
University of Vermont
ScholarWorks @ UVM

Graduate College Dissertations and Theses Dissertations and Theses

2017

A Formal Approach to Combining Prospective and
Retrospective Security
Sepehr Amir-Mohammadian
University of Vermont

Follow this and additional works at: https://scholarworks.uvm.edu/graddis

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for
inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact
donna.omalley@uvm.edu.

Recommended Citation
Amir-Mohammadian, Sepehr, "A Formal Approach to Combining Prospective and Retrospective Security" (2017). Graduate College
Dissertations and Theses. 802.
https://scholarworks.uvm.edu/graddis/802

https://scholarworks.uvm.edu?utm_source=scholarworks.uvm.edu%2Fgraddis%2F802&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uvm.edu/graddis?utm_source=scholarworks.uvm.edu%2Fgraddis%2F802&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uvm.edu/etds?utm_source=scholarworks.uvm.edu%2Fgraddis%2F802&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uvm.edu/graddis?utm_source=scholarworks.uvm.edu%2Fgraddis%2F802&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.uvm.edu%2Fgraddis%2F802&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uvm.edu/graddis/802?utm_source=scholarworks.uvm.edu%2Fgraddis%2F802&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:donna.omalley@uvm.edu

A Formal Approach to Combining
Prospective and Retrospective

Security

A Dissertation Presented

by

Sepehr Amir-Mohammadian

to

The Faculty of the Graduate College

of

The University of Vermont

In Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

Specializing in Computer Science

October, 2017

Defense Date: July 14th, 2017
Dissertation Examination Committee:

Christian Skalka, Ph.D., Advisor
Christelle Vincent, Ph.D., Chairperson

Jeffrey Dinitz, Ph.D.
Byung Lee, Ph.D.

Cynthia J. Forehand, Ph.D., Dean of Graduate College

Abstract

The major goal of this dissertation is to enhance software security by provably correct
enforcement of in-depth policies. In-depth security policies allude to heterogeneous
specification of security strategies that are required to be followed before and after sen-
sitive operations. Prospective security is the enforcement of security, or detection of
security violations before the execution of sensitive operations, e.g., in authorization,
authentication and information flow. Retrospective security refers to security checks
after the execution of sensitive operations, which is accomplished through account-
ability and deterrence. Retrospective security frameworks are built upon auditing in
order to provide sufficient evidence to hold users accountable for their actions and po-
tentially support other remediation actions. Correctness and efficiency of audit logs
play significant roles in reaching the accountability goals that are required by ret-
rospective, and consequently, in-depth security policies. This dissertation addresses
correct audit logging in a formal framework.

Leveraging retrospective controls beside the existing prospective measures en-
hances security in numerous applications. This dissertation focuses on two major
application spaces for in-depth enforcement. The first is to enhance prospective secu-
rity through surveillance and accountability. For example, authorization mechanisms
could be improved by guaranteed retrospective checks in environments where there
is a high cost of access denial, e.g., healthcare systems. The second application space
is the amelioration of potentially flawed prospective measures through retrospective
checks. For instance, erroneous implementations of input sanitization methods expose
vulnerabilities in taint analysis tools that enforce direct flow of data integrity poli-
cies. In this regard, we propose an in-depth enforcement framework to mitigate such
problems. We also propose a general semantic notion of explicit flow of information
integrity in a high-level language with sanitization.

This dissertation studies the ways by which prospective and retrospective secu-
rity could be enforced uniformly in a provably correct manner to handle security
challenges in legacy systems. Provable correctness of our results relies on the formal
Programming Languages-based approach that we have taken in order to provide soft-
ware security assurance. Moreover, this dissertation includes the implementation of
such in-depth enforcement mechanisms for a medical records web application.

To my parents, Nasrin and Sirous,
and the joy of my life, Afsoon

ii

Acknowledgements

My advisor, Prof. Christian Skalka, deserves my sincerest acknowledgement for his

dedication, insight and resourcefulness throughout the writing of this dissertation. He

helped me develop my skills as a researcher by actively exploring different solutions

to the problems and reaching out to other scholars in order to bring in new ideas.

I consider myself very fortunate that I have had the opportunity to work with him

within the last few years.

I would like to thank Prof. Stephen Chong at the Harvard University, who along

with Prof. Skalka came up with the seeds for this dissertation, and collaborated

in different aspects of this research. I would also like to thank Prof. Trent Jaeger

at the Pennsylvania State University, whose consultation flourished in applying our

proposed techniques on real-world problems.

Besides my advisor, my gratitudes are also due to other members of the disserta-

tion defense committee. Thank you to Prof. Christelle Vincent for kindly accepting

to be the chair of this committee. Prof. Byung Lee has been a great source of support

for me during my doctoral studies, for which I am extremely grateful. Thank you

to Prof. Jeffrey Dinitz for agreeing to be a member of this committee not very long

before the defense.

I would also like to acknowledge Emeritus Prof. Robert Snapp and Prof. Alan

Ling as members of my doctoral studies committee, especially Prof. Snapp who has

been an invaluable mentor and has continuously supported me during my studies at

the University of Vermont. I would also like to express my gratitude to the other

faculty at the Department of Computer Science, including Prof. Joshua Bongard and

Prof. Maggie Eppstein.

iii

I consider myself indebted to Prof. Mehran S. Fallah at the Amirkabir University

of Technology, who introduced me to the formal aspects of Computer Science during

my undergraduate studies, and in a later stage, helped me with a great enthusiasm to

take my first steps in doing research in the realm of Programming Languages-based

security.

On a rather personal note, I would like to thank my family for their absolute

support and companionship: my mother, Nasrin, and my father, Sirous, who have

always encouraged me to be ambitious and follow my dreams; my sister, Sepideh,

who is a great source of delight in my life; and the love of my life, Afsoon, who has

filled my life with joy and happiness.

This dissertation has been supported in part by the United States National Science

Foundation, under Grant No. 1408801.

iv

Table of Contents
Dedication . ii
Acknowledgements . iii
List of Figures . ix

1 Introduction 1
1.1 Foundations of Audit Logging . 5
1.2 Application 1: Temporal Properties of Function Calls and Break the

Glass Policies . 6
1.2.1 A Motivating Example from Practice 8
1.2.2 Threat Model . 10

1.3 Application 2: Direct Information Flow and Dynamic Integrity Taint
Analysis . 10
1.3.1 Vulnerability and Countermeasures 14
1.3.2 Semantics of Dynamic Integrity Taint Analysis 16
1.3.3 The Security and Threat Model 18

1.4 Related Work . 20
1.5 Overview and Main Technical Results of this Dissertation 27

2 A Semantics of Audit Logging 31
2.1 Introduction to Information Algebra 31

2.1.1 Illustrative Example: Relational Algebras 33
2.2 General Model for Logging Specifications 35
2.3 Correctness Conditions for Audit Logs 36
2.4 Correct Logging Instrumentation is a Safety Property 38
2.5 Implementing Logging Specifications with Program Rewriting 39
2.6 Languages for Logging Specifications 42

2.6.1 First Order Logic (FOL) . 42
2.6.2 Relational Database . 51
2.6.3 Transforming and Combining Audit Logs 56

3 Temporal properties of function calls: Break the glass policies 59
3.1 Source Language . 59

3.1.1 Syntax . 60
3.1.2 Semantics . 61

3.2 Rewriting Programs with Logging Specifications 64
3.2.1 Specifications Based on Function Call Properties 65
3.2.2 Edit Automata Enforcement of Calls Specifications 67
3.2.3 Target Language . 68

v

3.2.4 Program Rewriting Algorithm 70
3.3 Case Study on a Medical Records System 75

3.3.1 Break the Glass Policies for OpenMRS 78
3.3.2 Code Instrumentation . 79
3.3.3 Proof Engine . 81
3.3.4 Writing and Storing the Log 82

3.4 Reducing Memory Overhead . 83
3.4.1 Language with Memory Overhead Mitigation 87
3.4.2 Correctness of Memory Overhead Mitigation 90
3.4.3 An Illustrative Example for Memory Overhead Mitigation . . 99

4 Direct Information Flow: Dynamic Integrity Taint Analysis 103
4.1 An OO Model for Integrity Taint Analysis 105
4.2 In-Depth Integrity Analysis Specified Logically 108

4.2.1 Taint Tracking as a Logical Trace Property 109
4.2.2 Shadow Traces, Taint Propagation, and Sanitization 111
4.2.3 In-Depth Integrity Taint Analysis Policies 114

4.3 Taint Analysis Instrumentation via Program Rewriting 116
4.3.1 In-Depth Taint Analysis Instrumentation 116
4.3.2 Taint Propagation of Library Methods 117
4.3.3 Operational Semantics of FJtaint 118
4.3.4 An Illustrative Example: Dynamic Integrity Taint Analysis . . 119

4.4 Properties of Program Rewriting . 120
4.4.1 Semantics Preservation . 121
4.4.2 Operational Correctness for Prospective Analysis 123
4.4.3 Soundness/Completeness for Retrospective Analysis 124
4.4.4 Definition of :≈ and Correctness Results 125

5 The Meaning of Dynamic Integrity Taint Analysis 140
5.1 Direct Integrity Flow Semantics: Explicit Integrity 141

5.1.1 Model Specification . 142
5.2 An OO Model . 145

5.2.1 Operational Semantics . 146
5.2.2 Model instantiation for FJ . 147
5.2.3 Sanity Conditions on Library Methods 149
5.2.4 Illustrative Examples: Incompatibility of Noninterference and

Explicit Integrity . 151
5.3 Taint Analysis Instrumentation via Program Rewriting 153
5.4 Enforcement of Explicit Integrity Modulo Endorsement by R 155

5.4.1 Discussion . 159

vi

6 Conclusion and Future Work 162
6.1 Future Work . 164

vii

List of Figures

2.1 Properties of Natural Join and Projection 34
2.2 Concept Diagram: Logging Specification and Correctness of Audit Logs. 37

3.1 FJ Syntax . 61
3.2 Class Fields in FJ . 62
3.3 Method Bodies in FJ . 62
3.4 Method Inheritance in FJ . 63
3.5 Method Types in FJ . 63
3.6 FJ Operational Semantics . 64
3.7 Definition of toFOL(·) for Configurations. 64
3.8 Horn Clauses in Calls . 66
3.9 Edit Automata to Enforce Ideal Instrumentation 68
3.10 FJlog Syntax and Sematics Extensions. 69
3.11 Axioms for Rewriting Algorithm RFJ 71
3.12 Module Builder . 76
3.13 System Architecture . 77
3.14 A Simple Break the Glass Policy Specified in the Proof Engine Database. 79
3.15 Specifying Joint Points for Advices. 80
3.16 Querying the Log with SQL. 83
3.17 Precondition rules for FJ′log. 102
3.18 Logging Specification for Example 3.4.1 102

4.1 Extending FJ for Dynamic Integrity Taint Analysis. 107
4.2 Shadow Values, Expressions, and Evaluation Contexts. 111
4.3 Definition of Mapping srewrite. 112
4.4 match Predicate Definition. 113
4.5 Shadow Predicate Definition. 114
4.6 Predicates for Specifying Prospective and Retrospective Properties . 115
4.7 Axioms for Rewriting Algorithm . 118
4.8 Operational Semantics of FJtaint. 119
4.9 Example 4.3.1: Source Trace. 120
4.10 Example 4.3.1: Shadow Expressions. 121
4.11 Example 4.3.1: Target Trace. 122
4.12 Definition of overlay. 126
4.13 Definition of trim. 127

5.1 Stack-based Operational Semantics for FJ. 147
5.2 Definitions of control, state and 〈·, ·〉 in FJ. 147

viii

5.3 Definition trust equivalent states in FJ. 148
5.4 Definition of =◦ Relation. 150
5.5 Example 5.2.1: The Execution Trace, State Transformers, Attacker

Powers and Trust Equivalent Initial States. 152
5.6 Example 5.2.2: The Execution Trace, State Transformers, Attacker

Powers and Trust Equivalent Initial States. 153
5.7 Example 5.2.3: The Execution Trace, State Transformers, Attacker

Powers and Trust Equivalent Initial States. 154
5.8 Axioms for Rewriting Algorithm Restricted to Prospective Measures 155
5.9 Undertainting Example. 160

ix

Chapter 1

Introduction

Academic Programming Languages-based security researchers have mostly consid-

ered security controls intended to avoid violations before the execution of sensitive

operations. This type of enforcement is called prospective security throughout this

dissertation. Well-established instances include authorization, authentication, and

information flow control tools.

In an authorization system, for example, sensitive operations are defined as ac-

cesses to the system resources. A reference monitor mediates such operations for any

resource that is requested by a user. Therefore, user’s eligibility is studied by the

reference monitor before that user gains access to a resource. The reference monitor

implements a prospective measure in the enforcement of authorization policy as the

eligibility check precedes the access [1].

Information flow control is another major example of prospective security. Infor-

mation flow analyzers aim to prevent the flow of data in specific circumstances. For

instance, for the sake of confidentiality such tools prevent the assignment of “public”

data to “secret” data containers. To this end, a flow analyzer needs to mediate every

1

assignment and check the confidentiality level of both sides of an assignment in order

to either permit or prevent such action, and thus implements a prospective measure.

