
c© The authors 2017. This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The
definitive version was published in UCC’17 Companion, https://doi.org/10.1145/3147234.3148111.

TowardsQuantifiable Boundaries for Elastic Horizontal Scaling
of Microservices

Manuel Ramírez López
Zurich University of Applied Sciences

School of Engineering, Service Prototyping Lab

(blog.zhaw.ch/icclab/)

Winterthur, Switzerland

ramz@zhaw.ch

Josef Spillner
Zurich University of Applied Sciences

School of Engineering, Service Prototyping Lab

(blog.zhaw.ch/icclab/)

Winterthur, Switzerland

josef.spillner@zhaw.ch

ABSTRACT

One of the most useful features of a microservices architecture

is its versatility to scale horizontally. However, not all services

scale in or out uniformly. The performance of an application com-

posed of microservices depends largely on a suitable combination

of replica count and resource capacity. In practice, this implies

limitations to the efficiency of autoscalers which often overscale

based on an isolated consideration of single service metrics. Con-

sequently, application providers pay more than necessary despite

zero gain in overall performance. Solving this issue requires an

application-specific determination of scaling limits due to the gen-

eral infeasibility of an application-agnostic solution. In this paper,

we study microservices scalability, the auto-scaling of containers as

microservice implementations and the relation between the number

of replicas and the resulting application task performance. We con-

tribute a replica count determination solution with a mathematical

approach. Furthermore, we offer a calibration software tool which

places scalability boundaries into declarative composition descrip-

tions of applications ready to be consumed by cloud platforms.

CCS CONCEPTS

·Networks→Cloud computing; · Software and its engineer-

ing→Automatic programming; ·Computingmethodologies→

Parallel algorithms;

KEYWORDS

microservices; scalability; replication; optimization

ACM Reference format:

Manuel Ramírez López and Josef Spillner. 2017. Towards Quantifiable Bound-

aries for Elastic Horizontal Scaling of Microservices. In Proceedings of

UCC’17: 10th International Conference on Utility and Cloud Computing Com-

panion, Austin, Texas, USA, December 5–8, 2017 (UCC’17 Companion), 6 pages.

https://doi.org/10.1145/3147234.3148111

This research has been funded by the Swiss Commission for Technology and Innovation
(CTI) in project ARKIS/18992.1 and MOSAIC/19333.1. It has also been supported by a
Microsoft Azure Research Award and a Google Cloud credit.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

UCC’17 Companion, December 5–8, 2017, Austin, Texas, USA

© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN ISBN 978-1-4503-5149-2/17/12. . . $15.00
https://doi.org/10.1145/3147234.3148111

1 INTRODUCTION

Composite microservice architectures are among the most popu-

lar architectural underpinnings for cloud-native applications [11].

Nowadays, a lot of companies decompose their monolithic applica-

tions into coupled, often containerized, sets of microservices. New

software is being designed and developed following this architec-

ture as well, benefiting from its advantages [6]. Fast horizontal

scalability is one of the most important strengths of a microservices

architecture. In this scaling model, each microservice can be scaled

out by creating new instances which are placed separately accord-

ing to the associated load, in contrast to monolithic applications.

Another strength is the design for failure by strict separation of

stateful and stateless services in which the stateless ones can be

respawned at any time without having to consider violations of

data characteristics such as availability or consistency [5, 7]. State

is either kept in carefully designed and implemented stateful mi-

croservices or in centralized services outside of the application

scope which are dynamically bound through service brokers [1].

