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ABSTRACT 

 

Supporting a growing human population while avoiding biodiversity loss is a 

central challenge towards a sustainable future. Ecosystem services are benefits that 

people derive from nature. People have drastically altered the earth’s land surface in 

the pursuit of those ecosystem services that have been ascribed market value, while 

at the same time eroding biodiversity and non-market ecosystem services. The 

science required to inform a more balanced vision for land-cover change in the 

future is rapidly developing, but critical questions remain unanswered regarding how 

to quantify ecosystem services and ascribe value to them, and how to coordinate 

efforts to safeguard multiple ecosystem services and biodiversity together. This 

dissertation addresses several of these challenges using Vermont as a model 

landscape. Specifically, we begin by estimating the economic value of flood 

mitigation ecosystem services and show that the externalized value of ecosystem 

services can be quite high. Second, we assess the role of demand from human 

beneficiaries in shifting the spatial distribution of ecosystem services, and address 

the biodiversity and human wellbeing implications of that shift. Third we analyze 

the tradeoffs and synergies inherent in pursing multiple ecosystem services and 

biodiversity through conservation, and show that overall ecosystem service 

conservation is more likely to boost biodiversity outcomes than to undermine them. 

Finally, I implement statewide scenarios of land-cover change and flood risk in 

order to assess our ability to quantify ecosystem service outcomes and identify 

spatial priorities for the future despite land-cover change dynamics that are complex 

and unpredictable.   
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CHAPTER 1: INTRODUCTION AND BACKGROUND  

People have drastically altered the earth’s land surface. Humans are the dominant force 

on a full 40% of all land (Ramankutty and Foley 1999), directly or indirectly influence 

over 80% (Sanderson et al. 2002), and appropriate one third to one half of global 

productivity (Vitousek et al. 1986). These land-cover changes have occurred largely 

through the pursuit of those ecosystem services whose value is captured in economic 

markets, but have eroded the planet’s biodiversity (Newbold et al. 2015) as well its 

provision of non-market ecosystem services (Millennium Ecosystem Assessment 2005; 

DeFries, Foley, and Asner 2004; Foley et al. 2005). Approximately four fifths of all 

threatened terrestrial birds and mammals are declining primarily due to land-cover 

change (Tilman et al. 2017), and annual ecosystem service losses due to land-cover since 

1997 have been valued at $20 trillion/year (Sutton et al. 2016).  

 

Sustainable development requires a more balanced vision of how to manage the earth’s 

land surface. This will involve balancing tradeoffs between the provision of market and 

non-market ecosystem services, and between ecosystem services and biodiversity. The 

former can be informed by estimating the economic value of non-market ecosystem 

services, so that both market and non-market benefits can be taken into account in land-

cover planning (Polasky et al. 2008; Bateman et al. 2013). The latter will be aided by a 

careful understanding of the spatial distribution of ecosystem services and biodiversity 

(Chan et al. 2006; Naidoo et al. 2008). Long term planning for each requires 

https://paperpile.com/c/TetQ3R/k9Io
https://paperpile.com/c/TetQ3R/W5k3
https://paperpile.com/c/TetQ3R/2j6I
https://paperpile.com/c/TetQ3R/MXsy
https://paperpile.com/c/TetQ3R/7mYF+HWRW+IFz2
https://paperpile.com/c/TetQ3R/7mYF+HWRW+IFz2
https://paperpile.com/c/TetQ3R/cY5f
https://paperpile.com/c/TetQ3R/Vfty
https://paperpile.com/c/TetQ3R/wIrL+JgVq
https://paperpile.com/c/TetQ3R/JUNF+NU7D
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understanding how land-cover change may proceed into the future (Peterson, Cumming, 

and Carpenter 2003).   

 

Each of these areas of research is rapidly developing. It is now a widely accepted best 

practice to measure the economic value of ecosystem services in terms of marginal value 

(Ricketts and Lonsdorf 2013), and to specifically identified beneficiary groups (Arkema 

et al. 2013). Because of this, valuations from one context are not easily transferred to 

another (Balmford et al. 2002), and site-specific valuation remains an important tool in 

incorporating ecosystem services in economic decision-making. In general, the evidence 

accumulated thus far indicates that the value of non-market ecosystem services can be 

quite large (Balmford et al. 2015; Gallai et al. 2009; Van der Ploeg and De Groot 2010). 

The loss of non-market services outweighs the economic benefits of land conversion in 

many cases (Balmford et al. 2002), and the returns on investment in protecting ecosystem 

services exceed the costs of conservation (Balmford et al. 2015; Kovacs et al. 2013). 

Those ecosystem services with technological substitutes often prove more cost effective 

than their alternatives (Jones, Hole, and Zavaleta 2012). Those without substitutes are 

unsuited to economic valuation; their contribution to human well-being is irreplaceable 

(Farley 2012).  

 

There has been increasing interest in ecosystem services from the private sector 

(Goldman et al. 2008; Ruckelshaus et al. 2013), governments (Donovan, Goldfuss, and 

Holdren 2015; Pittock, Cork, and Maynard 2012; Bateman et al. 2013; Liu et al. 2008), 

https://paperpile.com/c/TetQ3R/0LZ2
https://paperpile.com/c/TetQ3R/0LZ2
https://paperpile.com/c/TetQ3R/Ipm4
https://paperpile.com/c/TetQ3R/wbVq
https://paperpile.com/c/TetQ3R/wbVq
https://paperpile.com/c/TetQ3R/XYAa
https://paperpile.com/c/TetQ3R/KusX+KUoG+7Q0O
https://paperpile.com/c/TetQ3R/XYAa
https://paperpile.com/c/TetQ3R/KusX+Ab05
https://paperpile.com/c/TetQ3R/Thc3
https://paperpile.com/c/TetQ3R/7xni
https://paperpile.com/c/TetQ3R/cN6v+FyL9
https://paperpile.com/c/TetQ3R/VdFN+3rqP+JgVq+9aAM
https://paperpile.com/c/TetQ3R/VdFN+3rqP+JgVq+9aAM
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and international organizations (Díaz et al. 2015; Van der Ploeg and De Groot 2010; 

Millennium Ecosystem Assessment 2005; Lammerant et al. 2013). Furthermore, 

ecosystem services are now explicitly targeted by many leading conservation 

organizations. This has led to concerns that ecosystem services are drawing from 

resources traditionally allocated for the protection of wild nature, and as such are 

detracting from biodiversity conservation (McCauley 2006; Goldman, Daily, and Kareiva 

2011). The severity of the tradeoff between ecosystem services and biodiversity depends 

on the extent to which priorities for each overlap in space. The principles of conservation 

planning for biodiversity have been applied to identify spatial priorities for ecosystem 

services, and to compare them with existing biodiversity priorities (Maes et al. 2012; B. 

Egoh et al. 2009; Nelson et al. 2009; Bhagabati et al. 2014; Naidoo et al. 2008; Chan et 

al. 2006). However, the evidence to date is mixed. Some studies have identified win-win 

opportunities (Turner et al. 2007; B. N. Egoh et al. 2010), while others have cautioned 

that these win-wins may be infrequent (Anderson et al. 2009; Naidoo et al. 2008), or have 

found correlations that are positive but weak (Chan et al. 2006). 

 

In order to safeguard biodiversity and ecosystem services in the long term, we need to 

know where they are most valuable now, and where they will be most important in the 

future. This presents a challenge. Human driven changes to the landscape interact via 

complex feedbacks with each other, with ecosystem services, and with human responses 

to those changes (S. R. Carpenter 2002). The consequence is that we know the future will 

be fundamentally different from the past, but are unable to foresee what that future will 

https://paperpile.com/c/TetQ3R/1Nki+7Q0O+7mYF+x9YN
https://paperpile.com/c/TetQ3R/1Nki+7Q0O+7mYF+x9YN
https://paperpile.com/c/TetQ3R/ISrW+8P3T
https://paperpile.com/c/TetQ3R/ISrW+8P3T
https://paperpile.com/c/TetQ3R/tmXg+O152+po2P+RB8d+NU7D+JUNF
https://paperpile.com/c/TetQ3R/tmXg+O152+po2P+RB8d+NU7D+JUNF
https://paperpile.com/c/TetQ3R/tmXg+O152+po2P+RB8d+NU7D+JUNF
https://paperpile.com/c/TetQ3R/2YTk+yGK7
https://paperpile.com/c/TetQ3R/DDiK+NU7D
https://paperpile.com/c/TetQ3R/JUNF
https://paperpile.com/c/TetQ3R/X9KIQ
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be like (Clark et al. 2001; Raskin 2005). Scenario planning has been presented as a tool 

for making decisions under conditions of high uncertainty, and has been applied in the 

context of sustainable development (Raskin 2005) conservation planning (Peterson, 

Cumming, and Carpenter 2003) and ecosystem services (S. Carpenter, Bennett, and 

Peterson 2006). Where scenarios of land-cover change have been coupled to ecosystem 

service outcomes, they have provided powerful insights about tradeoffs and feedbacks 

between ecosystem services and land-cover decisions (Thompson et al. 2016; S. 

Carpenter, Bennett, and Peterson 2006; Bohensky, Reyers, and Van Jaarsveld 2006; 

Bateman et al. 2013). However, we still lack generalizable conclusions about how best to 

target our actions today given the degree of uncertainty we face about the future.  

 

Critical questions remain unanswered regarding how to quantify ecosystem services and 

ascribe value to them, and how to coordinate efforts to safeguard multiple ecosystem 

services and biodiversity. This dissertation addresses several of those challenges using 

Vermont as a model landscape. I begin by estimating the economic value of flood 

mitigation ecosystem services through a case study of the Otter Creek watershed, and 

show that the externalized value of ecosystem services can be quite high. Second, I assess 

the role of demand from human beneficiaries in shifting the spatial distribution of 

ecosystem services statewide, and address the biodiversity and human well-being 

implications of that shift. Third, I analyze the tradeoffs and synergies inherent in pursuing 

multiple ecosystem services and biodiversity through conservation, and show that overall 

ecosystem service conservation is more likely to boost biodiversity outcomes than to 

undermine them. Finally, I implement statewide scenarios of land-cover change and flood 

https://paperpile.com/c/TetQ3R/0B2Vs+NuHhv
https://paperpile.com/c/TetQ3R/NuHhv
https://paperpile.com/c/TetQ3R/0LZ2
https://paperpile.com/c/TetQ3R/0LZ2
https://paperpile.com/c/TetQ3R/mtWX
https://paperpile.com/c/TetQ3R/mtWX
https://paperpile.com/c/TetQ3R/caMz+mtWX+A7su+JgVq
https://paperpile.com/c/TetQ3R/caMz+mtWX+A7su+JgVq
https://paperpile.com/c/TetQ3R/caMz+mtWX+A7su+JgVq
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risk in order to assess our ability to quantify ecosystem service outcomes and identify 

spatial priorities for the future despite land-cover change dynamics that are complex and 

unpredictable. 

 

Ethical Framework and Theory of Change 

The research presented in this dissertation is scientific, but the motivation for pursuing 

this line of research, and for selecting this specific set of research questions, is value-

laden. Here, I describe the ethical framework and theory of change that have motivated 

this body of work.  

 

Ethical Framework 

 

Pursuing a more sustainable future is, to me, a moral imperative. Doing so involves 

achieving three things: providing for the needs of people today, providing for the needs 

of future generations, and doing so within the ecological boundaries of our planet such 

that all other life on earth is also able to thrive. Humanity is simultaneously a plain 

member (Leopold 1989), and uniquely a steward, of the ecological community of our 

planet. Thus we are morally compelled to consider the wellbeing of all people, and that of 

non-human nature, in our personal and societal decisions.  

 

In my view, people have a moral obligation to protect the integrity of earth’s ecosystems 

for two reasons. First, nature has utility value to people, and is critical to the wellbeing of 

our human communities. Thus we must treat our entire planetary ecosystem responsibly 
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in order to treat our fellow man ethically. Second, it is my personal ethic that living 

things and ecosystems other than ourselves have inherent worth. The economic system 

that currently drives our natural resource use does not account for nature’s intrinsic value, 

and accounts for its utility value insufficiently. It operates under the implicit assumption 

that nature’s contribution to utility, and by extension human well-being, are signaled by 

market value. However, ecosystems contribute to human wellbeing in ways that are 

externalized from our economy. It is critical to our own well-being that we account for 

the role that nature plays in human well-being. Doing so is the most basic goal of 

ecosystem service science. It is also critical that we seek to protect our planet’s 

biodiversity for its own sake. Doing so is at the heart of conservation. The research 

questions I pursue in this dissertation are motivated by the moral imperative to pursue 

each of these goals, human well-being and biodiversity conservation, simultaneously.  

 

Theory of Change 

 

Our current economic system is incompatible with long term sustainability in several 

ways. For example, infinite economic growth is fundamentally unsustainable (Daly 

1992). Unlike internalizing ecosystem service value, correcting these problems would 

require a fundamental restructuring of our economy and our relationship to nature, a 

paradigm shift that is unlikely to occur in the near future. Thus in thinking about how to 

bring about change, we face an inherent tension between idealism and urgency. 
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It is my hope that making the value of ecosystem services more transparent will do three 

things to facilitate change towards a more sustainable system. First, I hope that it will 

allow for the rapid incorporation of nature’s value in decision-making contexts where it is 

currently overlooked, shifting decisions to be more sustainable in the short term. I 

acknowledge concerns that economic valuation may result in “crowding out” of 

motivations for protecting nature that are not based in self-interest (Rode, Gómez-

Baggethun, and Krause 2015), and concerns about the commodification of nature (Luck 

et al. 2012; McCauley 2006). However, I think that there are many contexts where the 

motivations likely to be crowded out already play a minimal role, and where attributing 

ecosystem services some value will lead to better decision making than implicitly 

attributing them no value. Second, I hope that mainstreaming the idea that nature is 

critical to human well-being will lay the stage for a more fundamental shift in our 

relationship to nature and a restructuring our economic system. Finally, quantifying 

ecosystem services can enable these services to be more efficiently protected in light of 

scarce resources for conservation.  

 

As the ecosystem service concept is mainstreamed, it is important that the value of nature 

for people is considered in addition, not instead of, nature’s intrinsic value. Research 

efforts treat the relationship between biodiversity and ecosystem services in a variety of 

ways. Some consider biodiversity to be an ecosystem service or to underpin ecosystem 

services, thereby implicitly focusing on nature’s utility value. Others consider ecosystem 

services as a way of rebranding conservation to bolster the conservation community’s 

ability to protect biodiversity, implicitly focusing predominantly on nature’s intrinsic 
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value. Instead, in my research framework I deliberately consider ecosystem services (a 

representation of utility value) and biodiversity conservation (a representation intrinsic 

value) to be two separate conservation objectives that are each important in their own 

right.  
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CHAPTER 2: QUANTIFYING FLOOD MITIGATION SERVICES: THE 

ECONOMIC VALUE OF OTTER CREEK WETLANDS AND FLOODPLAINS 

TO MIDDLEBURY, VT  

Abstract 

Functioning ecosystems can buffer communities from many negative impacts of a 

changing climate. Flooding, in particular, is one of the most damaging natural disasters 

globally and is projected to increase in many regions.  However, estimating the value of 

“green infrastructure” in mitigating downstream floods remains a challenge. We estimate 

the economic value of flood mitigation by the Otter Creek floodplains and wetlands to 

Middlebury, VT for Tropical Storm Irene and nine other floods. We used first principles 

to simulate hydrographs for scenarios with and without flood mitigation by upstream 

wetlands and floodplains. We then mapped flood extents for each scenario and calculated 

monetary damages to inundated structures. Our analysis indicates damage reductions of 

84-95% for Tropical Storm Irene and 54-78% averaged across all 10 events.  We estimate 

that the annual value of flood mitigation services provided to Middlebury, VT exceeds 

$126,000 and may be as high as $450,000. Economic impacts of this magnitude stress the 

importance of floodplain and wetland conservation, warrant the consideration of 

ecosystem services in land use decisions, and make a compelling case for the role of 

green infrastructure in building resilience to climate change. 

 

Keywords 

Ecosystem services, economic valuation, flood mitigation, green infrastructure, climate 

resilience 

 

Highlights 

 We present a simple approach to quantifying and valuing flood mitigation 

services.  

 Wetlands and floodplains reduce flood damages by 54-78%. 

 The economic value of this service warrants consideration in land use decisions. 
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Introduction 

Ecosystems support human well-being in myriad ways. In many places, human activities 

have altered ecosystems to such an extent that real consequences on well-being are 

apparent [1].  To respond to these changes, the focus of conservation is broadening to 

include not only the negative impacts that people have on nature, but also the benefits 

nature provides to people [2, 3].  These benefits, or ecosystem services, include the many 

ways in which our communities and economies rely on functioning natural landscapes 

[4]. Such services have real and quantifiable value, although they are largely 

unrecognized externalities in our economy [5]. Economic valuation of ecosystem services 

can be instrumental in decision making that incorporates the contributions of nature to 

human well-being [6].  

 

One way that ecosystems support well-being is by providing resilience to climate change.  

For example, coastal ecosystems can buffer against impacts from severe storms [7-10]; 

diverse ecosystems provide natural checks that limit the spread of infectious diseases 

[11]; and freely flowing rivers can alleviate the impacts of severe storms and flooding 

expected as climate changes [12]. Increasingly, “green infrastructure,” the network of 

functioning ecosystems that confer benefits to people [13, 14], is recognized as  a method 

of building climate resilience [15], that may be more cost effective than engineered 

solutions in many cases [16, 17]. 

 



 11 

In particular, floods cause more human fatalities than any other natural disaster [18, 19] 

and are the most frequent natural disaster in many regions [18]. The potential of wetlands 

and floodplains to reduce flooding is widely recognized. Wetlands are areas where water 

is the primary factor driving plant and animal life [20]. Floodplains are the flat lands 

adjacent to rivers created by their lateral migration [21]. Both can act as green 

infrastructure to mitigate flooding by storing and slowing floodwater so that it arrives 

downstream gradually rather than in a single large pulse [22, 23]. Wetlands are thought to 

be most effective in reducing small, frequent flood events [24], whereas floodplains can 

reduce downstream peak flows for more severe events as well [21, 25]. Many climate 

scenarios indicate an increase in severe precipitation events [26], which suggests that the 

importance of wetlands and floodplains for human wellbeing will increase.  

 

Despite the importance of wetlands and floodplains for alleviating floods, both have 

undergone widespread loss resulting from human interference with river geomorphology, 

such as the construction of levees and river channelization [20, 27]. These practices 

promote incision and disconnection of rivers from their floodplains and associated 

wetlands. By rapidly channeling water downstream, these hard engineering solutions 

reduce flooding locally, but can increase floods downstream [28, 29].  Both wetland loss 

and floodplain disconnection are being targeted by conservation and restoration projects 

with green infrastructure goals. The non-market benefits of wetlands and floodplains are 

often undervalued or completely unaccounted for in local decisions [22] because these 

benefits are externalities that mostly accrue downstream. Quantifying the economic value 
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of flood mitigation services, in terms of real and avoided flood damages, can influence 

regional-scale planning decisions regarding the use of green and built infrastructure [30] 

by connecting upstream decisions to downstream impacts. In order to responsibly allocate 

conservation resources to protect wetlands and floodplains, we need to know when 

expected returns on that conservation investment will be positive.  

 

Current techniques to quantify water-related ecosystem services generally fall within 

three categories. First, empirical approaches are used to measure the biophysical supply 

of services, such as measuring the water storage capacity of wetland soils [31] or relating 

the development of wetlands to flooding frequency [32]. Second, advanced hydrological 

models are modified to inform ecosystem service decisions; however, these models do 

not tend to produce results necessary to evaluate benefits to specific stakeholders [33]. 

Finally, models developed as support tools for ecosystem service decision-making seek to 

provide more direct measures of human well-being outcomes [34] [35]. There are 

existing hydrologic models and empirical approaches that measure the impacts of land 

use on flooding [31, 32, 36-38] and other models that measure the impacts of flooding on 

people [39], but we do not know of an existing model designed for ecosystem service 

decision making. Although it may not be possible to consider biophysical and 

socioeconomic dynamics each in depth, it is crucial that valuations of hydrologic services 

consider both [40].  
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We present a first-order approach to estimating the value of flood mitigation services 

provided by wetlands and floodplains built upon ecologic, hydrologic, and economic 

principles. Our approach is novel in linking biophysical flooding dynamics to human 

beneficiaries at the watershed scale. To illustrate this approach, we quantify the economic 

value of flood mitigation in terms of avoided damages to human beneficiaries provided 

by the wetland-floodplain complex of the Otter Creek (which remains highly connected 

to its floodplain and associated wetlands) to Middlebury, Vermont (USA). Specifically, 

we address two questions: 

 

1) What was the value of the Otter Creek wetlands and floodplains in reducing flood 

damage during Tropical Storm Irene in 2011? 

2) Beyond this single event, what is the expected annual value of the wetlands and 

floodplains in mitigating flood damages? 

 

These valuations allow us to quantify the damages of a high-profile storm that has 

focused attention on role of wetlands and floodplains in bolstering climate resilience, and 

to estimate the damages avoided in an average year. The latter is more likely to be 

actionable information for decision makers than the damage costs of a rare event, 

although both are important given that storm intensity and rainfall are increasing in this 

region [41]. This work enables explicit consideration of flood mitigation by wetlands and 

floodplains in land use and resource decisions. 
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Methods 

We estimated the value of flood mitigation services as the damage to downstream 

communities that was avoided as a result of wetlands and floodplains. Quantifying 

avoided damages is a well-established method of non-market valuation [42, 43].  