Retrospective security is the enforcement of security, or detection of security vi-

olations, after program termination or at least after the completion of certain op-

erations in non-terminating processes, e.g., operating systems and server-side pro-

grams. [2, 3, 4]. Many real-world systems use retrospective security. For example,

the financial industry corrects errors and fraudulent transactions not by proactively

preventing suspicious transactions, but by retrospectively correcting or undoing these

problematic transactions. Another example is a hospital whose employees are trusted

to access confidential patient records, but who might (rarely) violate this trust [5].

Upon detection of such violations, security is enforced retrospectively by holding re-

sponsible employees accountable [6].

Retrospective security cannot be achieved entirely by traditional computer secu-

rity mechanisms, such as access control, or information-flow control. Reasons include

that detection of violations may be external to the computer system (such as consumer

reports of fraudulent transactions, or confidential patient information appearing in

news media), the high cost of access denial (e.g., preventing emergency-room physi-

cians from accessing medical records) coupled with high trust of systems users (e.g.,

users are trusted employees that rarely violate this trust) [7]. In addition, reme-

diation actions to address violations may also be external to the computer system,

such as reprimanding employees, prosecuting law suits, or otherwise holding users

accountable for their actions [6].

Auditing underlies retrospective security frameworks and has become increasingly

important to the theory and practice of cybersecurity. By recording appropriate

2

aspects of a computer system’s execution an audit log (and subsequent examination

of the audit log) can enable detection of violations, and provide sufficient evidence

to hold users accountable for their actions and support other remediation actions.

For example, an audit log can be used to determine post facto which users performed

dangerous operations, and can provide evidence for use in litigation.

However, despite the importance of auditing to real-world security, relatively little

work has focused on the formal foundations of auditing, particularly with respect to

defining and ensuring the correctness of audit log generation. Indeed, correct and

efficient audit log generation poses at least two significant challenges. First, it is nec-

essary to record sufficient and correct information in the audit log. If a program is

manually instrumented, it is possible for developers to fail to record relevant events.

Recent work showed that major health informatics systems do not log sufficient infor-

mation to determine compliance with HIPAA policies [8]. Second, an audit log should

ideally not contain more information than needed. While it is straightforward to col-

lect sufficient information by recording essentially all events in a computer system,

this can cause performance issues, both slowing down the system due to generating

massive audit logs, and requiring the handling of extremely large audit logs. Exces-

sive data collection is a key challenge for auditing [9, 10, 11], and is a critical factor

in the design of tools that generate and employ audit logs (e.g., spam filters [12]).

Retrospective security is usually employed as an additional controlling mecha-

nism to enhance the effectiveness of prospective enforcement, rather than being used

in isolation. For example, audit logging is used in authorization systems to study the

details of access to resources in a post facto manner. This helps identifying potential

vulnerabilities in the design and implementation of access control, the authorization

3

policy, etc. In this regard, combining prospective and retrospective security needs to

be investigated in its effectiveness, i.e., the guarantees provided by the combination

of these two approaches is required to be studied. To this end, we formally specify the

correctness notions for prospective and retrospective measures and provide a frame-

work to enforce both in a unified fashion such that the enforcement is correct. This

facilitates establishing formal guarantees for combined prospective and retrospective

enforcements and paves the way for correct implementations.

To avoid confusion in our formal presentation and discussion we define some ter-

minology. These definitions are also intended to better isolate and describe elements

of auditing, in particular we note that auditing of processes typically involves two

distinct policies: one for generating the audit log itself, and one for analyzing the

audit log. An execution trace is a complete record of program execution in a formal

operational semantics. An audit log is a record of program execution. The format

of audit logs varies, but essentially comprises the information derived from the full

execution trace. A log query is any question that can be asked of the audit log, though

it is typically said that the program execution is “being audited” in this case. This

reveals an implicit understanding that audit logs bear a knowable relation with pro-

cesses. A logging specification specifies how audit logs should be generated, that is,

what would be the relation between the information contained in the execution trace

and in the audit log. Logging specifications should typically ensure that audit logs

contain enough information, and in an appropriate form, to answer a given log query

(or set of log queries). A logging specification is enforced by a program if execution

of the program produces an appropriate audit log. In this dissertation, we are inter-

ested in formally defining logging specifications, and automatically enforcing them.

4

A rewriting algorithm takes a logging specification and a program, and instruments

the program to enforce the logging specification. A rewriting algorithm may support

only a limited class of logging specifications. An auditing policy is the combination

of a log query and a logging specification. Thus, an auditing policy describes both a

logging specification to enforce, and a query to ask of the resulting audit logs. We

refer to the combination of prospective and retrospective measures in the enforcement

of security policies as in-depth (or, heterogeneous) policy enforcement.

In the following, we introduce different aspects of this dissertation. The reader is

referred to Section 1.5 for a summary of the technical results.

1.1 Foundations of Audit Logging

A main goal of this dissertation is to establish a formal foundation for audit log-

ging, especially to establish general correctness conditions for audit logs and logging

instrumentation. We define a general semantics of audit logs using the theory of

information algebra [13]. We interpret both program execution traces and audit logs

as information elements in an information algebra. A logging specification defines

the intended relation between the information in traces and in audit logs. An audit

log is correct if it satisfies this relation. A benefit of this formulation is that it sep-

arates logging specifications from programs, rather than burying them in code and

implementation details.

Separating logging specifications from programs supports clearer definitions and

more direct reasoning. Additionally, it enables algorithms for implementing general

classes of logging specifications. Our formal theory establishes conditions that guar-

5

antee enforcement of logging specifications by such algorithms. As we will show,

correct instrumentation of logging specifications is a safety property, hence enforce-

able by security automata [1]. Inspired by related approaches to security automata

implementation [14], we focus on program rewriting to automatically enforce correct

audit instrumentation. Program rewriting has a number of practical benefits versus,

for example, program monitors, such as lower OS process management overhead.

This approach would allow system administrators to define logging specifications

which are automatically instrumented in code, including legacy code. Implementa-

tion details and matters such as optimization can be handled by the general program

rewriting algorithm, not the logging specification. Furthermore, establishing correct-

ness of a program rewriting algorithm provides an important security guarantee. Such

an algorithm ensures that logging specifications will be implemented correctly, even if

the rewritten source code contains malicious code or programmer errors. The reader

may refer to Chapter 2 for the details of logging semantics. In what follows, we

introduce two major applications for our framework.

1.2 Application 1: Temporal Properties

of Function Calls and Break the

Glass Policies

As mentioned in Section 1.1, separating logging specifications from program code

enables support for classes of logging specifications. A general class of logging spec-

ifications that supports different auditing policies is the one that captures temporal

6

properties of function invocations. Function call as an event is a key factor in logging

and is considered as the fundamental unit of “secure operations” in many systems,

e.g., in OpenMRS [15], which is a popular open source medical records software sys-

tem. Break the glass policies, for instance, can be specified in terms of temporal

relation between function calls and therefore this particular class of logging specifica-

tions includes this set of policies.

Break the glass policies enable users to temporarily boost their authority in the

system and thus access to system resources, for which they do not possess the required

access rights according to the authorization policy. However, break the glass policies

associate such unrestricted access with retrospective checks, i.e., by breaking the

glass, the user asserts her consent to be audited in a later stage. Therefore, breaking

the glass entails audit log generation for the given user from that point forward.

This per se represents a temporal relation between system events, in particular the

action of breaking the glass by some user and the subsequent recording of what user

does. Indeed, these policies can be extended with additional preconditions, e.g.,

certain users may only gain a limited extent of authority. Break the glass policies are

common in critical systems, e.g., information systems that are employed for medical

and firefighting purposes extensively use these policies in critical cases. For more

information on break the glass policies the reader may refer to [16]. Section 1.2.1

gives an example break the glass policy.

We provide a program instrumentation algorithm that rewrites programs to sup-

port logging specifications that pertain to temporal properties of function invocations.

We consider a case study of our approach, a program rewriting algorithm for correct

instrumentation of logging specifications in OpenMRS. Our tool allows system ad-

7

ministrators to define logging specifications which are automatically instrumented in

OpenMRS legacy code. Implementation details and optimizations are handled trans-

parently by the general program rewriting algorithm, not the logging specification.

Formal foundations ensure that logging specifications are implemented correctly by

the algorithm. In particular, we show how our system can implement break the glass

auditing policies. The details of formalization and deployment for logging specifica-

tions that address temporal properties of function calls is given in Chapter 3.

In the following we informally discuss a motivating example that introduces break

the glass policies, and identify our threat model.

1.2.1 A Motivating Example from Practice

Although audit logs contain information about program execution, they are not just

a straightforward selection of program events. Illustrative examples from practice

include break the glass policies used in electronic medical record systems [16]. These

policies use access control to disallow care providers from performing sensitive oper-

ations such as viewing patient records, however care providers can “break the glass”

in an emergency situation to temporarily raise their authority and access patient

records, with the understanding that subsequent sensitive operations will be logged

and potentially audited. One potential accountability goal is the following:

In the event that a patient’s sensitive information is inappropriately leaked,

determine who accessed a given patient’s files due to “breaking the glass.”

Since it cannot be predicted a priori whose information may leak, this goal can be

supported by using an audit log that records all reads of sensitive files following glass

8

breaking. To generate correct audit logs, programs must be instrumented for logging

appropriately, i.e., to implement the following logging specification that we call LSH :

LSH : Record in the log all patient information file reads following a break

the glass event, along with the identity of the user that broke the glass.

If at some point in time in the future it is determined that a specific patient P’s

information was leaked, logs thus generated can be analyzed with the following query

that we call LQH :

LQH : Retrieve the identity of all users that read P’s information files.

The specification LSH and the query LQH together constitute an auditing policy that

directly supports the above-stated accountability goal. Their separation is useful since

at the time of execution the information leak is unknown, hence P is not known. Thus

while it is possible to implement LSH as part of program execution, LQH must be

implemented retrospectively.

It is crucial to the enforcement of the above accountability goal that LSH is im-

plemented correctly. If logging is incomplete then some potential recipients may be

missed. If logging is overzealous then bloat is possible and audit logs become “write

only”. These types of errors are common in practice [8]. To establish formal correct-

ness of instrumentation for audit logs, it is necessary to define a formal language of

logging specifications, and establish techniques to guarantee that instrumented pro-

grams satisfy logging specifications. That is one of the concerns of this dissertation.

Other work has focused on formalisms for querying logs [17, 18], however these works

presuppose correctness of audit logs for true accountability.

Another practical goal of our work is to allow logging specifications that minimize

logging overhead. In the case of LSH , this requires that program trace characteristics

9

be expressible. Later (see Example 2.6.1) we revisit this and show how LSH can be

formally specified and enforced in a proposed system. However, given the diversity

of auditing practice, another goal is generality, so that our foundations have breadth

and support reasoning about the interoperations of different systems. We return to

this discussion in Section 2.6.

1.2.2 Threat Model

With respect to program rewriting (i.e., automatic techniques to instrument existing

programs to satisfy a logging specification), we regard the program undergoing instru-

mentation as untrusted. That is, the program source code may have been written to

avoid, confuse, or subvert the automatic instrumentation techniques. We do, however,

assume that the source code is well-formed (valid syntax, well-typed, etc.). Moreover,

we trust the compiler, the program rewriting algorithm, and the runtime environment

in which the instrumented program will ultimately be executed. Non-malleability of

generated audit logs, while important, is beyond the scope of this work.

1.3 Application 2: Direct Information

Flow and Dynamic Integrity Taint

Analysis

Dynamic taint analysis implements a “direct” or “explicit” information flow analysis

to support a variety of security mechanisms. Similar to information flow, taint analy-

10

sis can be used to support either confidentiality or integrity properties. An important

application of integrity taint analysis is to prevent the execution of security sensitive

operations on untrusted data, in particular to combat cross-site scripting (XSS) and

SQL injection attacks in web applications [19]. Any untrusted user input is marked as

tainted, and then taint is tracked and propagated through program values to ensure

that tainted data is not used by security sensitive operations.

Of course, since web applications aim to be interactive, user input is needed for

certain security sensitive operations such as database calls. To combat this, saniti-

zation is commonly applied in practice to analyze and possibly modify data. From

a taint analysis perspective, sanitization is a precondition for integrity endorsement,

i.e. subsequently viewing sanitization results as high integrity data. However, while

sanitization is usually endorsed as “perfect” by taint analysis, in fact it is not. Indeed,

previous work has identified a number of flaws in existing sanitizers in a variety of

applications [19, 20]. For instance in a real-world news managements system, user

input is supposed be a numerical value, but due to erroneous implementation of input

sanitizer, the flawed sanitization mechanism admits a broader range of data. This

results in SQL command injection vulnerability. We call such incomplete sanitizers

partially trusted or imperfect throughout the dissertation. Algorithm 1 refers to such

imperfect sanitization in a real world news manage system, written in PHP [20]. In

this code excerpt, the low integrity input is stored in the variable userid. This data

needs to be sanitized before being used as part of SQL query in line 16. The saniti-

zation must ensure that userid refers to a string of digits. The programmer aims to

do so in line 12, by checking whether the string identified by userid is in the regular

language defined by regex [0-9]+. However, [0-9]+ refers to the regular language

11

of strings in which at least one digit exists. The programmer has mistakenly missed

to use $ and ˆ in the regex definition to limit the language corresponding to that

regex to only contain strings of digits. This bug results in SQL command injection

vulnerability.

