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Abstract 

The Danalog is a 25 key portable digital music synthesizer that uses multiple synthesis 
methods and effects to generate sounds. Sound varieties included three synthesis methods 
including FM, subtractive, and sample-based, with up to eight adjustable parameters, at least four 
effects, including reverb, chorus, and flange, with five adjustable parameters, and at least two 
note polyphony, and a five band equalizer. The user would be able to adjust these effects using 
digital encoders and potentiometers and view the settings on two LCD screens. 

The finals project was unable to meet the original design requirements. The FM synthesis 
method was primarily working in the end product. The synthesizer was built to produce two note 
polyphony. The LCD screens displayed the information about the synthesis method as the user 
plays. 

I. Introduction 

The purpose of this project was to create a portable, inexpensive digital music synthesizer for 
amateur musicians. The intended customer base consists of young, amateur musicians who don’t 
have a big budget for a more expensive music synthesizer. 

The market requirements for this product are as follows: 

- The Danalog Synthesizer will be inexpensive at less than $200 
- The design will be sleek and lightweight to promote portability 
- Up to eight adjustable synthesis parameters 
- Up to five adjustable effects parameters 
- Five band equalizer 

Our intended customer is an amateur musician seeking an inexpensive digital synthesizer to 
create a wide array of user-defined sounds. 

Several other companies have their own digital synthesizers equipped with numerous features. 
The Danalog’s main competitors would be the Yamaha Reface, Korg Minilogue, Roland 
Boutique, and Arturia MicroBrute. The lowest price of these is the Arturia MicrBrute at $299 - 
which the Danalog has beat by $100. The Danalog digital synthesizer is also smaller than the 
other competitor’s options. 

II. Product Design Engineering Requirements 

Functional and Feature Requirements 

- The Danalog Synthesizer will produce notes over a 2 octave range via Frequency 
Modulation Synthesis, with two note polyphony. 



- The chassis will be made from lightweight plastic that is easy to carry and hold. 
- All components, peripherals, and circuit boards are industry standard and well supported. 
- The encoders, potentiometers, and switches will be strategically placed in a manner that 

follows the logical path of the signal from generation, to equalizing, to modulating. 
- The processing will be split among two IC’s: The ATmega2560 for peripheral 

information, and the TMS320C5535 for Digital Signal Processing. 

Performance Specifications 

- Low latency (<3ms delay) production of notes 
- Instant visual feedback (<3ms) on pressed note 
- Internal rechargeable battery of 5 hour life 
- Able to run on 5V 500mA USB power 
- Low noise audio outputs. 90dBc S/N with +4dBu max output 

 

Level 0 Blackbox Diagram 

 

 

 

User Input: All of the user inputs are translated into 8-bit signals, handled by the ATMega2560 
microcontroller. This includes MIDI protocol, potentiometer positions, encoder rotation 
direction, switch and button positions (via mux), for a total of 30 bytes. All of them are traced to 
an Arduino Mega development board on a PCB where the ATMega chip resides. 
 
5V Power Supply: The synthesizer is powered via 5V 500mA USB power or a 5 volt battery. 
There is a level shifter as well, because the Arduino Mega board runs on 5V while the 
TMS320C5535 runs on 3.3V. 
 
MIDI Input: An optional external MIDI input is available too, which will override the bytes 
sent by the in-built keyboard. 
 



User Interface 
 
The user can control the type of synthesis (FM, Subtractive, Sample), and shift octaves on the 
keys using the rotary switches. With the encoders, the user can control the ADSR envelope of the 
audio wave, select the digital effects that will be utilized, and control their parameters. For 
example, for the reverb effect, the user may be able to control the delay time (10-200 samples) 
between each reverberation as well as the attenuation constant (0.1-0.99). The potentiometers are 
used to control the audio equalizer, by setting the gains (-12dB - 12dB) at specific frequencies to 
attenuate and boost certain frequency ranges. There are also potentiometers used to modulate a 
user-defined parameter, bend the master pitch, and control the master volume. 
 
The two LCD screens provide visual feedback for the user. The left one lets the user know the 
type of synthesis and the ADSR envelope settings, and the gains of the equalizer. The right 
screen displays the type of audio effect in use along with its respective parameters and their 
settings. 
 