Specifically, we estimated the difference in expected damages between current conditions 

(where the river is connected to wetlands and floodplains, hereafter referred to as the 

“wetlands” scenario) and two hypothetical scenarios where the river does not have these 

connections. One of these counterfactual scenarios represents a large effect of wetlands 

and floodplains (“no wetlands-high” scenario) and the second represents a more 

conservative effect (“no wetlands-low” scenario). These scenarios apply theoretical 

conditions to the Otter Creek to illustrate the potential range of benefits provided by the 

wetland-floodplain complex, rather than predicting the precise value of those benefits. 

More advanced process-based modeling would be appropriate if specific predictions were 

needed given expected marginal changes in access to wetlands and floodplains. The use 

of scenarios is a well-established method of illustrating the envelope of possible 

outcomes given large uncertainties [44]. 

  

To evaluate flood damages, we followed a five-step process: First, we modeled 

hypothetical flood peaks representing conditions where the Otter Creek lacks connection 

to its floodplain and wetlands (henceforth referred to as “no-wetlands” scenarios for 

simplicity). Next, we estimated flood extent for wetlands and no-wetlands scenarios. 

Third, we identified flooded structures in each scenario. Fourth, we calculated expected 
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damages for each structure as a function of flooding depth and house value. Finally, we 

estimated the value of avoided damages by pooling costs for each scenario and 

calculating the difference in total damage between wetlands and no-wetlands scenarios. 

We followed these steps for Tropical Storm Irene and for nine additional historic 

flooding events in order to estimate the annual value of flood mitigation. 

 

Study System  

We focused on Otter Creek in Middlebury, VT (Figure 2.1). The Otter Creek is a useful 

case study for several reasons. First, Vermont’s land use pattern, with development 

concentrated along rivers in low-lying floodplain areas, is typical of many rural regions. 

Second, recent extensive flood damages related to very large storms have pushed flood 

resiliency forward as a priority in Vermont and the Northeast. Finally, climate projections 

estimate that precipitation will increase, and will more often occur in high energy 

precipitation events, a trend that has already been observed over the last half century [41, 

45]. This indicates that flood resiliency will increase in importance. Finally, the Otter 

Creek remains well connected to its floodplain, and thus has the potential to illustrate the 

value of maintaining functional access to floodplains and wetlands for the purpose of 

mitigating floods. 

 

Otter Creek flows north through a large wetland complex and a relatively wide, 

connected floodplain from Rutland, VT to the town of Middlebury (Figure 2.1). Although 

three-quarters of Vermont streams and rivers are incised, and thus disconnected from 
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their floodplains [46], stream geomorphic assessment indicates that there is virtually no 

stream incision on the main stem of  Otter Creek [47]. The watershed is predominantly 

forested (60%), 5% of land-cover is developed, 24% is agricultural, and 8% is wetland. 

Wetlands comprise a total of 18,000 acres, most of which are forested swamplands. 

USGS gauging stations on the Otter Creek are positioned in the towns of Rutland 

(hereafter, “upstream”) and Middlebury (hereafter, “downstream”). The river meanders 

36 river miles between the gauges, and elevation change is modest, dropping from 475 to 

336 feet above sea level [48]. The downstream gauge has a drainage area twice as large 

as the upstream gauge (628 vs 307 square miles). The paired gauges record flow 

dynamics during rain events and enable us to value flood mitigation provided by the 

wetland-floodplain complex in the absence of an advanced hydrological model.  

 

Tropical Storm Irene hit Vermont on August 28, 2011. Every town in Vermont reported 

flood damages [41], including Rutland and Middlebury. Rutland experienced the highest 

peak flow on record on August 28th and suffered serious flood damages over the five 

days following the storm. Roughly thirty miles downstream and a week later, Middlebury 

experienced a much lower peak and flooding was minor because floodwater arrived 

gradually over a longer time interval (several weeks instead of about five days) (Figure 

2.2). Locally, the observed difference in flood damage was touted as an example of flood 

mitigation by wetlands and floodplains, and of green infrastructure bolstering the 

resiliency of local communities to extreme rain events [49]. We focus our valuation on 
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the town of Middlebury itself, which encompasses 14 square miles and has a population 

of roughly 6,600 [50]. 

 

A hydrograph is a plot of discharge as a function of time — typically in cubic feet per 

second (CFS). We accessed hydrographs for upstream and downstream gauges over the 

interval of the downstream storm water pulse (17:00, 8/27/11 to 11:00, 9/22/11) [48] 

(Figure 2.2). We included a long tail on the hydrograph’s falling arm to ensure a 

conservative estimate of the pulse duration and magnitude (The falling arm is where 

discharges of the two hydrographs are most similar). Flood volume is the sum of areas 

area under the hydrograph curve. We calculated volume as a Reimann sum:  

 

Equation 2.1     V = ∑ 𝑞𝑖 ∗ Δ𝑛−1
𝑖=0 𝑡 

 

where V is total water volume in cubic feet, q is discharge (cfs) for each time interval i, 

and Δt is the time between discharge measurements at the gauge (15 minutes).  

 

Modeling Peak Flows  

We developed two scenarios to estimate peak flows in cases where wetlands and 

floodplains were eliminated completely. Although the Otter Creek is not under immediate 

risk of losing its wetlands or its connection its floodplain, such losses are common 

elsewhere and reduce the capacity of landscape to mitigate downstream flooding. Further, 
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“total loss” scenarios such as these are needed to determine the ecosystems’ total value 

for flood mitigation. Our two no wetlands scenarios differ in terms of the size of the 

impact that disconnection from wetlands and floodplains has on downstream flooding, By 

providing a high and low estimate of this effect, they illustrate the range of effects 

wetlands and floodplains may have on downstream flood damages. 

 

No-Wetlands High Scenario 

The no-wetlands high scenario represents a case where the difference in the shape of the 

upstream and downstream hydrographs (the timing of floodwater arrival) was solely 

attributable to the wetlands and floodplains that lie between the two gauges, but where 

the wetlands and floodplains had no impact on the total floodwater volume. 

 

We normalized the upstream hydrograph by dividing the volume for each time interval 

by the total upstream water volume, and then multiplied these incremental volume 

measures by the total volume recorded at the downstream gauge: 

 

Equation 2.2                   𝑣𝑖𝑁𝑜−𝑊𝑒𝑡𝑙𝑎𝑛𝑑𝑠 𝐻𝑖𝑔ℎ−𝐼𝑚𝑝𝑎𝑐𝑡 =  
𝑣

𝑖𝑈𝑝𝑠𝑡𝑟𝑒𝑎𝑚

𝑉𝑈𝑝𝑠𝑡𝑟𝑒𝑎𝑚
∗ 𝑉𝐷𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 

 

Where v is water volume for a time interval i, and V is total water volume.  
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By modeling the no-wetlands hydrograph using the upstream hydrograph shape and 

downstream floodwater volume, we simulated a case that does not allow for any 

dissipation of the storm peak or temporary water storage by the landscape, but that does 

contain all the rainfall that occurred between the upstream and downstream gauges. In 

doing so we also assumed that much of the water entering between the gauges would 

contribute to the downstream hydrograph peak. Essentially, this simulated a case in 

which floodwater moved downstream through an impervious channel, and where all of 

the water that fell between the upstream and downstream gauges entered the channel 

exactly in proportion to the passing flood peak. Because of these non-conservative 

assumptions, this scenario represents an upper bound on the value of the wetland-

floodplain complex.  

 

No-Wetlands Low Scenario 

We created a more conservative scenario that differed from the no-wetlands high scenario 

in two ways. First, we assumed wetlands and floodplains only affected water that entered 

the Otter Creek above the upstream gauge. To model this, we assumed water entering the 

Otter Creek between the gauges did so with timing proportional to the downstream 

hydrograph (instead of proportional to the upstream hydrograph). We calculated the 

difference in observed water volumes recorded at the upstream and downstream gauges 

using Riemann sums, multiplied the volume of water that entered the channel between 

the two gauges by the normalized downstream hydrograph, and multiplied the upstream 

water volume by the normalized upstream hydrograph.  This assumption causes us to 



 20 

underestimate the impact of the wetland floodplain complex, thus this scenario represents 

a lower bound on their value.  

 

Secondly, wetlands and floodplains were considered to be only partially responsible for 

flood mitigation. Floodwaters would have dissipated to some extent due to factors other 

than wetlands and floodplains. Others have shown that wetlands are the only land-cover 

type that impacts flood peaks in this region [51]. However, topographic effects other than 

floodplains such as storage and friction within the channel will also reduce flood peaks, 

so that larger drainage basins tend to have lower flood peaks relative to their flood water 

volume even when they do not have floodplain access. To account for these effects, we 

regressed discharge per unit area against drainage basin size for 10-year floods at 

Vermont USGS gauges (Figure S2.1, [51]). Using this relationship we determined that 

the unit discharge expected for the drainage area of the downstream gauge was 11% 

lower than that expected for the drainage area of the upstream gauge. We decreased the 

volume of the upstream hydrograph for each time interval by this dissipation factor. 

Because most rivers in Vermont have been disconnected from floodplains through 

incision, this dissipation factor provides us with an estimate of how much the flood peak 

would dissipate while traveling downstream from the upstream to the downstream gauge 

in the absence of wetland and floodplain effects. In sum, the no wetlands low hydrograph 

was calculated as: 

 

Equation 2.3 
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𝑣𝑖𝑁𝑜−𝑊𝑒𝑡𝑙𝑎𝑛𝑑𝑠 𝐿𝑜𝑤 =  (
𝑣𝑖𝑈𝑝𝑠𝑡𝑟𝑒𝑎𝑚

𝑉𝑈𝑝𝑠𝑡𝑟𝑒𝑎𝑚
∗ 𝑉𝑈𝑝𝑠𝑡𝑟𝑒𝑎𝑚 ∗ 0.89) + (

𝑣𝑖𝐷𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚

𝑉𝐷𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚
∗ 𝑉𝐵𝑒𝑡𝑤𝑒𝑒𝑛) 

 

Where v is water volume for a time interval i, and V is total water volume, as above. 

Although this is a much more conservative estimate of the potential impact of wetlands 

and floodplains on peak flows, it does not represent an absolute lower bar of that affect. 

 

Determining Flood Extent 

For each scenario, we used a rating curve built from a log-log regression of the highest 

daily mean water level for every year from 1927 to 2012 (r2=0.96, p<2.2e-16; Figure 2.3) 

to relate discharge (cfs) to stage (river height, feet). From the rating curve, we calculated 

the flood elevation associated with downstream peak discharge from the wetlands and no-

wetlands hydrographs. While many of the annual peaks in our dataset represented cases 

where Otter Creek overflowed its channel and inundated the surrounding floodplain, the 

no-wetlands discharge exceeded all recorded annual peaks so we were forced to 

extrapolate beyond our data to determine flood elevation.  

 

A 15 meter waterfall occurs in Otter Creek at Middlebury just below the downstream 

gauge. Thus we adjusted flood heights for areas below the falls (north) by subtracting 15 

meters (Figure S2.2) but otherwise assumed that the rating relationship and flood 

elevation were equal throughout Middlebury (i.e., a “bathtub” model of flooding). In 
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reality water volume, not height is conserved as a flood pulse travels downstream because 

the relationship between volume and height is sensitive to floodplain geometry. The 

benefit of this assumption was the use of a single metric, flood height, which could be 

robustly estimated (Figure 2.3).  

 

We defined the flood extent as areas in Middlebury that were hydrologically connected to 

the Otter Creek and that fell below the flood elevation. This flood extent was identified 

using a high-resolution 1-meter Digital Elevation Model (DEM) derived from LiDAR 

data acquired under leaf-off conditions in 2014. 

Identifying Flooded Structures 

We overlaid the flood extents for each scenario with a point database of Middlebury’s 

structures that was created for emergency response efforts [52]. Structures were 

determined to be flooded if they fell within the flood extent, or if they fell within a 100 ft 

buffer of the extent and were within two feet of the flood elevation. The latter criterion 

accounts for structures above the flood level with basements that may have flooded. The 

Federal Emergency Management Agency estimates monetary damages beginning with 

flood depths of –2 feet for residential structures [39], and most homes in Vermont have 

basements. We calculated each structure’s flooding depth as the structure’s ground 

elevation, as determined by the LiDAR DEM, subtracted from the flood elevation.  
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All hydrograph manipulations and flood elevation calculations were performed using R 

statistical software [53]. Flood extent scenarios were performed in Quick Terrain 

Modeler [54].  All other GIS analyses were done using the ArcGIS software package 

[55]. 

 

Monetary Damages 

We calculated expected damage for each structure as a function of flooding depth and 

property value (Figure 2.4). We applied a depth-damage function for residential 

structures with basements from FEMA’s HAZUS guidelines [39]. This function is 

developed from national insurance claims, with adjustments for uninsured losses. We 

merged a publicly available database of property tax records with the spatial dataset of 

structures. The matching of these datasets had to be verified and cleaned by hand due to 

discrepancies such as spelling errors, and duplicated entries. We also verified and, in 

some cases, updated property estimates from Zillow [56]. Publicly owned structures with 

no tax record were assigned the lowest property value of the identified flooded structures.  

 

Valuation of Avoided Damages 

We calculated the value of flood mitigation services provided to Middlebury by the 

upstream wetlands and floodplains as the difference in total damages for all structures 

between the wetlands and no-wetlands scenarios.  
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The Mean Annual Value of Flood Mitigation 

The method outlined above resulted in an estimate of avoided damages for a single event, 

Tropical Storm Irene.  To quantify the annual expected avoided damages, we repeated the 

procedure for Irene and nine additional flooding events using historical data.  Prior to 

2007, discharge data were shown as mean daily values rather than in 15-minute intervals. 

We obtained these hydrograph data for the seven largest events on record at the upstream 

gauge (including Tropical Storm Irene), plus three floods whose peak discharge 

approximated those of two-year and five-year floods [57].  For each storm event, we 

included data for one month before and one month following the upstream flood peak.  

 

Using wetlands and no-wetlands damage estimates for these ten events, we determined 

mean annual value by establishing a probability-damage function that relates expected 

damages to annual exceedance probability, paralleling the methodology of the U.S. Army 

Corps of Engineers for risk analysis [58]. Annual exceedance probability, p, is the 

probability that a discharge Q is equaled or exceeded in a given year, and is the 

reciprocal of the return interval. For example, a flood expected to occur approximately 

every 20 years has an exceedance probability of 0.05, i.e., a 5% chance of occurring in 

any given year. We fitted an exponential decay function to the peak discharge of FEMA 

designated 2, 5, 10, 25, 50, 100 and 500-year floods [57] and used this function to 

determine the annual exceedance probability of each flood we modeled, based on 

downstream discharge in the wetlands scenario. Finally, we created damage-probability 

functions by fitting negative exponential curves to the expected damage against 



 25 

exceedance probability for each historic flood and for both wetlands and no-wetlands 

scenarios.  

 

We estimated expected annual damages as the integral of the probability-damage 

function over the range of exceedance probabilities from zero to one, and determined the 

mean annual value of flood mitigation services as the difference in expected annual 

damages between the wetlands and no-wetlands scenarios.  

 

Net Present Value Calculation 

We calculated net present value based on this average annual value of flood mitigation 

benefits by assuming that this value will be accrued in perpetuity and that future values 

are discounted relative to present value. We applied a range of plausible discount rates: 

the standard US discount rate for water resource decisions is 3.375% [59]. This rate is 

lower than the standard discount factors used by FEMA (4.125%) [39] and the US Army 

Corps of Engineers (7%) [60]. However, it is much higher than discount rates applied to 

long term environmental benefits elsewhere, such as the declining discount rate suggested 

by the UK Treasury [61], and the 1.4% discount rate adopted by the Stern Review on the 

economics of climate change [62]. 

 

We compared these estimates of net present value to the costs of conservation by 

assuming these costs are equal to the costs of purchasing all 18,000 acres of Otter Creek 
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wetlands for the county average value of farmland ($3044 and $2718 per acre in Addison 

and Rutland counties, respectively) [63].  

Results 

Middlebury’s peak discharge for Tropical Storm Irene in the wetlands scenario 

corresponds to a flood height of 7.4 ft above the downstream gauge (Table 2.1). In 

contrast, our modeled no-wetlands scenarios indicate flood heights of 13 to 18 ft above 

the gauge and greatly expanded flood extents. We identified 21 to 54 flooded structures 

in the no-wetlands scenarios, compared to just nine in the wetlands scenario (Figure 2.5). 

The total damages for all flooded buildings was $100,600 in the wetlands scenario, which 

is similar to the $70,000 in actual reported damages in Middlebury [64].  We estimate 

damages of $626,600 to $1,900,800 in the no-wetlands scenarios (Table 2.1). These 

differences correspond to an 84-95% reduction in financial cost of floodwater inundation 

and between $525,900 to $1,800,200 in avoided damages.  

 

Expected damages across the 10 modeled floods ranged from $45,000 to $338,000 in the 

wetlands scenario, and from $130,400 to $1,339,000 in the no-wetlands scenarios (Table 

2.2). The average damage reductions were 54% to 78% for low and high scenarios, 

respectively.  Reductions tended to be greater for smaller, more frequent floods (Figure 

2.6). For each scenario, we fit probability-damage functions to these ten events. Based on 

these damage functions, we calculated expected annual damages to be $75,000 in the 

wetlands scenario, $201,400 in the no-wetlands low scenario and $534,000 in the no-
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wetlands high scenario (Figure 2.7). The mean annual value of flood mitigation services 

provided to Middlebury is therefore $126,000 based on our low scenario, and $459,000 

based on our no-wetlands high scenario.  

 

By applying the US standard discount rate for water resource decisions [59] to our high 

estimate of annual flood mitigation value, we estimate that the net present value (NPV) of 

mitigation services exceeds 12 million dollars, which is over a quarter of our estimated 

costs of conservation (Table 2.3).  Using the declining discount rate suggested by the UK 

Treasury, NPV rises to approximately 16 million dollars, or 30% of the costs of 

conservation. Using the 1.4% discount rate adopted by the Stern Review on the 

economics of climate change [62], NPV triples and amounts to over 60% of land 

acquisition costs. When we apply a discount rate back-calculated from mean agricultural 

land values and rents [62] (i.e., assuming rents reflect annual benefits accrued in 

perpetuity), this value rises to 95% of conservation costs (Table 2.3). Using our low 

estimate of flood mitigation values and these same discount rates and cost estimates, we 

find that net present values range from $1,800,000 to $14,000,000, which is 3-27% of our 

estimated costs of conservation. 

Discussion 

We show that wetlands and floodplains can provide valuable flood mitigation services 

and increase community resilience to climate change.  Specifically, we find that the Otter 

Creek wetland-floodplain complex reduces downstream flood inundation costs by up to 
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92% across a range of flood intensities (Table 2.2).  For Tropical Storm Irene alone, these 

wetlands and floodplains provided between $627,000 and $2,000,000 in avoided 

damages (Table 2.1).  Beyond this one event, the expected annual value exceeds 

$126,000, and may be as high as $450,000. These values will likely increase under a 

changing climate, with extreme rain events already becoming more common. Our 

findings support the potential of wetlands and floodplains to act as green infrastructure 

that builds community resilience to climate change. 

 

Our damage estimates represent only a fraction of the flood mitigation value provided. 

We focused on avoided damages caused by inundation of buildings in the town of 

Middlebury, omitting damages to infrastructure, profits lost to businesses, erosion 

damages (which often exceed those from inundation [65]), insurance costs, agricultural 

losses, and less tangible impacts on human health. All of these factors may also be 

mitigated by upstream wetlands and floodplains.  

 

The estimated mean annual value of $126,000 to $459,000 for this wetland complex is 

large enough to warrant explicit consideration of flood mitigation services in land use 

decisions. When we compare this value to rough estimates of the costs of wetland 

conservation we find that flood mitigation benefits alone “pay-back” at least a quarter of 

the expense of conserving the Otter Creek wetland-floodplain complex (Table 2.3). This 

conclusion holds over a range of discount rates for our high scenario, and over all but the 

highest discount rates for the low scenario. High fixed discount rates are inappropriate 
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both to human preferences over long time spans and to precautionary environmental 

decision-making [61, 66]; thus, we find the lowest discount rates presented here are most 

applicable. Furthermore this conclusion is conservative because we are likely to have 

overestimated conservation costs. Most of these wetlands are already protected under 

state and federal legislation [67], and conservation is increasingly achieved through 

easements, which are more cost effective than land acquisition [68].  

 

That flood mitigation alone could pay back over a quarter of the costs of conservation is 

remarkable, since conservation would also protect biodiversity and a number of other 

ecosystem services that provide quantifiable benefits to people, such as hunting, bird 

watching, recreation, and water filtration [20].  A full analysis of the return on investment 

(ROI) in wetland conservation is beyond the scope of our study, and would require more 

accurate estimates of acquisition and opportunity costs, as well as information on 

development risk. However, our rough comparison illustrates that ROI is likely to be 

generally positive, given that wetlands are under high risk globally [20]. 

 

While damage reductions were substantial in all ten historic cases, we found that the 

flood mitigation effects decreased for larger floods (Figure 2.6). This result reinforces 

existing findings that wetlands are less important for larger, less frequent flood events 

[24, 69]. Beyond some threshold, the capacity of wetlands to absorb flood water may be 

overwhelmed, in which case no additional mitigation can be provided [70]. Green 

infrastructure solutions may therefore be best suited to address flood events with medium 
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return intervals, whereas built infrastructure and careful development planning are more 

effective for the most extreme events. 