Algorithm 1: A Real World Example of Imperfect Sanitization [20].
1 isset ($_GET[‘userid’]) ?
2 $userid = $_GET[‘userid’] : $userid = ‘’;
3 if ($USER[‘groupid’] != 1) then
4 // permission denied
5 unp_msg($gp_permserror);
6 exit;
7 end
8 if ($userid == ‘’) then
9 unp_msg($gp_invalidrequest);

10 exit;
11 end
12 if (!eregi(‘[0-9]+’,$userid)) then
13 unp_msg(‘You entered an invalid user ID.’);
14 exit;
15 end
16 $getuser = $DB->query(“SELECT * FROM ‘unp_user’ WHERE

userid=‘$userid”’);
17 if (!$DB->is_single_row($getuser)) then
18 unp_msg(‘You entered an invalid user ID.’);
19 exit;
20 end

Thus, a main challenge we address is how to mitigate imperfect sanitization in

taint analysis. Our solution is an in-depth approach [21]– we propose to use a combi-

nation of prospective and retrospective measures to reduce false positives while still

providing security measures in the presence of imperfect sanitization. We are con-

cerned about both efficiency and correctness– our taint analysis model is intended

12

to capture the essence of Phosphor [22, 23], an existing Java taint analysis system

with empirically demonstrated efficiency, and our approach to retrospective security

is aimed to minimize the size of logs. The theoretical foundations we establish in

this dissertation support a Java rewriting algorithm that is specifically intended to

instrument security in the legacy OpenMRS medical records system with acceptable

performance overhead. This would extend upon our previous in-depth security tools

for OpenMRS (introduced in Section 1.2). However, the formulations proposed here

could be applied more broadly.

An important feature of our approach is a uniform expression of an in-depth secu-

rity policy, that combines the typical blocking (prospective) behavior of taint-based

access control with audit logging (retrospective) features. Furthermore, our policy

specification for both prospective and retrospective analyses are separate from code,

rather than being embedded in it. We also establish correctness conditions for pol-

icy implementations. We propose a rewriting algorithm that instruments code with

support for in-depth integrity taint analysis in the presence of partially trusted sani-

tization, and prove that it is “operationally correct” with respect to the prospective

policy specification and sound and complete with respect to the retrospective policy

enforcement. This algorithm and the proofs of operational correctness for prospective

enforcement and soundness/completeness of retrospective enforcement are formulated

with respect to an idealized language model.

Beside operational correctness, we propose a semantic framework to model direct

flow of data integrity enforced by integrity taint analysis techniques, called explicit

integrity. Explicit integrity defines the security property that dynamic integrity taint

analysis tools need to enforce. In this regard, explicit integrity is related to (but

13

incompatible) noninterference. This framework is based on explicit secrecy [24], which

studies direct flow of information for confidentiality purposes. We use this semantics

to establish provable correctness conditions for rewriting algorithms that instrument

integrity taint analysis in the presence of input sanitization. This way an underlying

semantic framework is provided to study numerous other integrity taint analyzers in

the future. We prove that our rewriting algorithm is correct using explicit integrity.

Explicit integrity demonstrates an underlying model for direct flow of information in

functional calculi, which to the best of our knowledge has not been studied before.

1.3.1 Vulnerability and Countermeasures

Our work is significantly inspired by a previously unreported security flaw in Open-

MRS. This flaw allows an attacker to launch persistent XSS attacks1. When a web-

based software receives and stores user input without proper sanitization, and later,

retrieves these information to (other) users, persistent XSS attacks could take place.

OpenMRS uses a set of validators to enforce expected data formats by implementa-

tion of the Validator interface (e.g., PersonNameValidator, VisitTypeValidator,

etc.). For some of these classes the implementation is strict enough to reject script tags

by enforcing data to match a particular regular expression, e.g., PersonNameValidator.

However, VisitTypeValidator lacks such restriction and only checks for object fields

to avoid being null, empty or whitespace, and their lengths to be correct. Thus the cor-

responding webpage that receives user inputs to construct VisitType objects (named

VisitTypeForm.jsp) is generally not able to perform proper sanitization through the
1We have responsibly disclosed the vulnerabilities we have found in OpenMRS (version 2.4,

released 7/15/2016, and the preceding versions) to the OpenMRS developing community. We discuss
one particular case here.

14

invocation of the validator implemented by VisitTypeValidator. A VisitType ob-

ject is then stored in the MySQL database, and could be retrieved later based on

user request. For instance, VisitTypeList.jsp queries the database for all defined

VisitType objects, and sends VisitType names and descriptions to the client side.

Therefore, the attacker can easily inject scripts as part of VisitType name and/or

description, and the constructed object would be stored in the database and possibly

in a later stage retrieved and executed in the victim’s client environment.

Integrity taint tracking is a well-recognized solution against these sorts of attacks.

In our example, the tainted VisitType object would be prevented from retrieval and

execution. The addition of sanitization methods would also be an obvious step, and

commensurate with an integrity taint analysis approach– sanitized objects would be

endorsed for the purposes of prospective security. However, many attack scenarios

demonstrate degradation of taint tracking effectiveness due to unsound or incomplete

input sanitization [19, 20].

To support integrity taint analysis in the presence of incomplete sanitization for

legacy code, we propose a program rewriting approach, which is applicable to systems

such as OpenMRS. Our program rewriting algorithm takes as input a heterogeneous

(prospective and retrospective) taint analysis policy specification and input code, and

instruments the code to support the policy. The policy allows user specification of

taint sources, secure sinks, and sanitizers. A distinct feature of our system is that

results of sanitization are considered “maybe tainted” data, which is allowed to flow

into security sensitive operations but in such cases is entered in a log to support

auditing and accountability.

Our rewriting algorithm is intended to be a pure model of the Phosphor taint anal-

15

ysis system [22, 23] to track direct information flow, augmented with endorsement

and retrospective security measures. We are inspired by this system due to its proven

efficiency and general security model allowing any primitive value to be assigned an

integrity level (rather than just e.g., strings as in other systems [25, 26]). Operational

correctness of the algorithm is proven in an idealized model of Phosphor-style taint

analysis defined for a “Featherweight” Java (FJ) core language [27]. We choose this

model to focus on basic issues related to “pure” object orientation control and data

flow, e.g., method dispatch and propagation through value (de)construction. Opera-

tion correctness is established in terms of the compliance of the instrumentation to

the policy specification.

1.3.2 Semantics of Dynamic Integrity Taint Anal-

ysis

Taint analysis has many applications [19, 28, 29], but its security semantics is not well

understood. Taint analysis is typically defined as a direct, aka explicit, information

flow variant, where indirect flow of information is ignored. The semantics of informa-

tion flow [30] has been well studied and is typically characterized via noninterference

properties [31], but surprisingly little work has been done to develop similar proper-

ties for taint analysis. Formal definitions of taint analysis implementations do exist,

but they are usually operational in nature [32, 33].

An exception to this rule is work on explicit secrecy [24], which explores the

semantics of dynamic confidentiality taint analysis. However, this previous work

only considers taint analysis for low level languages with a greater focus on data

16

confidentiality. Influenced by this model, we propose the semantics for dynamic

integrity taint analysis, which is defense against injection attacks in high level code

such as web applications [19, 34]. The issue here is ensuring that low integrity data

sources do not directly affect high integrity sinks such as security sensitive operations.

As introduced in Section 1.3.1, we have considered formal specifications of taint

analysis for hardening Java programs against injection attacks, with a particular

interest in hardening a web-based medical records software system. The formulation

studied here provides a meaningful semantics for the dynamic taint analysis that we

have defined, which is a “core” formulation of Phosphor taint analysis. However,

in addition to Phosphor, our approach provides a semantic foundation for reasoning

about other existing integrity dynamic taint analysis in high level languages (HLLs)

[35], as well as low level languages.

The main technical contribution in this realm is a definition of the security prop-

erty enforced by dynamic integrity taint analysis. This property, called explicit in-

tegrity, is general in that it applies to both high and low level languages. Our model

is based on previous work on explicit secrecy [24] for low level languages. We demon-

strate how that model can be applied for data integrity purposes in HLLs. Information

integrity can often be expressed as the dual of confidentiality [36]. However, the dual

of explicit secrecy does not support either the integrity flows in HLLs with structured

data, or the functional paradigm. Explicit integrity comports with applications of

dynamic taint analysis to harden programs against injection attacks– where low in-

tegrity user data may maliciously taint arguments to security sensitive operations,

e.g., database interactions in the case of SQL injection.

In addition to the basic definition, we also extend our notion of explicit integrity

17

to support endorsement, which allows dynamic “untainting” of data usually as a

result of sanitization [20, 37]. Endorsement is usually considered the integrity dual

of confidentiality declassification, and we are able to adapt techniques for the latter

formulated for explicit secrecy.

Aside from providing general semantic insights and formal foundations for dy-

namic integrity taint analyses, we also show how explicit integrity provides guiding

principles for efficiency strategies in taint analysis instrumentation. In particular, sys-

tem designers often treat library methods as black boxes with respect to taint prop-

agation, i.e. taint properties are directly ascribed to library method results [25, 26].

For example, some systems will not ascribe taint to the result of character projection

from tainted strings [26], and other systems will ascribe taint to the results if argu-

ments are tainted [25], regardless of direct flow internal to the methods. The former

is an example of “undertainting”, while the latter is an example of “overtainting”.

Our formal account provides a precise characterization of these informal notions (see

Definitions 5.2.2 and 5.2.3), and a basis for designers to understand the effects of

implementation decisions with respect to a higher level security property.

1.3.3 The Security and Threat Model

The security problem we consider is about the integrity of data being passed to

security sensitive operations (SSOs). An important example is a string entered by

an untrusted users that is passed to a database method for parsing and execution as

a SQL command. The security mechanism should guarantee that low-integrity data

cannot be passed to SSOs without previous sanitization.

In contrast to standard information flow which is concerned with both direct

18

(aka explicit) and indirect (aka implicit) flows, taint analysis is only concerned with

direct flow. Direct flows transfer data directly between variables, e.g., n1 and n2

directly affect the result of n1 + n2. Indirect flows are realized when data can af-

fect the result of code dispatch– the standard example is a conditional expression

if v then e1 else e2 where the data v indirectly affects the valuation of the expression

by guarding dispatch. While there are no primitive conditional expressions in our

Java model, indirect flows are realized via dynamic method dispatch which faithfully

models Java dispatch.

More precisely, we posit that programs p(θ) in this security setting contain a

low integrity data source θ, and an arbitrary number of secure sinks (SSOs) and

sanitizers which are specified externally to the program by a security administrator.

For simplicity we assume that SSOs are unary operations over primitive objects, so

there is no question about which argument may be tainted. Since we define a Java

based model, each sso or sanitizer is identified as a specific method m in a class C.

That is, there exists a set of Sanitizers containing class, method pairs C.m which are

assumed to return high-integrity data, though they may be passed low-integrity data.

Likewise, there exists a set of SSOs of the same form, and for brevity we will write

sso(e) for a method invocation new v.m(e) on some object v where C.m ∈ SSO. Note

that SSOs and Sanitizers are assumed to be closed under class inheritance, where the

method is not overridden. As a sanity condition we require SSOs ∩ Sanitizers = ∅.

For simplicity of our formal presentation we assume that only one tainted source will

exist. Explicit integrity, as a high-level property, is instantiated for this model.

We assume that our program rewriting algorithm is trusted. Input code is trusted

to be not malicious, though it may contain errors. We note that this assumption is

19

important for application of taint analysis that disregards indirect flows, since there

is confidence that the latter will not be exploited (even accidentally) as a side-channel

attack vector by non-malicious code. We assume that untrusted data sources provide

low integrity data, though in this work we only consider tainted “static” values, e.g.,

strings, not tainted code that may be run as part of the main program execution.

However, the latter does not preclude hardening against XSS or injection attacks in

practice, if we consider an evaluation method to be an sso.

1.4 Related Work

Previous work by DeYoung et al. has studied audit policy specification for medical

(HIPAA) and business (GLBA) processes [38, 39]. This work illustrates the effec-

tiveness and generality of a temporal logic foundation for audit policy specification,

which is well-founded in a general theory of privacy [18]. Their auditing system has

also been implemented in a tool similar to an interactive theorem prover [40]. Their

specification language inspired our approach to logging specification semantics. How-

ever, this previous work assumes that audit logs are given, and does not consider the

correctness of logs. Some work does consider trustworthiness of logs [41], but only in

terms of tampering (malleability). In contrast, our work provides formal foundations

for the correctness of audit logs, and considers algorithms to automatically instrument

programs to generate correct logs.

Other work applies formal methods (including predicate logics [42, 43], process

calculi and game theory [44]) to model, specify, and enforce auditing and accountabil-

ity requirements in distributed systems. In that work, audit logs serve as evidence of

20

resource access rights, an idea also explored in Aura [17] and the APPLE system [45].