While applications can be scaled vertically by allocating more

resources to a running instance of a microservice, the dominant

mechanism found in production cloud computing environments

remains the mentioned horizontal scaling in which replicas of

the same service are added and removed on demand. The sepa-

rated scaling behavior provides many possible combinations of

microservices concerning the number of replicas of each service,

particularly for large applications. Formally, n service types sj
(1 ≤ j ≤ n) represented in a dependency-spanning type graph

(TG := {s1, . . . , sn }) are leading to m possible instance graphs

(IGk := {s1 × ik1, . . . , sn × ikn }; 1 ≤ k ≤ m) in which each service

type sj is instantiated ik j times. Evidently, for any specific applica-

tion task triggered through a service call or a complex transaction,

not all of these combinations are optimal in regard to a specific

characteristic or constraints such as performance and cost. Often

it is non-trivial to know in advance which combination is best for

a given target of performance and an associated set of resources

and how to scale out and in if the demand on services increases or

decreases. Because of the inherent uncertainty, most application

platforms provide automation in the form of horizontal auto-scaling

features [9]. These reactive autoscalers help to adjust the perfor-

mance of a set of microservice instances automatically depending

on some metrics like processor load, memory utilization or network

traffic.

The difficulty with this approach is twofold. First, the applica-

tion provider will have to manually tweak several combinations of

metrics to determine empirically a suitable configuration of initial

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ZHAW digitalcollection

https://core.ac.uk/display/130229733?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3147234.3148111
https://doi.org/10.1145/3147234.3148111

UCC’17 Companion, December 5ś8, 2017, Austin, Texas, USA Manuel Ramírez López and Josef Spillner

scaling factors and metric thresholds. Second, most auto-scaling

systems are simplistic in the sense of treating all microservices

equally without the consideration of dependencies or specificities

including resource quotas [4, 10].

The contribution of this paper is to mathematically express

boundaries on how compositions of microservices (auto-)scale de-

pending on whether they are stateful or stateless, reducingm pos-

sible instance graphs to a single optimal one, IGo , per pre-defined

task-specific workload. The paper recalls the limits of auto-scaling

and demonstrates a unique solution to scale a microservices ar-

chitecture within well-defined boundaries in which each single

scale-out decision contributes positively to the overall performance.

The theoretic part of the contribution is a mathematical method

which finds the optimal scale combination for an application archi-

tecture depending on specified requirements on performance, price

and available resources. The practical part of the contribution is a

software which calibrates the scaling behavior by combinatorial

tests followed by an injection of the desirable scaling rules into

a format understood by platform-level microservice scalers such

as Docker-Compose, Kubernetes or OpenShift for containerized

composite applications.

This paper is organized as follows. The next section explains the

motivation behind our research work and identifies the research

question. Subsequently, a mathematical formula to determine scal-

ing factors ik j and an algorithm to instantiate the formula are

presented and evaluated in Sections 3 & 4. The penultimate section

describes limitations and future work and the last one concludes

with a summary and an outlook on practical use.

2 MOTIVATION AND PROBLEM STATEMENT

The expected or desired behavior when scaling a microservice is a

directly proportional relationship between the number of replicas

and the performance. We consider a system with three-dimensional

scaling on the X axis (horizontal duplication), Y axis (functional

decomposition) and Z axis (data partitioning) according to the scal-

ing cube. When a replica is added to L existing replicas (L > 0),

the performance should grow proportionally to L+1
L . The actual

behavior on service hosting platforms is usually more similar to the

representation in Fig. 1 where at some point the gradient of the per-

formance line is decreasing. Depending on the circumstances, it can

fall to zero. It can even become negative, resulting in worse perfor-

mance with more replicas, and furthermore it can be limited on the

X axis by instance quotas. A first explanation of the decline would

be the limited parallelization benefit described by Amdahl’s law [2].

The behavior could also occur, for example, because beyond this

point the replicas are stealing resources from other microservices

which are on the critical performance path in resource-constrained

environments [12]. Despite seemingly infinite resources in public

clouds, both instance and resource quotas are commonly faced by

application providers [13]. Another reason is the ineffective scaling

of microservices which are not the bottleneck of the application. In

these cases, the scaling leads to just wasting resources (in commer-

cial environments, this means wasting money) to instantiate more

replicas without yielding better performance.

