model for the continuation of experimentation. The cuboid was defined

by three parameters: d, w, h, which are the depth, width, and height, respectively.

An example of this cube can be seen in Figure 3.1 and the necessary equations for

calculation will be further discussed in Section 3.2.

This approach was much more realistic in comparison to Section 1.3.1 since a

5



Figure 1.2: Sphere Position Estimate Results with 3σ error.
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perfect homogeneous sphere is not a good approximation for most space object. The

simplifications of a spherical model do not provide enough information to accurately

keep track of the important intrinsic properties that would allow for proper mass

estimation and orbit determination. Having a finite number of facets each with their

own albedo, area, and orientation allows the algorithm to be more robust for future

applications. The details of the more robust equations of motion and observation will

be outlined in Chapter 3.
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2. BACKGROUND

With astrometric, or angles data, a sensor will take pictures of the night sky over a

certain period of time. A reduction process is conducted to determine the location of

the streak in the night sky through comparison of known stars and thereby comput-

ing the angular information. For photometric data, or light information coming from

a charge-coupled-device camera (CCD), the magnitude and direction of a particular

light source will give information on the space object. The challenge when applying

this to HAMR objects as discussed in Section 1.1 is that astrometric data gives you

positional information and, hence, perturbations on the orbital dynamics that are in-

directly related to the photometric signature. The photometric signatures gives you

attitude related information which effects the positional perturbations. An investiga-

tion into coupling the strengths of each data type to determine characteristics such

as mass is the primary focus of this work.

This work will use an unscented Kalman filter as a means for estimation, but a

method for initializing the track was also needed. One approach utilized in many orbit

determination applications is to perform an Initial Orbit Determination (IOD) step

and then refine the initial estimate provided by IOD via a Batch Processor mechanism

(e.g. a Square-Root Information Filter) before transitioning to sequential estimation

with a mechanism such as the UKF [5]. Refining the initial estimate is outside the

scope of this work. The technique used here for IOD is the extended Gauss iteration

[7],[10].

Gauss iteration is an angles only solution to initial orbit determination that uses

three different observations as a method to formulate a position and velocity vector

for a space object. The formulation derives a line of sight vector by the right ascension
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and declination values, a site vector described using the local sidereal time of each

observation, and the time difference between each observation. Gauss’ method was

chosen in comparison to the other IOD methods, such as double r or Izzo-Gooding

[15], because it is better at handling objects which do not have a lot of angular

separation. This made it ideal for the purposes of this work due to the short data

collection time window of HAMR objects in orbit and the GEO regime which the

objects reside in. However it is important to be aware of the limitations of Gauss’

method such as its sensitivity to data noise and inefficiency with collections spanning

more than 60◦ [15].

2.1 Astrometric Data

It has been shown in [11] that angles data can produce information about a area-

to-mass ratio due to SRP forces. However, that study was restricted in terms of

rotational dynamic modeling. When combined with the typically dim magnitudes

of HAMR objects, the result was lost or incorrectly associated space objects. To

accurately describe the translational and rotational dynamics of a known object data

must be consistently taken over a span of multiple days for that same object. Un-

fortunately, this is not feasible for something like a HAMR object since the drastic

changes in eccentricity and inclination can kick the object out of a known orbit track

within a period of a few hours. With the attempt of infusing the UKF with periodic

photometric measurements, mass properties should be more accurately modeled.

2.2 Photometric Data

Light curves are able to estimate the shape and albedo properties of a space object.

In particular, Reference [9] was able to deduce the rotation period, pole direction, and

scattering parameters of an asteroid using only light curve information. Since magni-

9



tude information can also be used to deduce information about position and attitude

and their respective rates [12] utilizing photometric information can be considerably

useful in determining mass information for a space object. This is because there are

multiple ways to approach the modeling information of intrinsic parameters which are

all not sensitive to the same restrictions. Thus, when incorporated in conjunction,

astrometric and photometric data can each provide useful characteristics to deduce

mass.

2.3 Previous Work

This work was built upon the previously developed application from Linares et. al

in Reference [12]. Dr. Linares was instrumentally helpful in explanations for the

process of unscented Kalman filtering which will be described in Section 3.6 as well

as in code exchanges for the application of quaternions in the UKF seen in Section

3.6.2. Since the code was not produced for public use, this code in this work was built

from the ground up to mimic the types of results obtained in [12] with the intention

of allowing others to build upon this research in the future in an attempt to derive a

better public tool for mass estimation.

In Reference [12], Linares et. al approach the topic of astrometric and photometric

data fusion via three different methods, each with their own unique parameters that

are estimated for in the state vector and then carried through the UKF. In the first

method, they estimate the mass using an assumed value for the albedo. The second

method makes use of the fact that the observations and dynamics are both sensitive

to the desired mass and area quantities but by themselves are not sensitive to all the

estimated state values. And finally method three does not assume albedo values and

estimates for the albedo directly.

The work conducted in [12] framed the structure which the work in this thesis

10



followed. Both used a unscented Kalman filtering estimation scheme using light curve

and angles data to update the measurement information for the state and covariance

matrices at different collection intervals. Using the same cuboid shape object and

similar parameters, Linares et. al were able to converge on a mass estimation for

their space object of mass 1,500 kg to within 54.76 kg 3σ. The maximum area-to-

mass ratio was 0.09 for that cuboid object. When run with different area-to-mass

ratios of 0.01, 0.1, 1, and 10 the mass estimation converged to 3σ errors of 160.12 kg,

30.45 kg, 2.71 kg, and 0.80 kg respectively. These results were incredibly accurate for

the objects in question and the multiple approach method provided opportunities to

apply mass estimation in different ways depending on what sort of information you

have available and what you would like to estimate.

Reference [2] adopts a similar formulation for finding the area and mass informa-

tion of a space object combining astrometric and photometric data but modeled as

a sphere. In this study a sphere was a good enough approximation for the model

because it was meant to compare the relative estimation abilities of two sensor plat-

forms, not evaluate absolute estimation accuracy in a real world setting. However,

the applications between the two are very similar since the paper showed an advan-

tage of reducing the targets mass uncertainty very quickly with both astrometric and

photometric data.