In Aura, audit logs record machine-checkable proofs of compliance in the Aura policy

language. APPLE proposes a framework based on trust management and audit logic

with log generation functionality for a limited set of operations, in order to check user

compliance.

In contrast, we provide a formal foundation to support a broad class of logging

specifications and relevant correctness conditions. In this respect our proposed system

is closely related to PQL [46], which supports program rewriting with instrumenta-

tion to answer queries about program execution. From a technical perspective, our

approach is also related to trace matching in AspectJ [47], especially in the use of

logic to specify trace patterns. However, the concern in that work is aspect pointcut

specification, not logging correctness, and their method call patterns are restricted to

be regular expressions with no conditions on arguments, whereas the latter is needed

for the specifications in temporal properties of function calls.

Logging specifications are related to safety properties [1] and are enforceable by

security automata, as we have shown. Hence IRM rewriting techniques could be used

to implement them [14]. However, the theory of safety properties does not address

correctness of audit logs as we do, and our approach can be viewed as a logging-

specific IRM strategy. Guts et al. [48] develop a static technique to guarantee that

programs are properly instrumented to generate audit logs with sufficient evidence for

auditing purposes. As in our research, this is accomplished by first defining a formal

semantics of auditing. However, they are interested in evidence-based auditing for

specific distributed protocols.

Other recent work [9] has proposed log filters as a required improvement to the

21

current logging practices in the industry due to costly resource consumption and the

loss of necessary log information among the collected redundant data. This work is

purely empirical, not foundational, but provides practical evidence of the relevance

of our efforts since logging filters could be defined as logging specifications.

Audit logs can be considered a form of provenance: the history of computation and

data. Several recent works have considered formal semantics of provenance [49, 50].

Cheney [51] presents a framework for provenance, built on a notion of system traces.

Recently, W3C has proposed a data model for provenance, called PROV [52], which

enjoys a formal description of its specified constraints and inferences in first-order

logic, [53], however the given semantics does not cover the relationship between the

provenance record and the actual system behavior. The confidentiality and integrity

of provenance information is also a significant concern [54].

Taint analysis is an established solution to enforce confidentiality and integrity

policies through direct data flow control. Various systems have been proposed for

both low and high level level languages. Our policy language and semantics are

based on a well-developed formal foundation, where we interpret Horn clause logic as

an instance of information algebra [55] in order to specify and interpret retrospective

policies.

Schwartz et al. [32] define a general model for runtime enforcement of policies

using taint tracking for an intermediate language. In Livshits [33], taint analysis

is expressed as part of operational semantics, similar to Schwartz et al. [32], and a

taxonomy of taint tracking is defined. Livshits et al. [19] propose a solution for a range

of vulnerabilities regarding Java-based web applications, including SQL injections,

XSS attacks and parameter tampering, and formalize taint propagation including

22

sanitization. The work uses PQL [56] to specify vulnerabilities. However, these works

are focused on operational definitions of taint analysis for imperative languages. In

contrast we have developed a logical specification of taint analysis for a functional

OO language model that is separate from code, and is used to establish correctness

of an implementation. Our work also comprises a unique retrospective component to

protect against incomplete input sanitization. According to earlier studies [19, 20],

incomplete input sanitization makes a variety of applications susceptible to injection

attacks.

Another related line of work is focused on the optimization of integrity taint

tracking deployment in web-based applications. Sekar [34] proposes a taint tracking

mechanism to mitigate injection attacks in web applications. The work focuses on

input/output behavior of the application, and proposes a lower-overhead, language-

independent and non-intrusive technique that can be deployed to track taint informa-

tion for web applications by blackbox taint analysis with syntax-aware policies. In our

work, however, we propose a deep instrumentation technique to enforce taint prop-

agation in a layered in-depth fashion. Wei et al. [57] attempt to lower the memory

overhead of TaintDroid taint tracker [28] for Android applications. The granularity

of taint tracking places a significant role in the memory overhead. To this end, Taint-

Droid trades taint precision for better overhead, e.g., by having a single taint label

for an array of elements. Our work reflects a more straightforward object-level taint

approach in keeping with existing Java approaches.

Saxena et al. [58] employ static techniques to optimize dynamic taint tracking

done by binary instrumentation, through the analysis of registers and stack frames.

They observe that it is common for multiple local memory locations and registers

23

to have the same taint value. A single taint tag is used for all such locations. A

shadow stack is employed to retain the taint of objects in the stack. Cheng et al. [59]

also study the solutions for taint tracking overhead for binary instrumentation. They

propose a byte to byte mapping between the main and shadow memory that keeps

taint information. Bosman et al. [60] propose a new emulator architecture for the

x86 architecture from scratch with the sole purpose of minimizing the instructions

needed to propagate taint. Similar to Cheng et al. [59], they use shadow memory

to keep taint information, with a fixed offset from user memory space. Zhu et al.

[29] track taint for confidentiality and privacy purposes. In case a sensitive input

is leaked, the event is either logged, prohibited or replaced by some random value.

We have modeled a similar technique for an OO language, through high level logical

specification of shadow objects, so that each step of computation is simulated for the

corresponding shadow expressions.

Particularly for Java, Chin et al. [26] propose taint tracking of Java web applica-

tions in order to prohibit injection attacks. To this end, they focus on strings as user

inputs, and analyze the taint in character level. For each string, a separate taint tag

is associated with each character of the string, indicating whether that character was

derived from untrusted input. The instrumentation is only done on the string-related

library classes to record taint information, and methods are modified in order to prop-

agate taint information. Haldar et al. [25] propose an object-level tainting mechanism

for Java strings. They study the same classes as the ones in Chin et al. [26], and in-

strument all methods in these classes that have some string parameters and return a

string. Then, the returned value of instrumented method is tainted if at least one of

the argument strings is tainted. However, in contrast to our work, only strings are

24

endowed with integrity information, whereas all values are assigned integrity labels

in our approach. These previous works also lack retrospective features.

Phosphor [22, 23] is an attempt to apply taint tracking more generally in Java,

to any primitive type and object class. Phosphor instruments the application and

libraries at bytecode level based on a given list of taint source and sink methods.

Input sanitizers with endorsement are not directly supported, however. As Phosphor

avoids any modifications to the JVM, the instrumented code is still portable. Our

work is an attempt to formalize Phosphor in FJ extended with input sanitization and

in-depth enforcement. Our larger goal is to develop an implementation of in-depth

dynamic integrity analysis for Java by leveraging the existing Phosphor system.

Secure information flow [61] and its interpretation as the well-known hyperprop-

erty [62] of noninterference [31] is challenging to implement in practical settings [30]

due to implicit flows. Taint analysis is thus an established solution to enforce confi-

dentiality and integrity policies since it tracks only direct data flow control. Various

systems have been proposed for both low and high level level languages. The major-

ity of previous work, however, has been focused on taint analysis policy specification

and enforcement (e.g., [32, 33, 57, 63]), rather than capturing the essence of direct

information flow which could provide an underlying framework to study numerous

taint analysis tools.

Knowledge-based semantics has been introduced by Askarov et al. [64] as a gen-

eral model for information flow of confidential data, concentrated on cryptographic

computations and key release (declassification [65]) and later employed in other data

secrecy analyses [37, 66, 67]. Recently, Schoepe et al. [24] have proposed the semantic

notion of correctness for taint tracking that enforces confidentiality policies of direct

25

information flow, called explicit secrecy. To this end, they propose a knowledge-based

semantics, influenced by Volpano’s weak secrecy [68] and gradual release [64]. Explicit

secrecy is defined as a property of a program, where the program execution does not

change the explicit knowledge of public user. The authors show that noninterference

is not comparable to explicit secrecy. However, rather than restricting the discussion

to direct information flow in a low level language, we model a high level OO language

with a functional flavor to represent generality of our framework.

A counterpart for attacker knowledge in the realm of general flow of information

integrity, called attacker power [37], is introduced as the set of low integrity inputs

that generate the same observables. In this regard, Askarov et al. [37] use holes in

the syntax of program code for injection points, influenced by [69]. However, their

attack model is different as the low integrity and low confidentiality user is able to

inject program code in the main program, by which she could gain more knowledge.

We have tailored attacker power for explicit flows using state transformers, in order

to interpret integrity taint analysis.

Birgisson et al. [36] give a unified framework to capture different flavors of integrity,

in particular integrity via information flow and via different types of invariance. Sim-

ilar to other works in this line, they give a simple imperative language with labeled

operational semantics in order to enforce integrity policies through communication

with a monitor. In contrast, we use program rewriting techniques to enforce policies

regarding flow of data integrity, which are applicable to legacy systems.

26

1.5 Overview and Main Technical Re-

sults of this Dissertation

This dissertation comprises solutions to tackle the problems regarding the enforce-

ment of in-depth policies. In particular, we propose the first semantic framework for

audit logging which enables us to discuss the soundness and completeness notions of

retrospective enforcement of security along with the prospective measures. We in-

stantiate this framework with a sufficiently expressive structure to support two major

application spaces: First, we propose a provably correct enforcement technique for a

general class of logging specifications that could be used to enhance prospective mea-

sures through accountability and surveillance. Second, we propose a unified language

to express and enforce in-depth policies that aim to ameliorate potentially erroneous

prospective controls. This dissertation also discusses a novel semantic framework for

dynamic integrity taint analysis, called explicit integrity, that is general enough to be

used in both imperative and functional paradigms. The major contributions of this

dissertation are as follows:

• The first semantic notion for retrospective enforcement that enables discussing

sound (Definition 2.5.2) and complete (Definition 2.5.3) audit logs.

• A rewriting algorithm to enforce retrospective measures (Definition 3.2.3), and

prove its soundness and completeness (Theorem 3.2.3).

• The first logical assertion of taint analysis that supports uniform specification

and enforcement of the in-depth dynamic integrity taint analysis policies (Def-

inition 4.2.3).

27

• The first semantic framework for dynamic integrity taint analysis that is inclu-

sive enough to support functional languages along with imperative ones (Defi-

nition 5.1.3).

In Chapter 2 we define a semantics of auditing, and establish conditions for cor-

rectness of audit rewriting algorithms. That is, we define what it means for a program

instrumentation to correctly log information. In Section 2.1, we introduce information

algebra as the basis of our model for correct audit log generation. We characterize

logging specifications and correctness conditions for audit logs, in a high-level manner

using information algebra. In particular, we obtain formal notions of soundness and

completeness of program rewriting for auditing (Definitions 2.5.2 and 2.5.3). In Sec-

tion 2.6, we study the instantiations of the auditing semantics and transformation of

these instantiations to each other. In this section, we formulate information algebras

based on first-order logic (FOL) and relational algebra that are shown to satisfy nec-

essary conditions (Theorem 2.6.1 and Corollary 2.6.1) to enjoy information-algebraic

properties, including a partial information order. We then leverage FOL-based infor-

mation algebra to define a formal semantics of program auditing (Definition 2.6.5).

Chapter 3 discusses temporal properties of function calls as a general class of log-

ging specifications and break the glass policies. In Section 3.1, the language model

specification is given, which is Featherweight Java. In Section 3.2, we consider this

particular class of logging specifications and present a rewriting algorithm to support

this class In this section, we also prove that a rewriting algorithm is sound and com-

plete with respect to a specific class of logging specifications (Theorem 3.2.3). This

illustrates how our auditing semantics can be leveraged to prove program instrumen-

tation correctness for particular rewriting algorithms. In Section 3.3, we discuss a

28

case study on health informatics, particularly OpenMRS system. In this section, we

discuss the deployment of correct audit logging mechanism for OpenMRS system,

and propose techniques to reduce memory overhead.

Chapter 4 discusses dynamic integrity taint analysis as another application for in-

depth enforcement of security. In Section 4.1, we define the source language model for

dynamic integrity taint analysis. In Section 4.2, we introduce a novel logical specifica-

tion of dynamic taint analysis with partial endorsement, that can be used to support a

uniform specification of an in-depth (prospective and retrospective) policy. The main

feature of this section is Definition 4.2.3 which specifies the in-depth policy. In Section

4.3, an implementation of dynamic integrity taint analysis is defined as a program

rewriting algorithm. This section also contains an extended example in Section 4.3.4

illustrating the main ideas of our formulations. In Section 4.4 the rewriting algorithm

is proven operationally correct on the basis of the prospective policy specification,

and sound/complete with respect to the retrospective policy specification. The main

results are that rewritten programs are simulations of the source with integrity flow

reflected in the operational semantics (Theorem 4.4.1) , and that prospective and

retrospective policies are correctly instrumented (Theorems 4.4.2 and 4.4.3).

Chapter 5 focuses on the underlying meaning of dynamic integrity taint analysis.

In Section 5.1, we define the semantic framework for dynamic integrity taint analysis.

We instantiate the semantic framework for the language model in Section 5.2. We

also introduce required properties for user-defined taint propagation policies that

could avoid incorrect implementations. Section 5.2.4 contains examples illustrating

the main ideas of our formulations, in particular incomparability of noninterference

with explicit integrity. Section 5.3 describes an implementation of dynamic integrity

29

taint analysis as a program rewriting algorithm. In Section 5.4, we show that our

enforcement mechanism satisfies the semantic property for dynamic integrity taint

analysis (Theorem 5.4.1).