Therefore, not always is scaling out a single overloaded microser-

vice the solution to solve a performance problem. It is crucial to

Figure 1: Number of replicas vs performance

know the best combination of microservice instances for the current

workload of an application and which combination is the best one

when needing to scale out or in cost-effectively and cost-predictably.

Figure 2: Microservices architecture of a single application

Fig. 2 expresses in a simple diagram how a microservice archi-

tecture with N + M microservices and K external services, each

one with a different number of replicas, is composed. To scale an

application out effectively, one must first locate the bottleneck and

scale it in a bounded way. When the bottleneck is in a third-party

service outside of the scope of scaling, for instance a hosted data-

base service (DBaaS), this dependency constraint must likewise be

detected, for instance through formalized dependency operators

[8].

Following the motivation to resolve the mentioned problems

to ease application onboarding into cloud environments, we have

identified the following two initial questions which trigger the

solution approach by providing clarity about the current state of

technology in scaling.

• Assuming an implementation of microservices as containers,

do all containers scale with comparable characteristics? Are

there identifiable patterns concerning stateful microservices?

• Does auto-scaling solve the mentioned scaling problems for

complex applications? What happens if the bottleneck is in

microservices which do not auto-scale at all or not well due

to missing rules, or in third-party services whose scaling

behavior cannot be influenced?

Towards Quantifiable Boundaries for Scaling of Microservices UCC’17 Companion, December 5ś8, 2017, Austin, Texas, USA

Once the knowledge about scaling is consolidated, the solution

approach leads to the answer of the central research question:

• Can the best combination of replicas for a given application

and workload be calculated for performance-critical and

cost-constrained settings?

Our method to find the answer is based on a formalization of

the application, a task and workload for it, its environment and a

number of scaling constraints. Using a formalized mathematical

model, matrix calculations across all combinations of scaling fac-

tors ik j are performed and result vectors with optimal scale factors

{io1, . . . , ion } for each target optimum instance graph IGo are ob-

tained. Beyond the calculation, our solution approach includes the

automatic configuration of composite microservice applications for

targeted deployments into contemporary cloud platforms.

3 FORMALIZATION OF APPLICATION

SCALABILITY

3.1 Concepts and Nomenclature

We define some important concepts and nomenclature which are

needed first to encompass the research question. Specifically, we

define:

(1) Node: A single machine, usually a virtual machine in the

cloud, exposing finite compute, storage and networking re-

sources.

(2) Cluster: A programmable set of nodes which appears like a

single machine to an application.

(3) Application: A set of composite microservices.

(4) Maximum of replicas: Maximum number of replicas of each

microservice which a cluster supports through its cumulative

resources.

(5) Combination: Number of replicas for each microservice run-

ning in the cluster as constituents of the application composi-

tion. Letm be the number of microservices, with a maximum

of replicas 0 < n1,n2, . . . ,nm for each service. This gives a

total of n1 × n2 × · · · × nm possible combinations.

(6) Experiment: Set of sequential or parallel requests to an appli-

cation that simulates a typical use case, resulting in a unique

workload.

(7) Makespan (µ): Time in seconds which a combination needs

to finish an experiment.

(8) Performance (p): The inverse of the makespan.

(9) Cost of a microservice (κ): Number indicating the resource

cost of running a single replica of this microservice in the

cluster. For instance, the number of CPU cycles a replica

consumes.

(10) Cost: Total resource cost of an experiment, formalized as∑m
i=1 κi × ni .

(11) Maximum of cost (maxκ): The maximum admissible cost.

(12) Minimumof performance (minp): Theminimumperformance

that the scenario permits.

(13) Maximum of makespan (maxµ): The maximum value of

makespan (experiment duration) that the scenario permits;

the inverse of minp . Note: p > minp ⇐⇒ µ < maxµ
holds. Therefore satisfying the performance constraints is

equivalent to satisfying the makespan constraints.