IV. System Design - Functional Decomposition (Level 1) 

The system can be broken down as shown in figure 4.1. The operation of the system can be 
generalized as: 

1. The user interacts with the device 
a. Presses a key on keyboard 
b. Sends a MIDI event 
c. Changes a parameter on the front panel 

2. The ATmega reads in information from the user 
3. The C5535 requests an update on the status of the system 
4. The ATmega responds with the latest information on key presses, parameter changes and 

MIDI information 
5. The C5535 generates a waveform based on the state of the system 
6. The sound is enjoyed by the listener 



 

Figure 4.1: Level 1 block diagram of system 
 
System Design Specification Partitioning or Performance Budgets (Vikrant) 
 
16-bit Mux, Rotary Switches, Buttons 
 
The 16 bit mux is used to keep track of the positions of all the switches and buttons, and store 
that information in a single byte. This includes the synthesis type switch, the octave select 
switch, and the preset selector buttons. The output pin of the mux is connected to a GPIO pin on 
the ATMega, which looks for an active low, and then the program will check which input was 
being selected on the input select pins to determine which switch it’s looking at and what 
position that switch is in. The status was checked once every 10ms. 
 
Potentiometers and ADC 
 

https://www.draw.io/#G0B-VkPeyp09IOdUhncFl0bFFJSHc


The 8 potentiometers in the system are used to control 5 passbands in the equalizer, the master 
volume, the master pitch, and a user defined parameter. Each potentiometer was connected to the 
ATMega ADC and stored as an 8 bit value. These were checked around every 5 ms. 
 
Serial Peripheral Interface (ATMega Side) 
 
The SPI bus on the ATMega Side is configured in Slave Mode, and it sends the DSP chip 
information about all the peripherals (potentiometers, encoders, keys, etc.) in an interrupt service 
routine. To minimize latency, the DSP chip looks for certain information more often than other. 
For example, the status of the keys needs to be known almost at all times, so it is checked 
significantly more often than the switches for example. 
 
V. Technology Choices and Design Approach Alternatives 
 
16-bit Mux, Switches, and Buttons 
 
Initially, we were considering sending information about the switch/button positions individually 
through the SPI. However, after finding a way to encode the information into a single byte, the 
data transfer became more efficient. 
 
First, the mux was tested for basic functionality on a breadboard, by applying voltages to the 
input selectors, and seeing if the appropriate signal would appear at the mux output. This was 
verified with an oscilloscope. 
 
Potentiometers and ADC 
 
The potentiometers were fairly straightforward; only one design choice was selected, with the 
positions read by the ADCs on the ATMega chip. 
 
The components themselves were tested for functionality using a simple ADC read program that 
read the position of the potentiometer and translated the value into a number ranging from 0 to 
255. 
 
Serial Peripheral Interface (ATMega) 
 
We considered using a polling scheme for slave side of the SPI, but that would have required too 
much attention from the DSP chip and the ATMega, so we decided to enable interrupts on the 
SPI, so the ATMega could quickly check the status of the peripherals when requested, and send 
them to the DSP. 



 
The SPI was tested using a logic analyzer. Dummy data was sent from the DSP chip and the SPI 
data register on the ATMega was checked to see if it received the same data. Given a particular 
piece of data from the DSP, the ATMega was programmed to send a particular byte, or array of 
bytes referencing some peripheral on the Danalog. 

 

VI. Project Design Description 
 
16-bit Mux, Switches, and Buttons 
 
This subsystem is better described as the synth selector. Its purpose is to select the type of 
synthesis (FM, Subtractive, Sample), select the octave on the keyboard, and set and select a 
preset condition. 
 
The mux selected was the CD74HC4067, a high speed CMOS logic 16 channel analog 
multiplexer. The schematic is shown on the next page in Figure 7.1, with the mux connected to 2 
rotary switches, 3 buttons, and the 5 GPIO pins on the Arduino ATMega development board. 
The 3 position switch SW202 is used to select the type of synthesis, the 5 position switch SW201 
is used to select the octaves, and the buttons set and select preset parameters. The 4 synth_mux 
pins are driven by the ATMega to select the mux input, which is sent to a different pin on the 
ATMega via the synth_mux_out pin. 