Chapter 6 concludes the dissertation.

30

Chapter 2

A Semantics of Audit Logging

Our goal in this chapter is to formally characterize logging specifications and cor-

rectness conditions for audit logs [70]. To obtain a general model, we leverage ideas

from the theory of information algebra [13, 71], which is an abstract mathematical

framework for information systems. In short, we interpret program traces as in-

formation, and logging specifications as functions from traces to information. This

separates logging specifications from their implementation in code, and defines exactly

the information that should be in an audit log. This in turn establishes correctness

conditions for audit logging implementations.

2.1 Introduction to Information Alge-

bra

Information algebra is the algebraic study of the theory of information. In information

algebra, information is seen as a collection of separate elements. Each information

31

element can be queried for further refinement and also aggregated with other infor-

mation elements. To this end, the algebra consists of two domains: an information

domain and a query domain. The information domain Φ is the set of information el-

ements that can be aggregated in order to build more inclusive information elements.

The query domain E is a lattice of querying sublanguages in which the partial order

relation among these sublanguages represents the granularity of the queries. In order

to aggregate and query the information elements, the following operations are defined.

Definition 2.1.1 Any information algebra (Φ, E) includes two basic operators:

• Combination ⊗ : Φ× Φ→ Φ: The operation X ⊗ Y combines (or, aggregates)

the information in elements X, Y ∈ Φ.

• Focusing ⇒: Φ × E → Φ: The operation X⇒S isolates the elements of X ∈ Φ

that are relevant to a sublanguage S ∈ E, i.e. the subpart of X specified by S.

The two-sorted algebra (Φ, E) is an information algebra if the combination and

focusing operations defined in Definition 2.1.1 meet specific properties.

Definition 2.1.2 Any two-sorted algebra (Φ, E) with operators ⊗ : Φ× Φ→ Φ and

⇒: Φ× E → Φ is an information algerba iff the following properties hold:

• Semigroup: Φ is a commutative semigroup under combination, i.e., associativity

and commutativity hold for ⊗ and there exists a neutral element I ∈ Φ,

• Transitivity of focusing: (X⇒L)⇒M = X⇒L∧M for all X ∈ Φ and L,M ∈ E1,

• Combination: (X⇒L ⊗ Y)⇒L = X⇒L ⊗ Y ⇒L for all X, Y ∈ Φ and L ∈ E,
1Note that L ∧M refers to the meet of L and M in the lattice E.

32

• Support: For all X ∈ Φ, there exists some L ∈ E such that X⇒L = X, and

• Idempotence: X ⊗X⇒L = X for all X ∈ Φ and L ∈ E.

Using the combination operator we can define a partial order relation on Φ to

compare the information contained in the elements of Φ. A partial ordering is induced

on Φ by the so-called information ordering relation ≤, where intuitively for X, Y ∈ Φ

we have X ≤ Y iff Y contains at least as much information as X, though its precise

meaning depends on the particular algebra.

Definition 2.1.3 X is contained in Y , denoted as X ≤ Y , for all X, Y ∈ Φ iff

X ⊗ Y = Y .

Definition 2.1.4 We say that X and Y are information equivalent, and write X =

Y , iff X ≤ Y and Y ≤ X.

For a more detailed account of information algebra, the reader is referred to a

definitive survey paper [71]. In what follows, we give an intuitive example of informa-

tion algebra, before instantiating other structures that we will employ for retrospective

security semantics.

2.1.1 Illustrative Example: Relational Alge-

bras

Relational algebra is a well-recognized instance of information algebra [71]. In the

following, we briefly introduce relational algebra and discuss this instantiation.

33

(R ./ R′) ./ R′′ = R ./ (R′ ./ R′′) R ./ R′ = R′ ./ R ∅ ./ R = R ./ ∅ = R

πA1 (πA3 (R)) = πA1∩A3 (R) πA1 (πA1 (R) ./ R′) = πA1 (R) ./ πA1 (R′)

if dom(R) = A1 then πA1 (R) = R R ./ πA1 (R) = R

Figure 2.1: Properties of Natural Join and Projection

Relational Algebra

Let A denote the set of attributes, Ai ⊆ A for i ∈ {1, 2, 3}, A2 ⊆ A1, and assume

that A1 = {a1, ..., an}. Each tuple ((a1 : x1), · · · , (an : xn)) can be formulated as a

function f : A1 → {x1, ..., xn}, where f(ai) = xi.

Function f [A2] : A2 → {x1, ..., xn} is the restriction of f to A2, defined as

f [A2](a) = f(a), for all a ∈ A2.

A relation R over A1 is a set of functions f defined on a specific set of attributes

A1.

Then, the projection of R on A2 is defined as πA2(R) = {f [A2] | f ∈ R}.

The natural join of relation R over A1 and R′ over A3 is defined as R ./ R′ =

{f | dom(f) = A1 ∪ A3, f [A1] ∈ R, f [A3] ∈ R′}.

Instantiation

Let R be the universe of all relations R. Then, (R,P(A)) is an information algebra

with following definitions for combination and focusing:

R⊗R′ , R ./ R′ R⇒A1 , πA1(R)

since the projection and natural join satisfy the properties specified in Figure 2.1.

34

2.2 General Model for Logging Speci-

fications

Following [1], an execution trace τ = κ0κ1κ2 . . . is a possibly infinite sequence of con-

figurations κ that describe the state of an executing program. We deliberately leave

configurations abstract, but examples abound and we explore a specific instantiation

for FJ-based calculus in Section 3.2. Note that an execution trace τ may represent

the partial execution of a program, i.e. the trace τ may be extended with additional

configurations as the program continues execution. We use metavariables τ and σ to

range over traces.

We assume given a function b·c that is an injective mapping from traces to Φ.

This mapping interprets a given trace as information, where the injective requirement

ensures that information is not lost in the interpretation. For example, if σ is a proper

prefix of τ and thus contains strictly less information, then formally bσc ≤ bτc. We

intentionally leave both Φ and b·c underspecified for generality, though application of

our formalism to a particular logging implementation requires instantiation of them.

We discuss an example in Section 2.6.

We let LS range over logging specifications, which are functions from traces to

Φ. As for Φ and b·c, we intentionally leave the language of specifications abstract,

but consider a particular instantiation in Section 2.6. Intuitively, LS(τ) denotes

the information that should be recorded in an audit log during the execution of τ

given specification LS , regardless of whether τ actually records any log information,

correctly or incorrectly. We call this the semantics of the logging specification LS .

35

We assume that auditing is implementable, requiring at least that all conditions

for logging any piece of information must be met in a finite amount of time. As

we will show, this restriction implies that correct logging instrumentation is a safety

property [1].

Definition 2.2.1 We require of any logging specification LS that for all traces τ and

information X ≤ LS(τ), there exists a finite prefix σ of τ such that X ≤ LS(σ).

It is crucial to observe that some logging specifications may add information not

contained in traces to the auditing process. Security information not relevant to

program execution (such as ACLs), interpretation of event data (statistical or other-

wise), etc., may be added by the logging specification. For example, in the OpenMRS

system [72], logging of sensitive operations includes a human-understandable “type”

designation which is not used by any other code. Thus, given a trace τ and logging

specification LS , it is not necessarily the case that LS(τ) ≤ bτc. Audit logging is not

just a filtering of program events.

2.3 Correctness Conditions for Audit

Logs

A logging specification defines what information should be contained in an audit log.

In this section we develop formal notions of soundness and completeness as audit

log correctness conditions. We use metavariable L to range over audit logs. Again,

we intentionally leave the language of audit logs unspecified, but assume that the

function b·c is extended to audit logs, i.e. b·c is an injective mapping from audit logs

36

Full program execution trace τLogging specification LS

LS(τ) The information that should be logged in τ

bLc The information contained in audit log L

Soundness
Completeness

LS(τ) subsumes bLc
bLc subsumes LS(τ)

Figure 2.2: Concept Diagram: Logging Specification and Correctness of Audit Logs.

to Φ. Intuitively, bLc denotes the information in L, interpreted as an element of Φ.

An audit log L is sound with respect to a logging specification LS and trace

τ if the log information is contained in LS(τ). Similarly, an audit log is complete

with respect to a logging specification if it contains all of the information in the

logging specification’s semantics. Crucially, both definitions are independent of the

implementation details that generate L.

Definition 2.3.1 Audit log L is sound with respect to logging specification LS and

execution trace τ iff bLc ≤ LS(τ).

Definition 2.3.2 Audit log L is complete with respect to logging specification LS

and execution trace τ iff LS(τ) ≤ bLc.

Figure 2.2 illustrates graphically the relations of soundness and completeness of

audit logs with respect to the semantics of logging.

37

Relation to Log Queries

As discussed in Section 1.2.1, we make a distinction between logging specifications

such as LSH which define how to record logs, and log queries such as LQH which

ask questions of logs, and our notions of soundness and completeness apply strictly

to logging specifications. However, any logging query must assume a logging spec-

ification semantics, hence a log that is demonstrably sound and complete provides

the same answers on a given query that an “ideal” log would. This is an important

property that is discussed in previous work, e.g. as “sufficiency” in [73].

2.4 Correct Logging Instrumentation is

a Safety Property

In case program executions generate audit logs, we write τ ; L to mean that trace τ

generates L, i.e. τ = κ0 . . . κn and logof (κn) = L where logof (κ) denotes the audit log

in configuration κ, i.e. the residual log after execution of the full trace. Ideally, infor-

mation that should be added to an audit log, is added to an audit log, immediately

as it becomes available. This ideal is formalized as follows.

Definition 2.4.1 For all logging specifications LS , the trace τ is ideally instrumented

for LS iff for all finite prefixes σ of τ we have σ ; L where L is sound and complete

with respect to LS and σ.

We observe that the restriction imposed on logging specifications by Definition

2.2.1, implies that ideal instrumentation of any logging specification is a safety prop-

erty in the sense defined by Schneider [1].

38

Theorem 2.4.1 For all logging specifications LS , the set of ideally instrumented

traces is a safety property.

Proof. If τ is ideally instrumented for LS , then it is prefix-closed by definition. Fur-

thermore, if τ is not ideally instrumented for LS , then it will definitely be rejected in

a finite amount of time, since any information in LS(τ) is encountered after execution

of a finite prefix σ of τ by Definition 2.2.1. These two facts obtain the result. ut

This result implies that e.g. edit automata can be used to enforce instrumenta-

tion of logging specifications (see Section 3.2.2). However, theory related to safety

properties and their enforcement by execution monitors [1, 74] do not provide an

adequate semantic foundation for audit log generation, nor an account of soundness

and completeness of audit logs.

2.5 Implementing Logging Specifications

with Program Rewriting

The above-defined correctness conditions for audit logs provide a foundation on which

to establish correctness of logging implementations. Here we consider program rewrit-

ing approaches. Since rewriting concerns specific languages, we introduce an abstract

notion of programs p with an operational semantics that can produce a trace. We

write p ⇓ σ iff program p can produce execution trace τ , either deterministically or

non-deterministically, and σ is a finite prefix of τ .

A rewriting algorithm R is a (partial) function that takes a program p in a source

language and a logging specification LS and produces a new program, R(p,LS), in a

39

target language.2 The intent is that the target program is the result of instrumenting

p to produce an audit log appropriate for the logging specification LS . A rewriting

algorithm may be partial, in particular because it may only be intended to work for

a specific set of logging specifications.

Ideally, a rewriting algorithm should preserve the semantics of the program it

instruments. That is, R is semantics-preserving if the rewritten program simulates

the semantics of the source code, modulo logging steps. We assume given a corre-

spondence relation :≈ on execution traces. A coherent definition of correspondence

should be similar to a bisimulation, but it is not necessarily symmetric nor a bisimu-

lation, since the instrumented target program may be in a different language than the

source program. We deliberately leave the correspondence relation underspecified, as

its definition will depend on the instantiation of the model. Possible definitions are

that traces produce the same final value, or that traces when restricted to a set of

memory locations are equivalent up to stuttering. We provide an explicit definition

of correspondence for FJ-calculus source and target languages in Section 3.2.

Definition 2.5.1 Rewriting algorithm R is semantics preserving iff for all programs

p and logging specifications LS such that R(p,LS) is defined, all of the following hold:

1. For all traces τ such that p ⇓ τ there exists τ ′ with τ :≈ τ ′ and R(p,LS) ⇓ τ ′.

2. For all traces τ such that R(p,LS) ⇓ τ there exists a trace τ ′ such that τ ′ :≈ τ

and p ⇓ τ ′.

In addition to preserving program semantics, a correctly rewritten program con-

structs a log in accordance with the given logging specification. More precisely, if
2We use metavariable p to range over programs in either the source or target language; it will be

clear from context which language is used.

40

LS is a given logging specification and a trace τ describes execution of a source

program, rewriting should produce a program with a trace τ ′ that corresponds to

τ (i.e., τ :≈ τ ′), where the log L generated by τ ′ contains the same information as

LS(τ), or at least a sound approximation. Some definitions of :≈ may allow sev-

eral target-language traces to correspond to source-language traces (as for example

in Section 3.2, Definition 4.4.8). In any case, we expect that at least one simulation

exists. Hence we write simlogs(p, τ) to denote a nonempty set of logs L such that,

given source language trace τ and target program p, there exists some trace τ ′ where

p ⇓ τ ′ and τ :≈ τ ′ and τ ′ ; L. The name simlogs evokes the relation to logs resulting

from simulating executions in the target language.