Reference [8] describes the formulation for a filter framework Optical Data Esti-

mation for Space Situational Awareness (ODESSA) which works to fuse astrometric

and photometric data in near real time for state estimation. ODESSA also has a A

backward smoother capability as a means of recovering the best possible estimates

based upon all of the data available. Jah and Madler were able to show promising

convergence of errors when using an unscented Kalman filter formulation, much like

this work employs.

11



The research in this paper expands upon each of these ideas and examines the

strengths of implementing these techniques in different orbit regimes. The ultimate

goal is to apply this modeling to HAMR objects which reside in the GEO regime thus

that is the main focus during development.

12



3. METHODOLOGY

The ultimate goal of this work is to develop a tool in MATLAB capable of mass

estimation for space objects in different orbit regimes as well as the ability to apply

the gained knowledge and understanding to HAMR object research. This was accom-

plished by understanding how to properly combine and propagate two different types

of information, angles data and light curve data, through an unscented Kalman filter.

This method of filtering was chosen mainly because it allowed a means of estimating

information about the states usinga priori and a posteriori information. Thus as

the space object was propagating, measurements of light curve data could be used

to update the state information with less error over time, thus converging as more

measurements are taken.

3.1 Input selection

There are two built-in methods within the tool for obtaining a position and velocity

vector to describe the orbit of the space object. The first is for a well catalogued

space object such as a satellite with a registered NORAD Catalog ID number. By

providing the input file with the catalog ID number and a Julian date of interest, the

code will pull the closest TLE to the provided Julian date number. Utilizing that

TLE, you can specify a desired Julian date that the position and velocity vectors will

be propagated to utilizing Vallado’s SGP4 propagator [14]. From there the vector

states will be fed into the UKF for processing.

The second method incorporates initial orbit determination (IOD) method dis-

cussed in Section 2 in order to initialize the position and velocity vectors of the space

13



object. Utilizing a set of three angles observations, with right ascension and decli-

nation values, position and velocity vectors can be found through a Gauss iteration.

This formulation is more efficient when the angular separation between observations

is less than about 60◦ and will perform remarkably well for data separated by 10◦ or

less. This method was chosen for the tool because in particular for HAMR object

there might not be a large window of time you have to collect on the object because

of the large changes in orbital parameters due to SRP. Thus, with only a few small

collections, there needed to be a way for the tool to handle determining the initial

orbit of the space object.

Both methods have consistent information that will be used by either method,

including the information about the optical site such as longitude, latitude, and height

above sea level. Additionally, input information about time of the observations and

length of time the UKF should propagate from the initialization must be included for

the program to carry out the proper iterations.

3.2 Shape model

The cuboid shape utilized in this experimentation was previous defined in Section

1.3.2 and was illustrated in Figure 3.1. The finite number of flat facets, six in the case

of the cuboid, allowed for information to be propagated through the experimentation

as the object was allowed to rotate. Each facet had a set of three basis vectors to

parametrize the surface
〈
uBu ,u

B
v ,u

B
n

〉
where uBu and uBv were in the plane of the facet

and uBn was normal to the facet. Because the space object was considered to be a

rigid body the unit basis vectors did not change with time being expressed in the

body frame of reference.

The SRP and light curve models require these vectors to be expressed in the

inertial coordinate system. To do so and account for the rotational dynamics of the
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Figure 3.1: Cuboid Shape Model [12]

space object we can map the body reference frame to the inertial reference frame

using an attitude matrix A
(
%BI
)

given by

uBk = A
(
%BI
)
uIk, k = u, v, n (3.1)

where %BI is the quaternion of the state. The six sides of the cuboid space object each

had a surface facet unit normal to keep track of when the object was rotating in the

inertial frame. The area vector A has dimension n by 1 where n is the number of

facets the object has. This vector was propagated alongside the equations of motion

but should remain unchanged as the object orbits on account of the assumption of a

rigid body.

3.3 Solar radiation model

For objects orbiting at high altitudes (≥ 1, 000km) the dominating non conservative

perturbation force is solar radiation pressure (SRP). To accurately describe the effects

SRP has on a space object, position and attitude dynamics must be coupled together.

Additionally, parameters such as reflectivity and the solar flux arriving at the space
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object’s position (accounting for shadowing effects) must be correctly determined.

This work assumes a constant average flux coming from the Sun at all periods where

in all reality this simplification would not be true for periods of intense solar activity,

when the value would be much larger or conversely in periods of low activity when

the effect might be negligible. Because the incoming radiation from the Sun exerts a

force on the space object, the apparent size of the space object that faces the Sun is

critical in accurately determining the amount of acceleration. According to [15] the

force can be modeled as

Fsrp = −psrpcRA�
rso�
rso�

(3.2)

where psrp is the pressure due to solar radiation, cR is the coefficient of reflectivity,

A� is the exposed area to the Sun, and rso� is the position vector from the space

object to the Sun. In this case the average solar pressure is modeled by

psrp =
Φsun

c
=

1467

3× 108

W/m2

m/s
= 4.57× 10−6

N

m2
(3.3)

acceleration is obtained by using Newton’s second law with the given force

asrp =
Fsrp
m

=
−psrpcRA�

m
(3.4)

Equation (3.4) is a jumping off point to obtaining the proper model used in this

work. Equation (1.1) was a simplified model for a sphere without considering the

differences in reflectivity. Due to the material property of a space object, some sides

will reflect diffusely while others will reflect specularly. Hence, at any moment the

space object will experience a net force plus a net torque. Considering this, the

angle at which the solar radiation is incident on a surface element of area A�, whose

surface normal vector makes a solar-incident angle φinc with the Sun-space object

line. In assuming the diffuse and specular radiation forces are Lambertian diffusion,

[6] derives the acceleration due to solar radiation pressure acting on a body composed

16



of n flat plates as

aisrp = −psrp
(
rau
rso

)2 n∑
k=1

Ak
m
cosφk

[
(1− ρk)uIsun + 2

(
1

3
δk + cosφkρk

)
uIn,k

]
, (3.5)

where rau is the distance of one astronomical unit, rso =
∥∥rIsun − rI

∥∥ is the distance

of the Sun with respect to the space object, m is the total space object mass, Ak is

the area of the kth plate, ρk is the specular reflection coefficient of the kth plate, δk

is the diffuse reflection coefficient of the kth plate, uIn,k is the unit vector normal to

the kth plate expressed in the inertial frame using Equation (3.1). The solar-incident

angle φk is given by

cosφk = uIn,k · uIsun

where uIsun is the unit vector space object to the Sun expressed in the inertial reference

frame, which is given by

uIsun =
rIsun − rI

‖rIsun − rI‖

.