 
Figure 6.1 - 16 bit Mux, Rotary Switches, and Push Buttons Schematic 

 
In software, a loop is generated to cycle through inputs 0 through 10 on the mux; inputs 11 
through 15 are unused. Since the synth_mux pins are connected to various different ports on the 
ATMega, a clever bit masking and shifting technique is used to easily iterate through the input 
selections. As shown in the circuit, any input that is actually picked by the user will be grounded, 
which means this circuit is active low. The ATMega GPIO pin connected to synth_mux_out is 
internally connected to a pull-up resistor, waiting to be driven low. Once it is driven low, the 
software will check to see which input is currently being selected, and store that information 
accordingly. The information is stored in a single byte after all the inputs have been iterated 
through. The format is XXXYYZZZ. The Xs are for the SW01 position, the Y’s are for the 
SW02 position, and the Z’s are for the buttons, SW03, SW04, SW05. 
 
Potentiometers and ADC 
 



This subsystem is simply 8 potentiometers: 7 rotary potentiometers and 1 linear, connected to the 
ATMega ADC. These are meant to control the gains of various bandwidths in the equalizer, as 
well as the volume and pitch of the audio. The schematic is shown below for one of them. 
 

 
Figure 6.2 - ADC and Potentiometer Schematic 

 
The potentiometers, as expected, are essentially variable resistors, with a maximum resistance of 
10kΩ. It controls the input voltage to the ADC pin with values ranging from 0-5V, which is 
stored in the 14pF capacitor via sample and hold. These values are then encoded as 8-bit 
numbers for each potentiometer, for a total of 8 bytes. The sampling rate was made as quick as 
possible at ½ of the crystal oscillator frequency, 8 MHz, in order to minimize the latency of 
changing equalizer gains in real time. 
 
Serial Peripheral Interface Slave Side (ATMega) 
 
The SPI bus acts as the communication link between the ATMega and the TMS320C5535 DSP. 
The ATMega side is configured as a slave, and awaits instruction from the DSP to send 
information about the keys, switches, potentiometers, and encoders. The Level 2 block diagram 
is shown on the next page. 
 
As shown in Figure 7.3, data from the DSP chip is clocked in from the MOSI line to a receive 
buffer on the ATMega, one bit per cycle. Once the shift cycles are complete, the data is written 
to the 8 bit shift register. This data is interpreted in software as an instruction from the master, 
and the shift register content is replaced with a byte containing information about a peripheral, 
which is finally sent back to the DSP via the MISO line. In some cases, multiple bytes of 
information need to be sent after receiving a single instruction. 



 
Figure 6.3 - Serial Peripheral Interface Level 2 Block Diagram 

 
The SPI is initialized by setting it in slave mode, and enabling interrupts. Once a command is 
sent from the master, an interrupt service routine is initiated. If information about the switches is 
requested, this is easily sent back in a single byte. However, if any other information is needed, a 
counter needs to be set for the number of bytes to be sent. For the encoders, it is 19, and for the 
potentiometers it is 8. The counter is decremented after each byte is sent. Once the count reaches 
0, the ISR is exited. 

VII. Physical Construction and Integration  

Physically the Danalog synthesizer consists of  

1. Main PCB: The PCB connects all the devices together and functions mechanically to 
hold all the components neatly in place inside the enclosure. 

2. Arduino Mega: The Arudino Mega functions to interface with all the user input controls. 
It communicates all the fundamental information to the C5535 via a SPI communication 
bus 

3. TI ezDSP C5535: This device is responsible for interpreting the information sent by the 
Arduino and generating sound. 

4. 3D printed chassis: Encloses all components 

The PCB functions as the harness for all the front panel interface controls, which consist of 
rotary quadrature encoders, rotary potentiometers, linear potentiometers, and rotary switches. 
The organization of the user interface was decided by the team during the initial planning phase. 
All interconnections on the PCB were made to accommodate the initial user interface design.  