The following definitions then establish correctness conditions for rewriting algo-

rithms. Note that satisfaction of either of these conditions only implies condition (i)

of Definition 2.5.1, not condition (ii), so semantics preservation is an independent

condition.

Definition 2.5.2 Rewriting algorithm R is sound iff for all programs p, logging spec-

ifications LS , and finite traces τ where p ⇓ τ , for all L ∈ simlogs(R(p,LS), τ) it is

the case that L is sound with respect to LS and τ .

Definition 2.5.3 Rewriting algorithm R is complete iff for all programs p, logging

specifications LS , and finite traces τ where p ⇓ τ , for all L ∈ simlogs(R(p,LS), τ) it

is the case that L is complete with respect to LS and τ .

41

2.6 Languages for Logging Specifications

In this section, we go into more detail about information algebra and why it is a good

foundation for logging specifications and semantics. We use the formalism of infor-

mation algebras to characterize and compare the information contained in an audit

log with the information contained in an actual execution. In particular, Definition

2.6.5 formally defines logging specification using the operators of information algebra.

Example 2.6.1 gives an instance of such logging specification. We follow the proposed

formalism in this section to implement audit logging in health informatics.

Various approaches are taken to audit log generation and representation, includ-

ing logical [18], database [47], and probabilistic approaches [75]. Information alge-

bra is sufficiently general to contain relevant systems as instances, so our notions of

soundness and completeness can apply broadly. Here we discuss logical and database

approaches.

2.6.1 First Order Logic (FOL)

Logics have been used in several well-developed auditing systems [40, 43], for the

encoding of both audit logs and queries. FOL in particular is attractive due to

readily available implementation support, e.g. Datalog and Prolog.

Let Greek letters φ and ψ range over FOL formulas and let capital letters X, Y, Z

range over sets of formulas. We posit a sound and complete proof theory supporting

judgements of the form X ` φ. In this text we assume without loss of generality a

natural deduction proof theory.

The properties given in the following Lemma are stated without proof since they

42

are self-evident properties of FOL deduction.

Lemma 2.6.1 Each of the following properties hold:

1. X ` φ for each φ ∈ X

2. If X ` φ for each φ in Y and Y ` ψ, then X ` ψ

Elements of our algebra are sets of formulas closed under logical entailment. In-

tuitively, given a set of formulas X, the closure of X is the set of formulas that are

logically entailed by X, and thus represents all the information contained in X. In

spirit, we follow the treatment of sentential logic as an information algebra explored

in related foundational work [13], however our definition of closure is syntactic, not

semantic.

Definition 2.6.1 We define a closure operation C, and a set ΦFOL of closed sets of

formulas:

C(X) = {φ | X ` φ} ΦFOL = {X | C(X) = X}

Note in particular that C(∅) is the set of logical tautologies.

Due to the definition of preconditions, we will be particularly interested in proving

properties of sets CL(X):

Definition 2.6.2 For each sublanguage L ∈ S, we define closure operator CL(X):

CL(X) = C(X) ∩ L.

43

An important point about such sets is that their closures contain tautological as-

sertions, which may involve predicates P which are not included in L. However, in

tautological assertions any predicate does as well as any other, which is an important

fact to get hold of for our proofs. Thus we will identify a “dummy” predicate that,

in essence, allows us to treat a canonical form of tautologies.

Definition 2.6.3 We reserve a unary dummy predicate D with a countably infinite

domain of constants c, and posit an injective function from distinct concrete asser-

tions P (c̄) to distinct D(c). We further define normL(φ) to be the formula φ′ which is

the same as φ, but where each P (c̄) 6∈ L is replaced with its corresponding image D(c)

in the injection. The pointwise extension of normL to sets X is denoted normL(X).

Now, we demonstrate canonical forms:

Lemma 2.6.2 X ∩ L ∪ Y ` φ iff X ∩ L ∪ normL(Y) ` normL(φ).

Proof. First we prove the left-to-right implication by induction on the derivation of

C(X) ∩ L ∪ Y ` φ and case analysis on the last step in the derivation.

Case Axiom. In this case φ ∈ X ∩ L ∪ Y , so either φ ∈ Y , or φ ∈ X ∩ L. In the

former subcase, normL(φ) ∈ normL(Y) by definition and normL(φ) = φ in the latter

subcase. In either subcase, the result holds axiomatically.

Case → elimination. In this case we have:

X ∩ L ∪ Y ` ψ → φ X ∩ L ∪ Y ` ψ

X ∩ L ∪ Y ` φ

By the induction hypothesis we have:

X ∩ L ∪ normL(Y) ` normL(ψ → φ) X ∩ L ∪ normL(Y) ` normL(ψ)

44

But normL(ψ → φ) = normL(ψ) → normL(ψ) by definition, so the result follows in

this case by modus ponens. ut

Let Preds be the set of all predicate symbols, and let S ⊆ Preds be a set of

predicate symbols. We define sublanguage LS to be the set of well-formed formulas

over predicate symbols in S (and including boolean atoms T and F , and closed

under the usual first-order connectives and binders). We will use sublanguages to

define refinement operations in our information algebra. Subset containment induces

a lattice structure, denoted S, on the set of all sublanguages, with F = LPreds as the

top element.

Lemma 2.6.2 shows that wlog we can modify S so that every L ∈ S contains D.

Hence we have immediately:

Lemma 2.6.3 For all L,M ∈ S and φ ∈ F , normL(φ) ∈ L, and if φ ∈ M then

normL(φ) ∈M .

This allows us to prove the following important auxiliary results about closures.

Lemma 2.6.4 If C(X) ∩ L ` φ and φ ∈M , then C(X) ∩ L ∩M ` φ.

Proof. By Lemma 2.6.3 we have normL(φ) ∈ L, and by Lemma 2.6.2 we have C(X)∩

L ` normL(φ), hence normL(φ) ∈ C(X)∩L. But also normL(φ) ∈M by assumption

and Lemma 2.6.3, so also normL(φ) ∈ C(X)∩L∩M . Hence C(X)∩L∩M ` normL(φ)

as an axiom, therefore the result follows by Lemma 2.6.2. ut

Lemma 2.6.5 If CL(CM(X)) ∪ Y ` φ then CM∩L(X) ∪ Y ` φ.

Proof. The result follows by induction on CL(CM(X)) ∪ Y ` φ and case analysis on

the last step in the derivation. Most cases follow in a straightforward manner; the

45

presence of Y in the formulation is to allow for additional hypotheses, as for example

in the case of → introduction, as follows.

Case → introduction. In this case φ = φ1 → φ2, and we have:

CL(CM(X)) ∪ Y ∪ {φ1} ` φ2

CL(CM(X)) ∪ Y ` φ1 → φ2

but then by the induction hypothesis the judgement CM∩L(X) ∪ Y ∪ {φ1} ` φ is

derivable, so the result follows by → introduction.

The interesting case is the axiomatic one, i.e. where φ ∈ CL(CM(X)) ∪ Y , and

specifically the subcase where φ ∈ CL(CM(X)), which follows by Lemma 2.6.4. ut

The following Lemma completes the necessary preconditions to prove that the

construction ΦFOL is a “domain-free” information algebra [13].

Lemma 2.6.6 Each of the following properties hold:

1. If X ⊆ Y then C(X) ⊆ C(Y).

2. C(X ∪ Y) = C(X ∪ C(Y))

3. C(CL(CM(X))) = C(CM∩L(X))

for X ⊆ F and L,M ∈ S

4. CL(CL(X) ∪ Y) = CL(CL(X) ∪ CL(Y))

Proof. Properties (1) and (2) are a consequence of Lemma 2.6.1 as demostrated in

[13].

46

Proof of (3). By definition:

C(CL(CM(X))) = C(C(C(X) ∩M) ∩ L) C(CM∩L(X)) = C(C(X) ∩M ∩ L)

Since C(X)∩M ⊆ C(C(X)∩M) by Lemma 2.6.1 property (1), therefore by property

(1) in the current Lemma:

C(C(X) ∩M ∩ L) ⊆ C(C(C(X) ∩M) ∩ L).

It thus remains to show that:

C(C(C(X) ∩M) ∩ L) ⊆ C(C(X) ∩M ∩ L)

which follows by definition of closure and an application of Lemma 2.6.5, taking

Y = ∅ in that Lemma.

Proof of (4). By (2), we have:

C(CL(X) ∪ Y) = C(CL(X) ∪ C(Y))

and thus also:

C(CL(X) ∪ (C(Y) ∩ L)) ⊆ C(CL(X) ∪ C(Y))

which establishes:

CL(CL(X) ∪ CL(Y)) ⊆ CL(CL(X) ∪ Y).

47

For brevity in the remaining, define:

A = CL(CL(X) ∪ C(Y)) B = CL(CL(X) ∪ CL(Y)).

To prove the result it now suffices to establish that A ⊆ B, so we assume on the

contrary that there exists some φ ∈ L where A ` φ but B 6` φ. Now, clearly

φ 6∈ C(X) and φ 6∈ C(Y), since in these cases it must be that B ` φ holds. Therefore

there exist some minimal nonempty subsets C ⊆ C(Y) and D ⊆ CL(X) such that

C ∪D ` φ. Let ψD be the conjunction of terms in D. Clearly ψD ∈ L. Furthermore,

by properties of logic, C ` ψD → φ holds, so that ψD → φ ∈ C(Y), and since

ψD ∈ L and φ ∈ L by construction and assumption, therefore ψD → φ ∈ L, hence

ψD → φ ∈ CL(Y). But ψD ∈ CL(X) necesarily, so CL(X) ∪ CL(Y) ` φ by modus

ponens and (1). Thus B ` φ also by (1), which is a contradiction, etc. ut

Now we can define the focus and combination operators, which are the fundamen-

tal operators of an information algebra. Focusing isolates the component of a closed

set of formulas that is in a given sublanguage. Combination closes the union of closed

sets of formulas. Intuitively, the focus of a closed set of formulas X to sublanguage

L is the refinement of the information in X to the formulas in L. The combination

of closed sets of formulas X and Y combines the information of each set.

Definition 2.6.4 Define:

1. Focusing: X⇒S = C(X ∩ LS) where X ∈ ΦFOL, S ⊆ Preds

2. Combination: X ⊗ Y = C(X ∪ Y) where X, Y ∈ ΦFOL

These definitions of focusing and combination enjoy a number of properties within

the algebra, as stated in the following Theorem, establishing that the construction is

48

an information algebra. FOL has been treated as an information algebra before, but

our definitions of combination and focusing and hence the result are novel.

Theorem 2.6.1 Structure (ΦFOL,S) with focus operation X⇒S and combination op-

eration X ⊗ Y forms a domain-free information algebra.

Proof. The following properties hold immediately according to Lemma 2.6.6 and

Lemma 2.6.1, and thus (ΦFOL,S) is an information algebra [13]:

• Semigroup: Φ is associative and commutative under combination, and C(∅) is

a neutral element with X ⊗ C(∅) = X for all X ∈ Φ.

• Transitivity: (X⇒L)⇒M = X⇒L∩M for all X ∈ Φ and L,M ∈ S.

• Combination: (X⇒L ⊗ Y)⇒L = X⇒L ⊗ Y ⇒L for all X, Y ∈ Φ and L ∈ S.

• Support: X⇒F = X for all X ∈ Φ.

• Idempotence: X ⊗X⇒L = X for all X ∈ Φ and L ∈ S.

ut

In addition, to interpret traces and logs as elements of this algebra, i.e. to define

the function b·c, we assume existence of a function toFOL(·) that injectively maps

traces and logs to sets of FOL formulas, and then take b·c = C(toFOL(·)). To define

the range of toFOL(·), that is, to specify how trace information will be represented in

FOL, we assume the existence of configuration description predicates P which are each

at least unary. Each configuration description predicate fully describes some element

of a configuration κ, and the first argument is always a natural number t, indicating

the time at which the configuration occurred. A set of configuration description pred-

icates with the same timestamp describes a configuration, and traces are described

49

by the union of sets describing each configuration in the trace. In particular, the con-

figuration description predicates include predicate Call(t, f, x), which indicates that

function f is called at time t with argument x. We will fully define toFOL(·) when

we discuss particular source and target languages for program rewriting.

Example 2.6.1 We return to the example described in Section 1.2.1 to show how

FOL can express break the glass logging specifications. Adapting a logic programming

style, the trace of a program can be viewed as a fact base, and the logging specification

LSH performs resolution of a LoggedCall predicate, defined via the following Horn

clause we call ψH :

∀t, d, s, u.(Call(t, read, u, d) ∧ Call(s,breakGlass, u) ∧ s < t ∧ PatientInfo(d))

=⇒ LoggedCall(t, read, u, d)

Here we imagine that breakGlass is a break the glass function where u identifies

the current user and PatientInfo is a predicate specifying which files contain patient

information. The log contains only valid instances of LoggedCall given a particu-

lar trace, which specify the user and sensitive information accessed following glass

breaking, which otherwise would be disallowed by a separate access control policy.