3.4 Observation model

Observations for flux and magnitude measurements were made considering an optical

site located at some latitude λ, local sidereal time θ, and East Longitude φ from the

observed space object. The geometry associated with the space object with respect

to the optical site can be seen in Figure 3.2 where dI is the position vector from the

observer to the space object, rI is the position vector of the space object in Earth-

Centered Inertial (ECI) coordinates, and RI is the geocentric position vector locating

the optical site. Thus the position vector dI can be calculated as

dI = rI −RI (3.6)
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Figure 3.2: Observation Coordinate Frame Depiction [12]

18



The geocentric position vector, RI , of the optical site is calculated using [4],

RI =

[
R⊕√

1−(2f−f2)sin2φ
+H

]
cosφ(cosθî + sinθĵ)

+

[
R⊕(1−f)2√

1−(2f−f2)sin2φ
+H

]
sinφk̂

(3.7)

Where R⊕ is the radius of the Earth, f = 0.003353 and is the oblateness factor of

the Earth, H is the elevation, φ is the geodetic latitude, and θ is the east longitude

of the site. A graphic representation of these values can be seen in Figure 3.2.

Lastly, the position vector dI must be transformed into the topocentric horizon

coordinate system, often referred to as the Up-East-North coordinate system. The

conversion is given by

ρI =


−sinθ cosθ 0

−sinφcosθ −sinφsinθ cosφ

cosφcosθ cosφsinθ sinφ

dI . (3.8)

The topocentric horizon position vector ρI is then converted into a unit vector for

further calculation use, such as in Section 3.5 for the vector calculation for the Earth’s

shadow and as will be seen for the specular and diffuse reflection calculations.

The optical site records position of the space object as well as the magnitude

of the brightness. That brightness can be modeled using a bidirectional reflectance

distribution function (BRDF) which is a way to model light scattered from the surface

of an object due to incident light. The BRDF at any point on the surface is a function

of two directions: the direction from which the light source originates and the direction

from which the scatter light leave the surface [12]. Thus the total BRDF is a sum of

a specular and a diffuse component given by

ρtotal(i) = ρspec(i) + ρdiff (i) (3.9)

The diffuse component is Lambertian diffusion, scattering the light equally in all direc-

tions while the specular component are the mirror-like characteristics, concentrating
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the light in one particular location. Reference [1] develops a BRDF for modeling

continuous arbitrary surfaces but simplifies it for flat surfaces. This can then be ap-

plied to the n sided flat surface model employed in this work. Under this flat plate

simplification [1]

ρspec(i) = Cspec
(uobs · uspec)α

usun · un
, (3.10)

where uspec = 2(un ·usun)un−usun and is the unit vector in the direction of specular

reflection, Cspec is the coefficient of specular reflectivity, and α defines the width of

the specular lobe, uIn(i) is the unit normal of the ith plate, and usun is the unit vector

of the Sun’s direction. Then the diffuse component is given by

ρdiff (i) =
Cdiff
π

(3.11)

where Cdiff is the coefficient of diffuse reflectivity. Knowing this the flux equations

can be developed. The flux of visible light which reaches the surface of the space

object is modeled by

Fsun(i) = Φsun,visρtotal(i)
(
uIn(i) · uIsun

)
(3.12)

where Φsun,vis = 455W/m2 is the average power per square meter from the sun striking

the surface of the object and the unit vectors are as previously defined. Keeping in

mind that if for any side the angle between the surface normal and the Sun’s direction

was larger than π/2, than the solar flux would be set to zero since there was no radiant

flux on that facet. Then the reflected light becomes

Fobs(i) =
Fsun(i)A(i)

(
uIn(i) · uIsun

)
‖dI‖2

(3.13)

where A(i) is the area of the ith facet and the other terms are as previously defined.

Finally, the apparent magnitude can be calculated as

mapp = −26.7− 2.5log10

∣∣∣∣∣∣
n∑
i=1

Fobs(i)

Φsun,vis

∣∣∣∣∣∣ (3.14)

where -26.7 is the apparent magnitude of the Sun.
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3.5 Accounting for Earth Shadow

The solar radiation model and observation model were equipped with the ability to

handle shadow calculations for when a spacecraft is passing in the shadow of the Earth

such as can be seen in Figure 3.3. To do so, the translational and rotational model

considers the current position vector of the space object and the current position

vector of the Sun. The angle between the two objects with the common central body

of Earth can be found using

θ = cos−1
(

r� · rso
r�rso

)
(3.15)

where r� is the position vector of the Sun, rso is the position vector of the space

object, r� =‖r�‖, and rso =‖rso‖. Then each object makes an tangent line with the

edge of Earth, which forms a triangle with vertex angle given by

θso = cos−1
(
R⊕
rso

)
θ� = cos−1

(
R⊕
r�

)
(3.16)

where R⊕ is the radius of the Earth, meaning that there is no line of site between

the space object and the sun when θso + θ� < θ [4]. Each unit normal vector of the

facet was constantly checked with the vector position of the sun. If the addition of

the two angles were greater than the sum of the angle between them then SRP and

measurement fluxes were set to zero.

Reference [11] shows that using a simple cylindrical Earth shadow model can result

in errors in the force modeling. These errors should be accounted for in future work

if attempting to obtain the highest accuracy for the orbit kinematics.

3.6 Unscented Kalman Filter

Filtering algorithms are commonly used for state estimation of space objects. This

allows for estimations of unknown variables through the calculation of a state prob-

21



Figure 3.3: Earth’s Shadow Approximation in PQR coordinates [15]

ability density function (pdf) using a posteriori or a priori information. In other

words when information is known about the past or future states of the space object,

the UKF can model the unknown parameters using weighted sigma points which are

state vectors deterministically sampled about a mean. These are used to parametrize

the true mean and covariance of a state distribution. Once propagated through a non-

linear system the posterior mean and covariances are obtained and updated through

a weighting process. This update process changes based on the number of measure-

ments gained between each time step and thus make adjustments to the state mean

and covariance as it propagates.