3.2 Research Question Examined

With these concrete definitions, we reformulate the central research

question to the more concise form: What is the best combination

of replicas for a given application on a given cluster with a given

workload? What, eventually, can be even considered a best com-

bination? There is no deterministic answer to this question as it

depends on the use cases, in other words, specific application tasks

and associated workloads. For simplicity, we define best as either of

the three: minimum makespan µ, minimum cost κ, and maximum

weighted utility defined by 1
λ1µ+λ2κ

; µ,κ, λ > 0. Our approach thus

answers the central research question narrowly for the following

scenarios: What is the most economical combination satisfying min-

imum performance constraints? What is the fastest combination

satisfying maximum price constraints? What is a sensible trade-off

with high compromise utility involving both metrics? The approach

to find these answers is visualized in Fig. 3. Up to three optimal

instance graphs IGo emerge from a microservice type graph TG

for a given workload.

Figure 3: Solution approach to the research question

3.3 Mathematical Model and Formula

3.3.1 Fastest and cheapest combination. Let c be the cluster with

unspecified number of nodes. Let 0 < m be the number of microser-

vices and n1,n2, . . . ,nm the maximum number of replicas for each

microservice in c . The first step is to define an experiment, e , the use

case with the workload expected for the application. For the experi-

ment e in the cluster c , for each combination combi where combi =

i = (r1, r2, . . . , rm) with 0 < r1, r2, . . . , rm <= n1,n2, . . . ,nm there

is a resulting makespan µi , i.e., e(c, combi) → µi . We then create

an (m)-dimensional matrixMe with the makespan for all the com-

binations. We call this matrix the makespan matrix or matrix of

performance. The following representation shows the first two out

of (m) dimensions, corresponding to systematic combinations of

instance counts for the first two microservices in a composition.

Me = M(e)n1×···×nm =

©«

µ1,1, ... µ1,2, µ1,n2, ...

µ2,1, ... µ2,2, µ2,n2, ...

.

µn1,1, ... µn1,2, µn1,n2, ...

ª®®®¬
In analogy, the cost of a combination is cost(combi ,prices) =∑m
s=0 rs ×pricess where prices is a tuple with the operating cost of

the microservices (κ). Only the resource cost is considered in this

formula because the monetary cost is typically offset by a free tier

in commercial environments and other discount schemes which

UCC’17 Companion, December 5ś8, 2017, Austin, Texas, USA Manuel Ramírez López and Josef Spillner

hide the actual cost. With e ,Me and cost there are three parameters

to influence the solution. Now, we define the fastest solution as:

f astest(Me) = i | min
∀mi ∈Me

mi

A solution is trivially the fastest one if a certain combination of

instances requires the least time to complete a fixedworkload. Often,

but not always, this implies a high number of replicas. Obviously,

the cheapest solution in contrast corresponds to the minimum

number of microservices, i.e, 1, 1, . . . , 1. Extending these formulas

with the constraints of performance and cost yields: Let I be the

set of indices of the makespan combination matrixMe .

f astest(Me ,prices,maxµ ,maxκ)

= i | min
∀i ∈I

{mi ∈ Me | mi < maxµ ,

cost(i,prices) < maxκ } (1)

cheapest(Me ,prices,maxµ ,maxκ)

= i | min
∀i ∈I

{cost(i,prices) | Me ∋mi < maxµ ,

cost(i,prices) < maxκ } (2)

3.3.2 Rate for almost-optimal combinations. With the previous

formulas one obtains the fastest or the cheapest solution which

satisfies all constraints, but they calculate the solution quite rigidly

with respect to the policies. A more practical method is to consider

almost-optimal combinations. They occur if the second-fastest solu-

tion is fast enough but quantitatively a lot cheaper, or cheap enough

but a lot faster, respectively. With the previous formulas these solu-

tions will be skipped. Therefore, we have added the rate parameter.

With it we will obtain the solutions ordered by the corresponding

other policy which we have chosen as long as they are close enough,

or inside the rate, to be a valid solution. In case the strict solution

is desired, this parameter must just be set to 1.0.