 

Our findings support a growing body of literature indicating wetlands and floodplains can 

have large impacts on peak flows [71]. Indeed, previous findings correspond more 

closely with our higher estimates of peak flows. For example, studies in New England 

using more advanced hydrological models have shown complete removal of wetlands can 

increase peak flows by over 200% [72].  Elsewhere, river channelization is estimated to 

increase peak flows by 50-150% [21]. Additionally, the discharge we estimated in 

Tropical Storm Irene under the no-wetland high scenario corresponds almost exactly to 

the 10-year flood discharge from a regional statistical model developed by the USGS 

when we remove the effect of wetlands ([51],Table S2.1).  

 

The economic value of flood mitigation services per area of wetland presented here is 

considerably lower than values obtained elsewhere via other methods. We estimated the 

value of the Otter Creek wetlands complex at less than $100 per hectare per year 

($459,000 divided by 7280 ha). Ming and colleagues [31] have calculated the water 

storage capacity of wetlands in the Mogome National Reserve in China and value this 

storage function at $5700 per hectare per year using a replacement cost technique. 

Thibodeau and Ostro [73] use an avoided damages approach to arrive at a similar value 

of $5000 per hectare per year. In the Economics of Ecosystems and Biodiversity (TEEB) 

database [74], there is only one study related to water flows that does not transfer values 
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from other studies; this study uses an avoided damages approach to calculate values of 

over $9000 per hectare per year [75].  

 

The quantity of ecosystem service depends on demand from human beneficiaries as well 

as biophysical supply [3], and demand will vary widely depending on downstream 

population and infrastructure [76]. Here we value benefits to a relatively small population 

of downstream beneficiaries, which may explain why the biophysical impacts we find are 

in line with other research efforts whereas our economic valuation is substantially lower 

than values found elsewhere. Although more sophisticated models exist to evaluate 

separately the hydrologic dynamics [36-38] and economic damages [39] of flooding, this 

dynamic stresses the importance of accounting for both biophysical supply and 

beneficiary demand.  

 

We see three limitations to our approach. First, our no-wetlands scenarios rely on 

simplifying assumptions (Table S2.2) that result in a wide range of possible values. 

Future research is needed to reduce this uncertainty, to evaluate the effects of marginal 

(i.e. small) changes in wetland area, and to allocate value spatially within a watershed.  

Second, we extrapolate beyond the observed rating curve (Figure 2.3), and assume this 

rating relationship applies throughout Middlebury.  Many of the annual floods used to 

establish the rating relationship overtopped the main channel into the floodplain, which 

does not include a second topographic tier that we would expect to shift the rating 

relationship for any floods other than the most extreme cases modeled. In these most 
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extreme cases height may be slightly overestimated (Figure S2.2). Because all floods 

inundated a wide floodplain throughout the study area, very large changes in volume 

would be required to cause noticeable differences in flood height, making our results less 

sensitive to this “bathtub” assumption. Further, our modeled flood extent are similar to 

flood extents from FEMA flood insurance rate maps despite this assumption (Figure 

S2.3; [77]). Floods of historically unprecedented proportions resulting from land use and 

climate change will fall outside the observed rating curve, so preparation for these events 

necessitates extrapolation.  Third, our damage functions are poorly fit to the data in the 

no-wetlands cases (Figure 2.7). Variation in modeled flood peaks is to be expected given 

differences in temporal and spatial rainfall patterns, flood sizes, etc.  While we cannot 

estimate the shape of the no-wetlands damage function with confidence, there is a 

consistent and significant vertical shift in the damage function as a result of wetland and 

floodplain loss (Figure 2.7).  This emphasizes the importance of natural landscapes for 

flood mitigation regardless of the functional form of the damage curve.  

 

If the conservation of wetlands and floodplains provides large returns, why do wetland 

loss and river channelization continue?  The value of wetlands is often considered to be 

negligible, even negative, in many decision-making contexts [78]. Further, the costs of 

conservation and the benefits of avoided damages are realized by different groups. For 

instance, the costs of flood inundation are often spread among many downstream 

property owners and insurance agencies, whereas the opportunity costs of conserving 

wetlands must be borne by relatively few upstream landowners and municipalities.  
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Economic valuation can help clarify the impacts of land use decisions on people. Our 

findings provide evidence that preventing rivers from flooding surrounding wetlands and 

floodplains may only displace, and potentially increase, the total cost of flood damage 

[29]. Our most basic infrastructure, the ecosystems that support us, are in worldwide 

decline. In Vermont and nationwide, significant efforts are reconnecting rivers to their 

floodplains and conserving wetlands. This study illustrates that the benefits of these 

efforts are potentially quite large, and that the omission of ecosystem service outcomes 

from land use decisions may have real and severe consequences for people.   
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Tables 

Table 2.1   Comparative summary of peak flows, flood height above the gauge, flooded 

structures, and expected damages following Tropical Storm Irene. 

 

Scenario Peak Discharge 

(cfs) 

Flood height 

(feet 

above 

gauge) 

Structures 

affected 

Expected 

Damages 

Wetlands 6,180 7.4 9 $100,600 

No –wetlands 

low 

estimate 

15,600 12.8 21 $626, 600 

No-wetlands 

high 

estimate 

27,100 17.9 54 $1,900,800 
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Table 2.2     Value of wetlands and floodplains in terms of avoided flood damages for ten 

flood events in Middlebury, VT. Annual exceedance probability (AEP), damages 

with and without wetlands, and the resultant percent reduction and reduction in 

damages (value) for each flooding event are shown. 
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Table 2.3   Value of flood mitigation services relative to conservation costs.  Net present 

value (NPV) is calculated using a range of discount rates, and is compared against 

conservation costs as estimated by the cost of land acquisition. Ranges reflect low 

and high scenarios. 

Source of discount rate 

Discount 

rate 

NPV 

(millions US$) 

NPV/Cost of 

land 

acquisition 

Mean agricultural land values & 

rents [63] 

0.9% 14 - 49.8 27 – 95 % 

Stern Review [62] 1.4% 9 – 32.8 17 – 62 % 

UK standard for cost-benefit 

analysis [61] 

DDR* 4.4 -16 8 – 30 % 

US standard: water & related land-

use policy decisions [59] 

3.375% 3.7 - 13.6 7 – 26 % 

US FEMA [39] 4.125% 3 – 11.1 6 – 21 % 

US Army Corps of Engineers [58] 7% 1.8 – 6.6 3 – 12 % 

* Declining discount rate defined by the UK Treasury for 100 years, then a 2.5% discount 

rate from 100 years onward. 
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Table S2.4 Model Comparison. Olson et al. [51] have created a regression model to 

estimate discharge in ungauged basins in VT. We use this model to estimate the 

change in discharge when wetland area is 0. The regression does not include 

floodplain storage, and as a result overestimates discharge for the downstream gauge 

when wetlands are present relative to our model and to recorded discharge measures. 

Our no-wetlands cases are analogous in representing cases where both wetland and 

floodplain effects are absent. This comparison illustrates that our simple 

assumptions approximate the results of more complex modeling efforts and the 

importance of floodplain storage, as well as wetland effects, it flood peak mitigation. 

 Our model Statistical Regression [51] 

Wetlands 6,180  

(wetlands and floodplains) 

20,700  

(no floodplains) 

No Wetlands 27,100 

(no wetlands or floodplains) 

27,481 

(no wetlands or floodplains) 
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Table S2.5 Summary of Biophysical Assumptions Made in Modeling Hydrographs  

No-Wetlands High Scenario No-Wetlands Low Scenario 

All floodwater recorded at the downstream gauge 

was impacted by wetlands and floodplains 

Only water recorded at the upstream gauge was 

impacted by wetlands and floodplains 

Water entering the creek between the upstream 

and downstream gauges does so 

proportionally to the timing of water 

observed at the upstream gauge.  

Water entering the creek between the upstream 

and downstream gauges does so 

proportionally to the timing of water 

observed at the downstream gauge. 

Water storage by other land-cover types is 

negligible.  

Water storage by other land-cover types is 

negligible. 

Channel storage, friction, and routing effects and 

natural peak dissipation with watershed size 

assumed to be negligible. 

Channel storage, friction, and routing effects and 

natural peak dissipation with watershed size 

assumed to be equivalent to statistically 

derived average effects of 10-year floods in 

the area. 
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Figures 

Fig. 2.1   Map of the Otter Creek watershed. The Otter Creek flows northward from 

Rutland to Middlebury. 
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Fig. 2.2   Observed and modeled hydrographs for Otter Creek, VT. 
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Fig. 2.3    Rating curve relating discharge and flood height at the downstream gauge 

(r2=0.96, p<2.2e-16). 
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Fig. 2.4   Depth-damage curve used to relate flood depth of flooded structures to percent 

loss of the structure value due to flood damages [39]. 
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Fig. 2.5   Flood extent and damages to flooded structures in Middlebury following 

Tropical Storm Irene.  Panel A: wetlands scenario, Panel B: no-wetlands low 

scenario, Panel C: no-wetlands high scenario. 
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Fig. 2.6   The percentage reduction in damages resulting from flood mitigation services 

as a function of the annual exceedance probability of ten historic floods. Hollow 

black: No-wetlands low, Solid black: No-wetlands high. 
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Fig. 2.7    Damage probability functions. Grey diamond: wetlands scenario 

(D=e^10.55757p-0.48927, p= 4.367e-07, r2= 0.9646), Open black circles: no-wetlands 

low scenario (D=e^12.02817p-0.16884, p= 0.1119, r2= 0.2851), Filled black circles: 

no-wetlands high scenario (D=e^13.11465p-0.07055, p= 0.5626, r2= 0.04361). 
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Fig. S2.8    Discharge per unit area as a function of drainage basin size for Vermont 

watersheds (Q=e4.61406* a0.16072, p<0.001, r2=0.2865). 
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Fig. S2.9 Cross Section of the Otter Creek channel and floodplain at the downstream 

gauge with modeled flood elevations and the range of data used to determine the 

rating relationship.  
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Fig. S2.10   Comparison of modeled flood extents to FEMA’s flood insurance rate map 

for Middlebury [77]. 
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Abstract 

Ecosystem service conservation can contribute to human well-being and biodiversity 

conservation. The quantification of ecosystem services has focused on the biophysical 

supply of services with less emphasis on the role of demand from human beneficiaries, 

yet only when both occur to ecosystems benefit people. Here, we quantify the impact of 

demand on the human and biodiversity benefits of conserving ecosystem services. Using 

Vermont as a model landscape, we map three ecosystem services -  flood mitigation, crop 

pollination, and nature-based recreation -  and identify conservation priorities for each. 

We find that supply serves as a poor proxy for benefit because demand changes the 

spatial distribution of ecosystem services. Conservation that targets ecosystem services 

alone captures little biodiversity. However, when biodiversity and ecosystem services are 

jointly targeted, biodiversity outcomes are increased by 150% with just a 13% reduction 

in ecosystem services on average. Demand does not consistently reduce biodiversity 

outcomes; priority areas for supply and benefit captured roughly equal biodiversity co-

benefit for all services. We conclude that incorporating demand is critical to efficiently 

protecting the benefits people derive from nature, and that doing so does not reduce 

biodiversity co-benefit. 

 

Keywords 

Ecosystem services, biodiversity conservation, spatial planning, beneficiaries 
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Introduction 

Ecosystem services are the many benefits that nature provides to people, such as 

provisioning food, protection from storms, and cultural and spiritual values (Daily et al., 

1997; Millennium Ecosystem Assessment, 2005). Widespread environmental change and 

degradation have decreased the capacity of ecosystems to provide non-market ecosystem 

services and to support biodiversity (Millennium Ecosystem Assessment, 2005). 

Conservation organizations now recognize the importance of ecosystem services, and 

increasingly target them alongside biodiversity (Bateman et al., 2013; Ruckelshaus et al., 

2013). Many hope that the human focus of ecosystem services will result in increased 

support for conservation, and thus an increase in the resources available to protect both 

ecosystem services and biodiversity (Balmford et al., 2002). However, others voice 

concern that allocating conservation resources to ecosystem services decreases the 

resources available for biodiversity conservation (Luck et al., 2012; McCauley, 2006; 

Reyers et al., 2012). It is critical that conservation organizations target their efforts to 

efficiently achieve ecosystem service goals while minimizing biodiversity losses.  

 

Conservation planning requires information about which places are most important in 

providing ecosystem services and biodiversity (Kovacs et al., 2013; Withey et al., 2012). 

For ecosystem services, this involves both supply (i.e., the ecosystem functions that can 

potentially benefit people) and demand (groups of people who would benefit from that 

supply) (Fisher et al., 2009; Yahdjian et al., 2015). For example, riparian wetlands can 

dissipate flood peaks but this function only becomes a service if there are people 

https://paperpile.com/c/j9vI5P/O5R4t+3HXQs
https://paperpile.com/c/j9vI5P/O5R4t+3HXQs
https://paperpile.com/c/j9vI5P/3HXQs
https://paperpile.com/c/j9vI5P/p4W6Q+8Eo1W
https://paperpile.com/c/j9vI5P/p4W6Q+8Eo1W
https://paperpile.com/c/j9vI5P/t3KPy
https://paperpile.com/c/j9vI5P/xDCyE+xlKlz+42Oxd
https://paperpile.com/c/j9vI5P/xDCyE+xlKlz+42Oxd
https://paperpile.com/c/j9vI5P/r684x+OVNJz
https://paperpile.com/c/j9vI5P/tfK4T+fUgaI
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downstream who benefit from reduced flooding (Watson et al. 2016). If ecosystem 

service supply is used as a proxy for benefits, conservation projects may protect the 

supply of ecosystem services in places where people cannot access them. Some efforts 

map supply as a proxy when determining which places are most important for ecosystem 

service, because the data and models to do so are more readily available (Egoh et al., 

2009; Lin et al., 2017; Maes et al., 2012).  However, efficiently conserving ecosystem 

services requires understanding the spatial relationship between where ecosystem 

services are supplied, where people exhibit demand for them, and how services flow from 

sources of supply to sources of demand to produce benefits (Amy M. Villamagna, Paul L. 

Angermeier, Elena M. Bennett, 2013; Bagstad et al., 2014; Schröter et al., 2014/1; Serna-

Chavez et al., 2014/4). Hereafter, we use “supply”, “demand”, and “benefit” to denote 

these concepts. 

 

Incorporating demand into ecosystem service quantification may also impact the co-

benefits to biodiversity provided by the places identified as most important in terms of 

ecosystem service (Balvanera et al., 2014). Benefit may be less tightly linked to 

biodiversity than supply (Cardinale et al., 2012), precisely because of this added human 

focus. Demand may weaken the functional link (Mitchell et al., 2013) and the spatial 

concordance (Reyers et al., 2012; Ricketts et al., 2016) between services and biodiversity, 

and in doing so reduce the biodiversity co-benefits from conserving ecosystem services. 

 

https://paperpile.com/c/j9vI5P/RsS3R+kXemO+Fj2P6
https://paperpile.com/c/j9vI5P/RsS3R+kXemO+Fj2P6
https://paperpile.com/c/j9vI5P/n5vxd+Nvr5A+81EzL+NLHRV
https://paperpile.com/c/j9vI5P/n5vxd+Nvr5A+81EzL+NLHRV
https://paperpile.com/c/j9vI5P/n5vxd+Nvr5A+81EzL+NLHRV
https://paperpile.com/c/j9vI5P/EJGkI
https://paperpile.com/c/j9vI5P/rVH9T
https://paperpile.com/c/j9vI5P/WADbJ
https://paperpile.com/c/j9vI5P/2ai2O+xDCyE
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Few efforts explicitly quantify the impact of demand on the spatial distribution of 

ecosystem services (Verhagen et al., 2016; Wolff et al., 2015/8). We modeled 

conservation priorities in Vermont, USA for three ecosystem services with and without 

incorporating demand in order to answer three questions. First, how does incorporating 

demand shift the spatial distribution of ecosystem services? Second, how much benefit is 

captured by conservation targeting supply? Third, how does demand alter the biodiversity 

co-benefits of ecosystem service conservation? 

Methods 

Overview 

We answered these questions by following two basic steps. First, we mapped three 

ecosystem services - flood mitigation, crop pollination, and nature-based recreation - in 

terms of the biophysical supply of the service, and then as benefit (the interaction of 

supply and demand).  We compared the distributions of supply and benefit for each 

ecosystem service to assess how demand affects the distribution of ecosystem services.  

 

Second, we simulated optimal networks of conserved lands for each ecosystem service 

supply, ecosystem service benefit, and biodiversity using the optimization program 

Marxan (Ball, I.R., H.P. Possingham, and M. Watts., 2009). We then compared the 

effectiveness of the resulting networks in capturing both ecosystem service benefits and 

biodiversity.  

 

https://paperpile.com/c/j9vI5P/dIuxj+ykOcB
https://paperpile.com/c/j9vI5P/xgaHS
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Quantifying Ecosystem Services 

Using Vermont as a case study, we quantified ecosystem service supply, demand, and 

benefit for three locally important ecosystem services: flood mitigation, nature-based 

recreation, and crop pollination (Table 3.6). Our model landscape comprised 4462 

hexagonal polygons, each 5.85 km2 in area, approximately the average size of existing 

conserved lands in Vermont (mean=6.7km2, median=10.1km2 ((The Nature Conservancy, 

2012). We aggregated supply, benefit, and biodiversity to the hexagon scale by taking the 

sum of all contained pixels. 

 

Flood Mitigation 

Flood outcomes are determined by the quantity and timing of water entering river 

channels, and by the hydraulic properties of a river’s channel and floodplain. Quick-flow 

is the portion of water that moves quickly to a channel via surface runoff or interflow, 

and is the portion of runoff likely to generate a flood. We quantified flood mitigation 

supply as the retention of quick-flow by natural land-cover types relative to pasturelands 

(the dominant anthropogenic land-cover class in our study area). Channel and floodplain 

effects are beyond the scope of this work. We quantified quick-flow using the InVEST 

monthly water yield model (Sharp et al., 2014). This model estimates quick-flow as the 

portion of runoff with a residence time of hours to days, as a function of soil type, 

topography, precipitation, and land-cover.  It adapts a curve number approach (Mockus, 

2004) to a pixel resolution and a monthly time step, and has been shown to effectively 

approximate the proportion of rainfall that runs off as quick-flow across the continental 

https://paperpile.com/c/j9vI5P/4dapO
https://paperpile.com/c/j9vI5P/4dapO
https://paperpile.com/c/j9vI5P/KT47l
https://paperpile.com/c/j9vI5P/w8AyU
https://paperpile.com/c/j9vI5P/w8AyU
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U.S. (Andrew J. Guswa, Perrine Hamel, Kate Meyer, 2017), and New England 

(Blumstein and Thompson, 2015). We parameterized the model (Table S2.8) to represent 

the generation of quick-flow from rainfall events onto saturated soils (ARCIII conditions, 

(Mockus and Hjelmfelt, 2004)), and then produced a supply index by calculating 

standardized quick-flow for each pixel on a zero to one scale. The curve number 

approach is not appropriate for snow. Historically, Vermont has not received rainfall in 

winter months, but in recent years rainfall has occurred year round, although winter 

months remain snow dominated. We calculated our supply index with and without winter 

months included. The resulting indices were essentially identical (Figure S3.15), so in the 

subsequent analyses we use the 12 month supply index. 

 

We defined demand for flood mitigation as the number of downstream buildings at risk 

of flooding. We overlaid a spatial dataset of buildings (E911 Board, 2013) and a dataset 

of floodplain areas (Sangwan and Merwade, 2015) in ArcGIS (ESRI (Environmental 

Systems Resource Institute), 2012) to identify at risk buildings. We then used the InVest 

DelinateIT model (Sharp et al., 2014) to delineate the watershed draining to each 

floodplain polygon that contained buildings. We assigned a “demand” score to each pixel 

where each structure equated to one unit of demand which was distributed evenly to each 

pixel in its drainage.  For example, a single home with a 10-pixel drainage would place 

0.1 units of demand on each pixel in its drainage. The per pixel demand for flood 

mitigation service was calculated as the sum of demand from all downstream structures at 

risk of flooding. We standardized all demand scores on a scale of zero to one. 

https://paperpile.com/c/j9vI5P/3Jf0B
https://paperpile.com/c/j9vI5P/bH2c
https://paperpile.com/c/j9vI5P/KMsJe
https://paperpile.com/c/j9vI5P/UapDQ
https://paperpile.com/c/j9vI5P/0PbW5
https://paperpile.com/c/j9vI5P/4tDkO
https://paperpile.com/c/j9vI5P/4tDkO
https://paperpile.com/c/j9vI5P/KT47l
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The relative importance of each pixel in mitigating floods was taken as the product of 

supply and demand. This multiplicative effect represents the interaction of supply and 

demand to produce benefit; if either supply or demand is zero, benefit is also zero. By 

taking the unweighted product of supply and demand we assume both are equally 

important in determining ecosystem service benefit. Our results are highly insensitive to 

this assumption. (Figure S2.16). All calculations were performed at a 30 m resolution. 

 

Nature-based Recreation: 

We quantified recreation benefit as the visitation rate from nature-based recreants. To do 

this, we used geo-tagged photos on the website Flickr (www.flickr.com) to estimate 

visitation as a function of several different characteristics of conserved lands using an 

existing model of recreation services for Vermont (Sonter et al., 2016). We divided the 

predictor variables used to estimate recreation service into three sets: 1) landscape 

attributes (forest cover, slope, opportunities to swim, and opportunities to ski); 2) a 

demand variable (mean population density within a 25 km radius); and 3) development 

attributes of publicly accessible protected areas (trail density, area of the conserved land). 