The mean and covariance variables are determined via a distribution of sigma

points obtained from the filter estimations. Given an L× L error covariance matrix

Pk, the sigma points are constructed by [12]

σk ≡ ±
√

(L+ γ)Pk (3.17a)

χk(0) = µk (3.17b)

χk(i) = µk + σk(i) (3.17c)

Given that these points are selected to represent the distribution of the state vector,
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each sigma point is weighted to preserve the initial condition information

Wmean
0 =

λ

L+ λ
(3.18a)

W cov
0 =

λ

L+ λ
+ (1− α2 + β) (3.18b)

Wmean
i = W cov

i = 1
2(L+λ)

, i = 1, 2, ..., 2(L− 1) (3.18c)

where λ = α2(L + κ) − L is a scaling parameter, α is a parameter that controls

the spread of sigma points and should be 0 < α ≤ 1, κ = 3 − L, and β is used to

incorporate prior knowledge of the distribution by weighing the mean sigma points

in the covariance matrix [12].

Applying the UKF did not come without challenges however. As will be discussed

in Section 3.6.2, quaternions are not as easily propagated through the filter like other

state elements.

3.6.1 Translational & Rotational Model

The dynamic modeling which the UKF utilizes its unscented transform on is a non-

linear rotational and translational model parametrized by

f
(
[χ, %̂]

)
=



v̂I

− µ
r3

r̂I + âIsrp

1
2
Ξ(%̂)ω̂B

B/I

J−1SO

(
T̂B
srp −

[
ω̂B

B/I×
]
JSOω̂

B
B/I

)


(3.19)

where the first component is velocity, the second component is the acceleration due

to solar radiation pressure, the third component is the quaternion derivative and the

last component is the angular momentum with an included torque. The superscripts I

account for the inertial reference frame and B account for the body frame of the space

object. The acceleration component due to solar radiation pressure was calculated
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using Equation (3.5). The angular momentum component is comprised of the inertia

matrix, JSO, and the net torque due to solar radiation pressure, TB
srp. For the cuboid

shape discussed in Section 3.2, the inertia matrix is

JSO = m


d2+h2

12

w2+d2

12

h2+w2

12

 (3.20)

where w, d, and h represent the width, depth, and height respectively which are

shown in Figure 3.1.

Because the dynamics of this model are in terms of the body coordinate system,

this model needed to keep track of the orientation of the space object with respect

to the inertial frame. To do so, every iteration of the function would take in the unit

body frame vectors and translate it into the inertial frame using the direction cosine

matrix (DCM) which could be constructed from the quaternion in the current state

vector. The body coordinate unit vectors would be divided by the attitude matrix

to produce unit normal vectors using Equation (3.1). The inertial unit vectors were

also used to keep track of which facet of the cuboid was facing towards the sun and

which of those were not at every time instance. If for any side the angle between the

surface normal and the Sun’s direction was larger than π/2, than the solar radiation

pressure would be set to zero since there was no radiant flux on that facet.

3.6.2 Quaternions in UKF

Applying the UKF structure to attitude estimation techniques demonstrated some

shortcomings with the filtering techniques. Inherently, three parameter sets such as

classical Euler angles or yaw, pitch, and roll sequences possess singularities. Thus

to overcome this issue in the attitude parametrization, the quaternion representation

was used. However, the limitations this representation presents is that quaternions
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are not additive and thus when calculated for the covariance matrix they needed

manipulation. Reference [3] overcame this challenge by employing generalized Ro-

driguez parameters (GRPs), a three parameter set, to define the local error and then

transforming those into quaternions, a four parameter set, for the global attitude.

The global attitude information in this work was parametrized using quaternions.

As the name implies, quaternions are made up of four components which include a

vector component and a scalar component [4]

{%} =



q1

q2

q3

q4


=

q

q4

 (3.21)

where q is the vector part (q = q1̂i + q2̂j + q3k̂) and q4 is the scalar part. The

norm ‖%‖ of the quaternion is defined as

‖%‖ =
√

q · q + q42 =
√
q12 + q22 + q32 + q42. (3.22)

Considering unit quaternions, such that ‖%‖ = 1, the vector part and scalar part

can be defined in terms of the principal angle of rotation, θ, such that

q = sin θ
2
û q4 = cos θ

2
. (3.23)

Once the state vector had a specified quaternion and was fed into the UKF, the

local error could be represented by the GRPs. A vector of GRP can be determined

through

δp = f
δ%

a+ δq4
(3.24)
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Figure 3.4: Error quaternion sequence for attitude implementation.

The representation of the attitude error as a GRP is useful for the propagation

and updates states of the attitude covariance because the structure of the UKF can

be used directly alongside the rest of the mechanics in the filter. In [3] the covariance

matrix is interpreted as the covariance of the error GRP because for small angle errors,

the error GRP is additive and the UKF structure can be used directly to compute

sigma points. The error GRP sigma points are converted to error quaternions and

then to global quaternions for the propagation stage. To compute the propagated

covariance the global quaternions are converted to error quaternions and then back

to error GRPs [12]. The process flow inside the UKF can be seen in Figure 3.4.

In order to carry out the process of manipulating the attitude error within the

UKF, several transformations had to be done. The first was initializing the UKF

with two separate state vectors for each iteration, one which carried the information
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of the error GRP state and one which carried the quaternion state vector information.

These vectors were given by

x̂δpk =



r̂I

v̂I

δp

ω̂B
B/I

A

m


x̂%k =



r̂I

v̂I

%B
I

ω̂B
B/I

A

m


, (3.25)

where δp is the error GRP state associated with the quaternion %B
I . Upon first

iteration, the initial estimate of the mean sigma point is denoted χ0(0). The error

GRP of this initial state is set to zero, while the other states are initialized by their

respective estimates.