First, let us define the next orders:

≺cost := ∀i, j ∈ I , i < j ⇐⇒ cost(i,prices) < cost(j,prices)

or (cost(i,prices) = cost(j,prices) andmi < mj)

≺per f := ∀i, j ∈ I , i < j ⇐⇒ mi < mj

or (mi =mj and cost(i,prices) < cost(j,prices))

Using these orders we define the improved formulas:

f astest_rate(Me ,prices,maxµ ,maxκ , rate)

= i | min
∀i ∈I

(i |
mi

mk
≤ rate,≺cost)

where k = f astest(Me ,prices,maxµ ,maxκ) (3)

cheapest_rate(Me ,prices,maxµ ,maxκ , rate)

= i | min
∀i ∈I

(i |
cost(i,prices)

cost(k,prices)
≤ rate,≺per f)

where k = cheapest(Me ,prices,maxµ ,maxκ) (4)

4 PRACTICAL EXAMPLES AND EVALUATION

4.1 Experiments Setup

With the following experiments, we encompass all the cases studied

until now in this paper. The scenario application under observation

implements a microservices architecture with one stateful and one

stateless microservice as containers. We will scale the stateless

service along the X axis and the stateful one along both the Z and X

axes (as shown in Fig. 4). For each service we state if it makes sense

to use auto-scaling or not. We apply the bounded scaling formula

to find the best solution.

The example is inspired by the design of online document man-

agement applications where the stateful microservice is a MongoDB

database of documents in which each document belongs to a user

(tenant). Connected to it is the stateless microservice as a CRUD

layer for documents, with the option to search patterns in the doc-

uments as well. This service provides a REST API implemented in

Python. The data used in these experiments is an array of JSON

structures which represent the documents and can be generated

using a proportioned script.

Figure 4: Scaling axes and instance counts of the scenario ap-

plication composed of database and CRUD/search contain-

ers

4.2 Experiments Approach and Open Science

Notebook

For general reproducibility and recomputability of our results, we

have created simultaneously to the experiments an open science

notebook1. It describes the details of hardware and software used

in each experiments, the prototypical software implementation, the

datasets and the instructions to reproduce each experiment with

the respective reference results.

4.3 Implementation of the Formula

There are two steps required to obtain the solution which are linked

by a performance matrix. A third step is required to automate

1Open Science Notebook: http://osf.io/6gup8/

http://osf.io/6gup8/

Towards Quantifiable Boundaries for Scaling of Microservices UCC’17 Companion, December 5ś8, 2017, Austin, Texas, USA

the configuration of the application orchestrators and scalers. We

have implemented three linkable software prototypes in Python to

automate the entire process of boundary detection.

Step 1. The first step involves the generation of the performance

matrix bymeasuring combinatorial benchmarks. These benchmarks

need to be implemented a-priori. The script runs the experiment

for each scaling combination automatically if it is possible or waits

for the user if it detects a manual scaling requirement. The result is

the matrix filled for use with the formula.

Step 2. In the second step, the formula implementation receives

the performance matrix as well as the cost of the microservices, the

constraints of performance and cost, the rate (1.0 by default) and

a policy (fastest or cheapest). It returns the best combination for

these parameters.

Step 3. The replica count for each microservice type is annotated

on the type graph TG whose representation is a Docker Compose

file or a set of Kubernetes deployment files. The implementation

manages both formats through auto-detection. In the case of Ku-

bernetes, an exemplary configuration excerpt in JSON format is

shown in Listing 1. The number of replicas is given as placeholder

REPLICAS in the listing.

Listing 1: Replica count in Kubernetes

{

" k ind " : " Deployment " ,

" a p iVe r s i on " : " e x t e n s i o n s / v1be t a1 " ,

" metada ta " : {

" name " : "MICROSERVICE " ,

} ,

" spec " : {

" r e p l i c a s " : REPLICAS ,

" spec " : {

" c o n t a i n e r s " : [

{

" name " : "MICROSERVICEIMPL " ,

" image " : "NAMESPACE/CONTAINER : 1 . 1 " ,

. . .