 

Figure 7.1: Overview of internal device construction and organization 

Each device is routed to pins on the Arduino Mega board. Since the amount of IO needed was 
slightly more than the Arduino Mega provided we used multiplexers between the diode 
connected matrix keyboard (figure 7.2a) and between the rotary switches and front panel buttons 
(figure 7.2b)  

 

 

Figure 7.2a: Diode connected keyboard multiplexer layout 



  

Figure 7.2b: Rotary switches and buttons multiplexer layout 

The device also has two displays for outputting information about the state of the synthesis 
engine and the state of the effects processor. The displays were purchased from sparkfun as 
separate units not soldered to the the main circuit board. These displays were used because of 
their simple serial interface which allowed us to use a hardware UART to communicate with the 
display 

 

Figure 7.3: Both LCD displays connected to the main PCB via wires 



Since the both the Arduino Mega and TI ezDSP both can be driven by 5 volts USB power there 
was no need to design any sort of power system. Additionally since the devices are low power, 
as USB devices usually are, there is no need for any form of heat sinking inside of the enclosure.  

The chassis was 3D printed on Evan Lew’s home 3D printer. Due to sizing constraints the 
chassis was printed in two halves and then glued together to form the final chassis. Figure 7.4 
shows the 3D model of the chassis and figure 7.5 shows the real life chassis supported by the 
keyboard. 

 

Figure 7.4: 3D model of the chassis 



 

Figure 7.5: Chassis with internal hardware 
 

VIII. Integrated System Tests and Results Bryan 

Due to the ambitious and complex nature of the project we were not able to achieve all of our 
goals. However, we were able to have a product at the end that was on the path to achievement. 
At the end of our spring quarter, we had a functioning piece of hardware and functional synthesis 
engine.  
 
The FM synthesis works.  The latency is tested by having the arduino send a pin high when a key 
is pressed and measuring the delay between that transition and the start of the note being played. 



 
Figure 8.1: FM synthesis minimum latency test. 

It should be noted that latency varied.  We found the minimum latency to be 2.64 milliseconds 
while maximum extended to 5.36 milliseconds.  This meets our specifications as it is not noticed 



by the human ear. 

 
Figure 8.2.  Signal to Noise Ratio Test. 

 
The signal to noise ratio can be determined by having a singular tone play and performing an 
FFT on the signal.  As shown above a tone peak appears but along with unintended harmonics. 
Using cursors the difference between the tone’s peak and the noise level is around 45 dBV.  This 
did not meet our original specification as we aimed to have 90 dBV.  The output is admittedly a 
little noisy to the human ear but this could be due to the probes.  While connecting the probes the 
noise became much more apparent with increased volume.  
 

 Minimum Maximum 

Signal to Noise Ratio 44 dBV 44 dBV 

Latency 2.64 milliseconds 5.36 milliseconds 

Summary:  The FM synthesis has relatively met our predefined specifications.  The output is a 
bit noisier when probing but sounds fine without.  Latency is low enough for the synthesis to be 
considered in real time. 

 



 
IX. Conclusions 
 
On the ATMega side, the switches and potentiometers were all able to send the correct data. This 
was tested and verified by first serial printing the bytes produced by each subsystem to the 
console. Next, using a logic analyzer, we were able to verify that the bytes were received by the 
DSP chip. Unfortunately, due to time constraints, we were unable to actually create subtractive 
and sample based synthesis in the DSP, and we also had difficulty implementing the equalizer 
due to problems with a dsp library that was supposed to carry out a Fast Fourier Transform, so it 
was abandoned. 
 
Appendices 
 
A. Analysis of Senior Project Design 
 
Project Title: Danalog 
 
Student’s Names: Evan’s Lew, Vikrant Marathe, Bryan Bellin, Jordan Wong 
 
Advisor’s Name: Wayne Pilkington Advisor’s Initials: Date: 6/16/17 
 
Summary of Functional Requirements: 
 

The Danalog produces audio via FM synthesis with two note polyphony. It has a 
controllable ADSR envelope and phase between the carrier and modulating wave. There is also a 
digital equalizer to boost/attenuate certain frequency ranges, a master volume/pitch fader, and a 
modulation wheel that can affect a user defined parameter with ease. Finally, up to two digital 
effects (reverb, flange, chorus, etc) with adjustable parameters can be applied to the audio signal. 
All settings are displayed between two LCD screens. 
 