We estimated each landscape attribute and demand variable for all hexagons, and 

assigned all hexagons the mean trail density of existing conserved lands under the 

assumption that they could be developed as a typical protected area. Then we applied the 

regression model developed by Sonter et al. 2016 to estimate visitation to each hexagon. 

https://paperpile.com/c/j9vI5P/CCFdR
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We predicted visitation with the demand predictor included in the model to quantify 

benefit, and again without it to quantify supply.  

Crop pollination: 

We used existing information on the abundance and demand for wild pollinators (Koh et 

al., 2016), that were based on a published model of wild bee abundance (Lonsdorf et al., 

2009), the U.S. National Agricultural Statistics Service Cropland Data Layer (USDA-

NASS, n.d.), and expert opinion based habitat suitability of wild bees across the U.S. We 

used Koh et al. (2016) estimates of wild bee abundance as our measure of supply, and 

their map of pollinator-dependent crops as our measure of demand. We then quantified 

pollination benefit as the number of wild bees foraging on pollinator-dependent crops by 

clipping bee abundance to the extent of pollinator dependent crops at a thirty-meter 

resolution. 

 

Quantifying Biodiversity Value 

To quantify biodiversity, we used BioFinder, a statewide map of conservation priorities 

for biodiversity provided by the Vermont Agency of Natural Resources (Austin et al., 

2013). BioFinder is already in use by conservation groups in Vermont, so the relationship 

between its priorities and ecosystem services has direct management relevance. 

BioFinder combines 21 different datasets to identify “high priority ecosystems, natural 

communities, habitats, and species.” We used the combined priority score, which was 

determined as the weighted sum of the scores from each component, as the biodiversity 

measure in our analyses. This dataset does not represent biological richness per se, but it 

https://paperpile.com/c/j9vI5P/GIDR1
https://paperpile.com/c/j9vI5P/GIDR1
https://paperpile.com/c/j9vI5P/0nwwK
https://paperpile.com/c/j9vI5P/0nwwK
https://paperpile.com/c/j9vI5P/PAJlv
https://paperpile.com/c/j9vI5P/PAJlv
https://paperpile.com/c/j9vI5P/WhLrC
https://paperpile.com/c/j9vI5P/WhLrC
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does represent prioritization of different locations in terms of their value for biodiversity 

conservation. For instance, interior forest blocks, connectivity blocks, riparian wildlife 

connectivity, surface waters and riparian areas, and physical landscape diversity are 

included as biofinder components because maintaining these features is likely to conserve 

the majority of Vermont’s species at landscape scales. Other components relate to 

specific aspects of diversity at the community scale, such as rare species, vernal pools, 

and rare natural communities (Austin et al., 2013).  

 

Costs of Conservation 

We used land value to approximate the relative costs of conservation. For roughly 50% of 

our study area, public tax records of property values could be associated with digitized 

parcel maps. We developed a regression model to estimate the remaining unknown land 

values. Because land values are spatially correlated, we built a generalized additive 

model with socioeconomic predictors and a spline smoother for spatial location (Bivand, 

2008). We found that distance to cities, median household income, predominant land-

cover, density of built structures, road density, and the presence of urban centers 

explained just over 50% of the variation in log transformed land costs (r2=0.532, df=16, 

all coefficients significant at p<0.05). The spline term significantly improved the model 

(approximate p<2.2e-16, all coefficients significant at p<0.05) (Figure S3.17). We used 

the predicted log transformed land cost as an index of relative costs of conservation. We 

use log-transformed costs because the extremely large variation in untransformed land 

costs likely does not apply to conservation investments; it is driven by the density and 

https://paperpile.com/c/j9vI5P/WhLrC
https://paperpile.com/c/j9vI5P/o0ven
https://paperpile.com/c/j9vI5P/o0ven
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prevalence of developed land in each hexagon, and these developed areas are unlikely to 

be targeted by conservation efforts. Further, untransformed land costs varied much more 

widely than did ecosystem service supply and benefit, and their variation otherwise 

overwhelmed the differences between the two when selecting optimal conservation 

priorities.  

 

Comparison of supply and benefit: 

We compared the frequency distributions of supply and benefit for each ecosystem 

service at the hexagon scale using a two-sided Kolmogorov-Smirnov test. We tested the 

cross-autocorrelation of the supply and benefit of each ecosystem service in space using 

the centered Mantel statistic implemented using the “ncf” package in R (Bjornstad, 

2009).  

 

Identifying Conservation Priority Areas: 

We performed optimizations to identify priority areas for conservation with and without 

the influence of demand based on four different targeting scenarios: supply alone, benefit 

alone, supply and biodiversity, benefit and biodiversity (Table 3.7). We also performed 

an optimization for biodiversity alone as a control in assessing biodiversity co-benefits. 

Identifying joint spatial priorities for biodiversity and ecosystem services provides a 

clearer picture of the opportunities to achieve both than assessing their spatial correlation. 

Correlations reflect similarities between places with both low and high value, but only 

https://paperpile.com/c/j9vI5P/JOUet
https://paperpile.com/c/j9vI5P/JOUet
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high value areas are relevant in the context of spatial planning for conservation. Even if 

correlation overall is low, there may still be locations that provide win-win opportunities. 

We used the optimization software Marxan (Ball, I.R., H.P. Possingham, and M. Watts., 

2009) to identify priority areas for the supply and benefit of each ecosystem service under 

each targeting scenario (Table 2.7) and for biodiversity alone, for a total of 13 

simulations. Marxan uses simulated annealing to approximate optimal conserved lands 

networks given the value and cost of each unit of analysis, by minimizing the objective 

function:  

Equation 3.1: 

ObjFunmin  =  

Land Cost(x,y) + λ (Protection target-Protection achieved)I  + Cost constraint 

Where: 

Land Cost = the sum of our land cost index for all hexagons within the selected  

priority areas 

i =  the conservation features being targeted (in our case biodiversity, ecosystem  

service supply, or ecosystem service benefit) 

Protection target = the target amount of a conservation feature that the  

optimization seeks to achieve.  

Protection achieved = the amount of a conservation feature held within the  

selected priority areas 

𝜆 = the “species penalty factor” for missing a conservation feature’s protection  

target: essentially a weighting of the importance of each conservation  

feature. We set equal weights for biodiversity and ecosystem service 

Cost constraint = a penalty for exceeding a user defined cost constraint. We set  

https://paperpile.com/c/j9vI5P/xgaHS
https://paperpile.com/c/j9vI5P/xgaHS
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this penalty high enough such that the solution never exceeded our 

constraint. 

 

We set a cost constraint that allowed approximately 15% of the landscape to be selected, 

and then set protection targets that were impossible to reach given that constraint (50% of 

statewide supply, benefit, or biodiversity), such that minimizing the objective function 

above never involved exceeding the cost threshold, and always involved maximizing the 

protection of conservation features within that constraint.  

 

We performed 500 runs for each simulation, and used the reported “best solution” as our 

set of priority area (Ball, I.R., H.P. Possingham, and M. Watts., 2009). In effect, this 

process identified priority areas for ecosystem service and biodiversity as though we 

redesigned conserved lands today based on these criteria, and set aside approximately the 

same amount of land area that is currently protected. 

 

We summed the values of ecosystem service and biodiversity across all hexagons within 

priority areas. We compared the amount biodiversity and ecosystem service within 

priority areas for each optimization scenario to assess the impact of demand on 

ecosystem service and biodiversity co-benefits. We compared single factor optimizations 

to multi-factor optimizations to assess the potential for achieving biodiversity and 

ecosystem service goals simultaneously. 

 

https://paperpile.com/c/j9vI5P/xgaHS
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Results 

Demand shifts ecosystem services 

Demand shifts the spatial distribution of each ecosystem service (Figure 3.11A), although 

supply and benefit were highly correlated for nature-based recreation (Figure 3.11A; 

pollination rs=-0.13, flooding rs=0.26, recreation rs=0.95, p<2.2e-16 in all cases). The 

frequency distribution also differed between supply and benefit in all three cases, but this 

difference was much smaller in the case of recreation (Figure 3.11B; pollination D=0.95, 

flooding D=0.80, recreation D=0.20, p<2.2e-16 in all cases). These differences in spatial 

and frequency distributions were reflected in the conservation priority areas. These areas 

were similar for supply and benefit in the case of nature-based recreation, but noticeably 

different for flood mitigation and crop pollination (Figure 3.11C).  

 

Supply as a proxy for benefit 

In the case of crop pollination and flood mitigation, priority areas directly targeting 

benefit captured much more benefit than did priority areas for supply (Figure 3.12). 

Priority areas composed of only about 12.2% and 14.4% of the landscape captured 50% 

and 90% of benefit in the cases of flood mitigation and crop pollination respectively. In 

contrast, for nature-based recreation these two strategies captured the same amount of 

benefit and only 17% of benefit could be captured given our budget constraint. 
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Biodiversity co-benefit 

Across all three services, single factor optimizations captured on average 24% of the 

biodiversity that could be captured by targeting biodiversity directly with the same 

budget constraint. In the case of flood mitigation, we find that priorities for benefit 

capture less biodiversity co-benefit do those for supply (Figure 3.13). Priority areas for 

benefit and supply contain similar biodiversity co-benefit for pollination and recreation. 

For all services, multi-factor optimization improved biodiversity co-benefit.  Across the 

six possible comparisons, targeting ecosystem service and biodiversity jointly increased 

the amount of biodiversity within priority areas by 150% on average while reducing 

ecosystem service by just 13%. 

 

Multi-factor optimization also shifted the spatial distribution of priority areas relative to 

single factor optimizations (Figure 3.13: blue vs. red). For flood mitigation and 

pollination benefit, the new places selected in multi-factor optimizations included 

locations that were relatively important for both biodiversity and benefit, but also the 

places that were most important for biodiversity regardless of how much benefit they 

contained (Figure 3.14). For flood mitigation, multi-factor optimization priority areas for 

benefit were distributed across the full range of benefit and biodiversity importance 

(Figure 3.14e) whereas priority areas for supply were more concentrated in the upper fifty 

percentiles for both benefit and biodiversity (Figure 3.14b). For crop pollination many 

locations fell within the top fifty percentiles for both supply and service, and many of 

these were included as conservation priorities (Figure 3.14a), whereas there were 
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relatively few locations that were important for both benefit and biodiversity, and as a 

result priority areas were bi-modally distributed in places highly important for one or the 

other (Figure 3.14f). 

 

Discussion and Conclusions 

Demand shifts the spatial distribution of ecosystem service benefit relative to supply. 

These differences have implications for conservation efforts that seek to benefit both 

people and biodiversity. Supply is a poor proxy for benefit, and targeting supply does not 

capture more biodiversity than targeting benefits directly. Single-factor priority areas for 

supply and benefit alike capture little biodiversity. However, joint targeting greatly 

improves biodiversity outcomes with minimal losses of ecosystem service. In sum, our 

results indicate that incorporating demand increases the efficiency of ecosystem service 

conservation at capturing benefits without reducing biodiversity outcomes.  

 

The differences between supply and benefit maps reflect the relative distributions of 

supply and demand, as well as the distances over which benefits can flow to 

beneficiaries. Demand affects the distributions of ecosystem services in two distinct ways 

(Figure 3.11). 

 

1) Concentration: In the cases of flood mitigation and crop pollination, demand 
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concentrates ecosystem service into select places on the landscape such that small 

portions of supply are highly valuable, whereas most supply provides little ecosystem 

service (Figure 3.11, A-B).  

 

2) Spatial Shift: In the case of recreation, the frequency distribution of supply was 

very similar to that for benefit, and demand only slightly shifted the spatial distribution of 

ES towards population centers (Figure 3.11, E-F). 

 

Supply is concentrated if it provides greater benefit when it is nearby demand or in a 

small service shed. Service-sheds are the areas that benefit a source of demand (Mandle 

et al., 2015; Tallis et al., 2012). When service sheds vary in size, the marginal impact of 

losing a given quantity of supply will be highest in small service-sheds that do not have 

much supply to start with (Fisher et al., 2008). For example, the size of a service-shed for 

flood mitigation is the size of the watershed draining to a cluster of at-risk buildings. 

These watersheds varied widely in size, but ecosystem service was most concentrated in 

small watersheds. In the case of pollination, supply only provides benefit when it is very 

nearby demand; The flow of pollination services is limited by the flight distance of bees, 

which is very small compared to the statewide scale of our analysis. As a result, 

pollinators only provide benefit when they are very close to crops that require insect 

pollination.  

 

https://paperpile.com/c/j9vI5P/0VLzO+7PX0Y
https://paperpile.com/c/j9vI5P/0VLzO+7PX0Y
https://paperpile.com/c/j9vI5P/FLk9o
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In the case of recreation, demand spatially shifted service slightly towards population 

centers, without altering the frequency distribution of benefit relative to supply. We 

expect this type of spatial shift to occur where service flows extend far enough to connect 

all sources of supply to some source of demand. In the case of recreation in Vermont, 

flows of service extend across most of the extent of our analysis because recreants in 

Vermont are willing to travel to obtain recreational opportunities, which are generally 

available within a two-hour drive. As a result, any location that supplied recreational 

opportunities provided some benefit to people even though places nearby population 

centers benefited people more. At its extreme, for some ecosystem services all sources of 

supply may provide equal benefit. This would be the case for climate regulation; carbon 

sequestered in forests affects climate globally (Bonan, 2008; Cramer et al., 2004).  

 

When demand concentrates ecosystem service benefits, choice of ecosystem service 

measure has important impacts on conservation priorities. In these cases, policies and 

management actions that spatially target supply are much less effective in safeguarding 

benefits than efforts that target benefits directly by accounting for demand (Figure 3.12). 

In the spatial shift case, where service flows connect all sources of supply to a source of 

demand, supply may serve as an acceptable proxy for benefit. Although further study is 

needed to test the generalizability of these two different cases, our results indicate that 

understanding the spatial dynamics between ecosystem supply and demand can inform 

when quantifying demand is critical (concentration), and when doing so will result in 

smaller efficiency gains in conservation planning for ecosystem services (spatial shift).  

https://paperpile.com/c/j9vI5P/DBJfH+FtKoM
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When demand concentrates ecosystem service, spatial planning can be particularly 

efficient because actions taken on a small portion of the landscape will have 

disproportionately large ecosystem service benefits. This efficiency gain is true in any 

case of spatial targeting where ecosystem service value is unevenly distributed. However, 

demand makes the distribution of value even more uneven by concentrating it around 

beneficiaries (Figure 3.11 B and D), thus potential efficiency gains are larger for benefits 

than for supply (Figure 3.13). 

 

Programs that target ecosystem service alone are unlikely to provide high levels of 

biodiversity. For example, it is not safe to assume that a program targeted to restore 

hydrologic function of forested headwaters for flood mitigation will occur in places 

important for biodiversity by chance (Figure 3.13). Many conservation organizations 

have begun to target ecosystem services in addition to biodiversity (Reyers et al., 2012), 

which is better represented by our multi-factor optimizations than single-factor 

optimization scenarios. Jointly targeting biodiversity and ecosystem service through a 

multi-factor optimization doubles biodiversity outcomes relative to single factor 

optimizations with minimal impact on ecosystem services (Figure 3.13). For example, if 

a conservation organization sought out opportunities to protect places important for 

nature-based recreation and for biodiversity conservation, our analysis indicates such 

opportunities exist (Figures 3.13, Figure 3.14). This does not mean that there is no 

biodiversity tradeoff in targeting ecosystem services; any time additional targets are 

https://paperpile.com/c/j9vI5P/xDCyE
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added, there will be some tradeoff. In our case, equally weighting service and 

biodiversity in multi-factor optimization caused a larger tradeoff for biodiversity (31% 

reduction relative to a single factor optimization for biodiversity) than for service (13% 

reduction relative to single factor optimizations for service). 

 

Demand does not consistently exacerbate this tradeoff.  Human demand is the component 

of ecosystem services makes them distinct from other measures of ecological health or 

function (Fisher et al., 2009), and is the source of concern that targeting ecosystem 

services will shift conservation priorities towards human-dominated landscapes (Reyers 

et al., 2012). For one of three services (flood mitigation), the single-factor optimization 

for supply outperformed single factor optimizations for benefit in terms of biodiversity, 

and all multi-factor optimizations for benefit captured roughly the same amount of 

biodiversity as the comparable multi-factor optimization for supply.  Because benefit and 

supply are distinguished by the incorporation or omission of demand, this indicates that 

the human-focused component of ecosystem service, which critical in efficiently 

capturing benefits to people, does not reduce biodiversity outcomes.  

 

Incorporating demand may also provide an opportunity to simultaneously conserve 

ecosystem service and biodiversity. The biodiversity gains of joint optimizations were not 

always achieved by conserving places that are important for both biodiversity and service 

(Figure 3.14). When service is concentrated, a large portion of service value can be 

captured in relatively little area, allowing the remaining budget to conserve areas of high 

https://paperpile.com/c/j9vI5P/tfK4T
https://paperpile.com/c/j9vI5P/xDCyE
https://paperpile.com/c/j9vI5P/xDCyE
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biodiversity regardless of ecosystem services (Figure 3.14 e,f). While this result is 

sensitive to the budget constraint, our fifteen percent constraint approximates the land 

area currently protected in Vermont and is likely to be reasonable in many conservation 

contexts. In effect, even when unit-by-unit co-occurrence of ecosystem service and 

biodiversity is low, and conservation resources are limited, both can be effectively 

protected through spatial planning. This opportunity arises as a result of demand 

concentrating service value, and occurs even when demand concentrates value in places 

that are less important for biodiversity (flood mitigation). 

 

Large efficiency gains can be achieved when information on the spatial distribution of 

ecosystem service and biodiversity value is available. Conservation efforts fall short of 

effectively safeguarding the benefits from nature to people unless they consistently 

incorporate demand, the people-focused half of that relationship, in spatial planning. 

Incorporating demand will allow efforts to be targeted towards the places that benefit 

people the most, and will not reduce the biodiversity co-benefits of these actions. While 

conserving ecosystem service may not always efficiently capture biodiversity, joint 

targeting of biodiversity and ecosystem services improves biodiversity outcomes with 

only minimally reducing ecosystem service outcomes. In sum, incorporating demand is 

critical to safeguarding nature’s benefits to people, doing so does not reduce the 

biodiversity co-benefit of ecosystem service conservation.  
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Tables 

Table 3.6   Ecosystem service supply and benefit as defined in our analysis. 

 Supply Benefit 

Flood 

Mitigation 

Retention of quick-flow by natural 

ecosystems relative to pasture, 

the dominant anthropogenic 

landscape. 

Retention of quick-flow 

weighted by the number of 

downstream structures in a 

flood risk area. 

Nature-

based 

Recreation 

Visitation by recreants as a function 

of natural landscape features. 

Visitation by recreants as a 

function of landscape 

features and surrounding 

population density. 

Crop 

Pollination 

Wild bee abundance 

 

Number of wild bees foraging 

on pollinator-dependent 

crops.  
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Table 3.7   Summary of the optimization scenarios used in our analysis  

   

Optimization Scenarios 

Optimization  De-coupled from 

Demand 

Linked to Demand 

Single factor: Biodiversity  Supply Benefit 

Multi-factor:  Supply & Biodiversity Benefit & Biodiversity 
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Table S3.8   Input data and parameterization of the InVest Seasonal Water Yield model. 

Model Input Data Source 

Average monthly 

precipitation 

We downloaded 30 year monthly precipitation normals 

available at an 800m resolution from the PRISM Climate 

Group. These normals covered the period from 1981- 

2010 at the time of download (PRISM Climate Group, 

2012). 

Monthly reference 

evapotranspira

tion 

Reference evapotranspiration data was derived from 

CCIGAR’s globally available data on potential 

evapotranspiration (Trabucco and Zomer, 2009). 

Land-cover Land-cover data was derived from the national landcover 

dataset (2011) (Homer et al., 2015).  

Hydrologic soil 

group 

Hydrologic soil group obtained from SSURGO soils data 

(USDA Natural Resources Conservation Service, n.d.). 

No data values were assigned the value C because this 

hydrologic group was the most common within Vermont 

(comprised a larger total area than any other hydro-

group). Open water pixels were assigned to group D. 