The vector containing the error GRP is by design dimension m − 1 if the state

vector containing the quaternion is dimension m. Then to construct the error quater-

nion, denoted by δ%−k (i), associated with the ith error GRP sigma point is computed

as

δq−4k =
−a
∥∥∥χδpk (i)

∥∥∥2 + f

√
f 2 + (1− a2)

∥∥∥χδpk (i)
∥∥∥2

f 2 +
∥∥∥χδpk (i)

∥∥∥2 (3.26a)

δq−k = f−1[a+ δq−4k ]χδpk (i) (3.26b)

δ%−k (i) =

δq−k
δq−4k ,

 (3.26c)

where f = 2(a+ 1), a is a parameter between 0 and 1, and
∥∥∥χδpk (i)

∥∥∥2 is the norm

of the ith sigma point. χδpk (i) should be a 3 by 1 vector of sigma points to allow the

GRP sigma points to be turned into the error quaternion. The error quaternion must
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then be turned into a sigma point quaternion to be properly propagated through the

equations of motion using

%̂−k (i) = δ%̂−k (i)⊗ %̂−k (0) (3.27)

where

q′ ⊗ q′′ =

[
Ψ(q′) q′

]
q′′ (3.28)

which becomes 

q1

q2

q3

q4


=



q′4 −q′3 q′2 q′1

q′3 q′4 −q′1 q′2

−q′2 q′1 q′4 q′3

−q′1 −q′2 −q′3 q′4





q′′1

q′′2

q′′3

q′′4


(3.29)

This global quaternion is then propagated through the equations of motion to

get a propagated state vector and the process is reversed. The global propagated

quaternion is to a local error quaternion by

%̂−k+1(i) = δ%−k+1(i)⊗ [%̂−k+1(0)]−1 (3.30)

and then that can be turned into an error GRP by a variant of Equation (3.24),

δp−k+1(i) = f
δq̂−k+1(i)

a+ δq̂−4k+1
(i)
. (3.31)

The process will then start over as the updated states become the initial states

and the GRP error is reset to zero. Further details are provided in Section 3.6.3 in

conjunction with Tables 3.1 and 3.2.

3.6.3 Unscented Kalman Filter Algorithm

Tables 3.1 and 3.2 detail the algorithm used for the UKF in this work. The filter begins

with defining two initial state vectors, one that includes quaternion states and one that

includes error GRP states as seen in Equation (3.25). The initial covariance matrix
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is defined as the initial error covariance for the state vector that includes the GRP

states, the translational, rotational and parametric states. This is then used to form

error GRP sigma points. The error GRP sigma points are converted to quaternion

sigma points by creating error quaternions from each error GRP and then multiplying

the error quaternion to the initial mean quaternion using Equation (3.27). This state

vector is then passed through the translational dynamics of the model as modeled by

Equation (3.19). The propagated mean sigma point quaternion, %̂−k+1(0), is computed

and stored, and error quaternions corresponding to each propagated quaternion sigma

point are computed [12]. In the time update step, the propagated mean and covariance

are calculated as a weighted sum of the sigma points. A measurement update is

calculated using the model dynamics described in Equation (3.13). From there cross

and innovations covariances are computed using the sigma point values. Next, the

Kalman gain is calculated and used to update the mean and covariance vectors that

contain the error GRPs. And finally, the quaternion update is found using Equation

(3.26) which is then multiplied with the propagated mean quaternion. Since the error

quaternion is now calculated, the error GRP can be reset to zero for the next process

to continue. This updated state vector and covariance matrix is then passed out of

the filter and recorded before another time iteration passes.

3.7 Mass Calculation

The primary focus of this work was to formulate a tool for mass calculation of a

space object and doing so required some assumptions and simplifications. These

included the geometry of the space object being a cuboid and assuming the object is

a rigid body. One of the largest translational assumptions was attributing the entire

deviation of the position vector solely to solar radiation pressure perturbations. Once

the UKF and truth state vectors were calculated the value of SRP force that disturbed
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Table 3.1: UFK steps, 1 of 2

Initialize with

x̂δp0 = E
{

xδp0

}
x̂%0 = E {x0}

Pδp
0 = E

{(
xδp0 − x̂δp0

)(
xδp0 − x̂δp0

)T}
Calculate GRP Sigma Points

χδpk =

[
xδpk xδpk + γ

√
Pk−1 xδpk − γ

√
Pk−1

]
Calculate Quaternion Sigma Points

χ%k =

[
x%k x%k + γ

√
Pk−1 x%k − γ

√
Pk−1

]
Propagate Quaternion Sigma Points

χ%k = f
[
χ%k−1, t

]
Calculate GRP Sigma Points

χδpk =

[
xδpk xδpk + γ

√
Pk−1 xδpk − γ

√
Pk−1

]
Time Update

x̂−k+1 =
∑2(L−1)

i=0 Wmean
i χk+1(i)

P−k+1 =
∑2(L−1)

i=0 W cov
i

[
χk+1(i)− x̂−k+1

] [
χk+1(i)− x̂−k+1

]T
+QK+1
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Table 3.2: UFK steps, 2 of 2

Measurement Update

γk(i) = h
[
χk(i), %̂

−
k

]
ŷ−k =

∑2(L−1)
i=0 Wmean

i γk(i)

Cross Covariance Calculations

P yy
k =

∑2(L−1)
i=0 W cov

i

[
γk(i)− ŷ−k

] [
γk(i)− ŷ−k

]T
P vv
k = P yy

k +Rk

P xy
k =

∑2(L−1)
i=0 W cov

i

[
χk(i)− x̂−k

] [
γk(i)− ŷ−k

]T
Gain & Update

Kk = P xy
k

(
P vv
k

)−1
x̂+
k = x̂−k +Kk [ỹk − ŷk]

P+
k = P−k −KkP

vvKT
k

Quaternion Update

%̂+
k (i) = δ%̂+

k ⊗ %̂
−
k (0)

Set GRP to zero

δp =

[
0 0 0

]T
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the vector by some difference, δr, was calculated and stored for every time point that

the state vector was calculated at. Then this value of aIsrp was used in conjunction

with Equation (3.5) to solve for the area-to-mass ratio, CrA
m

for each flat plate of

the space object. Being that the space object was assumed to be a cuboid with

six identical flat plate facets, reference [12] shows that Cr can be approximated to

be Cr = 1 + 4
9
Cdiff where Cdiff is the coefficient of diffusion. For this application,