Primary Constraints: 
 

- Given a fixed point DSP chip, we were restricted to fixed point computations, greatly 
preventing accuracy in calculations which could have been achieved with a floating point 
processor. 

- Using TI’s dsplib for optimized fixed point processing created a large detour that 
unfortunately led to no results. The FFT function for our equalizer required a twiddle 



factor table to multiply the signals with the factors, but we could not get the the table to 
be read properly in our program. 

 
Economic: 
 
Several hundred man-hours were put into product design, subcircuit building/testing, subcircuit 
integration, and programming the Danalog. A total of $792.70 was needed to make the project a 
reality. Several components and peripherals were needed, and a PCB had to be built and printed 
to connect the peripherals together. The chassis and keys were made from plastic, the PCB was 
made from fiberglass and copper, and many of the components as well as the development board 
were made of plastic, fiberglass, and various metals. 
 
The vast majority of costs accrue in prototyping the product, researching and developing, and 
ordering all the necessary components. With an optimum design established, the cost to build a 
single Danalog will be significantly reduced, and we are confident we will be able to establish a 
strong customer base that will buy the product, which will compensate for the costs and 
eventually lead to a profit at the peak of its sales. 
 
Originally, the project was estimated to cost $300. At the end, all the materials ended up costing 
$469.19. The bill of materials is shown as follows: 
 
 
Price Order 

$106.67 K25M Keyboard from Amazon 

$98.29 

Sparkfun order (Buttons, LCD 
Screens, MIDI Connector, 
Jumper Adapter, Header 

$119.26 

Digikey order (Pots, Encoders, 
Rotary switches, Multiplexers, 
Diodes, Audio Jacks, Amplifiers) 

$23.98 2 Arduino Megas 

$12.96 DSP connector 

$96.00 PCB 

$3.61 USB adapter 

$8.42 USB cable 

 



The prototype included the purchase of many extra components in case of part failure or damage, 
therefore the cost would most likely be around $400, therefore selling at a price of around $450 
would easily create a large profit for our company. 
 
The products would emerge as soon as the first mass shipment of Danalog is complete, which 
would most likely occur about a year from the completion of the prototype. We expect a long 
shelf life of about 10 years with no maintenance costs. 
 
Our original estimated development time is as follows: 
 

 
 Winter project timeline 

 
 Spring project timeline (estimated) 

 
 
Our actual development time: 
 
Spring Quarter 2017            

Week W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 



Month APR    MAY     JUNE  

Day 3 10 17 24 1 8 15 22 29 5 12 

Microcontroller            

Debug Code            

Ensure Proper 
Operation            

PCB Fabrication & 
Layout            

Design & Layout            

Assembly & Testing            

Full System 
Integration            

Full Breadboard 
Testing            

System Packaging            

Reports & 
Presentations            

Senior Project 
Report            

User Manual            

Demonstration           
June 
16 

Senior Project Expo          June 2  

 
Once project ends, perhaps we will work to improve on the shortcomings of the prototype in 
order to meet the expectations of the beginning of the project. 
 
Environmental: 
 
Aside from the raw metal ore and plastics being manufactured to produce this product, there is 
no significant environmental impact from this product. 
 
 
 
 
 
Manufacturability: 
 



Since our PCB was printed by a third party company, it was important to verify the design is 
correct before sending out an order for the print. Also, the chassis had to be created one half at a 
time due to fact that we were using a group member’s 3D printer. 
 
Sustainability: 
 
There are not really any issues associated with maintaining the synthesizer. One upgrade that 
could possibly help is using a floating point digital signal processor in order to use decimal 
numbers in the C code for the DSP chip, making it easier to program accurate filters for signals. 
 
Ethical: 
 
None. 
 
Health and Safety: 
 
One potential concern with safety is the possibility of ear damage due to long exposure to audio 
by our users, or from accidentally setting the volume too high. 
 
Social and Political: 
 
This product is intended to mainly impact the amateur music industry, providing music 
enthusiasts an opportunity to toy with different sounds and experience the Danalog synthesizer. 
 