Curve numbers for 

each soil 

type/land-

cover 

combination 

We adopted standard curve numbers for each NLCD land-

cover class and soil hydrologic group under wetter 

antecedent runoff conditions (ARC III) (Victor Mockus, 

2004) as follows:  

 

(NLCD classification - NEH Cover description treatment 
(Mockus, 2004)) 

Developed open space  - Open space, good condition 

Developed low intensity - Residential districts: lot size 1/4 

acre 

Developed, medium intensity - Residential districts: lot size 

1/8 acre or less 

Developed, high intensity - Urban districts: commercial and 

business 

Barren land - Bare soil 

https://paperpile.com/c/j9vI5P/Eva4P
https://paperpile.com/c/j9vI5P/Eva4P
https://paperpile.com/c/j9vI5P/nscYs
https://paperpile.com/c/j9vI5P/HucJS
https://paperpile.com/c/j9vI5P/qQ2Qj
https://paperpile.com/c/j9vI5P/SkSeW
https://paperpile.com/c/j9vI5P/SkSeW
https://paperpile.com/c/j9vI5P/w8AyU
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Deciduous forest - Woods good, condition 

Evergreen forest - Woods good, condition 

Mixed forest - Woods good, condition 

Shrub scrub - Brush-forbes-grass mixture, good condition 

Herbaceous - Brush-forbes-grass mixture, good condition 

Hay/pasture - Pasture, grassland, or range-continuous forage 

for grazing, good condition 

Cultivated crops - Straight row- good condition 

Woody wetlands - Woods, good condition 

Emergent herbaceous wetlands - Woods, good condition 
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Figures 

Fig. 3.11   A) The spatial distribution of supply and benefit for crop pollination, flood 

mitigation and nature-based recreation, B) Density distribution of supply and benefit 

for each, and C) conservation priority areas identified via single-factor 

optimizations. 
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Fig. 3.12   Proportion of benefit in priority areas targeting supply and benefit for crop 

pollination, flood mitigation, and nature-based recreation. 
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Fig. 3.13 The ecosystem service and biodiversity contained within priority areas for 

single factor and multi-factor optimization strategies (top). Maps of ecosystem 

service priority areas (bottom). Single factor optimizations are shown in blue, multi-

factor optimizations are shown in red, and locations that were within the 

conservation target for both multi-factor and single factor optimizations are shown 

in purple.  
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Fig. 3.14   The percentile rank of each unit of analysis in terms of return on investment 

for ecosystem service (supply or benefit) on the x axis, and biodiversity on the y axis 

(return on investment was calculated as the ratio of ecosystem service or 

biodiversity value to conservation cost).  
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Fig. S3.15 The sensitivity of our flood mitigation supply results to including winter 

months in the model. 
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Fig. S3.16 The sensitivity of our flood mitigation service results to the assumption that 

supply and demand are equally important in determining benefit. When assign 

demand is one half (grey) and one tenth (black) the weight of supply, the major 

conclusions about the differences between supply and benefit, and the biodiversity 

and benefit value of priority areas hold. 
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Fig. S3.17  Damage probability functions. Grey diamond: wetlands scenario 

(D=e^10.55757p-0.48927, p= 4.367e-07, r2= 0.9646), Open black circles: no-wetlands 

low scenario (D=e^12.02817p-0.16884, p= 0.1119, r2= 0.2851), Filled black circles: 

no-wetlands high scenario (D=e^13.11465p-0.07055, p= 0.5626, r2= 0.04361). 
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Abstract 

Conservation organizations increasingly target ecosystem services, the benefits from 

nature to people, alongside more traditional biodiversity goals. The net effect of this 

ecosystem service focus on biodiversity remains unclear, but depends on the biodiversity 

co-benefits of projects targeting ecosystem services, and the effect of an ecosystem 

service frame on conservation budgets. Using Vermont, USA as a model landscape, we 

identify optimal conservation networks for four taxonomic groups, four ecosystem 

services, and all possible combinations of each. We then assess the biodiversity and 

ecosystem service value contained in each conserved network, its cost, and its overlap 

with every other network. We find that overlap varies widely across services and taxa, 

but that priorities for multiple services contain higher levels of biodiversity than priorities 

for a single service. Meeting ecosystem service goals alongside those for biodiversity 

requires a 13% increase in conservation budgets relative to meeting biodiversity goals 

only. Conserving ecosystem services and biodiversity separately is much less cost 

effective than conserving them jointly. We conclude that ecosystem services are likely to 

have a net positive impact on biodiversity, especially when ecosystem service priority is 

determined using a broad suite of different services.  
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Introduction 

Supporting the wellbeing of a growing human population while avoiding biodiversity 

loss is a central challenge of sustainable development [1–3].  Ecosystem services (ES) are 

the benefits that people derive from nature [2,4]. Development-driven environmental 

degradation is rapidly eroding both biodiversity [5–8] and those ecosystem services 

whose value is not captured in markets [2,9,10]. By making explicit the link between the 

well-being of people and nature, ES have the potential to serve as common ground for 

human development and conservation [2]. As a result, conservation organizations and 

governments are increasingly prioritizing ecosystem services [11–14]. 

 

How will an ES focus impact biodiversity? Considerable debate has arisen among the 

conservation community over whether an ES approach is undercutting or bolstering 

traditional biodiversity goals [15]. On the one hand, the resources once allocated 

specifically to protecting nature for its own sake are now being used to protect the parts 

of nature that have the highest utility to people. While setting aside natural areas for ES 

conservation may not have direct negative impacts on biodiversity [16], targeting 

conservation towards ES will capture less biodiversity than targeting biodiversity 

directly, such that tradeoffs are likely [17–19]. On the other hand, the human focus of 

ecosystem services may reframe the importance of nature and increase support for 

conservation, thereby increasing the resources available to protect natural areas [18,20]. 

The net effect of ecosystem service conservation on biodiversity thus hinges on two 

things: First, how much biodiversity co-benefit is achieved in the process of conserving 

https://paperpile.com/c/VxeFAF/e7THP+OBl6p+HUVjy
https://paperpile.com/c/VxeFAF/OBl6p+lBBTM
https://paperpile.com/c/VxeFAF/pcEl7+nuM3F+KuIMn+k0Trq
https://paperpile.com/c/VxeFAF/10HRI+c3i9y+OBl6p
https://paperpile.com/c/VxeFAF/OBl6p
https://paperpile.com/c/VxeFAF/Nps8D+lZVti+twRMv+p0IMD
https://paperpile.com/c/VxeFAF/Yp1KY
https://paperpile.com/c/VxeFAF/ge2VH
https://paperpile.com/c/VxeFAF/At1yM+MtKe3+B3tqs
https://paperpile.com/c/VxeFAF/MtKe3+WHxYA
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ecosystem services? Second, will the ecosystem services concept sufficiently boost the 

resources available to conservation to compensate for the tradeoff involved in sharing 

conservation budgets between two goals. 

 

The empirical evidence assessing the biodiversity co-benefits of ecosystem service 

conservation have produced mixed results [21–24] despite a strong body of evidence 

establishing a mechanistic link between biodiversity and ecological function [23,25,26]. 

Existing studies of spatial concordance have shown promise of win-win situations in 

some cases [27–29], that planning jointly for services and diversity can facilitate 

achieving both targets with minimal increases in cost [12,30], and that the land use 

scenarios that perform best for ecosystem services also perform well in terms of 

biodiversity [12]. But other assessments have warned that spatial overlap is low in many 

contexts [17], or have found correlations that are positive but weak [31].  

 

Priority areas that optimize outcomes for multiple ecosystem services may show a higher 

degree of spatial coincidence with biodiversity than priority areas for individual services. 

Functionally, the influence of increasing diversity on any given service levels off at 

relatively low diversity levels [32,33], however each service is associated with a different 

set of species [34], such that more diversity is required to support a breadth of services 

[35]. Further, places that are important in terms of multiple services may capture more 

biodiversity than “hotspots” for a single service if ecosystem services are distributed 

differently and are thus weakly correlated to each other [29]. Thus biodiversity and 

https://paperpile.com/c/VxeFAF/9bi9O+A7eMN+ZYHvu+JOzhu
https://paperpile.com/c/VxeFAF/1deQA+FeDMT+ZYHvu
https://paperpile.com/c/VxeFAF/MuOEL+P6r7P+EI4go
https://paperpile.com/c/VxeFAF/lZVti+5Lw1S
https://paperpile.com/c/VxeFAF/lZVti
https://paperpile.com/c/VxeFAF/At1yM
https://paperpile.com/c/VxeFAF/2w5wa
https://paperpile.com/c/VxeFAF/eWyPr+o0J9S
https://paperpile.com/c/VxeFAF/aznq4
https://paperpile.com/c/VxeFAF/afgS6
https://paperpile.com/c/VxeFAF/EI4go


 98 

ecosystem services may be more spatially coincident when they are defined broadly in 

terms of many species and services than when they are defined narrowly as a single 

service or taxonomic group. We know of no effort that explicitly tests this hypothesis.  

 

The financial resources for conservation are scarce; the money available to do 

conservation is insufficient to reach biodiversity goals [19,36–38]. As a result, ES must 

increase conservation budgets in order to draw from them without presenting a 

biodiversity tradeoff. The size of the necessary budget increase will depend on the 

biodiversity co-benefits of projects targeting ES. For instance, this increase may need to 

be large if ES projects tend to target human-influenced landscapes [20] that have low 

biodiversity value. Yet conservation projects that include ES tend to attract more funding 

than conservation projects that do not, and this funding comes from a wider variety of 

sources, not all of which were prominent in supporting biodiversity-focused conservation 

efforts [20]. This indicates that ES is drawing new money for conservation, and thus may 

have net neutral or even positive impact on the funding available for conservation. In 

order to understand the biodiversity consequence of an ES focus in conservation, we need 

to know the budget increase needed for biodiversity to break even once ES goals are 

added. 

 

We investigate these questions using Vermont, U.S.A. as a case study. Vermont is a 

primarily forested state in the Northeastern Highlands ecoregion [39]. Vermonters 

broadly recognize the value of this predominantly natural landscape in terms of cultural 

https://paperpile.com/c/VxeFAF/LAFjb+ShBpj+d3BI0+B3tqs
https://paperpile.com/c/VxeFAF/WHxYA
https://paperpile.com/c/VxeFAF/WHxYA
https://paperpile.com/c/VxeFAF/Kmlj
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identity [40], agriculture [41], and climate resilience [42].  Following the global pattern, 

many conservation organizations in the state have begun to incorporate ecosystem 

services in their mission statements and conservation actions. Using Vermont as a case 

study, we identify optimal conserved lands for four taxonomic groups, four ecosystem 

services, and all possible combinations of each. We then assess the biodiversity and ES 

value contained in each conserved lands network, its cost, and its spatial coincidence with 

each other network. This allows us to address four questions that are crucial to 

understanding merit of simultaneously conserving ES and biodiversity: 

 

Q1: What is the potential for conservation to simultaneously protect biodiversity and 

ecosystem services? 

Q2: Is this potential greater for projects that target a breadth of taxa and ES than for those 

that target individual ES and taxa?  

Q3: If ES targets are added to those for biodiversity, how much must conservation 

budgets increase to avoid reductions in the amount of biodiversity conserved? 

Q4: If ES conservation is achieved separately from biodiversity conservation, what is the 

efficiency cost relative to achieving the goals jointly? 

 

https://paperpile.com/c/VxeFAF/pcnQ
https://paperpile.com/c/VxeFAF/3LXz
https://paperpile.com/c/VxeFAF/lPyB
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Methods 

Overview  

We identified optimal conservation priorities given a budget constraint for four different 

taxa: birds, mammals, reptiles, and amphibians, and four different ES: flood mitigation, 

aboveground carbon storage, crop pollination, and nature-based recreation. We then 

measured the spatial coincidence of conservation priorities for each as percentage 

overlap. We also identified optimal conservation priorities for all possible combinations 

of one to four taxa and one to four ES, and measured the overlap between priority areas 

for these combinations. This allowed us to assess how increasing the number of ES and 

taxa affected the degree of spatial coincidence. 

 

In order to determine the additional cost of conserving ES alongside biodiversity, we set 

conservation targets for each ES and taxa and identified conservation priority areas that 

could meet these targets at minimal cost. We followed two different methods for 

including ecosystem services alongside with biodiversity: “dual targeting,” implemented 

as a formal joint optimization of ES and taxa, and “independent efforts” implemented as 

the union of the single-factor optimizations for each. We compare the cost requirement of 

dual targeting to independent efforts for biodiversity to assess the additional resources 

needed to meet ES goals with no net loss of biodiversity. We then compare the cost 

requirement of dual targeting and independent efforts to assess the cost efficiencies of 

including ES within the purview of conservation. 
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Data Sources  

We obtained raster datasets of species distributions from United States Geological 

Survey’s GAP Dataset [43]. This dataset is available at a thirty-meter resolution, and 

included four amphibian species, one hundred and ninety-four bird species, twenty-six 

species of mammals, and ten species of reptiles within the state of Vermont. We obtained 

published maps of ecosystem service for crop pollination, flood mitigation, and nature 

based recreation [44], and data on aboveground carbon storage from remotely sensed data 

available at a 30m resolution [45]. 

 

We estimated the cost of conservation based on a published index of conservation costs 

[44]. This data was originally published as an index that represented log transformed land 

costs. We back transformed those values to obtain approximate land values statewide. We 

expect land value to overestimate the true cost of conservation because most recent 

conservation has occurred via the purchase of easements, which is cheaper than acquiring 

land outright, and because this dataset represents average values at a ~5km2 resolution; 

these averages thus include urbanized areas that are likely to have very high land values, 

but are unlikely to be of high conservation importance. Although we do not expect land 

value to strictly represent conservation costs, it does represent the opportunity cost of 

alternative uses of the land, and so we do expect land values to scale with conservation 

costs, i.e. to represent differences in the relative costs of conservation across space.  

 

https://paperpile.com/c/VxeFAF/AUpZG
https://paperpile.com/c/VxeFAF/ZyLXq
https://paperpile.com/c/VxeFAF/UK2OO
https://paperpile.com/c/VxeFAF/ZyLXq
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Identifying Priority Areas for Conservation  

We used the optimization software Marxan [46] to identify priority areas for each 

taxonomic group and ecosystem service based on the above information on biodiversity, 

ecosystem services, conservation costs. Marxan uses simulated annealing to approximate 

optimal conserved lands networks that meet a conservation target at minimal cost. It 

produces two different outputs that indicate conservation importance: the irreplaceability 

index, which is calculated as the number of runs in which a unit was included in the 

optimal network, and the best conservation network from all runs, where the best network 

is the one that minimizes the following objective function: 

 

Equation 4.1: 

ObjFunmin  =   

     Land Cost (x,y) + λ (Protection target-Protection achieved)i + Cost constraint 

Where: 

Land Cost = the monetary cost of conserving all hexagons within the selected  

priority areas 

i =  the conservation features being targeted (in our case this included all  

combinations of birds, mammals, reptiles and amphibians, and all  

combinations of flood mitigation, crop pollination, carbon storage, and 

nature-based recreation) 

Protection target = the target amount of a conservation feature that the  

optimization seeks to achieve.  

Protection achieved = the amount of a conservation feature held within the  

selected priority areas. 

https://paperpile.com/c/VxeFAF/7WT1Q
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𝜆 = the “species penalty factor” for missing a conservation feature’s protection  

target. 

Cost constraint = a penalty for exceeding a user defined cost threshold.  

 

For each individual ecosystem service and taxonomic group, and for all possible 

combinations of two three, and four ecosystem services and taxonomic groups, we 

performed 500 iterative model runs to approximate optimal conservation solutions.  

 

In order to assess overlap of priority areas (questions 1 and 2), we created priority areas 

that maximized value for each conservation feature given a cost constraint. We 

implemented this using the objective function above by setting a cost threshold that 

allowed for approximately 15% of the landscape to be selected as priority areas.  We set 

targets for each conservation feature (50% of statewide value) that were impossible to 

reach given that constraint, and set a cost threshold penalty so high that the optimal 

solution never exceeded the cost threshold. Maximizing value within a cost constraint 

represents the budget-limited process of spatial planning for conservation, and results in 

priority areas that are approximately equal in area for each conservation feature. This is 

important because otherwise the amount of overlap will reflect the total amount of land 

selected within priority areas as well as the overlap of those features.  

 

In order to determine the budget increase needed to have a net neutral impact on 

biodiversity (questions 3 and 4), we also identified the least cost means of meeting 
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conservation targets. To implement this optimization problem we removed the cost 

constraint from the above objective function, and set our conservation targets at twenty 

percent of all habitat for non-threatened species, 40% of all habitat for threatened or 

endangered species, and 40% of total statewide ecosystem service value for each 

ecosystem service. We then took the best solution from the 500 runs for each simulation 

as the most cost-efficient way of meeting the relevant conservation targets. We calculated 

the total cost of each as the sum of the cost for all included units of analysis, and 

compared the costs of networks that included ecosystem services to otherwise equivalent 

networks that did not.  

 

Quantifying Overlap  

We measured the overlap of best networks as the ratio of the area that was included in 

both the ecosystem service and the biodiversity network to the mean area of those 

networks:  

Equation 4.2: 

AES U ABD / ((AES + ABD)/2)     

Where:  

AES is the area of the best network for ecosystem services  

  and  ABD is the area of the best network for biodiversity 

 

We compared these overlaps to the null expectation (from [31]), calculated as : 

Equation 4.3: 

https://paperpile.com/c/VxeFAF/2w5wa
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AES * ABD / ATotal 

Where:  

ATotal  is the combined area of all units of analysis  

 

To assess the effect of the number of ES and taxonomic groups on the overlap between 

ecosystem service and biodiversity priorities, we measured overlap of best networks for 

all possible combinations of one, two, three, and four taxonomic groups to one, two, 

three, and four ecosystem services. This resulted in 196 different overlap ratios, although 

sample size was unevenly distributed (Table 4.9) 

Results 

Q1: Spatial Coincidence of ES and Taxa  

The average pairwise overlap between ES and taxa is 47%. This is high compared to a 

null expectation but lower than the 62% average overlap between taxa and the 49% 

average overlap between ES (Fig. 4.18d).  Overlap varies widely across ES-taxa pairs. 

Birds and reptiles overlap less with ecosystem services than do mammals and amphibians 

(Figure 4.18b). Flooding and pollination overlap less with biodiversity than do recreation 

and carbon (Figure 4.18b). 
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Q2: Impact of the Number of ES and Taxa  

The overlap between biodiversity and ecosystem service priorities increases as the 

number of ES used in defining priority areas increases. (Fig. 4.19a). Overlap also 

increases with the number of taxa up to three taxa, and then levels off. These overall 

trends also hold true for each ES (Fig. 4.19b) and taxon (Fig. 4.19c) individually. The 

overlap of the best network for all four ES with the best network for all four taxa, is 60%. 

 

Q3-Q4: Cost Effectiveness of Joint Targeting  

The cost of meeting all biodiversity targets equates to approximately three percent of the 

summed cost of all units of analysis (Figure 4.20). This least cost network included 43% 

of all units (because most of the selected units were low-cost). Meeting ecosystem service 

targets was less costly.  

Reaching targets for all four ES and all four taxa through joint targeting required a 12% 

increase in cost relative to meeting biodiversity targets alone (Fig. 4.20). On average 

conserving a single ES in addition to a single taxon through joint efforts had a 13% 

higher cost than only conserving a single taxon. Across all pairwise combinations of a 

single ES and a single taxon, this cost increase ranged from 0% to 83% (Table S.410). 

On average, conserving a single ES in addition to a single taxon through separate efforts 

had a 33% higher cost than conserving a single taxon only. Across all pairwise 

combinations of a single ES and a single taxon, this cost increase ranged from 8% to 

128% (Table S.410). Reaching targets for all four ES and all four taxa through separate 
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efforts required a 45% higher cost than only conserving a single taxon (Fig. 4.20). Across 

all pairwise combinations of a single ES and a single taxon, this cost increase ranged 

from 8% to 128% (Table S.410).  

Discussion and Conclusions 

In Vermont, the overlap of conservation priorities for ES and biodiversity is high relative 

to a null expectation (Fig. 4.18c) - however it varies widely across service-taxa pairs (Fig. 

4.18a, b). Mirroring this result, the budget increase needed to meet an ES target in 

addition to an existing taxonomic target is just thirteen percent on average (Fig. 4.20). 

For some ES-taxon pairs a <1% budget increase is required (e.g. for birds and recreation, 

or reptiles and carbon), but others require the budget to almost double (e.g. amphibians 

and flooding) (Table S4.10). As a result, projects seeking to conserve specific taxa and 

ES in Vermont may benefit from a high degree of spatial coincidence, or may find little 

opportunity to efficiently pursue these goals together. It is important therefore to quantify 

tradeoffs and identify potential win-win locations on a project by project basis.  

 

The overlap of biodiversity and ES improves as the number of ecosystem services and the 

breadth of taxa used in defining conservation priorities increases (Fig. 4.20).This has 

important conservation implications: whereas projects that seek to safeguard a particular 

ecosystem service may not protect much biodiversity in the process (Fig. 4.18, overlap as 

low as 0.16), efforts that aim to protect a wide suite of ecosystem services are likely to 

protect more biodiversity even when this benefit is not explicitly sought out (Fig. 4.19,3 
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ES overlaps from 0.54 to 0.60). The 0.60 overlap between priority areas for all four ES 

and all four taxa is comparable to the 0.62 average overlap between taxonomic groups, 

indicating that in the case of Vermont, USA, adding ecosystem services to the goals 

pursued by conservation presents tradeoffs no more severe than those already faced by 

conservation organizations. 

 

Why might ES show a higher degree of overlap with biodiversity than the null 

expectation? Part of the answer is low-cost areas, which represent opportunities to 

achieve a relatively high return on investment for all conservation features (Fig S4.21). 

Several other studies have established the importance of conservation cost in determining 

optimal conservation outcomes [38,47–52]. Our results indicate costs may in part 

determine the severity of tradeoffs between biodiversity and ecosystem services as well. 

Vermont is a small, relatively homogenous state with many wide-ranged species. As a 

result, biodiversity importance varied less across space than did the relative costs of 

conservation. In places with high ecological heterogeneity or endemism, or highly 

uneven demand for ecosystem services, priority areas for biodiversity and ecosystem 

services may show a weaker response to conservation cost. 

