LÂ. WKU

Investigating the Accuracy of Parallel Analysis in Underextraction **Conditions: A Monte Carlo Study**

Introduction

- \succ Identifying the correct number of factors when conducting a factor analysis is arguably the most important decision a researcher must make⁹
- > Identifying the correct number of factors has important implications for structural validity, construct validity, content meaning, and the psychometric properties of scales and subscales²
- \succ There are numerous methods to identify the number of factors from a factor analysis such as eigenvalue greater than one, Bartlett's test, scree test, and minimum average partial correlation (MAP), however many of these methods are either overly subjective or are inaccurate under a variety of conditions ^{3,7,9}
- \succ Research has suggested that parallel analysis⁸ is the most accurate method for identifying the number of factors from a factor analysis^{1,5,6} > Under certain conditions, parallel analysis has still been shown to
- overextract or underextract the number of factors¹
- \succ Parallel analysis may be inaccurate in the presence of high correlations between factors, low sample size, a high number of variables per factor, low factor loadings, or poorly defined factors^{1,6} \succ A suggested improvement for parallel analysis is to use a stricter criterion other than the 50th percentile eigenvalue, such as the 95th
- percentile eigenvalue⁴
- \succ While this generally performs better than the 50th percentile eigenvalue, it is still prone to underextraction and overextraction¹ \succ An additional margin criterion may further serve to improve the
- accuracy of parallel analysis

Research Question

> What effect will a margin criterion combined with a percentile criterion have on the accuracy of parallel analysis when determining the number of factors using a principal axis factoring method on a correlation matrix which engenders underextraction?

Justin M. Jones M.S. Candidate

Reagan D. Brown Ph.D.

Department of Psychological Sciences, Western Kentucky University

Hypothesis

prove to be more accurate in identifying the correct number of factors than all other criteria

Method

Population Generation

- be generated to create a population matrix that engenders underextraction
- factor will be defined by six variables
- > Each variable will have a loading of .5 on its respective factor
- \succ The correlation between factors will be .7

Procedure

- population
- > An exploratory factor analysis (common factor model) will be performed on the sample data
- a sample of random data of the same size and with the same number of variables as the sample data
- the factor analysis of the sample data
- analysis eigenvalue
- will be compared against the known population values

> the 90th percentile criteria, in conjunction with an absolute margin, will

> The percentage of iterations which identified the correct number of factors will be calculated for each condition \succ These percentages will then be compared across conditions

 \geq A dataset consisting of 1,000,000 cases with scores on 12 variables will

 \succ The population matrix will have a two factor structure whereby each

 \succ A sample of 240 or 480 cases will be randomly drawn from the

 \geq A parallel analysis of 200 or 500 replications will be conducted on

 \succ The eigenvalues from the 50th, 90th, 95th, or 99th percentile from the parallel analysis will be compared to the eigenvalues obtained from

 \succ The number of factors will then be determined by applying the margin criterion (e.g., absolute or 10%). The number of factors will be defined as the highest factor in the sample data which has a positive eigenvalue greater than the corresponding random parallel

 \succ The process will be repeated 1000 times at which point the results

Table 1 Expected Results

Eigenvalue C

50th Percer

50th Percer

90th Percer

90th Percer

95th Percer

95th Perce

99th Percer

99th Perce

Note: (+) signifies that a method is expected to overextract, (-) signifies that a method is expected to underextract. Percentages indicate expected accuracy of the criterion on identifying the correct number of factors in terms of number of iterations (out of 1000) where the correct number of factors were identified.

10.1177/1094428103251541 http://doi.org/10.1037/1082-989X.4.3.272³ http://doi.org/10.1177/10944281042636757

Proposed Analysis

Proposed Results

Criterion	Margin Criterion	Expected Accuracy
entile	Absolute	≅ (+) 70%
entile	10%	≅ (+) 75%
entile	Absolute	≅ (+) 85%
entile	10%	≅ (+) 90%
entile	Absolute	≅ (-) 80%
entile	10%	≅ (-) 80%
entile	Absolute	≅ (-) 70%
entile	10%	≅ (-) 65%

References

- Crawford, A.V., Green, S. B., Levy, R., Lo, W.-J., Scott, L., Svetina, D., & Thompson, M. S. (2010). Evaluation of parallel analysis methods for determining the number of factors. Educational and Psychological Measurement, 70, 885–901. http://doi.org/10.1177/00131644103793321 Conway, J. M., & Huffcutt, A. I. (2003). A Review and Evaluation of Exploratory Factor Analysis Practices in Organizational Research. Organizational Research Methods, 6(2), 147–168.
- Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., & Strahan, E. J. (1999). Evaluating the use of exploratory factor analysis in psychological research. Psychological Methods, 4, 272–299.
- Glorfeld, L.W. (1995). An improvement on Horn's parallel analysis methodology for selecting the correct number of factors to retain. Educational and Psychological Measurement, 55, 377–393. http://doi.org/10.1177/00131644950550030024
- Green, S. B., Thompson, M. S., Levy, R., & Lo, W.-J. (2015). Type I and type II error rates and overall accuracy of the revised parallel analysis method for determining the number of factors. Educational and Psychological Measurement, 75, 428–457. http://doi.org/10.1177/0013164414546566⁵
- Green, S. B., Xu, Y., & Thompson, M.S. (2017). Relative accuracy of two modified parallel analysis methods that use the proper reference distribution. Educational and Psychological Measurement,⁶ Hayton, J. C., Allen, D. G., & Scarpello, V. (2004). Factor retention decisions in exploratory factor analysis: A tutorial on parallel analysis. Organizational Research Methods, 7, 191–205.
- Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika, 30, 179–185. http://doi.org/10.1007/BF022894478 Zwick, W. R., & Velicer, W. F. (1986). Comparison of five rules for determining the number of components to retain. Psychological Bulletin, 99, 432. http://doi.org/10.1037/0033-2909.99.3.4329