Cdiff = a where a is the albedo of the flat plate. This assumption is valid because it is

assumed the space object is completely diffuse and follows Lamberts cosine law. Thus

the mass is able to be extracted from the area-to-mass ratio using the propagated

albedo-area vector, ACdiff from the state vector. The benefit of this approach is

that since the albedo-area vector is part of the estimated state vector the orientation

of the space object is not affected by the uncertainty in the assumed albedo, but

rather the assumed albedo is used to compute the SRP force on the space object and

consequently the mass.
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4. CASE STUDY DESIGN & ANALYSIS

The data analysis was set up in a case study format to make sure the code worked con-

sistently with three different regimes: geosynchronous (GEO), highly elliptic (HEO),

and medium earth orbit (MEO). The focus was on the different orbital altitudes so

that consistency could be shown applying this to mass estimation techniques used

in any debris or unknown space object collection application, however the focus of

this paper was to ultimately have the application be to HAMR objects in the GEO

regime. Each case study had a different way of initializing the orbit position and

velocity vectors, both of which are discussed in Section 3.1. The information that

stayed consistent throughout all cases was:

1. Time span for the UKF filter to run, 3 days in 30 second time intervals

2. Optical site was located at −119◦25′5′′ East longitude, 36.778◦ latitude, 0 km

above sea level

3. Collection time started April 20th, 2016 at 2:30am

4. The dimensions of the cuboid were d = 4m, w = 4m, h = 8m

5. The initial quaternion was %BI =

[
− 1√

2
0 0 1√

2

]T
6. The initial orientation was achieved by rotating the cuboid 90◦ about the x-axis

from its position described in Figure 3.1

7. The initial angular velocity was ωBB/I =

[
0 0.003 0

]T
8. The albedo a = 0.3 for every facet which meant that Cdiff = 0.3 as well because

this is a typical value for satellite material
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Since the optical site was chosen to be in California, USA the case study targets

were chose such that they would be visible from the site during the middle of the

night to early morning. Section 3.5 explains how the effect of the Earth’s shadow was

accounted for in the SRP calculations while the space objects were propagated for 3

days of orbit. The angles data used for the initial orbit determination sections was

generated by hand using the same optical site information the observations would

be taken from and choosing three distinct points within a small orbital arc that was

propagated using Vallado’s SGP4 propagator [14].

The error for the state vector values was also consistent between trials. For the

position the error was set to be 202km2, the velocity error was 0.012(km/s)2, and

5◦ for all three attitudes. The angular velocity error was 0.001(rad/s)2, each area

and albedo area of each face of the cuboid had a 102m4 error and the mass had a

32kg2 error. The truth mass for each satellite was the actual value of the known

space object. With the area estimations this gave area to mass ratios ranging from

0.0053−0.058m
2

kg
. While these values are not in the range of being classified a HAMR

object, the results provide valuable information for applications to HAMR data once

it can be collected and run through the tool.

The figures that follow, 4.1 – 4.6, are all visually represent the difference between

the UKF measurement and the truth value. The ’truth’ vector is found using all

the same equations of translational and rotational motion as well as the same mea-

surement equations for flux but rather than being propagated through the UKF it is

propagated separately through ODE45 solver built into MATLAB. The result allows

comparison to what the UKF tool has estimated the values to be and what the values

of a propagated state would be. Thus it is important to see in the following figures

that the value 0 is included within the 3σ error indicating no difference between esti-

mated and truth. This is true for every graph except (c) for the magnitude to which

it is a simple apparent magnitude measurement recorded, not shown as a difference
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to the truth value. The magnitude measurements were found after the UKF was run

found by taking the flux measurements at each time step and using Equation (3.14)

were transformed into an apparent magnitude. This was done for both the estimate

values and the error which can account for the non-symmetrical nature of the mag-

nitude 3σ error present in all the (c) graphs to follow. For more detailed views of the

following figures please refer to Appendix A.

4.1 Case 1: GEO

4.1.1 TLE

The object chosen for this study was Galaxy 15, SSN: 28884. Galaxy 15 features a

unique commercial/government hybrid payload configuration and thus has function-

ality for American telecommunications broadcasting and GPS data applications. As

can be seen from Figure 4.1a, the position values have converging 3σ error bounds as

the difference values oscillate around a mean of 0. Figure 4.1b depicts the velocity

deviation from the truth value and shows a tending toward the value of 0, but the

errors seem to grow before converging toward 0. The magnitude stays at a consistent

value of about 10th magnitude seen in Figure 4.1c which is common for a GEO satel-

lite of this size and shape. And finally, the mass value can be seen to be calculated

very accurately with few variations around the 0 mean, shown in Figure 4.1d. This

was compared to the actual mass value of 885 kg [16]. The issue with this result is the

diverging mass estimate value from the UKF which will be discussed later in Section

5.
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(a) (b)

(c) (d)

Figure 4.1: Satellite 28884 Estimate Results: (a) Position estimation with 3σ
error; (b) Velocity estimation with 3σ error; (c) Apparent magnitude estimation with
3σ error; and, (d) Mass estimation with 3σ error.
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4.1.2 IOD

The object chosen for this study was ANIK F1-R, SSN: 28868. Anik F1-R provides

telecommunications, broadcasting and Internet services over a large zone covering

Canada and North America as well as it is equipped with a navigation payload.

Figure 4.2 shows very similar results as Figure 4.1 did with a few exceptions. Being

that the state vector was initialized from a set of angles only estimates the range data

was not accurately determined like it could be in the case of using a TLE. Thus the

dI vector in Equation (3.13) is a guess which has error associated with it. For this

reason the magnitude estimates are lower, settling around 5th magnitude. This is a

error which should be considered with all UKF applications because the measurement

values which are used for photometric flux will be lower causing the filter to make

larger errors. The mass in Figure 4.2d is being compared to the actual mass of 3,015

kg [16].