Development: 
One important technique used for this project is the ping-pong buffer. This was necessary for real 
time signal generation. Essentially, while the ping buffer was being written to by the audio 
generator, the pong buffer was being read by the DMA, and vice versa. This prevented any loss 
of time in outputting the audio signals without losing samples. 
 
 
 
 
 
 
 
 
C. Project Schedule - Time Estimates & Actuals 
Our original estimated development time is as follows: 



 
 Winter project timeline 

 
 Spring project timeline (estimated) 

 
Our actual development time is on the next page 
 
 
 
 
 
 
 
 
 
 
 
 
Actual Development Time 
Spring Quarter 2017            



Week W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 

Month APR    MAY     JUNE  

Day 3 10 17 24 1 8 15 22 29 5 12 

Microcontroller            

Debug Code            

Ensure Proper 
Operation            

PCB Fabrication & 
Layout            

Design & Layout            

Assembly & Testing            

Full System 
Integration            

Full Breadboard 
Testing            

System Packaging            

Reports & 
Presentations            

Senior Project 
Report            

User Manual            

Demonstration           
June 
16 

Senior Project Expo          June 2  

 
Once project ends, perhaps we will work to improve on the shortcomings of the prototype in 
order to meet the expectations of the beginning of the project.  
 
E. Program Listings 
 
Mux, Switches, Buttons 
 
//Synth Mux C file 

#include "SynthMux.h" 
#include "serial_usb.h" 
#include <avr/io.h> 
#include <stdio.h> 
#include <util/delay.h> 
 

uint8_t switches; 



 

void Synth_Mux_Init(void) 
{ 

PORTJ |= (1<<PJ0);   //Set Pullup on PJ0 
DDRG |= (1<<DDG5);   //Set PG5, PE5, PB7, and PD2 as outputs 
DDRE |= (1<<DDE5); 
DDRB |= (1<<DDB7); 
DDRD |= (1<<DDD2); 

} 

 

uint8_t Synth_Mux_Select(void) 
{ 

uint8_t cache_g = 0; 
uint8_t cache_e = 0; 
uint8_t cache_b = 0; 
uint8_t cache_d = 0; 
uint8_t i=0; 
uint8_t sw1=0, sw2=0, sw3=0, sw4=0, sw5=0; 
 

 

for(i=0; i<12; i++) 
{ 

// Set S0 

cache_g = PORTG; 
cache_g &= ~(1<<PG5); 
cache_g |= (i&S0_MSK)<<S0_SFT; 
PORTG = cache_g; 

 

// Set S1 

cache_e = PORTE; 
cache_e &= ~(1<<PE5); 
cache_e |= (i&S1_MSK)<<S1_SFT; 
PORTE = cache_e; 

 

//Set S2 

cache_b = PORTB; 
cache_b &= ~(1<<PB7); 
cache_b |= (i&S2_MSK)<<S2_SFT; 
PORTB = cache_b; 

 

//Set S3 

cache_d = PORTD; 
cache_d &= ~(1<<PD2); 
cache_d |= (i&S3_MSK)>>S3_SFT; 
PORTD = cache_d; 
 

 

_delay_us(1); 
 

if ((PINJ&(1<<PINJ0)) == 0)  



{ 

switch(i)  
{ 

case 0 : 
sw1 = 5; 
break; 

case 1 : 
sw1 = 3; 
break; 

case 2 : 
sw1 = 4; 
break; 

case 3 : 
sw1 = 2; 
break; 

case 4 : 
sw1 = 1; 
break; 

case 5 : 
sw2 = 2; 
break; 

case 6 : 
sw2 = 3; 
break; 

case 7 : 
sw2 = 1; 
break; 

case 8 : 
sw3 = 1; 
break; 

case 9 : 
sw5 = 1; 
break; 

case 10 : 
sw4 = 1; 
break; 

} 

} 

} 

switches = (sw1<<5)|(sw2<<3)|(sw3<<2)|(sw4<<1)|sw5; 
//print_serial_usb("%u\n",switches); 

return switches; 
} 

 

 

Potentiometers, ADC 
 
//potadc.c 

 

#include "serial_usb.h" 