4.4 Experiments Results

We have deployed the scenario service on a 6-node Kubernetes

cluster on the Google Cloud Platform. In the same geographic zone,

we have further deployed a 3-node Kubernetes cluster to run the

experiment code. The execution is initiated by a set of requests

to the REST API implemented in the stateless microservices. The

dominant observation is that the stateless microservice can just

scale on the X axis and the stateful microservice on the X and Z

axes. By examining both cases, we obtain different matrices. In

these matrices, the number of replicas of the stateful microservice

is represented in the rows and the number of replicas of the stateless

one in the columns. For instance, ifM is the matrix then if ai j ∈ M ,

ai j is the performance of the experiment for i replicas of the stateful

and j replicas of the stateless service.

Scaling on the X axis. We scaledMongoDB on the X axis using the

Kubernetes features StatefulSet and StorageClass. This combination

creates a cluster of MongoDB instances where each node maintains

a full replica of the database and only one of them acts asmaster. The

experiment consists of 10 million document insertions. It represents

a typical use case for document batch processing in the cloud. For

this use case, the following is the partially obtained matrixM1. All

values µi j are specified in seconds.

M1 =
©«
3379.0 ∗ 2960.5 ∗ 3501.6 ∗ 3040.5

∗ ∗ ∗ ∗ ∗ ∗ ∗

3263.0 ∗ 3602.2 ∗ 3365.9 ∗ 3263.4

ª®¬
(5)

There is no improvement of the performance when the stateful

microservice is scaled out (∆max = 641.72). This observation can be

explained because theMongoDB cluster is intended to improve high

availability, resilience and distribution of the database in different

geographic zones, instead of performance [3]. One can use the

auto-scaling option of Kubernetes for adding a maximum scaling

factor to avoid scaling in vain when the bottleneck is in the other

(stateful) microservice. The experiments numbered {1,. . . ,8} in the

open science notebook are related to this example.

Scaling on the Z axis. We scaled the MongoDB microservice on

the Z axis by separating the tenants in the replicas of this microser-

vice. This approach results in having L tenants and K replicas of

the service, each one having L/K tenants. In the experiment, we

set L = 100 and K ∈ {1, 2}. Running the experiment for 30000 docu-

ment insertions we obtained the next matrixM2. The experiments

numbered {9,. . . ,20} in the open science notebook are related to

this example.

M2 =

(
89.2 ∗ 45.5 ∗ 43.8 ∗ 41.9 ∗ 42.1 ∗ 40.5

71.7 ∗ 48.1 ∗ 40.1 ∗ 35.9 ∗ 36.1 ∗ 36.4

)
(6)

Having the performance matrices as input, the formula to deter-

mine the best combination is applied. It is parameterized with the

matrixM2 with the tuple of prices: (1/4,1/12). In the most expensive

combination c1 = (2, 6) the cost is 1, i.e, cost(c1,prices) = 1. Table

1 collects the best solutions for the different options of the formula.

The example reveals the fastest and cheapest option which satisfies

the performance and cost constraints: (2, 3) and (1, 3). Adding a

small rate, we can find another quite similar solution for the policy

parameter and improving considerably the other one. For example,

for the fastest with-rate option, the cost is reduced to 77% while

increasing the makespan to only 104% (lines 3 and 5 in the table).

The calculated number of replicas is then injected into the static

deployment configuration (implemented for Kubernetes descrip-

tors) or into the dynamic scaling manager, both of which requires a

labelling of services as stateful or stateless (using Kubernetes object

labels).

5 LIMITATIONS AND FUTUREWORK

Depending of the workload of the application we choose a combina-

tion of scaling factors.We can simulate theworkloadwe expect with

an experiment although this combination is fixed to this specific

workload. But, usually, the workload of an application is variant.