4.2 Case 2: HEO

4.2.1 TLE

The object chosen for this study was CLUSTER II-FM8, SSN: 26464. Cluster II-

FM8 is a collection of four spacecraft flying in formation around the earth, relaying

detailed information about solar wind’s affect on our planet in three dimensions. Since

the HEO objects have highly elliptical orbits by design, the study was conducted at

perigee to insure the closest approach of the satellite was viable from how it was

designed. CLUSTER II-FM8 has a perigee value of 33,473.6 km. As can be seen

from Figure 4.3a, the position values have converging 3σ error bounds as the difference

values oscillate around a mean of 0. Figure 4.3b depicts the velocity deviation from

the truth value and shows a tending toward the value of 0, but has momentary periods
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(a) (b)

(c) (d)

Figure 4.2: Satellite 28868 Estimate Results: (a) Position estimation with 3σ
error; (b) Velocity estimation with 3σ error; (c) Apparent magnitude estimation with
3σ error; and, (d) Mass estimation with 3σ error.
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(a) (b)

(c) (d)

Figure 4.3: Satellite 26464 Estimate Results: (a) Position estimation with 3σ
error; (b) Velocity estimation with 3σ error; (c) Apparent magnitude estimation with
3σ error; and, (d) Mass estimation with 3σ error.

of growing error. The magnitude stays at a consistent value of about 8th magnitude

seen in Figure 4.1c which is a proper estimation for a portion of the highly elliptical

orbit which the satellite is at an orbital distance less than about 35,000 km. And

finally, the mass value can be seen to be calculated very accurately with few variations

around the 0 mean, shown in Figure 4.1d. This was compared with the true mass of

550 kg [16].
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4.2.2 IOD

The object chosen for this study was SIRIUS 2, SSN: 26483. SIRIUS 2 enables S-

band digital radio broadcasts (music, news, and entertainment) directly or through

urban relay stations to motorists in North America. This study was also done at

perigee, when SIRIUS 2 was at 23,452.8 km. The resulting graphs in Figure 4.4

prove conclusive similar to the GEO case study with similar issues with magnitude

measurements due to the nature of angles data not including range information. The

actual mass compared in Figure 4.4d for Sirius 2 is 3,800 kg [16]. The issue with

this result is again the diverging mass estimate value from the UKF which will be

discussed in Chapter 5.

4.3 Case 3: MEO

4.3.1 TLE

The object chosen for this study was NAVSTAR 50, SSN: 26690. NAVSTAR 50

(USA 156) is an American GPS navigational spacecraft that was launched by a Delta

2 rocket. The results of Figure 4.5 are similar to the GEO and HEO case for position,

velocity, and magnitude estimates which allows for consistency of the UKF between

different regime types. The mass estimates are very sporadic and consistently tending

outside of the 3σ error bounds when compared to the true mass of 2,032 kg [16].

Potential reasons for the uncharacteristic mass estimation is the lower altitude orbit.

This will further be discussed in Section 5.2.

4.3.2 IOD

The object chosen for this study was NAVSTAR 57, SSN: 28874. NAVSTAR 57 is

also a GPS satellite similar to NAVSTAR 50 but has three more frequency channels
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(a) (b)

(c) (d)

Figure 4.4: Satellite 26483 Estimate Results: (a) Position estimation with 3σ
error; (b) Velocity estimation with 3σ error; (c) Apparent magnitude estimation with
3σ error; and, (d) Mass estimation with 3σ error.
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(a) (b)

(c) (d)

Figure 4.5: Satellite 26690 Estimate Results: (a) Position estimation with 3σ
error; (b) Velocity estimation with 3σ error; (c) Apparent magnitude estimation with
3σ error; and, (d) Mass estimation with 3σ error.
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(with two more military and one more civilian), and is more secure against jamming

and radiation than the older models. The position and velocity graphs in Figures

4.6a and 4.6b show strange characteristic errors which both converge and diverge

from the mean of 0 but also have some values for the estimates outside the 3σ error

bounds which would cause hesitation to conclude this is a viable regime for the UKF

to process. Figure 4.6d shows the true negative of using this tool for the MEO regime.

The mass estimates are very sporadic and consistently tending outside of the 3σ error

bounds when compared to the true mass of 2,032 kg [16]. Again this could be due

possibly to the lower altitude of the orbit.
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(a) (b)

(c) (d)

Figure 4.6: Satellite 28874 Estimate Results: (a) Position estimation with 3σ
error; (b) Velocity estimation with 3σ error; (c) Apparent magnitude estimation with
3σ error; and, (d) Mass estimation with 3σ error.
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5. CONCLUSIONS

This thesis utilized an unscented Kalman filter formulation with light curve and an-

gles data to estimate the the translational and rotational states of a space object

along with the area, mass, and albedo area vector. The case study shown in Section

4 highlighted the differences between the two approaches of initializing the orbital

data for the space object for three different regimes: GEO, HEO, and MEO. The

application this has to HAMR objects is that it was shown the tool performs most

accurately, based on error convergence and estimate accuracy, at higher regimes es-

pecially GEO. While this thesis did not actually have HAMR data to run through

the estimator, the tool was built to take in data and process it proven by the robust

estimations shown in this paper for known space objects. Therefore, going forward,

data can be collected from a HAMR object in the GEO regime and run through

this tool in order to extract information about the intrinsic properties of the object

being observed. This will ultimately lead to cataloguing and more predictable orbit

tracking of HAMR objects.

5.1 Contributions

The work done with this thesis contributed to the growing understanding of mass

estimation methods for unknown space objects. Fusing astrometric and photometric

data into a single tool which could be used for processing allows for more accu-

rate area-to-mass ratio measurements and ultimately better dynamic modeling of the

space object in question. As mentioned in Section 2.3, Linares et al. made a large

contribution to the community with their paper [12] but the tool and information was
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not made available to the public. It is my hope that the research published in this

paper which attempted to reconstruct the formulation previously used for studying

this information and make it available to be expanded upon and adapted to further

methods of mass estimation. The hardest hurdle to surmount with HAMR object

data collection is the short time span of data gathered. With integrating the tool to

take in angles data for IOD as well as TLE information, it was my hope to adapt the

tool to be a universal mass estimator that can be used in a variety of situations, from

catalogued satellites such as those investigated in the case studies, or unknown space

objects such as HAMR objects.

5.2 Strengths and Weaknesses

The tool performed remarkably at the higher altitude regimes, GEO and HEO, which

by design was a desirable characteristic. HAMR objects are typically in the GEO

regime and are causing threats to active RSOs. Being able to detect the objects and

figure out the orbital path they are on with small amounts of data will allow for

collision avoidance maneuvers to take place. The more accurate tools such as this

can be, the better the HAMR object can be studied, catalogued, and tracked. With

intrinsic property information such as mass and area estimates those tracking the

HAMR objects have a better understanding of what it will do next to always stay

one step ahead.