Formally, we define logging specifications in a logic programming style by using

combination and focusing. Any logging specification is parameterized by a sublan-

guage S that identifies the predicate(s) to be resolved and Horn clauses X that define

it/them, hence we define a functional spec from pairs (X,S) to specifications LS ,

where we use λ as a binder for function definitions in the usual manner:

Definition 2.6.5 The function spec is given a pair (X,S) and returns a FOL logging

50

specification, i.e. a function from traces to elements of ΦFOL:

spec(X,S) = λτ.(bτc ⊗ C(X))⇒S.

In any logging specification spec(X,S), we call X the guidelines.

The above example LSH would then be formally defined as spec(ψH , {LoggedCall}).

2.6.2 Relational Database

As discussed in Section 2.1.1, relational algebra is a canonical example of an informa-

tion algebra, which provides information algebraic analysis of relational databases.

However, that formulation is of little use in case we seek a formal relation between

recorded logs in the relational database and the semantics of logging specification

according to Definition 2.6.5. Thus, in this section, we formulate a novel instantia-

tion of relational databases which could be leveraged for correct audit purposes. We

define databases D as sets of relations, where a relation X is a set of tuples f . We

write ((a1 : x1), ..., (an : x1)) to denote an n-ary tuple with attributes (aka label)

ai associated with values xi. Databases are elements of the information algebra, and

sublanguages S are collections of sets of attributes. Each set of attributes corresponds

to a specific relation. Focusing is the restriction to particular relations in a database,

and combination is the union of databases. Hence, letting ≤RA denote the relational

algebra information ordering, D1 ≤RA D2 iff D1 ⊗ D2 = D2. We refer to this alge-

bra as ΦRA. In this context, a trace can be interpreted as a collection of relations,

and logging specifications can be defined using selects. Relational databases are also

heavily used for storing and querying audit logs.

51

Let A be a denumerable set of attribute names. Moreover, let R be the universe

for relations, i.e., R = {R ⊆ Aa1 × · · ·Aam | ai ∈ A}. Note that Aai is the domain of

values for attribute ai. We denote the arity of a relation R with arity(R).

Definition 2.6.6 Let Name : R→ P(A) be defined as Name(R) = {a1, · · · , aarity(R)},

if R ⊆ Aa1 × · · ·Aaarity(R).

Definition 2.6.7 Let database D be a finite subset of R containing finite relations,

i.e., a database D is a finite collection of relations R ∈ R, where each R is a finite

set of tuples defining the relation. ΦRA is defined as the set of all databases.

We also define the querying sublanguages as the sets of relation names, i.e., S ∈

P(P(A)). Next, we define the information algebra operations:

Definition 2.6.8 Define:

• Focusing: D⇒S = {R ∈ D | Name(R) ∈ S}, where D ∈ ΦRA, and S ∈ P(P(A))

and finite,

• Combination: D1⊗D2 = {R1∪R2 | Ri ∈ Di, i ∈ {1, 2},Name(R1) = Name(R2)}.

Note that in case some relation is not defined in a database, we assume it is defined

as an empty relation. We also define a mapping which represents non-trivial relation

names in a database:

Definition 2.6.9 Let Names : ΦRA → P(P(A)) be defined as

Names(D) = {Name(R) | R ∈ D,R 6= ∅}.

In what follows we show that (ΦRA,P(P(A))) is an information algebra.

52

Lemma 2.6.7 ΦRA is a commutative semigroup.

Proof. We need to show that

• ΦRA is associative on combination:

Holds straightforwardly based on the associativity of union on sets:

D1 ⊗ (D2 ⊗D3) = D1 ⊗ {R2 ∪R3 | Ri ∈ Di, i ∈ {2, 3},

Name(R2) = Name(R3)}

= {R1 ∪ (R2 ∪R3) | Ri ∈ Di, i ∈ {1, 2, 3},

Name(R1) = Name(R2) = Name(R3)}

= {(R1 ∪R2) ∪R3 | Ri ∈ Di, i ∈ {1, 2, 3},

Name(R1) = Name(R2) = Name(R3)}

= {R1 ∪R2 | Ri ∈ Di, i ∈ {1, 2},

Name(R1) = Name(R2)} ⊗D3

= (D1 ⊗D2)⊗D3.

• ΦRA is commutative on combination:

Holds straightforwardly based on the commutativity of union on sets:

D1 ⊗D2 = {R1 ∪R2 | Ri ∈ Di, i ∈ {1, 2},Name(R1) = Name(R2)}

= {R2 ∪R1 | Ri ∈ Di, i ∈ {1, 2},Name(R1) = Name(R2)}

= D2 ⊗D1.

• There exists a neutral element I such that for all D, D ⊗ I = D:

53

Let I = {∅}. Obviously, D ⊗ I = D as ∅ is the neutral element for union.

ut

Lemma 2.6.8 Transitivity: (D⇒S1)⇒S2 = D⇒S1∩S2.

Proof.

(D⇒S1)⇒S2 = {R ∈ D | Name(R) ∈ S1}⇒S2

= {R ∈ D | Name(R) ∈ S1,Name(R) ∈ S2}

= {R ∈ D | Name(R) ∈ S1 ∩ S2}

= D⇒S1∩S2 .

ut

Lemma 2.6.9 Combination: (D1
⇒S ⊗D2)⇒S = D1

⇒S ⊗D2
⇒S.

Proof.

(D1
⇒S ⊗D2)⇒S = ({R1 ∈ D | Name(R) ∈ S} ⊗D2)⇒S

= {R1 ∪R2 | R1 ∈ D1,Name(R1) ∈ S,R2 ∈ D2,

Name(R1) = Name(R2)}⇒S

= {R1 ∪R2 | R1 ∈ D1,Name(R1) ∈ S,R2 ∈ D2,

Name(R1) = Name(R2),Name(R1 ∪R2) ∈ S}.

Obviously, if Name(R1) = Name(R2), then Name(R1 ∪ R2) = Name(R1). We thus

54

have

(D1
⇒S ⊗D2)⇒S = {R1 ∪R2 | R1 ∈ D1,Name(R1) ∈ S,R2 ∈ D2,

Name(R1) = Name(R2)}

Moreover,

D1
⇒S ⊗D2

⇒S = {R1 ∈ D | Name(R1) ∈ S} ⊗ {R2 ∈ D | Name(R2) ∈ S}

= {R1 ∪R2 | R1 ∈ D1,Name(R1) ∈ S,R2 ∈ D2,Name(R2) ∈ S,

Name(R1) = Name(R2)}

= {R1 ∪R2 | R1 ∈ D1,Name(R1) ∈ S,R2 ∈ D2,

Name(R1) = Name(R2)}.

Thus, (D1
⇒S ⊗D2)⇒S = D1

⇒S ⊗D2
⇒S. ut

Lemma 2.6.10 Support: ∀D, ∃S,D⇒S = D.

Proof. Let S = Names(D). Then, D⇒Names(D) = D. ut

Lemma 2.6.11 Idempotence: D ⊗D⇒S = D.

Proof.

D ⊗D⇒S = {R | R ∈ D} ⊗ {R ∈ D | Name(R) ∈ S}

= {R ∈ D | Name(R) /∈ S} ∪ {R ∈ D | Name(R) ∈ S}

= D.

55

ut

Corollary 2.6.1 (ΦRA,P(P(A))) is an information algebra.

2.6.3 Transforming and Combining Audit Logs

Multiple audit logs from different sources are often combined in practice. Also, logging

information is often transformed for storage and communication. For example, log

data may be generated in common event format (CEF), which is parsed and stored in

relational database tables, and subsequently exported and communicated via JSON.

In all cases, it is necessary to characterize the effect of transformation (if any) on log

information, and relate queries on various representations to the logging specification

semantics. Otherwise, it is unclear what is the relation of log queries to log-generating

programs.

To address this, information algebra provides a useful concept called monotone

mapping. Given two information algebras Ψ1 and Ψ2 with ordering relations ≤1 and

≤2 respectively, a mapping µ from elements X, Y of Ψ1 to elements µ(X), µ(Y) of

Ψ2 is monotone iff X ≤1 Y implies µ(X) ≤2 µ(Y). For example, assuming that

Ψ1 is our FOL information algebra while Ψ2 is relational algebra, we can define a

monotone mapping using a least Herbrand interpretation [76], denoted H, and by

positing a function attrs from n-ary predicate symbols to functions mapping numbers

1, ..., n to labels. That is, attrs(P)(n) is the label associated with the nth argument

of predicate P. We require that if P 6= Q then attrs(P)(j) 6= attrs(Q)(k) for all j, k.

To map predicates to tuples we have:

tuple(P(x1, . . . , xn)) = ((attrs(P)(1) : x1), . . . , (attrs(P)(n) : xn))

56

Then to obtain a relation from all valid instances of a particular predicate P given

formulas X we define:

RP(X) = {tuple(P(x1, . . . , xn)) | P(x1, . . . , xn) ∈ H(X)}

Now we define the function rel which is collection of all relations obtained from

X, where P1, ...,Pn are the predicate symbols occurring in X:

rel(X) = {RP1(X), · · · , RPn(X)}

Theorem 2.6.2 rel is a monotone mapping.

Proof. We need to show that X ≤FOL Y implies rel(X) ≤RA rel(Y).

From X ≤FOL Y we have H(X) ⊆ H(Y). Let R ∈ rel(X) and R′ ∈ rel(Y), such that

Name(R) = Name(R′). Then, R = RP(X) and R′ = RP(Y), for some n-ary predicate

symbol P such that Name(R) = {attrs(P)(1), · · · , attrs(P)(n)}. Since H(X) ⊆ H(Y),

R = {tuple(P(x1, . . . , xn)) | P(x1, . . . , xn) ∈ H(X)}

⊆ {tuple(P(x1, . . . , xn)) | P(x1, . . . , xn) ∈ H(Y)} = R′.

Therefore, R ∪R′ = R′. Then,

rel(X)⊗ rel(Y) = {R ∪R′ | R ∈ rel(X), R′ ∈ rel(Y),Name(R) = Name(R′)}

= {R′ | R ∈ rel(X), R′ ∈ rel(Y),Name(R) = Name(R′)}

= rel(Y).

57

This implies rel(X) ≤RA rel(Y) by information containment definition. ut

Thus, if we wish to generate an audit log L as a set of FOL formulas, but ultimately

store the data in a relational database, we are still able to maintain a formal relation

between stored logs and the semantics of a given trace τ and specification LS . E.g.,

if a log L is sound with respect to τ and LS , then rel(bLc) ≤RA rel(LS(τ)). While

the data in rel(bLc) may very well be broken up into multiple relations in practice,

e.g. to compress data and/or for query optimization, the formalism also establishes

correctness conditions for the transformation that relate resulting information to the

logging semantics LS(τ) by way of the mapping. We reify this idea in our OpenMRS

implementation as discussed in Section 3.3.2.

58

Chapter 3

Temporal properties of function

calls: Break the glass policies

In this chapter, we specify our language model, a core OO calculus in Section 3.1.

Next, we specify a class of logging specifications whose concern is the temporal prop-

erties of function calls [77]. This class, called Calls is introduced in Section 3.2.1.

Section 3.2.2 proposes an edit automata to enforce ideal instrumentation. We develop

a provably correct enforcement mechanism by program instrumentation for Calls in

Section 3.2.3 and Section 3.2.4. We also discuss our case study in health informatics

in Section 3.3. In Section 3.4, we explore the techniques to avoid memory leakage in

the deployment of Calls.

3.1 Source Language

In this section, we define the source language which is the basis for our language

model in this dissertation. It includes the definitions of configurations and execution

59

traces.function toFOL(·) that shows how we concretely model execution traces in

FOL. This language model which is used with potential minor modifications in the

following sections for studying temporal properties of function calls and dynamic

integrity taint analysis.

We begin the technical presentation with definition of our language model based

on Featherweight Java (FJ) [27]. FJ is a core calculus that includes class hierarchy

definitions, subtyping, dynamic dispatch, and other basic features of Java. Language

FJ is a simple call-by-value OO core calculus with functional flavor. An FJ program is

a pair (e, CT) where e is an expression, and CT is a class table which maintains class

definitions. An FJ configuration is a pair (e, n) of an expression e and a timestamp

n. We assume the implicit existence of class tables as a component of configurations,

since class tables do not change during program execution.

3.1.1 Syntax

Figure 3.1 demonstrates the syntax for FJ. We let A, B, C, D range over class names,

x range over variables, f range over field names, and m range over method names.

Values, denoted v or u, are objects, i.e. expressions of the form new C(v1, . . . , vn).

We assume given an Object value that has no fields or methods. In addition to

the standard expressions of FJ, we introduce a new form C.m(e). This form is used

to identify the method C.m associated with a current evaluation context (aka the

“activation frame”). This does not really change the semantics, but is a useful feature

for our specification of sanitizer endorsement since return values from sanitizers need

to be endorsed– see the Invoke and Return rules in the operational semantics for its

usage.