Hence, a new research question becomes evident: Is it possible to

know which is the best combination for each workload? One option

is to perform a number of experiments corresponding to different

UCC’17 Companion, December 5ś8, 2017, Austin, Texas, USA Manuel Ramírez López and Josef Spillner

Table 1: Optimal instance count results

Title Policy maxµ maxκ Rate #S-ful #S-less Cost Makespan

baseline fastest X X X 2 7 0.83 35.92

baseline cheapest X X X 1 1 0.33 89.16

with C fastest 45.0 0.8 X 2 5 0.75 40.07

with C cheapest 45.0 0.8 X 1 5 0.5 43.79

with C&R fastest 45.0 0.8 1.06 1 7 0.58 41.88

with C&R cheapest 45.0 0.8 1.2 1 7 0.58 41.88

Legend: S-less = stateless, S-ful = stateful, C = constraints, R = rate

workloads the application handles. Yet, encompassing the different

possibilities is a lot work and in some cases not feasible. Another

option is find a ratio relation between the number of replicas of the

different microservice and scale the microservices according to this

relation.

Not all microservices are functionally connected. We can rep-

resent a microservice architecture as a bi-directed disconnected

graph, where the vertices are the microservices and the edges rep-

resent the connection between the microservices. The first step is

then splitting the graph into multiple connected graphs without

interconnections as exemplified in Fig. 5 with the microservices

A −G.

Figure 5: Graph decomposition for composite microservice

dependencies

Future work will include the definition of a formula to find the re-

lation for each of the bi-directed connected graphs which compose

the microservice architecture. This relation will be defined for dif-

ferent reasons: performance motives, in this case, the dependency

between the microservice marks the number of replicas of each

one, and for external constraints, for example, each replica of the

main microservice must possess a replica of a sidecar microservice.

For a set of n connected graphs there will be r1, r2, . . . , rn relations

defining how the application scales.

6 SUMMARY AND CONCLUSIONS

With the versatility and the power a microservices architecture

offer for application scalability, the necessity to control it and use it

properly also emerges. We have explored this characteristic, study-

ing the scaling of different microservices. We analyzed existing

tools which help to scale as auto-scalers, reported on their limits

and driven by the necessity to overcome it contributed a method to

overcome them and a practical cloud platform tool which configures

scaling of containers.

The use of persistent data marks a different scaling behavior. We

have given examples to demonstrate the scaling without further

quantification to achieve the answer to the clarity questions. This

same characteristic affects auto-scalers which also have other limi-

tations that lead them to scale services which do not need to scale

further, answering the other clarity question. Trying to solve this

issue, we created a method to know which one is the best combina-

tion of microservices in an application for given expectations and

resources. For this purpose we tested the possible scaling factor

combinations using an experiment which simulates typical loads.

The workflow creates a matrix of performances which is further an-

alyzed and filtered with the given requirements, using a formalized

calculation, to obtain the solution closest to the expectations. Thus,

the answer to the research question is systematically exposed.

We make our experiments, datasets and code available through

an open science notebook and encourage further work reproducing

or countering our results.

REFERENCES
[1] Doug Davis, Morgan Bauer, Matt McNeeney, Shannon Coen, Paul Morie, and

Ville Aikas. 2017. Open Service Broker API v2.12. specification online
at https://github.com/openservicebrokerapi/servicebroker/blob/v2.12/spec.md.
(June 2017).

[2] Fernando Díaz del Río, Javier Salmerón-Garcia, and José Luis Sevillano. 2016.
Extending Amdahl’s Law for the Cloud Computing Era. IEEE Computer 49, 2
(2016), 14ś22. https://doi.org/10.1109/MC.2016.49

[3] Sandeep Dinesh. 2017. Running MongoDB on Kubernetes with StatefulSets.
online: http://blog.kubernetes.io/2017/01/running-mongodb-on-kubernetes-with-
statefulsets.html. (January 2017).

