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ABSTRACT

Cloud applications are increasingly built from a mixture of runtime

technologies. Hosted functions and service-oriented web hooks are

among the most recent ones which are natively supported by cloud

platforms. They are collectively referred to as serverless comput-

ing by application engineers due to the transparent on-demand

instance activation and microbilling without the need to provi-

sion infrastructure explicitly. This half-day tutorial explains the

use cases for serverless computing and the drivers and existing

software solutions behind the programming and deployment model

also known as Function-as-a-Service in the overall cloud comput-

ing stack. Furthermore, it presents practical open source tools for

deriving functions from legacy code and for the management and

execution of functions in private and public clouds.

CCS CONCEPTS

·Networks→Cloud computing; · Software and its engineer-

ing→ Automatic programming; Software as a service orchestration

system;

KEYWORDS

serverless; microservices; FaaS; hosted functions; tutorial

ACM Reference format:

Josef Spillner. 2017. Practical Tooling for Serverless Computing. In Proceed-

ings of UCC’17: 10th International Conference on Utility and Cloud Computing,

Austin, Texas, USA, December 5–8, 2017 (UCC’17), 2 pages.

https://doi.org/10.1145/3147213.3149452

1 EMERGENCE OF SERVERLESS COMPUTING

Across the cloud computing industry, there is a large trend to move

up the stack. Infrastructure management has become a commodity

while in parallel, developer-facing platforms have become numer-

ous and widespread. The ability to deploy applications directly from

source without intermediate packaging as virtual machine images

or container images increases the rapid service creation and reduces

issues related to the configuration of the development environment.

Apart from pushing monolithic code trees, the fine-grained de-

ployment of individual functions in Function-as-a-Service (FaaS)

environments is becoming more common, in particular for cloud
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automation, cloud-device coupling, and infrequently used web ser-

vices [5]. FaaS brings utility computing closer to reality due to real

on-demand enablement and microbilling of service invocations

without having to pay for idle periods. It also drives the decom-

position of applications into microservices, leading to more cloud-

native applications. Businesses around the world have thus started

to embrace FaaS through the paradigm of seemingly serverless

computing.

Academics have started to describe and analyse FaaS through

surveys and experiments [1, 9, 10] as well as economic analysis

[3, 8, 15] and dedicated workshops (for instance WoSC’17 [4]). Still,

not much is known about which tools to use for producing, deploy-

ing and running functions. This tutorial consolidates and enhances

knowledge about such tools in order to achieve two goals: first,

foster more experimental research on the topic; and second, enrich

rapid transfer into education with hands-on competences. Fig. 1

puts the relevant tool categories into perspective concerning stacks

and roles in the larger cloud computing ecosystem with its XaaS

service models. FaaS refines the PaaS layer with a higher degree of

abstraction to convey the desired serverless experience to applica-

tion engineers. In the following paragraphs, the tool categories will

be explained along with prototypical research implementations.

Figure 1: Function development and execution tools in the

cloud computing ecosystem.

2 SERVERLESS FOUNDATIONS

From a software engineering perspective, functions in the cloud

resemble functions or methods in modelling and programming lan-

guages. Functions are engineered in almost arbitrary languages

following conventions for function parameters, return values and

stateless execution semantics. The engineering is an activity of pro-

gramming or meta-programming through transformation or tran-

spilation of legacy code, followed by an implementation-dependent

build process. Parameters are passed explicitly per request or im-

plicitly through environment variables and other read-only data
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spaces. Function implementations are thus tangible microservices

in the form of source code, byte code or executables, including

containers.

Based on this definition, the foundations then encompass all con-

cepts, terminologies, emerging reference architectures and develop-

ment and usage patterns for the lifecycle of services implemented

as functions. Recent research sheds some light on the challenges

associated with this service model. For instance, in contrast to vir-

tual machines it is not possible to provision resource-differentiated

function instance types in commercial services [14].

3 TOOLING FOR SERVERLESS CONTEXTS

Two categories of tools can be distinguished: function development,

including deployment, testing and debugging, and execution.

3.1 Development Tools

Development tools determine how well and efficiently functions

can be created and offered as microservices on the market. Often,

the development process requires provider-specific SDKs and APIs,

although higher-level programming libraries and cross-provider

abstraction frameworks like PyWren and the Serverless Framework

exist [2, 7]. A recent trend is the semi-automated decomposition of

legacy code into functions through a process called FaaSification.

In practice, not all functions can or should be exported this way.

Through annotations on the programming level, developers can

selectively specify and configure the transformations. The config-

uration includes the location of the target environment and the

execution characteristics. Tool implementations exist for Java and

Python, for instance Podilizer, Termite and Lambada [12, 13]. In

case functions are to be called from other functions, the function

locality needs to be configured as well. The mechanics of such calls

involve again provider-specific SDKs, e.g. Boto for Python, and

appropriate permissions.

3.2 Execution Tools

Functions are executed in private or public cloud services. Commer-

cial public services mostly depend on proprietary implementations,

including Azure Functions, AWS Lambda and Google Cloud Func-

tions. Open source runtime environments such as OpenWhisk,

Fission, OpenFaaS or IronFunctions enable private deployments,

but are also increasingly used in public clouds such as Bluemix. Fur-

thermore, there are attempts to replicate the runtime characteristics

of the proprietary services in open source tools such as Docker-

LambCI. Despite being open source, most of the runtimes require an

effort-intensive setup and operation. Academic approaches include

OpenLambda [6] and Snafu [11], the Swiss Army Knife of Server-

less Computing which integrates on demand with other runtimes

and thus allows for controlled experiments.

Apart from the runtime, the execution depends on how a func-

tion is triggered (e.g. through a network protocol or a timer) and

how requests are routed to the runtime. Often, API gateways are in-

strumental in achieving the necessary degree of automation. Given

the stateless nature of functions, stateful services such as blob stores

or databases need to be coupled which may introduce additional

delays and cost.

3.3 Limitations and Challenges

While many practical tools will become available in the next year

or two, resolving many of the initial issues associated with FaaS,

the research potential remains high. Researchers need to identify

possibilities as well as documented and undocumented limitations

through analytical work given specialised tools. Within some years,

hybrid orchestrations of microservices with containers and func-

tions are going to become common, yet there are no languages

available to express the compositions. Container orchestration (e.g.

Docker Compose) and function orchestration (e.g. Step Functions)

are still separate also in terms of tools, as well as in terms of ecosys-

tems (e.g. Docker Hub). Another challenge are Deep FaaSification

processes which streamline the conversion of legacy code into

functions by incorporating a semantic code analysis. Improved de-

bugging, profiling and autotuning of functions is also required. First

commercial tools such as X-Ray and Stackdriver exist to introspect

function execution, but no research work is known on such tools

and their effectiveness remains unknown.
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