 

Although we find a relatively high spatial coincidence, some tradeoff will occur any time 

a fixed budget is spread across a widening set of objectives [18]. We estimate that 

conservation budgets would need to increase by 13% in order to meet targets for ES in 

addition to those for biodiversity (Fig. 4.20). This implies that in the context of Vermont 

https://paperpile.com/c/VxeFAF/d3BI0+6s1jO+ePuuJ+WfTlX+hZ1nW+CQxt6+Q5XfP
https://paperpile.com/c/VxeFAF/MtKe3
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reframing conservation around benefits to people must increase the resources garnered 

for conservation on the order of about 13% in order to avoid negative consequences for 

biodiversity.  Beyond this level, we would expect ES conservation to have net positive 

impacts on resources available for biodiversity conservation. While we do not have 

evidence that this budgetary increase has occurred or that it is driven by an ES framing in 

the case of Vermont specifically, an increase of this size seems feasible. As a point of 

comparison, the inflation-adjusted annual revenue from contributions and grants for the 

World Wildlife Fund, The Nature Conservancy, Conservation International, and the 

Wildlife Conservation Society rose between one and thirty-four percent between fiscal 

years 2011 and 2015, the interval over which many of these organization reframed 

themselves around ES. Further, within the Nature Conservancy projects that include ES 

have been shown to attract more than four times as much funding as projects that do not 

[20]. 

 

Although there has been significant debate about whether ecosystem services should 

draw from conservation budgets [15], there is consensus that ES are important to 

maintain. They are critical to human well-being [2,53], their value often exceeds the cost 

of protecting them [38,53], and we are losing them at an alarming rate [10,54]. Given this 

agreement about their importance, our analysis indicates that there are significant 

efficiency gains associated with leveraging the existing framework and mechanism of 

biodiversity conservation to conserve ES. If land is kept in natural cover to maintain 

ecosystem services, and separately to maintain biodiversity, the combined resource 

https://paperpile.com/c/VxeFAF/WHxYA
https://paperpile.com/c/VxeFAF/Yp1KY
https://paperpile.com/c/VxeFAF/OBl6p+pFUbU
https://paperpile.com/c/VxeFAF/d3BI0+pFUbU
https://paperpile.com/c/VxeFAF/c3i9y+ubFo0
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requirements of these two sets of natural areas equate to almost a 50% increase monetary 

cost and spatial extent relative to protecting biodiversity alone. This is much less efficient 

than achieving the same ES and biodiversity outcomes through joint targeting, which can 

be accomplished with a 13% budget increase (Fig. 4.21).  

 

In sum, we find that the spatial coincidence of biodiversity and ecosystem services in 

Vermont is generally high, but is also quite variable. Understanding the specific tradeoffs 

faced by particular conservation projects is therefore critical to efficiently achieving these 

two goals at once when specific services and taxa are targeted. On the other hand, we find 

that spatial priorities for multiple services contain high levels of biodiversity, even when 

they are selected without explicitly seeking a biodiversity co-benefit. Furthermore, the 

financial costs of achieving ecosystem service goals within the framework of biodiversity 

conservation are low compared to additional funding that an ES framing can provide. By 

contrast, the efficiency cost of pursuing these two goals separately is quite high. 

Although there will certainly be cases where stark tradeoffs occur between biodiversity 

and ecosystem services, our results indicate that ecosystem service conservation is more 

likely to boost biodiversity outcomes than to undermine them. 
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Tables 

Table S4.9 Sample size for overlap means 

 

 1 Taxon  

(4 combinations) 

2 Taxa  

(6 combinations) 

3 Taxa  

(3 combinations) 

4 Taxa  

(1 combination) 

1 ES 

(4 

combinations) 

n=16 n=24 n=12 n=4 

2 ES 

(6 

combinations) 

n=24 n=36 n=18 n=6 

3 ES 

(3 

combinations) 

n=12 n=18 n=9 n=3 

4 ES 

(1 

combination) 

n=4 n=6 n=3 n=1 
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Table S4.10   Costs required to meet targets for all pairwise combinations of one ES and 

one taxon through joint targeting and through separate efforts. 
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Figures 

Fig. 4. 18    A) Maps of irreplaceability indices for all ES and taxa individually, and their 

pairwise combinations. B) Pairwise overlap of best networks C) Observed versus 

expected overlap between biodiversity and ecosystem services, compared with the 

overlap among taxa and among ES. 
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Fig. 4. 19    The effect of increasing the number of taxa and services used in defining 

biodiversity and ecosystem service priorities, respectively, on the overlap between 

the best conservation networks for each. 
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Fig. 4.20    The monetary cost required to meet conservation targets for biodiversity, 

ecosystem services, and to achieve both by joint targeting and through separate 

efforts. Cost is shown as a proportion of the total cost for all units of analysis. 
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Fig. S4.21    Conservation cost explains 68% of the variation in the correlation between 

individual ecosystem services and biodiversity, and between individual taxonomic 

groups and ecosystem services (p=0.007, n=8, f=16.02, 6df). 
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CHAPTER 5: SCENARIOS OF FUTURE LAND-COVER CHANGE AND FLOOD 

MITIGATION IMPACTS IN VERMONT, USA. 

Keri Watsona,b Gillian Galforda,b, and Taylor H. Rickettsa,b 

a: Rubenstein School of the Environment, University of Vermont, Burlington, VT. 

b: Gund Institute for Environment, University of Vermont, Burlington, VT.  

 

Abstract  

Scenario planning is a useful tool for incorporating complexity and uncertainty in 

conservation planning. Here, we present a set of five scenarios that represent unique 

visions Vermont in the year 2060, with associated land cover maps for each. We couple 

land cover simulations to a spatially explicit model of flood mitigation ecosystem 

services. We show that the uncertainty encapsulated by our scenarios is large enough to 

change the outcome of ecosystem service threat assessment: some scenarios resulted in 

increasing threat to flood mitigation services, while others were associated with potential 

reductions in flood risk. Given this breadth of possible futures, we assess different 

strategies for targeting conservation in terms of their capacity to impact places with high 

future flood risk. We find that targeting conservation based on the present day 

distribution of demand for flood mitigation captures more future flood risk than targeting 

ecosystem service supply. Future work evaluating the impact of these scenarios on other 

ecosystem services will shed light on the tradeoffs and opportunities of future land cover 

change in Vermont. 
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Introduction 

There is increasing evidence that human activities are threatening the resilience of earth’s 

ecosystems and the resilience of the human communities that depend on them [1,2]. In 

the past centuries, people have rapidly altered the earth’s climate [3], land surface [4], 

biological diversity [5–9], and ecosystem service provision [10,11]. The extent of human 

impacts has accelerated since the mid 20th century [12,13] to such an extent that a new 

geologic era, the Anthropocene, has been proposed [14]. Yet these human driven changes 

interact via complex feedbacks with each other and with human responses to them [15]. 

The consequence is that we know the future will be fundamentally different from the 

present, but specifics about what the future will be like are highly uncertain [16,17]. 

Scenario planning has been presented as a powerful tool for making decisions under 

conditions of high uncertainty. Originally developed for military strategy [18] and 

adopted by business strategists [19,20], scenario planning is now applied in a wide 

variety of contexts including of sustainable development [17] conservation planning [18] 

and ecosystem services [21]. Scenarios can account for social ecological feedbacks, and 

represent a plausible account of what the future might look like if a certain path is taken, 

rather than assigning a probability to a particular land-cover trajectory. Exploratory 

scenarios are not forecasts or predictions, but rather plausible stories about the future 

given a set of assumptions about policy, economic drivers, and ecological processes 

[22,23]. Collectively, sets of exploratory scenarios are used to bracket future uncertainty, 

and thus to inform decisions in light of a future that we cannot predict, but can seek to 

understand and manage. 

https://paperpile.com/c/M1iebX/TVq0t+0TPAk
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https://paperpile.com/c/M1iebX/omj7Q
https://paperpile.com/c/M1iebX/RyH8r
https://paperpile.com/c/M1iebX/CSqj5+11bIF
https://paperpile.com/c/M1iebX/6jMQT
https://paperpile.com/c/M1iebX/8VMY+fyvq
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https://paperpile.com/c/M1iebX/NCNHb
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One of the most impactful ways we are changing our planet is by altering the 

composition and pattern of the earth’s land surface. Land-cover change has occurred 

largely in the pursuit of a small set of ecosystem services whose value are captured in 

markets [4,10] such as food production [24]. Land-use and land-cover change are critical 

determinants of climate [25], biodiversity [26] and ecosystem service outcomes [10]. As 

a result, understanding where land-cover is most likely to change is critical for 

implementing efficient conservation and land use policies. However, we face high 

uncertainty when trying to predict future land-cover changes [27] and ecosystem service 

outcomes [21]. Predicting land-cover change is problematic because land-cover outcomes 

are the product of complex social ecological systems dynamics, and respond to a diverse 

set of interacting drivers [28–30]. For example, ecosystem services are in part functions 

of land-cover, and land-cover is largely driven by human pursuit of these services. 

Because the two interact via complex feedbacks, ecosystem service and land-cover 

outcomes are ambiguous, and cannot be assigned a probability distribution [21]. As such, 

it is not safe to assume that future land-cover change will resemble the patterns of land-

cover changes observed in the recent past [31]. This is particularly true when the 

dominant drivers of land use change are shifting.  

 

Despite these difficulties, understanding future land-cover change is important in making 

sound ecosystem service decisions. The benefit from any given ecosystem service is a 

product of the ability of landscape to supply that service, demand for the service, and 

https://paperpile.com/c/M1iebX/2USyG+YBIys
https://paperpile.com/c/M1iebX/zs4wQ
https://paperpile.com/c/M1iebX/QsvG3
https://paperpile.com/c/M1iebX/WitoY
https://paperpile.com/c/M1iebX/YBIys
https://paperpile.com/c/M1iebX/7wiRZ
https://paperpile.com/c/M1iebX/NCNHb
https://paperpile.com/c/M1iebX/V9xz2+Ach2h+CuZdM
https://paperpile.com/c/M1iebX/NCNHb
https://paperpile.com/c/M1iebX/Eay8V
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connections between supply and demand via ecosystem service flows [32–37].  While 

recent progress has been made in incorporating both supply and demand into current 

assessments of ecosystem service [38–40], addressing future changes in ES supply and 

demand, together, remains a key challenge. Many existing efforts to quantify ecosystem 

service outcomes of future scenarios assume that supply is likely to be the dominant 

factor in ecosystem service change [41,42]. However, the human population is growing 

[43,44], and the patterns of development that will occur to accommodate this increasing 

population, and therefore the future distribution of beneficiary demand, is highly 

uncertain. Here, we present a set of five scenarios for the state of Vermont designed to 

capture the uncertainty in future land-cover change. We evaluate the consequences of 

these different land-cover futures using flood mitigation ecosystem services as an 

example. Specifically, we evaluate whether the land-cover uncertainty our scenarios 

represent is large enough to change outcomes in two decision making contexts: 

ecosystem service threat assessment and conservation planning for ecosystem services.  

 

Threat assessments require understanding the current state of ecosystem service supply 

and demand, as well as temporal trends in how they will change [45]. Maron et al (2017) 

present a threat assessment framework to evaluate the threat level of ecosystem services 

with regards to two thresholds: demand exceeding supply and ecosystem service 

“extinction” [45] based on the state and trends of ES supply and demand. Essentially, this 

provides a framework for assessing whether the amount of ecosystem service on a 

landscape is sufficient, and whether it is likely to remain so.  

https://paperpile.com/c/M1iebX/QbrR2+U5Ly8+3O553+lguLR+sjFwc+0mB6O
https://paperpile.com/c/M1iebX/R9vTW+2C0pL+668oQ
https://paperpile.com/c/M1iebX/J1P0w+e9A0V
https://paperpile.com/c/M1iebX/xu3LC+FqNc3
https://paperpile.com/c/M1iebX/QssMu
https://paperpile.com/c/M1iebX/QssMu
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For conservation planning, we need to know where on the landscape ecosystem services 

are most important now, and where they will be most important in the future. There have 

been great strides in identifying current ecosystem service priorities by adapting existing 

conservation planning tools, incorporating conservation costs and threats, assessing 

tradeoffs and synergies between multiple services, and in accounting for demand when 

quantifying service [32,46–55]. However, uncertainty regarding the future means that 

conservation strategies based on the present can produce sub-optimal results in the long 

term [56]. This presents a challenge: what is the best strategy for targeting actions today 

so that they will most effectively benefit future generations?  

 

One option could be to target conservation towards places that have the greatest potential 

to benefit people, rather than targeting conservation towards the places where benefits are 

currently the highest. The former case is achieved by targeting present day service supply 

[36], whereas the latter is achieved by taking both supply and demand into account. 

Research to date has established that incorporating demand can make conservation 

planning efforts much more efficient in the near term [38–40]. However, large 

uncertainty in land-cover indicates large uncertainty in the future distribution of people, 

and thus demand for ecosystem services. In cases where this uncertainty in demand is 

sufficiently large, targeting supply may be an effective hedging strategy for protecting 

ecosystem services in the long run. 

 

https://paperpile.com/c/M1iebX/7PGzM+5ooRW+o3C31+TEu7L+KSV2L+We7TS+Lq2hd+jZTMS+qF2KD+nPGdT+QbrR2
https://paperpile.com/c/M1iebX/QJPQX
https://paperpile.com/c/M1iebX/sjFwc
https://paperpile.com/c/M1iebX/R9vTW+2C0pL+668oQ
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Vermont has a long history of extensive land use change. Following European settlement 

Vermont’s forested landscape was almost completely denuded of forest cover. Since the 

mid 1800’s, natural forest regeneration on abandoned agricultural lands has transformed 

this landscape again such that forests now cover almost 80% of the state’s land area 

[57,58]. For the first time in over a century, Vermont is now experiencing modest 

decreases in forest cover [59]. These land use changes included widespread alterations of 

the state’s river corridors, which were designed to reduce flooding locally but can 

exacerbate flooding downstream [60,61]. This legacy of river hardening is now 

compounded by climate-change driven increases in the frequency and severity of 

flooding [62]. Using flood mitigation services as an example, we demonstrate the use of 

these scenarios for ecosystem service threat assessment, and for conservation planning in 

light of uncertainty in the future patterns of demand for ecosystem services. This allows 

us to address the questions: 

1) Given stakeholder-defined scenarios, what is range of possibilities for Vermont’s 

future landscape, and how far does this deviate from a business and usual trend? 

2) What are the impacts on flood mitigation across this range of scenarios? 

3) Where can we expect to see increases or decreases in natural cover and flood risk 

that are robust to differences among scenarios?  

4) Is targeting ecosystem service supply an effective hedging strategy in light of 

uncertainty in the future distribution of ecosystem service demand? 

 

https://paperpile.com/c/M1iebX/YAW3W+AgcJF
https://paperpile.com/c/M1iebX/fS2Dd
https://paperpile.com/c/M1iebX/i2SKu+Dnehn
https://paperpile.com/c/M1iebX/hRdg9
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Methods 

Developing Scenario Narratives 

We developed a workshop that led stakeholders through a structured process with the 

goal of envisioning different trajectories that Vermont might take in the future, and the 

impacts of those trajectories on the landscape. Our group of stakeholders represented 

various organizations involved in conservation and land use policy in Vermont: The 

Nature Conservancy Vermont, The Vermont Land Trust, The Agency of Natural 

Resources, Vermont Fish and Wildlife Department, The DEC Watershed Management 

Division, the Department of Forests Parks and Recreation, Milone and MacBroom 

Consulting, the VT Division of Emergency Management and Homeland Security, and the 

Vermont Department of Tourism and Marketing.  

 

Our process for generating scenario narratives followed the methods of the Global 

Business Group [20,63], which has been widely applied in corporate [19] and nonprofit 

settings [64], and was employed by the U.S. National Park Service [65] and the Global 

Millennium Ecosystem Assessment [11].  First, stakeholders described outcomes from 

the landscape that were most important to them personally, and to the organization they 

represented. Second, we asked stakeholders to brainstorm key drivers of landscape 

change. Third, we prioritized these drivers based on their impact on the landscape, and 

their degree of uncertainty. We selected our top two drivers according to these criteria as 

axes which defined four scenario spaces. We then broke into groups to describe each of 

https://paperpile.com/c/M1iebX/fyvq+i1HfY
https://paperpile.com/c/M1iebX/8VMY
https://paperpile.com/c/M1iebX/tjS32
https://paperpile.com/c/M1iebX/OHhWf
https://paperpile.com/c/M1iebX/Qm13M


 130 

the four scenarios in terms of the drivers that were not used to define the two axes, and in 

terms of important outcomes stakeholders identified at the beginning of the process.  

 

Modeling Land-Cover Based on Past Trends  

We simulated land use change for each of the four scenarios produced in the workshop 

using Dinamica EGO [66,67]. We obtained land-cover data from the National Land-

cover Dataset (NLCD) for the years 2001, 2006, and 2011 [68]. The NLCD classifies 

U.S. land-cover into 16 different land-cover classes at a 30-meter resolution, and is based 

on LANDSAT satellite imagery. We simplified these 16 land-cover classifications into 

six more general land-cover classes: developed land, agriculture, forest, shrub/scrub, and 

wetlands. We then calibrated transition rates for 14 possible land-cover transitions from 

2001 to 2011. Transitions out of developed land and out of wetlands experienced too few 

land-cover changes to find any statistically significant weights of evidence, and were 

omitted from the simulation.  

 

To calibrate the spatial allocation of land-cover transitions, we calculated conditional 

probabilities between spatially explicit predictor variables and each transition using a 

Bayesian weights of evidence approach [69]. The weight of evidence represents the 

influence of each predictor on the likelihood of a transition. These weights are then 

combined to calculate spatially explicit probabilities of each transition under the 

assumption that predictors are independent. We employed sixteen predictors of land-

cover change, including: landscape attributes (slope [70], distance from roads, highway 

https://paperpile.com/c/M1iebX/VkpyA+N3c5
https://paperpile.com/c/M1iebX/we1v2
https://paperpile.com/c/M1iebX/EH2BK
https://paperpile.com/c/M1iebX/5Qpvh


 131 

density, floodplains [71], wetland classification [72], farmland classification [73], 

distance from cities), variables related to land use planning and regulation (designated 

growth areas [74], distance from designated growth areas, potential wetland restoration 

sites [75], enrollment in the current use program [76], conservation status [77], owner 

type [77]), and social-demographic data (population density, population growth, and 

median household income at the census tract level [78]). We calibrated weights of 

evidence based on the period from 2001-2006. We performed pairwise tests of the 

independence assumption and removed landscape attributes in all cases where the 

Crammer coefficient was greater than 0.4, ensuring no spatial autocorrelation between 

correlate variables. This can result in different sets of variables being used for each 

transition; each transition also has a unique weight of evidence for each variable.  

 

We then validated our model in two ways: First, we simulated land-cover change from 

2006 to 2011 based on 2001-2011 transition rates and 2001-2006 weights of evidence, 

and compared simulated transitions to observed transitions using fuzzy logic and an 

exponential decay function across a range of neighborhood window sizes [69]. This 

validates our ability to simulate observed land-cover patterns at different spatial 

resolutions based on calibrated weights of evidence and transition rates. Secondly, we 

measured the proportion of observed transitions as a function of the modeled probability 

of that transition. This allowed us to assess our probability maps independent from the 

quantity of simulated changes.  

 

https://paperpile.com/c/M1iebX/dmlxm
https://paperpile.com/c/M1iebX/zOZqd
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https://paperpile.com/c/M1iebX/hv6hy
https://paperpile.com/c/M1iebX/hv6hy
https://paperpile.com/c/M1iebX/wMHIj
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Modeling Land-cover Based on Scenario Narratives  

We then modified the calibrated weights of evidence and transition rates achieved above  

to generate land-cover change simulations that reflected each scenario narrative in terms 

of its major divergences from recent patterns. An explanation of the major parameter 

changes for each scenario are described fully in the Appendix. We also implemented a 

fifth “Business as Usual” scenario where we simulated land-cover change forward to 

2060 with the calibrated parameters from our 2001-2011 baseline. In order to simulate 

change from 2011-2061, we iterated the modified transition rates for five 10-year time 

steps assuming that rates of change would be constant across each time step. Simulating 

changes via five 10-year time steps allowed our model to incorporate feedbacks between 

land-cover changes in our simulation without adding the prohibitive computational load 

of an annual time step. To produce probability maps across the fifty-year time period, we 

translated ten-year transition rates into a fifty year transition rate as: 

Equation 5.1: 

it = (1+i)t-1 

Where: 

i is the transition rate per time step 

t is the number of time steps (5) 

it is the transition rate for t time steps 

 

Modeling Flood Outcomes 

We modeled flood outcomes, for each of the five scenarios and for current land-cover, in 

a three step process. First, we quantified demand for flood mitigation ecosystem services 
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as the amount of developed and agricultural land in flood-prone areas. We adapted the 

methods from Watson et al 2017 [40], which quantified demand for flood mitigation as 

buildings within flood-prone areas, assumed each of these buildings counted equally as a 

single unit of demand, and attributed that demand to the landscape by dividing it evenly 

among all upstream pixels. We alter this method in three ways. Because our land-cover 

simulations do not include the precise locations of buildings in the future, we attribute 

one unit of demand to each pixel with a developed land-cover class instead. Second, 

Watson et al (2017) do not account for flood impacts on agriculture. To incorporate flood 

impacts on agriculture we attribute one unit of demand to each pixel of agriculture as 

well. Because impacts to agriculture are fundamentally different than impacts to built 

infrastructure, we report agricultural and development demand separately. Finally, 

Watson et al (2017) delineate drainage areas to attribute demand to the landscape at 30m 

pixel resolution. Here, we aggregate demand and attribute it to drainage areas at the 

resolution of HUC12 watersheds based on the national hydrography dataset [79]. We 

subtract demand based on 2011 land-cover from demand in each scenario to report 

changes in demand for flood mitigation services.  