[4] Alexey Ilyushkin, Ahmed Ali-Eldin, Nikolas Herbst, Alessandro Vittorio Pa-
padopoulos, Bogdan Ghit, Dick H. J. Epema, and Alexandru Iosup. 2017. An
Experimental Performance Evaluation of Autoscaling Policies for Complex
Workflows. In Proceedings of the 8th ACM/SPEC on International Conference on
Performance Engineering, ICPE 2017, L’Aquila, Italy, April 22-26, 2017. 75ś86.
https://doi.org/10.1145/3030207.3030214

[5] Martin Kleppmann. 2015. A Critique of the CAP Theorem. CoRR abs/1509.05393
(2015). http://arxiv.org/abs/1509.05393

[6] Nane Kratzke and Peter-Christian Quint. 2017. Understanding cloud-native
applications after 10 years of cloud computing - A systematic mapping study.
Journal of Systems and Software 126 (2017), 1ś16. https://doi.org/10.1016/j.jss.
2017.01.001

[7] Wubin Li, Petter Svärd, Johan Tordsson, and Erik Elmroth. 2013. Cost-Optimal
Cloud Service Placement under Dynamic Pricing Schemes. In IEEE/ACM 6th
International Conference on Utility and Cloud Computing, UCC 2013, Dresden,
Germany, December 9-12, 2013. 187ś194. https://doi.org/10.1109/UCC.2013.42

[8] Mats Neovius, Luigia Petre, and Kaisa Sere. 2015. A Theory of Service Dependency.
In Proceedings 17th International Workshop on Refinement, Refine@FM 2015, Oslo,
Norway, 22nd June 2015. 112ś128. https://doi.org/10.4204/EPTCS.209.9

[9] Juan Marcelo Pintos, Carlos Nunez Castillo, and Fabio López-Pires. 2016. Evalua-
tion and comparison framework for platform as a service providers. In XLII Latin
American Computing Conference, CLEI 2016, Valparaíso, Chile, October 10-14, 2016.
1ś11. https://doi.org/10.1109/CLEI.2016.7833384

[10] T. Vondra, Jan Sedivý, and J. M. Castro. 2017. Modifying CloudSim to accurately
simulate interactive services for cloud autoscaling. Concurrency and Computation:
Practice and Experience 29, 10 (2017). https://doi.org/10.1002/cpe.3983

[11] Hulya Vural, Murat Koyuncu, and Sinem Guney. 2017. A Systematic Literature
Review on Microservices. In Computational Science and Its Applications - ICCSA
2017 - 17th International Conference, Trieste, Italy, July 3-6, 2017, Proceedings, Part
VI. 203ś217. https://doi.org/10.1007/978-3-319-62407-5_14

[12] Ke Wang, Xiaobing Zhou, Kan Qiao, Michael Lang, Benjamin McClelland,
and Ioan Raicu. 2015. Towards Scalable Distributed Workload Manager with
Monitoring-Based Weakly Consistent Resource Stealing. In Proceedings of the
24th International Symposium on High-Performance Parallel and Distributed
Computing, HPDC 2015, Portland, OR, USA, June 15-19, 2015. 219ś222. https:
//doi.org/10.1145/2749246.2749249

[13] Qian Zhu and Gagan Agrawal. 2012. Resource Provisioning with Budget Con-
straints for Adaptive Applications in Cloud Environments. IEEE Trans. Services
Computing 5, 4 (2012), 497ś511. https://doi.org/10.1109/TSC.2011.61

https://doi.org/10.1109/MC.2016.49
https://doi.org/10.1145/3030207.3030214
http://arxiv.org/abs/1509.05393
https://doi.org/10.1016/j.jss.2017.01.001
https://doi.org/10.1016/j.jss.2017.01.001
https://doi.org/10.1109/UCC.2013.42
https://doi.org/10.4204/EPTCS.209.9
https://doi.org/10.1109/CLEI.2016.7833384
https://doi.org/10.1002/cpe.3983
https://doi.org/10.1007/978-3-319-62407-5_14
https://doi.org/10.1145/2749246.2749249
https://doi.org/10.1145/2749246.2749249
https://doi.org/10.1109/TSC.2011.61