Once the space object under study reached about 20,000km in altitude the UKF

has some issues with the magnitude measurements and mass estimation values as can

be seen in Figure 4.6d. This could be seen as a weakness to the tool but it came

as the expense of modeling the proper dynamics for higher altitude space objects.

Additionally, the incorporation of the IOD modeling for the space object’s state

caused magnitude estimations for the photometric data used in the Kalman filter
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which would hinder the results.

Some of the largest weaknesses come in the assumptions used to model the dy-

namics of the space object. The only disturbance perturbation incorporated into

the translational dynamics is solar radiation pressure since this is the most dominate

source of orbital change for these HAMR objects. However, other forces such as drag

and Earth’s oblateness could improve dynamics of the space object for estimation.

Additionally, there are no disturbance torques incorporated into the rotational dy-

namics of the model but the tool has the capability to incorporate them at a later

date since Euler’s equation is modeled in the dynamics of Equation (3.19). Incorpo-

rating the dynamics for solar radiation in the rotational dynamics, the torques from

Earth’s magnetic field, and especially those from non-rigid body motion would be

instrumental to better modeling the dynamics. HAMR objects whose origins have

been able to be estimated have been found to be pieces of multi layered insulation

from active satellites [11]. The effects of the aforementioned disturbance torques have

not been studied much with HAMR objects and better make this tool more reliable.

Additionally, not having to attribute all the error in the perturbed orbit to the SRP

would most likely cause the divergence of the mass estimates seen in all of the (d)

figures in Section 4 to instead converge with time. The could be other sources of error

introduced at play here to cause this divergence but investigation into this assumption

could be a great place to start.

The assumption of the space object shape, dimensions, and reflectively give this

formulation another disadvantage. Being able to better estimate or even eliminate

the coefficient of reflectively and albedo for the different facets of the space object

would give a exponentially more accurate understanding to the area-to-mass ratio and

mass estimation values. The albedo area and solar pressure albedo were assumed to

be the same thing in this development. Unfortunately, these two quantities are only

the same at zero phase angle or if the observer is standing on the sun, as discussed in
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Section 1.2. Disentangling the physics of these reflective properties would give more

accurate estimated values of the mass for a particular space object of little known

characteristics. And finally, a more detailed BRDF model could relate the difference

between absorbed, diffuse, and specular reflectance better than assuming that the

object is completely diffuse.

5.3 Future Work

The main purpose of this tool was developed to measure HAMR object mass however

without actual HAMR data the results shown here were unable to test the validity to

this application and instead had to measure performance with known space objects.

Therefore it the most critical future work that could be implemented would be to

acquire HAMR object data from multiple different nights of collects and run the tool

to estimate the mass. This should be done on a well known HAMR object to be

able to compare preliminary results with previous investigations into the intrinsic

properties.

There are a number of applications which this tool can be built upon to improve

the mass estimation as well as further investigation to the varying properties the tool

can understand. For example, running this mass estimation tool and comparing the

rate of convergence for dinnering area-to-mass ratios would be useful to know because

the tool should be optimized for high area-to-mass ratios since that is the focus of

the study. The faster and more efficient it could be at understanding HAMR objects,

the better since most of the time the data collection is limited since these objects are

captured with data from other GEO surveys.

The length of these case studies were only for a duration of 3 days. Being able

to run the simulation for longer and produce more data would allow the UKF to

converge to values that would hopefully be close and closer to the truth estimates.
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This was the motivation behind using the unscented formulation but the trade off

between processing time and accuracy would have to be optimized to deliver the

results the user is looking for.

Additionally, changing the tool to be able to not have albedo as a constant value,

but instead be varying and estimated by the filter itself would prove very useful for

applications where other properties such as area might be able to be deduced for the

space object but then the albedo could be measured. The tool could be adapted to

run simultaneously with different sets of information and ultimately characterize the

space object in question with better accuracy.

Lastly, a sensitivity analysis would be very valuable and maybe lend insight in to

some of the results. One could look at sensitivity to uncertainties in: data quantity,

quality and cadence; area-to-mass ratio magnitude; or initial conditions to further

understand the strengths and weaknesses of this tool when modeling dynamics of

space objects and attempting to calculate mass estimates.
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APPENDIX

DETAILED VIEW OF RESULT GRAPHS

The following pages include a more detailed view of Figures 4.1 – 4.6.
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Figure A.1: Satellite 28884 position estimate with 3σ error bounds.

Figure A.2: Satellite 28884 velocity estimate with 3σ error bounds.
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Figure A.3: Satellite 28884 apparent magnitude estimate with 3σ error
bounds.

Figure A.4: Satellite 28884 mass estimate with 3σ error bounds.
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Figure A.5: Satellite 28868 position estimate with 3σ error bounds.

Figure A.6: Satellite 28868 velocity estimate with 3σ error bounds.
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Figure A.7: Satellite 28868 apparent magnitude estimate with 3σ error
bounds.

Figure A.8: Satellite 28868 mass estimate with 3σ error bounds.
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Figure A.9: Satellite 26464 position estimate with 3σ error bounds.

Figure A.10: Satellite 26464 velocity estimate with 3σ error bounds.
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Figure A.11: Satellite 26464 apparent magnitude estimate with 3σ error
bounds.

Figure A.12: Satellite 26464 mass estimate with 3σ error bounds.
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Figure A.13: Satellite 26483 position estimate with 3σ error bounds.

Figure A.14: Satellite 26483 velocity estimate with 3σ error bounds.
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Figure A.15: Satellite 26483 apparent magnitude estimate with 3σ error
bounds.

Figure A.16: Satellite 26483 mass estimate with 3σ error bounds.
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Figure A.17: Satellite 26690 position estimate with 3σ error bounds.

Figure A.18: Satellite 26690 velocity estimate with 3σ error bounds.
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Figure A.19: Satellite 26690 apparent magnitude estimate with 3σ error
bounds.

Figure A.20: Satellite 26690 mass estimate with 3σ error bounds.
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Figure A.21: Satellite 28874 position estimate with 3σ error bounds.

Figure A.22: Satellite 28874 velocity estimate with 3σ error bounds.
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Figure A.23: Satellite 28874 apparent magnitude estimate with 3σ error
bounds.

Figure A.24: Satellite 28874 mass estimate with 3σ error bounds.
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