 

Second, we estimated changes in supply of flood mitigation ecosystem services as the 

change in quick-flow. For all five scenarios and for 2011 land-cover, we estimated quick-

flow using the InVEST seasonal water yield model, which adapts a curve number 

approach to a pixel scale to estimate the portion of rainfall that runs off as quick-flow at a 

monthly time step [80]. We then subtract 2011 quick-flow from the scenario quick-flow 

https://paperpile.com/c/M1iebX/668oQ
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and report the magnitude of this change as the change in the supply of flood mitigation 

(where an increase in quick-flow is a decrease in service supply, and vise versa).  The 

supply of flood mitigation services can be thought of as the marginal contribution of 

natural land-cover types to a reduction in quick-flow, and because our scenarios differ 

from the baseline only in terms of land-cover, an increase or decrease in quick-flow 

represents a change in the supply of flood mitigation ecosystem service. 

 

Ecosystem service supply and demand can also be represented in a risk hazard 

framework. Within this framework the amount of development and agriculture in flood-

prone areas is termed exposure, and quick-flow can be used as a proxy for flood hazard. 

Risk is then calculated as the product of hazard and exposure: 

Equation 5.2: 

Flood Risk = ((ExposureAg + ExposureDev)/2) * Hazard 

 

This multiplicative effect is conceptually sound within both the risk-hazard [81] and 

ecosystem service [40] frameworks. In an ecosystem services framework, when wither 

demand or supply is zero, benefit is also zero. In a risk-hazard framework, when there is 

either risk or hazard are lacking, then there is no risk. We also calculated changes in 

ecosystem service benefits over time. Flood mitigation benefit is the marginal 

contribution of ecosystems to a reduction in flood risk. Because our scenarios differ only 

https://paperpile.com/c/M1iebX/5M5SF
https://paperpile.com/c/M1iebX/668oQ
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in terms of land-cover, changes in risk equate to ecosystem service gains and losses. We 

calculate change in benefit as: 

Equation 5.3: 

ΔFlood Mitigation Benefit = - (Flood Risk Scenario - Flood Risk Baseline) 

 

Assessing Ecosystem Service Threat 

For each scenario, we applied the threat assessment framework of Maron et al. (2017), 

which categorized threats to ecosystem services based on the state and trends of supply 

and demand, the ratio between supply and demand, and the threshold where supply is 

considered to have met demand. To apply this framework, we assume that flood 

mitigation service is currently “stable but undersupplied”. Recent devastating flood 

events in Vermont and the historic loss of natural floodplain functions [60] provide 

evidence that flood mitigation is currently undersupplied in Vermont, i.e.: the supply of 

this service is insufficient to meet demand. Efforts promoting flood resiliency [82,83] and 

regulation aiming to prevent wetland loss [84] indicate that the supply of flood mitigation 

may be stable currently. 

 

While our index based approach to quantifying flood mitigation supply, demand, and 

benefit allows us to assess whether supply and demand are increasing or declining 

separately, it does not allow us to assess whether supply “meets” demand, or to quantify 

changes in the ratio of supply and demand when they increase or decrease together. 

https://paperpile.com/c/M1iebX/i2SKu
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Where this lead to ambiguities in assessing ecosystem service threat, we present the 

possible range of threat levels. 

 

Targeting Ecosystem Service Supply v.s. Accounting for Demand 

To assess whether targeting supply is an effective hedging strategy in conservation 

planning for ecosystem services over long time horizons, we identity the top 15% of all 

HUC 12 watersheds in terms of ecosystem service benefit (accounting for the current 

distribution of demand), and in terms of ecosystem service supply, as conservation 

priorities according to these two different targeting strategies. In order to calculate 

current ecosystem service supply (as opposed to future changes in that supply as 

described above), we implemented a counterfactual 2011 scenario where all natural land-

cover was converted to agriculture, the most common anthropogenic land-cover in 

Vermont according to our reclassification of the National Land-cover Dataset. We then 

calculated the total ecosystem service supply in 2011 as the difference between quick-

flow for the actual 2011 land coverand the hypothetical quick-flow that would occur in 

the absence of natural land-cover types. We calculated ecosystem service as the product 

of supply and demand: 

Equation 5.4: 

Flood Mitigation Service = ((DemandAg + DemandDev)/2) * Supply 
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Finally, we assumed that ecosystem service conservation is most important in places with 

high flood risk, and calculated the mean flood risk in ecosystem service, and service 

supply priority areas for each scenario. 

Results 

Scenario Narratives 

The two primary drivers of change selected to define our scenario space were the scale of 

governance, economy, and community; and the strength of proactive policy (Fig. 5.22). 

As a result, two scenarios (Ironic Hyper-locality and Self Sufficient Vermont) were 

defined by increasingly localized community and economy, such that state level politics 

and economy were most important in determining Vermont’s trajectory. The other two 

(Skyscrapers in the Champlain Valley and Laissez Faire) were defined by increasingly 

globalized community and economy: Vermonters benefited from goods and services 

provided by a global market but were vulnerable to global market dynamics. Likewise, 

two were defined by strong governance and innovative markets favoring sustainable 

development (Skyscrapers in the Champlain Valley and Self-Sufficient Vermont), 

whereas two were defined by traditional market forces unrestrained by environmental 

governance (Laissez Faire and Ironic Hyper-locality). The five scenarios, including the 

four resulting from this process and a business as usual, each represent a distinct land-

cover trajectory with unique positive and negative impacts on outcomes Vermonters 

value. None of these scenarios are predictions, but rather we expect that they collectively 

will bound the range of possible land-cover change until the year 2060. 
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Laissez Faire 

Under this scenario Vermont’s future is heavily influenced by national and global trends 

in a world where our food, energy, economic, and government systems, as well as human 

and natural communities, are increasingly interconnected over very broad scales. These 

close connections with global systems provide some opportunities for the state: grey 

infrastructure needs are addressed through the continued availability of federal funding, 

the Vermont brand supports a thriving four season outdoor recreation industry and draws 

more and more tourism dollars to the state, and conservation efforts are coordinated 

across state and national borders. However, this outside influence moves Vermont in a 

direction that is less defined by Vermonters’ values. Federal policies, societal priorities 

outside of the state, and global economic drivers gain influence to the detriment of 

municipal government.  Regional and global markets promote industrial agriculture, 

large-scale dairy, and energy importation on a grid powered by large scale renewables 

and fossil fuels alike. In this scenario these national and global forces tend to promote 

sprawl band development, and continue to subsidize development in floodplains despite 

repeated flood damage. 

 

Skyscrapers in the Champlain Valley 

In this scenario Vermont is also highly connected to global markets for food and energy, 

and local food and forest product markets diminish. However, strong and proactive 

governance leverages this connectivity to create new opportunities as the import of forest 
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products, food and energy from outside of the state relieves pressure on the Vermont 

landscape: Forest management focuses less and less on timber and other forest products 

and more on the protection of natural communities; In this scenario riparian corridors are 

restored and smart growth principles promote high density development on former 

agricultural lands which are no longer under pressure to produce. Energy is imported 

from out of the state and many VT hydro projects are dismantled to restore aquatic 

community connectivity. These benefits to natural communities increase the recreation 

and ecotourism potential of forests and riparian efforts. This is leveraged towards 

increasing out of state tourism to compensate for the diminished economic output in other 

sectors. Movement out of flood zones is incentivized in advance, rather than in response, 

to flood events. 

 

Self-sufficient Vermont 

This scenario is also characterized by strong and proactive policies, but occurs in a world 

where the scale of community and economy is increasingly localized rather than 

expanding. Vermont develops strong and more insular markets for food, energy and 

forest products, and thrives because of its resilience to external market fluctuations and 

political shifts. Almost every home in Vermont is powered by their own renewables, and 

supplemented by community level grid powered by larger proactively cited renewable 

developments. Population is clustered into quasi self-reliant units of clustered houses 

surrounded by private and collectively owned farms. Fifty percent of food is produced 

within Vermont by a network of small, highly diversified farms. Dairy is an outlier, and 
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is greatly diminished out of environmental necessity. Motivation and resources for 

conservation increase, but these are put towards supporting a strong working landscape 

rather than an explicit focus on the preservation of natural communities.  

 

Ironic Hyper-locality 

In this scenario, as in the Self Sufficient Vermont scenario, the scale of community 

decreases. However in this case Vermont becomes increasingly insular under weak policy 

and governance structures. Economic forces drive inequality in the state: 

commodification and market based land prices increase the wealth of a small number of 

highly affluent Vermonters. The Vermont brand and landscape are both affected by this 

gentrification. Land ownership is concentrated in the hands of these lucky few, and land 

posting is prevalent. This wealthy class supports a thriving high-end local food market, 

and bolster conservation by purchasing easements surrounding their private lands. 

Outside of these large blocks of private land sprawl band development expands to 

accommodate continued pockets of poverty. Conventional transportation is the norm, and 

energy is brought in on a mixed grid as well as being powered by individual owned small 

scale solar and hydroelectric. With this growing wealthy demographic comes increased 

private investment in easements on private forested land and growing demand for a niche 

local food market. Landscape aesthetics and quality of life for the wealthiest Vermonters 

are prioritized to the detriment of economic prosperity and public access to natural areas. 
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Land-cover Trends and Validation 

Our analysis shows that currently Vermont is experiencing very modest land-cover 

change. Transition rates for all land-cover transitions were low from 2001-2011. The 

highest transition rate was from shrub/scrub to forest (0.19% change per year), and the 

most significant land-cover change in terms of total areal extent was for the transition 

from forest back to shrub/scrub (142 km2 between 2001 and 2011). These transitions 

primarily represent timber harvest and forest regrowth. No other land-cover changes 

exceeded a transition rate of 0.1% annually, or comprised more than a 10km2 extent 

during the ten-year baseline period. This highlights that agriculture and development 

have been expanding very slowly.  

 

Despite establishing significant weights of evidence relationships for all other land-cover 

transitions, minimum fuzzy similarity between simulated and observed 2011 land-cover 

remains below 0.15 up to a 50 pixel window size. Maximum fuzzy similarity at this 

window size approaches 0.5, but minimum similarity is a better estimate of fit because 

even randomly distributed changes can produce high maximum similarities [69]. 

Although our fuzzy similarities were low, we found that land-cover change was more 

likely to occur in places where our modeled probability of transition was high (Fig. 5.24), 

indicating that our probability maps do appropriately capture spatial patterns of land-

cover change, although our land-cover simulation does not (Fig. 5.23).  

 

 

https://paperpile.com/c/M1iebX/EH2BK
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Scenarios of Land-cover Change 

The five scenarios differ in terms of land-cover composition and pattern (Fig. 5.25). 

Because Vermont’s landscape is currently dominated by forest cover, very large changes 

in transition rates were necessary to noticeably change the overall composition of the 

landscape, and as a result many differences appear subtle at a statewide scale. This is 

particularly true for Ironic Hyper-locality, which is similar to the business as usual 

scenario. However, where changes did occur, they were distinct among scenarios (Fig. 

5.25). Most generally, Laissez Faire was characterized by an increase in developed land, 

Skyscrapers in the Champlain Valley by forest regrowth and wetland restoration, and Self 

Sufficient Vermont by the expansion of agriculture and timber harvest.  

 

Consequences for Flood Risk 

The modeled differences among scenarios affected flood risk. Scenarios differed in terms 

of demand for flood mitigation from developed areas (Fig. 5.26a), demand from 

agricultural areas (Fig. 5.26b), and in terms of the supply of of flood mitigation by 

ecosystems (Fig. 5.26c). Three scenarios result in an increase in demand for flood 

mitigation and a simultaneous decrease in their supply, exacerbating flood risk (Business 

as Usual, Laissez Faire, Self Sufficient Vermont), one resulted in an overall decrease in 

risk despite moderate loss of ecosystem service supply (Ironic Hyper-locality), and one 

resulted in increasing supply and decreasing demand for flood mitigation (Skyscrapers in 

the Champlain Valley). 
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Ecosystem Service Threat Assessment 

Flood mitigation service will be increasingly threatened if a future resembling the Laissez 

Faire or Self Sufficient Vermont scenarios occurs. In these cases, the supply of ecosystem 

service decreases as demand simultaneously increases (Fig. 5.26). We are thus able to 

ascertain that the ratio of supply to demand is declining, and categorize flood mitigation 

service as “critically endangered” according to Maron et al.’s (2017) threat categorization 

(Fig. 5.27). In contrast, the Skyscrapers in the Champlain Valley scenario depicts a future 

where this ecosystem service is in recovery: the supply of the service increases 

moderately, but demand for the service also decreases so that overall supply would be 

much closer to meeting demand than today (Fig. 5.27). Ironic Hyper-locality represents a 

mix of these two outcomes; in this scenario, people respond to extensive flood impacts (a 

near term lack of ecosystem service) by moving outside of flood-prone areas. The result 

is that flood mitigation falls far short of meeting demand (i.e., is threatened) for part of 

the time between the present day and 2060, but by 2060 this service is less threatened 

than today despite small decreases in service supply (Fig. 5.27). 

 

Targeting Conservation 

The location of natural cover loss varied greatly across scenarios. Similarly, the amount 

and spatial pattern of changes in demand and supply for flood mitigation varied widely 

such that very few watersheds saw an increase in risk across a majority of scenarios. 

However, we could identify isolated opportunities to reduce risk robust to the variation 

among scenarios (Fig. 5.28). 
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Targeting the most important watersheds on the basis of ecosystem service benefit 

resulted in a different set of prioritized watersheds than targeting ecosystem service 

supply alone. Targeting conservation priorities based on current patterns of demand 

captured areas with higher future flood risk than targeting supply in all scenarios, despite 

the fact that demand changed markedly across scenarios (Fig. 5.26a-b). This suggests that 

targeting supply is a poor hedging strategy against uncertainty in the future distribution of 

demand. 

Discussion and Conclusions 

The breadth of trajectories represented by our scenarios illuminate that future land-cover 

patterns may deviate fundamentally from recent trends. The scenarios envisioned as 

plausible by our group of stakeholders differed substantially from each other and from 

the business as usual scenario, both qualitatively and in terms of quantitative land-cover 

outcomes. As such, the probability of land-cover change under the business as usual 

scenario does not nearly capture the spectrum of land-cover change envisioned as 

plausible in our scenarios. This uncertainty about the future is both a challenge and an 

opportunity in the conservation planning process. On the one hand, conservation and land 

use planners cannot be sure of the threats and risks they face, which makes it more 

difficult to target investments. On the other hand, their decisions will influence which 

scenario, or scenarios, the future of Vermont most resembles.  
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Our land-cover simulation illustrates that it is difficult to accurately capture the specific 

locations of change by calibrating a simulation model to past changes. Our fuzzy 

similarity analysis indicates that we were not able to predict real changes based on our 

weights of evidence (Fig. 5.22). This is because there were very few land-cover changes 

relative to the number of pixels with nearly equal high probabilities of change. As a 

result, a small number of simulated changes were allocated randomly across a much 

larger number of candidate pixels. Much of what drives land-cover change comes down 

to individual decisions that are not predictable, and appear stochastic in a simulation 

model. For instance, land-cover change may be more likely when parcels of land have 

recently been inherited and split among a younger generation, and when forested parcels 

have reached their 30 year rotation and are ready to be harvested for timber. A few events 

such as these may drive the majority of changes for a particular land-cover transition 

when so few changes are happening on the landscape overall.  

 

It has long been recognized that “fast” drivers of land-cover change (such as discrete 

human behaviors) make land-cover change prediction difficult, even as “slow” 

determinants like our predictor variables allow us to constrain and identify patterns 

[16,85]. Other types of models, namely agent based models, are designed to capture these 

individual human behaviors directly [86]. The statistically-driven type of land-cover 

change model that we employ here is designed to capture the overall patterns in land-

cover that emerge from “slow” drivers like environmental gradients and demographic 

trends. Our validation indicates that our model captured these patterns well.  For all land-

https://paperpile.com/c/M1iebX/Y9wln+CSqj5
https://paperpile.com/c/M1iebX/s0sv3
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cover transitions, observed changes were more likely in places where modeled 

probabilities of change were high (Fig. 5.23). This demonstrates that our probability 

maps capture current patterns in land-cover change, and are a sound baseline for 

establishing exploratory scenarios.  

 

Our scenarios diverged widely from each other, but is this range of possibility large 

enough that it would change the decisions of conservation and land use planning 

organizations thinking about the future? We find that our scenarios are divergent enough 

to differ in term of their ecosystem service threat assessment outcomes. Under a business 

as usual scenario threat to flood mitigation services remains relatively stable, but across 

all scenarios threat level could range from critically endangered to least concern by 2060 

(Fig. 5.28). Our threat assessment only represents changes that result from land-cover 

change. Vermont is experiencing an increase in the frequency and intensity of flooding 

due to climate change [62]. We do not account for climate change in our analysis, but it 

would manifest in our framework as an increase in flood hazard and exacerbate flood 

risk. The threat range represented by our scenarios is thus an underestimate of threat.  

 

Our analysis demonstrates several challenges in applying ecosystem service threat 

assessment. In the case of flood mitigation, there is not a clear threshold where supply 

meets demand. Rather, identifying such a threshold would require defining an 

“acceptable” frequency and severity of flooding. Secondly, we quantify flood mitigation 

using an index based approach that allows us to assess relative increases and decreases in 

https://paperpile.com/c/M1iebX/hRdg9
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supply and demand, and to combine them into an index of ecosystem service by 

weighting supply and demand equally. However, our approach does not allow us to 

quantitatively equate one unit of supply to one unit of demand. As a result, we cannot 

determine how the ratio of supply and demand is changing in cases where both are 

increasing or decreasing. This is true of our Ironic Hyper-locality scenario, which 

involves reductions in both supply and demand (Fig. 5.26). These challenges are likely to 

apply broadly in applying the ecosystem service threat assessment we adopted [45].  

 

Our scenarios represent diverging outcomes in terms of the spatial patterns of ecosystem 

service losses as well as their overall degree of threat. This uncertainty presents a real 

challenge in terms of conservation planning and land use policy. Understanding how 

likely it is that conservation features will be lost if they are not protected is crucial to 

targeting conservation investments efficiently [87]. However, we find that there are very 

few opportunities to make conservation investments that are robust to the spectrum of 

land-cover change that our scenarios represent. There are few places that experience 

natural cover loss under all, four, or even three of our scenarios. Similarly, there are very 

few watersheds that experience increases in flood risk across most scenarios. However, 

those watersheds that do see risk increases in four or five scenarios are very likely to be 

sound investments. These watersheds are different than the ones with the greatest current 

flood risk (Fig. 5.28-5.29), indicating that the dominant patterns in future changes may 

not be clearly reflected by current landscape patterns.  

 

https://paperpile.com/c/M1iebX/QssMu
https://paperpile.com/c/M1iebX/l6p1F
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This presents a challenge: what is the best strategy for targeting actions today so that they 

will most effectively benefit future generations? One option could be to target 

conservation towards places that have the greatest potential to benefit people, rather than 

targeting conservation towards the places where benefits are currently the highest. The 

former case is achieved by targeting present day service supply, whereas the latter is 

achieved by taking both supply and demand into account. Research to date has 

established that incorporating demand can make conservation planning efforts much 

more efficient in the near term [36]. However, large uncertainty in land-cover indicates 

large uncertainty in the future distribution of people, and thus demand for ecosystem 

services. In cases where this uncertainty in demand is sufficiently large, targeting supply 

may be a more effective strategy for protecting ecosystem services in the long run. 

However, our analysis indicates that in Vermont, uncertainty in the spatial distribution of 

future demand is sufficiently small such that targeting conservation efforts based on the 

current distribution of demand outperforms targeting supply in all scenarios. Because our 

scenarios are quite divergent from each other, this suggests that incorporating demand 

remains important in efficiently conserving ecosystem services over time horizons of 

approximately 50 years. 

 

The narratives of our scenarios also present several interesting dynamics outside of our 

quantitative assessment of flood outcomes. The desirability of different scenarios can not 

be judged solely by their ecosystem service outcomes. For example, the Skyscrapers in 

the Champlain Valley and Ironic Hyper-locality scenarios essentially represent two 
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different pathways towards the same flood mitigation outcome: demand decreases 

drastically though local emigration out of flood zones in both cases. However, in the 

former this emigration occurs gradually and proactively with the assistance of public and 

nonprofit sector funding via buyouts of flooded homes and flood easements on 

agricultural land. In the latter people are forced out of their homes following floods 

because insurance coverage and public programs that subsidize rebuilding in flood zones 

are reduced. The Skyscrapers in the Champlain Valley Scenario is clearly more desirable 

in this light.  