#include "potadc.h" 
#include <avr/io.h> 
#include <stdio.h> 
#include <util/delay.h> 
 

uint8_t adc_cache; 
uint8_t adc_array[8]; 
 

void PotADC_Init(void) 
{  

ADMUX = (1<<REFS0)|(1<<ADLAR); 
ADCSRA = (1<<ADEN);  

} 

 

void PotADC_Poll(void) 
{ 

int i, j; 
for(i=0; i<8; i++) 
{ 

adc_cache = ADMUX; 
adc_cache &= ~(ADC_MSK); 
adc_cache |= i; 
ADMUX = adc_cache; 
ADCSRA |= (1<<ADSC); 
while(ADCSRA & (1<<ADSC)); 
adc_array[i] = ADCH; 
 

  

} 

adc_array[5] = ~(adc_array[5]); 
// 

for(j=0; j<8; j++) 
{ 

//print_serial_usb("%u\n", adc_array[j]); 

} 

 

} 

 

SPI 
 
//SPI.c 

 

#include "potadc.h" 
#include "encoder.h" 
#include "midi.h" 
 

#include "SPI.h" 
#include <avr/io.h> 
#include <avr/interrupt.h> 
#include "serial_usb.h" 



#include <util/delay.h> 
uint8_t spidata, spistat = 0; 
uint8_t switches; 
 

/*ISR State Variables*/ 

uint8_t spi_tx_cnt = 0; 
uint8_t spi_tx_type = 0; 
 

 

// MIDI transfer state 

#define MIDI_TX_STATUS_SENT 2 
#define MIDI_TX_NOTE_SENT 1 
MidiPacket current_packet; 
 

void SPI_SlaveInit(void) 
{ 

/* Set MISO output, all others input */ 

DDRB |= (1<<DDB3); 
/* Enable SPI */ 

SPCR = (1<<SPE)|(1<<SPIE); 
sei(); 

} 

 

ISR(SPI_STC_vect) 
{ 

if(spi_tx_cnt>0) 
{ 

if(spi_tx_type == SPI_MIDI_CMD) 
{ 

        switch (spi_tx_cnt) { 
          case MIDI_TX_STATUS_SENT: 
            SPDR = current_packet.note; 
            break; 
          case MIDI_TX_NOTE_SENT: 
            SPDR = current_packet.velocity; 
            break; 
        } 

spi_tx_cnt--; 
} 

else if(spi_tx_type == SPI_ENC_CMD) 
{ 

SPDR = encoders[19-spi_tx_cnt].count; 
spi_tx_cnt--; 

} 

else if(spi_tx_type == SPI_POT_CMD) 
{ 

SPDR = adc_array[8-spi_tx_cnt]; 
spi_tx_cnt--; 

} 

} 



else { 
spidata = SPDR; 
if(spidata == SPI_MIDI_CMD) 
{ 

if (!mbuffer_empty()) { 
current_packet = mbuffer_read(); 
SPDR = current_packet.status; 
spi_tx_cnt = MIDI_TX_STATUS_SENT; 
spi_tx_type = SPI_MIDI_CMD; 
}  

        else { 
          SPDR = 0; 
        } 

} 

else if(spidata == SPI_ENC_CMD) 
{ 

SPDR = encoders[0].count; 
spi_tx_cnt = 18; 
spi_tx_type = SPI_ENC_CMD; 

} 

else if(spidata == SPI_POT_CMD) 
{ 

SPDR = adc_array[0]; 
spi_tx_cnt = 7; 
spi_tx_type = SPI_POT_CMD; 

} 

else if(spidata == SPI_SWT_CMD) 
{ 

SPDR = switches; 
} 

} 

 

} 

 

Matlab Reverb Algorithm 
 
%reverballpass.m 
% This is a simple all-pass reverb filter with adjustable delay d and attenuation factor A. It 

% creates a simple difference equation with a large amount of delays that decays over time  

function [yout b a] = reverballpass(sample, d, A) 
 

Fs = 48000; 
[x,Fs] = audioread(sample); 
num = -A*[1 zeros(1, d-1) -1/A]; 
den = [1 zeros(1, d-1) -A]; 
y = filter(num, den, x); 
if(nargout == 1) 
    yout = y; 
else 

    yout = y; 



    b = num; 
    a = den; 
end 

soundsc(yout,Fs); 

 
 