 

Secondly, our scenarios did not include any case where increased demand for flood 

mitigation services was accompanied by an increase in their supply. This would be 

hypothetically possible if an expansion of development and agriculture in floodplains 

occurred simultaneous to a re-naturalization of these areas outside of floodplains. This is 

essentially the pattern that Vermont has experienced for the past 150 years, thus the 

absence of this outcome among our scenarios is a clear indication that the land-cover 

trajectory of Vermont is shifting. That this is not the pattern in the business as usual 

scenario is likely because these changes are approaching their full possible extent: much 

of Vermont’s current agriculture and development occurs in floodplains, and much of the 

remainder of the state is already forested, thus only very small increases in floodplain 

development and non-floodplain forest regeneration are possible. 
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Finally, rather than arriving at one most desirable scenario, Skyscrapers in the Champlain 

Valley and Self Sufficient Vermont act as two different visions of a sustainable Vermont 

landscape. We demonstrate here that the Skyscrapers in the Champlain Valley scenario 

outperforms Self Sufficient Vermont in terms of flood mitigation outcomes, but the Self 

Sufficient Vermont narrative represents the prioritization of a different set of ecosystem 

services: food production, timber harvest, and cultural services associated with 

Vermonters’ pride in a “working landscape”. That the land-cover implications of these 

two narratives are so different (Fig. 5.25) indicates that there may be fundamental 

tradeoffs between these different visions of sustainability in Vermont. In light of this 

tension, future work assessing the implications of these scenarios across a range of other 

ecosystem services may be highly valuable in quantifying the tradeoffs presented by 

these two competing visions, and in identifying opportunities to simultaneously pursue 

the positive aspects of each.  

 

In conclusion, we present a set of scenarios that represent four unique visions of 

Vermont’s future, each of which diverges from a business as usual scenario. Our 

application of these land-cover scenarios to flood mitigation services illuminates how 

their use in planning for ecosystem services. The uncertainty encapsulated by our 

scenarios is large enough to change the outcome of ecosystem service threat assessment. 

We also demonstrate that the importance of incorporating demand in conservation 

planning is robust to this uncertainty. Applying these scenarios to a broader suite of 

ecosystem services will help to determine vulnerabilities and opportunities with regards 
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to other services individually, and also to determine the tradeoffs among services 

presented by future land-cover change.  
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Figures 

Fig. 5.22    Summary of scenario space as defined by the two primary drivers of change 

identifies by our group of knowledge brokers: The scale of community (in red) and 

strength of proactive policies (in blue). Black labels are the endpoints of these two 

axes. Grey labels indicate the four resulting scenarios.  
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Fig. 5.23    Fuzzy Correlation between simulated and observed 2011 land-cover as a 

function of window size. Fuzzy similarities represent the two-way comparisons 

between actual and observed transitions. The minimum similarity represents the 

similarity obtained by comparing simulated changes against actual ones. The 

maximum similarity represents the similarity obtained by comparing actual changes 

against simulated ones. Together these bound the similarity in spatial patterns 

between simulated and actual land cover changes, but in the latter case high 

similarities can be found even when comparing against a random map, and as a 

result minimum similarity is likely a better indicator [69].  
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Fig. 5.24    Validation of probability maps for each land-cover transition. Plots show the 

number of actual land-cover changes during the 2001-2011 reference period (on the 

y-axis) as a function of modeled probability of land-cover change. Curves shown are 

loess regressions and shaded areas depict 95% confidence intervals.  
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Fig. 5.25    2060 land-cover composition, final landscape maps, and maps of land-cover 

changes under each scenario. 
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Fig. 5.26    Flood mitigation outcomes of each scenario. A) The spatial distribution of 

changes in development demand. B) The spatial distribution of changes in 

agricultural demand. C) The spatial distribution of changes in quick-flow (where an 

increase in quick-flow represents a decrease in the supply of flood mitigation) and 

D) the cumulative statewide degree of change in each. 
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Fig. 5.27    Threat assessment of flood mitigation ecosystem services in each scenario. 

The table is adapted from [45]. 
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Fig. 5.28   The number of scenarios in which the Vermont landscape is projected to 

experience A) natural cover loss at a 30m resolution and B) increased flood risk at a 

watershed scale. 

 

  



 167 

Fig. 5.29    Targeting present day supply, V.V. targeting present day benefit. A) Map of 

the watersheds identified as priorities based on 2011 flood mitigation supply and 

benefit and B) The relative flood risk in the year 2060 of watersheds prioritized 

based on 2011 flood mitigation supply and benefit. 
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CHAPTER 6: CONCLUSIONS 

In this dissertation, I begin by quantifying the economic value of a single ecosystem 

service, flood mitigation, to the town of Middlebury, Vermont. I estimate that the mean 

annual value of upstream wetlands and floodplains is between $126,000 and $459,000, 

and that these wetlands reduced damages from Tropical Storm Irene by over ninety 

percent. Most broadly, this indicates that overlooking the value of ecosystem services 

when making land use decisions can have large consequences for human well-being. The 

challenge that emerges from this conclusion is to safeguard those places that are currently 

providing substantial benefits to people. In the remainder of the dissertation, I address 

three questions that are each important to efficiently targeting conservation for ecosystem 

services.  

 

Ecosystem services have to two different components: the biophysical supply of services 

by landscapes, and the demand for services by human beneficiaries. Ecosystems only 

benefit people when sources of supply are connected to sources of demand via ecosystem 

service flows. However, many efforts to identify spatial priorities for ecosystem services 

focus primarily or exclusively on supply. In the second chapter, I compare the ecosystem 

service and biodiversity benefits provided by priority areas when those areas account for 

demand, and when they do not. I find that demand shifts the spatial distribution of 

ecosystem services such that supply serves as a poor proxy for real benefits. I also find 

that targeting the places that benefit people the most does not exacerbate trade-offs 

between biodiversity and ecosystem services.  
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In the third chapter, I look more closely at the tradeoffs involved in targeting ecosystem 

services alongside biodiversity. I find that the spatial coincidence between specific taxa 

and ecosystem services varies widely, and is largely determined by whether optimal 

conservation targets for each are value seeking or cost minimizing. I also find that the 

overlap of biodiversity and ecosystem services improves as the number of ecosystem 

services and the breadth of taxa used in defining conservation priorities increases, such 

that organizations broadly targeting ecosystem services are likely to achieve significant 

biodiversity co-benefits, even if they do not explicitly seek them out. Furthermore, the 

financial costs of achieving ecosystem service goals in addition to biodiversity 

conservation are likely low compared to the additional funds garnered by framing 

conservation around human benefits. Overall, we find that ecosystem service 

conservation is more likely to boost biodiversity outcomes than to undermine them. 

 

Finally, I generated four scenarios about what Vermont’s landscape might look like in the 

future, and coupled these spatially explicit models of land-cover and flood mitigation 

ecosystem service. This revealed that we face high uncertainty when identifying future 

conservation priorities for flood risk, and that the current spatial distribution of flood risk 

is not a good indicator of future risk increases. I test whether the primary conclusion from 

Chapter 2, that incorporating demand is critical to spatially targeting benefits, holds true 

over longer time spans. I find that this conclusion is robust to the degree of uncertainty 

encapsulated by scenarios envisioned as plausible by a group of Vermont stakeholders. 
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Collectively, this body of work points to several policy implications for the state of 

Vermont. Planning efforts should consider how to reduce flood risk. In my second 

chapter, I find that protecting naturally functioning floodplains in the state is a cost 

effective means of promoting flood resilience.  We do not measure the potential effect of 

restoring the hydrologic function of floodplains where it has been lost. This is a potential 

opportunity, although it would be much more costly than protecting existing floodplains. 

Vermont currently benefits from predominantly forested watersheds outside of floodplain 

areas, and there is little room for reducing runoff by increasing natural cover in 

headwaters. Thus protecting hydrologic function of floodplains before it is lost is likely to 

be a unique opportunity to reduce flood risk at low cost.  A second key opportunity for 

reducing flood risk is minimizing floodplain development wherever possible. In our 

scenario analysis, we find the increases and decreases in flood hazard, in the form of 

floodplain development, play a large role in determining whether flood risk will increase 

or decrease into the future.  

 

This body of work also points to some of the opportunities and challenges that Vermont 

will face in pursuing a sustainable future. In Vermont, conservation efforts that seek to 

simultaneously protect biodiversity and multiple ecosystem services that flow from 

relatively natural landscapes (e.g. flood mitigation, nature-based recreation, crop 

pollination, and carbon storage) are likely to find efficient ways of doing so. This is likely 

a particularly large opportunity in Vermont: because a majority of the state is forested 
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and the state does not comprise a large diversity of ecosystem types, there is more room 

to find win-win opportunities than there would be in a location with higher endemism or 

less remaining natural land. On the other hand, efforts that seek to protect a single 

ecosystem service will need to be careful to locate specific opportunities for biodiversity 

co-benefit. Furthermore, our stakeholders voiced two different visions of Vermont 

becoming more sustainable. These two visions involved different, and often 

contradictory, land cover trajectories. Future planning efforts should consider how to 

balance Vermont’s goals of local food, energy, and forest products production with the 

desire to safeguard the state’s natural communities.   

 

Overall, this body of research highlights the importance of having good spatial 

information when doing conservation planning for multiple criteria. However, where this 

information is lacking, our results point to two potentially helpful heuristics for 

identifying conservation opportunities. First, optimal solutions for almost all criteria 

tended to concentrate around low cost areas, thus cost minimizing is a relatively good 

heuristic in Vermont. Secondly, optimal conservation areas for multiple ecosystem 

services and biodiversity tended to resemble Vermont’s current set of conserved lands, 

indicating that the areas adjacent to existing conserved lands are likely to be good 

investments. 

 

Theoretically, this body of research indicates that efficiently and effectively conserving 

ecosystem services is critical to a more sustainable land system. Efficiently safeguarding 
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the benefits from nature to people requires placing equal emphasis on the human and 

biophysical aspects of ecosystem services, and does not necessarily involve steep 

tradeoffs for biodiversity. Targeting ecosystem service conservation for future 

generations will be more difficult than identifying efficient conservation targets in the 

short run, and the scenarios I present here can serve as a tool is identifying future 

vulnerabilities and priorities. My hope is to pair these scenarios with a broader set of 

ecosystem services in the future.  
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APPENDIX: Modeling Land-cover Change Based on Scenario Narratives 

Self Sufficient Vermont 

Amount of Agriculture 

To model this scenario, we adopt the “omnivore’s delight” vision of agricultural 

production from “A New England Food Vision” [88]. This scenario involved a diet where 

approximately half of the footprint of Vermonters diets falls within the New England. 

This would require approximately 15% of the landscape to be used for agricultural 

production, a three-fold increase on its current ~5% across New England. According to 

“omnivore’s delight”, this large increase in the amount of New Englander’s food 

footprint that occurs regionally is possible will a relatively small increase in ag land due 

to a diet shift that hinges on consuming less dairy. Our Self sufficient Vermont scenario 

specifies that that agriculture will continue to thrive in Vermont, but that dairy production 

will decrease. This focus on regionalizing food footprints by shifting diets away from 

dairy thus make the “omnivore's delight” scenario highly compatible with out “Self 

Sufficient Vermont” scenario. However, we needed to estimate how much of this 

regional expansion of ag would occur in Vermont, whose land cover is currently about 

13% agricultural. On the one extreme, if we assume that the proportion of agriculture in 

New England that occurs in Vermont will remain roughly the same, and triple the amount 

of ag land in the state such that 39% of the state is used for food production. The 

alternative would be to assume that each state equally shares this burden, and Vermont 

expands its agricultural system the additional 2% such that 15 percent of the state is used 

for food production. We take the mean of these two extremes, such that in this scenario 

https://paperpile.com/c/M1iebX/twqDN
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27% of the state is in an agricultural land cover. We accomplish this increase in 

agricultural land by applying an equal 0.0375 transition rate for the transitions from 

shrub/scrub to agriculture and forest to agriculture.  

 

Pattern of Agricultural Expansion 

In this scenario, agriculture expands on the best agricultural soils. To implement this, we 

assigned a positive weight of 5 to prime farmland and farmland of statewide importance, 

a weight of 3 to areas classified as prime farmland if drained, and prime farmland if 

protected from flooding, a weight of 2 to farmland of statewide importance if drained and 

farmland of local importance, and a weight of -5 to places that were not prime farmland 

for all transitions to ag land. We also assumed that in this case there would be more 

proactive planning of agriculture’s footprint, even though that footprint would be large. 

To implement this in the model we applied a 1.1 patch isometry to ag lands, creating 

slightly more isometric patches and less random patterns for new agricultural lands than 

in the business as usual scenario. 

 

Spatial Pattern of Development 

In this scenario, proactive environmental policy mindful of the losses of natural 

communities due to food, energy, and timber production has a stronger influence in 

concentrating new development around city and village centers. The Vermont 

Department of Housing and Community Development has developed a dataset of growth 
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centers consisting of downtowns, town and village centers, neighborhoods and other 

areas designated for new growth [74]. In the business as usual scenario, the weights of 

evidence favoring growth centers were positive (2.44 for the transition from shrub/scrub 

to developed and 4.68 for forest to developed), but negative weights of evidence for areas 

outside of these growth centers were approximately zero. We assigned a woe  of -2 for 

shrub/scrub to developed and forest to developed outside of growth centers. We also 

applied a 1.1 patch isometry to new developed lands, creating slightly more isometric 

patches and less random patterns than in the business as usual scenario. 

 

Forest Products Harvest 

The transition from shrub/scrub to forest exceeded the transition from forest the 

shrub/scrub in the BAU scenario. In the Working Landscape scenario, timber harvest 

increases such that most demand for forest products are met within the state. To 

implement this in the model, we increase the transition rates for these transitions are 

equal, to approximate a situation where forest cutting and regrowth are equal. We also 

increase the amount of forest to shrub/scrub transition that happens within current use 

areas by increasing the negative WOE for a forest to scrub transition outside of current 

use parcels from -2.17 to -3.17, and we increase the positive weight of evidence for this 

transition within current use areas from 2.77 to 3.77.   

 

Wetland Loss 

https://paperpile.com/c/M1iebX/ZvyoJ
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We assume that there will be no loss of legislative wetlands in this scenario, and set all 

transition rates from wetland to other land cover types to zero.  

Ironic Hyper-locality 

Development Pattern:  

This scenario stipulates that the amount of developed land does not increase. As Vermont 

becomes increasingly gentrified as a location for the wealthy elite, poorer demographics 

cannot move to or thrive in Vermont, and the population increases expected in other 

scenarios do not occur. However, the pattern of development changes in two important 

ways: 

 

Sprawl:   

Under weak governance forest fragmentation increases as second home owners and 

wealthy residents develop homes in the most aesthetically appealing places. The poorer 

population of Vermont is housed in sprawl pattern development. To implement this 

pattern of development, we decreased the slope of the negative relationship between 

distance from roads and/or distance from existing developed lands and the woe for a 

transition from wetlands, forests, or scrub to developed land. 

 

Move out of floodplains:  
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Secondly, people are forced out of floodplains because the financial structures no longer 

exist to subsidize rebuilding in flood-plains after floods. To implement this change, we 

allocated a transition rate of 0.01 for transitions that represent the loss of developed land 

and regeneration of floodplain forests and wetlands. We also changed the transition rate 

to  0.01 for shrub/scrub to developed and forest to developed to to compensate for these 

losses. We changed the weights of evidence for floodplains for these transitions 

accordingly: We assigned a large negative weight of evidence for new floodplain 

development (-10), and a positive weight of evidence for new development outside of 

floodplains (5). According to current trends, there are too few transitions out of a 

developed land cover class to determine any statistically significant weights of evidence 

explaining the distributions of these transitions. As such, we assigned a weight of 

evidence of zero (no effect) for all explanatory variables where no logical relationship 

could be inferred, and made the following assumptions about these transitions: 

 

● Essentially all loss of developed lands would occur within floodplains; we 

assigned a weight of evidence  of -10 outside of floodplains and 5 inside of floodplains. 

 

● Loss of developed land is most likely where population density is decreasing; we 

applied positive weight of 2 for places experiencing decreases in population density 

 



 192 

● In this scenario families are forced to abandon their homes in floodplains because 

it is not economically feasible to rebuild. As a result this transition will have a larger 

effect in lower income rural areas in the Northeast Kingdom and southern Vermont. We 

applied decreasing weights of evidence with increasing median household income 

(woe=2 for medhhi of 0-30,000, 1 for 30,000 to 50,000, and 0 for 50,000-69,000) 

 

● Basic infrastructure like roads is likely to be rebuilt, whereas private homes and 

businesses would not. To maintain the integrity of the road system within floodplains, we 

assigned a -10 weight of evidence for areas within 30m of roads ( 30m = 1 pixel). 

 

● When developed areas are lost within floodplains, they are most likely to 

transition to wetlands in identified potential wetland restoration sites. We applied a 

weight of evidence of 4 for the transition from developed land to wetland for wetland 

restoration sites. 

 

● When developed areas were lost within floodplains, the were most likely to 

transition to agricultural lands nearby existing agricultural lands, and applied a decreasing 

woe with distance from agriculture.  

 

Maintenance of a Rural Aesthetic: 
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Decreased the 5→ 4 transition by an order of magnitude, to prevent the forest harvest and 

regeneration seen in the business as usual scenario, In this scenario the aesthetic 

components of the landscape, like forested hillsides, will be maintained outside of low 

income sprawl zones 

Laissez Faire 

This scenario in many ways represents an exacerbation of market driven landscape 

changes. As a result, we kept many of the original weights of evidence from the business 

as usual scenario, with the following changes: 

 

Amount of Development:  

To represent the expansion of developed lands we assigned a 0.01 transition rate for the 

conversion of shrubland and forests to developed land. 

 

Development Pattern:  

In this scenario new development occurs in a sprawl band pattern. To implement this, we 

applied the same weights of evidence for distance to roads and distance to existing 

developed lands weight for all “to development” transitions as we did for the ironic 

Hyper-locality scenario, which also involved these relationships weakening to allow for 

an increase in low density development. To further spur sprawl type development, we 

allocated 20% of new developed lands to the expansion of existing developed lands, and 

allowed 80% of these transition to occur as the formation of new developed patches. 
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Pattern of Agricultural Expansion:  

In this scenario agriculture becomes more intensive and the amount of agricultural land 

increases, although not as much as in the “Self-Sufficient Vermont” scenario. To 

implement this increase in agricultural lands, we applied 0.01 transition rate for 

transitions from shrub/scrub and forest to agriculture. On average farm size increases, 

although some small boutique farms remain. As a point of comparison a farm of about 50 

acres, or about 20.5 hectares, counts as a certified small farm operation in Vermont 

(http://agriculture.vermont.gov/node/1322). To implement this, we assumed that 80% of 

agricultural expansion would occur by expanding existing agriculture, with just 20% 

implemented as the formation of new patches. We then set a very large patch size (300 ha 

for from conversion of shrub/scrub and forests to agriculture, and 100 ha for the 

conversion of developed areas and wetlands) to simulate the formation of large 

agricultural productions for export outside of the state. The formation of new ag patches 

was set to a very small patch size (15 ha) to simulate to formation of small boutique 

farms that sell specialty products at farmers markets. The expansion of urban, shrub, and 

forest areas into agriculture was set at 60 ha to simulate the loss of medium sized farms. 

Skyscrapers in the Champlain Valley 

Forest Regrowth and Expansion: 

This scenario envisions the widespread expansion or forest regrowth as the product of a 

strong environmental visions, without the pressures of a localized economy as in the Self-

http://agriculture.vermont.gov/node/1322
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Sufficient Vermont scenario. To implement, we parameterized this scenario to have no 

forest loss. We change all transition rates out of forest cover to zero, except for the 

transition rate from forest to wetland, where we retail the business as usual rate.  

 

Without the pressure of a local food economy, the focus of conservation shifts such that 

conserved lands no longer act to support small scale agriculture. To implement this we 

assigned a weight of evidence of 10 for the transition from ag to forest in conserved lands 

with a gap status of 1-4, and a weight of evidence of 5 for places with a gap status of 39. 

Wetlands and Floodplains: 

In this scenario there is also a renewed focus on river corridors, riparian connectivity, and 

wetland restoration. To implement this, we increased all transitions into wetlands by one 

order of magnitude, and assigned a +15 weight of evidence for new wetlands in identified 

wetland restoration sites. This approximates a case where all identified wetland 

restoration sites are converted to wetlands. We also implemented the same weights of 

evidence and transition rates for the loss of developed lands within floodplains as in the 

Ironic Hyperlocality scenario with the following alterations: 

o Changes were not income driven in this scenario, so we removed the weight of 

evidence for median household income. 

o We added a -5 weight of evidence for urban growth in floodplains.  
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o We removed the negative weight of evidence associated with distance to roads; 

this scenario envisions that roads and infrastructure would also be moved outside of flood 

prone areas where possible. 

Development Pattern: 

This scenario envisions high density smart growth in former agricultural lands to 

compensate for the contraction of low density sprawl and the move away from floodplain 

development. To implement the move out of floodplains, we set the transition rate from 

developed to all other transitions to 0.01, which is the same as ironic Hyper-locality 

scenario. We increased the transition rate from agriculture to urban to 0.001 to 

compensate for the loss of developed lands to natural cover. We assumed that nothing 

other than agriculture would transition to development except for a few pockets within 

growth centers (to do this, we applied a 0.00001 transition rate for from shrub/scrub to 

development within designated growth centers). To ensure that new development would 

occur in a “smart growth” pattern, we assigned a +10 for new development in designated 

growth areas. We also changed developed land patch isometry to 1.5, and the patch size 

to 40ha. 

 

Agriculture: 

Without the pressure of a local food economy the extent of agricultural land contracts in 

this scenario. We increased the transition rate from agriculture to forests by two orders of 

magnitude (This is the rate increase needed to ensure that a larger total area of ag 
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converted to forest than the developed land each time step). We concentrated remaining 

agriculture on the best agricultural soils by assigning prime farmland given a positive 

weight of 5, farmland of statewide importance a positive weight of 1. All other 

classifications (e.g. areas that need to be drained or protected from flooding to be good 

for agriculture, and places listed as only of local importance) were given a -2 weight. We 

also increased the patch isometry of agriculture to 1.1. 
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