60

L ::= class C extends C {C̄ f̄; K M̄} K ::= C(C̄ f̄){super(f̄); this.f̄ = f̄; } M ::= C m(C̄ x̄){return e; }

e ::= x | e.f | e.m(ē) | new C(ē) | C.m(e) E ::= [] | E.f | E.m(ē) | v.m(v̄, E, ē′) | new C(v̄, E, ē′) | C.m(E)

κ ::= (e, n) p ::= (e, CT)

Figure 3.1: FJ Syntax

For brevity in this syntax, we use vector notations. Specifically we write f̄ to

denote the sequence f1, . . . , fn, similarly for C̄, m̄, x̄, ē, etc., and we write M̄ as short-

hand for M1 · · · Mn. We write the empty sequence as ∅, we use a comma as a sequence

concatenation operator. If and only if m is one of the names in m̄, we write m ∈ m̄. Vec-

tor notation is also used to abbreviate sequences of declarations; we let C̄ f̄ and C̄ f̄;

denote C1 f1, . . . , Cn fn and C1 f1; . . . ; Cn fn; respectively. The notation this.f̄ = f̄;

abbreviates this.f1 = f1; . . . ; this.fn = fn;. Sequences of names and declarations

are assumed to contain no duplicate names.

3.1.2 Semantics

The semantic definition has several components, in addition to evaluation rules.

The class table, field and method body lookup, and inheritance

The class table CT maintains class definitions. The manner in which we look up field

and method definitions implements inheritance and override, which allows fields and

methods to be redefined in subclasses. These definitions are given Figure 3.2 and

Figure 3.3. We assume a given class table CT during evaluation, which will be clear

from context.

Using CT we also define a predicate to denote the inherited methods in a class

61

fieldsCT (Object) = ∅
CT (C) = class C extends D {C̄ f̄; K M̄} fieldsCT (D) = D̄ ḡ

fieldsCT (C) = D̄ ḡ, C̄ f̄

Figure 3.2: Class Fields in FJ

CT (C) = class C extends D {C̄ f̄; K M̄} B m(B̄ x̄){return e; } ∈ M̄
mbodyCT (m, C) = x̄, e

CT (C) = class C extends D {C̄ f̄; K M̄} m 6∈ M̄
mbodyCT (m, C) = mbodyCT (m, D)

Figure 3.3: Method Bodies in FJ

(Figure 3.4). The class table is implicit in this definition.

Method type lookup

Just as we’ve defined a function for looking up method bodies in the class table,

we also define a function that will look up method types in a class table. Method

type lookup is defined in Figure 3.5. Although we omit FJ type analysis from this

presentation, method type lookup will be useful for taint analysis instrumentation

(Definition 4.3.1).

Operational semantics

Now, we can define the operational semantics of FJ. We define these as a small step

relation in the usual manner, depicted in Figure 3.6.

We use →∗ to denote the reflexive, transitive closure of →. We will also use

the notion of an execution trace τ to represent a series of configurations κ, where

τ = κ1 . . . κn means that κi → κi+1 for 0 < i < n. Note that an execution trace τ may

62

CT (C) = class C extends D {C̄ f̄; K M̄} B m(B̄ x̄){return e; } ∈ M̄
Inherit(m, C, C)

CT (C) = class C extends E {C̄ f̄; K M̄} m 6∈ M̄ Inherit(m, E, D)
Inherit(m, C, D)

Figure 3.4: Method Inheritance in FJ

class C extends D {C̄ f̄; K M̄} B m(B̄ x̄){return e; } ∈ M̄
mtypeCT (m, C) = B̄→ B

class C extends D {C̄ f̄; K M̄} m 6∈ M̄
mtypeCT (m, C) = mtypeCT (m, D)

Figure 3.5: Method Types in FJ

represent the partial execution of a program, i.e. the trace τ may be extended with

additional configurations as the program continues execution. We use metavariables

τ and σ to range over traces.

To denote execution of top-level programs p(θ) where θ is an object, we assume

that all class tables CT include an entry point TopLevel.main, where TopLevel ob-

jects have no fields. We define p(θ) = new TopLevel().main(θ), and we write p(θ) ⇓ τ

iff trace τ begins with the configuration (p(θ), 0).

We define a mapping toFOL(·) that shows how we concretely model execution

traces in FOL. We develop toFOL(·) that interprets FJ traces as sets of logical facts

(a fact base), and define b·c = C(toFOL(·)). Intuitively, in the interpretation each

configuration is represented by a Context predicate representing the evaluation con-

text, and predicates (e.g. Call) representing redexes. Each of these predicates have

an initial natural number argument denoting a “timestamp”, reflecting the ordering

of configurations in a trace.

63

Context
(e, n)→ (e′, n′)

(E[e], n)→ (E[e′], n′)

Field
fieldsCT (C) = C̄ f̄ fi ∈ f̄
(new C(v̄).fi, n)→ (vi, n+ 1)

Invoke
mbodyCT (m, C) = x̄, e

(new C(v̄).m(ū), n)→ (C.m(e[new C(v̄)/this][ū/x̄]), n+ 1)

Return
(C.m(v), n)→ (v, n+ 1)

Figure 3.6: FJ Operational Semantics

toFOL((v, n)) = {Value(n, v)},
toFOL((E[new C(v̄).f], n)) = {GetField(n, new C(v̄), f),Context(n, E)},
toFOL((E[new C(v̄).m(ū)], n)) = {Call(n, C, v̄, m, ū),Context(n, E)},
toFOL((E[C.m(v)], n)) = {ReturnValue(n, C, m, v),Context(n, E)}.

Figure 3.7: Definition of toFOL(·) for Configurations.

Definition 3.1.1 We define toFOL(·) as a mapping on traces and configurations:

toFOL(τ) =
⋃

σ∈prefix(τ)
toFOL(σ)

such that toFOL(σ) = ⋃
i toFOL(κi) for σ = κ1 · · ·κk. We define toFOL(κ) as in

Figure 3.7.

3.2 Rewriting Programs with Logging

Specifications

Since correct logging instrumentation is a safety property (Section 2.4), there are

several possible implementation strategies. For example, one could define an edit

automata that enforces the property (see Section 3.2.2), that could be implemented

64

either as a separate program monitor or using IRM techniques [14]. But since we

are interested in program rewriting for a particular class of logging specifications, the

approach we discuss here is more simply stated and proven correct than a general

IRM methodology.

We specify a class of logging specifications of interest, along with a program rewrit-

ing algorithm that is sound and complete for it. We consider FJ to serve as the formal

setting to establish correctness of a program rewriting approach to correct instrumen-

tation of logging specification. We use this same approach to implement an auditing

tool for OpenMRS, described in the next section. The supported class of logging spec-

ifications is predicated on temporal properties of method calls and characteristics of

their arguments. This class has practical potential since security-sensitive operations

are often packaged as functions or methods (e.g. in medical records software [78]),

and the supported class allows complex policies such as break the glass to be ex-

pressed. The language of logging specifications is FOL, and we use ΦFOL to define

the semantics of logging and prove correctness of the algorithm.

3.2.1 Specifications Based on Function Call Prop-

erties

We define a class Calls of logging specifications that capture temporal properties

of function calls, such as those reflected in break the glass policies. We restrict

specification definitions to safe Horn clauses to ensure applicability of well-known

results and total algorithms such as Datalog [76]. Specifications in Calls support

logging of calls to a specific methods C0.m0 that happen after functions C1.m1, . . . , Cn.mn

65

∀t, C, v̄, m, ū, D .Call(t, C, v̄, m, ū) ∧ Inherit(m, C, D) =⇒ Call(t, D, v̄, m, ū)

∀t0, . . . , tn, v̄0, . . . , v̄n, ū0, . . . , ūn .Call(t0, C0, v̄0, m0, ū0)
n∧
i=1

(Call(ti, Ci, v̄i, mi, ūi) ∧ ti < t0) ∧

φ((t0, v̄0, ū0), . . . , (tn, v̄n, ūn)) =⇒ LoggedCall(t0, C0, v̄0, m0, ū0).

Figure 3.8: Horn Clauses in Calls

are called. Conditions on all object arguments, method arguments, and times of

method invocation, can be defined via a predicate φ. Hence more precise requirements

can be imposed, e.g. a linear ordering on invocations, particular values of method

arguments, etc.

Definition 3.2.1 Calls is the set of all logging specifications spec(X, {LoggedCall})

where X contains safe Horn clauses of the form given in Figure 3.8.

While set X may contain other safe Horn clauses, in particular definitions of

predicates occurring in φ, no other Horn clause in X uses the predicate symbols

LoggedCall, Value, Context, Call, ReturnValue, or GetField. For convenience in the

following, we define Logevent(LS) = C0.m0 and Triggers(LS) = {C1.m1, ..., Cn.mn}.

We note that specifications in Calls clearly satisfy Definition 2.2.1, since precon-

ditions for logging a particular call to C0.m0 must be satisfied at the time of that

call.

66

3.2.2 Edit Automata Enforcement of Calls Spec-

ifications

Considering Theorem 2.4.1, we observe that given a logging specification in Calls,

we can easily define an edit automata that enforces this property. The following

definition is in the “guarded command” style used by Schneider [1]. The array A is

used to store potentially multiple values of potentially multiple calls to each function

gi.

Theorem 3.2.1 Given spec(X,S) ∈ Calls, the ideal instrumentation property is

enforced by the edit automata in Figure 3.9. It is defined using the following predicates

on input configurations κ:

Call(t, C, x̄,m, ȳ) : means Call(t, C, x̄,m, ȳ) ∈ toFOL(κ)

φ logged : means φ ∈ toFOL(logof (κ))

and also T and V denote the universes of timestamps and program values respectively.

Proof.

Straightforward by induction on traces and definitions of edit automata [74]. ut

However, as indicated in Section 2.4, this technique does not provide an adequate se-

mantic foundation for log generation, and consequently correctness studies. Studying

the correctness of audit logging requires the ability to analyze whether the entries

are “appropriately” added to the log in each step of computation. That is, we need

to be able to judge whether a log entry has been recorded according to the logging

67

state vars A[n+ 1] : array of sets of T × V̄ × V̄ initial ∅

transitions not (Call(t0, C0, x̄0, m0, ȳ0) ∨ Call(ti, Ci, x̄i, mi, ȳi)) −→ skip

Call(t1, C1, x̄1, m1, ȳ1) −→ A[1] := A[1] ∪ {(t1, x̄1, ȳ1)}
...

Call(tn, Cn, x̄n, mn, ȳn) −→ A[n] := A[n] ∪ {(tn, x̄n, ȳn)}

Call(t0, C0, x̄0, m0, ȳ0)∧
(not(∃` ∈ A[1] ∗ · · · ∗A[n].φ((t0, x̄0, ȳ0), `))∨

LoggedCall(t0, C0, x̄0, m0, ȳ0) logged)

−→ skip

editing rules Call(t0, C0, x̄0, m0, ȳ0)∧
∃` ∈ A[1] ∗ · · · ∗A[n].φ((t0, x̄0, ȳ0), `)∧
LoggedCall(t0, C0, x̄0, m0, ȳ0) not logged

−→ add LoggedCall(t0, C0, x̄0, m0, ȳ0) to log

Figure 3.9: Edit Automata to Enforce Ideal Instrumentation

specification (necessity), and also what the logging specification advertises is added to

the log (sufficiency). However, note that given a logging specification LS , an ideally

instrumented trace is defined as a trace whose every prefix generates correct log wrt

that prefix and LS (Definition 2.4.1). This definition does not convey the required

formal components to study the necessity and sufficiency conditions of logging cor-

rectness in each step of computation. In the following we propose an instrumentation

approach to enforce audit logging in a provably correct manner.

3.2.3 Target Language

In order to specify a rewriting algorithm for provably correct enforcement of audit

logging, we need to establish the target language as the codomain of the rewriting

algorithm, i.e., the algorithm rewrites programs into the ones in the target language.

The syntax of our target language FJlog extends FJ syntax with a command to track

logging preconditions (callEvent(m, ū)), i.e. calls to logging triggers, and a command

68

e ::= . . . | this.callEvent(m, ū); e | this.emit(m, ū); e κ ::= (e, n,X,L)

Precondition

(new C(v̄).callEvent(m, ū); e, n,X,L)→ (e, n,X ∪ {Call(n− 1, C, v̄, m, ū)},L)

Log
X ∪XGuidelines ` LoggedCall(n− 1, C, v̄, m, ū)

(new C(v̄).emit(m, ū); e, n,X,L)→ (e, n,X,L ∪ {LoggedCall(n− 1, C, v̄, m, ū)})

NoLog
X ∪XGuidelines 6` LoggedCall(n− 1, C, v̄, m, ū)
(new C(v̄).emit(m, ū); e, n,X,L)→ (e, n,X,L)

Figure 3.10: FJlog Syntax and Sematics Extensions.

to emit log entries (emit(m, ū)). Configurations are extended to include a set X of

logging preconditions, and an audit log L. These extensions are depicted in Figure

3.10.

The semantics of FJlog extends the semantics of FJ with new rules for methods

callEvent(m, ū) and emit(m, ū), which update the set of logging preconditions and

audit log respectively. An instrumented program uses the set of logging preconditions

to determine when it should emit events to the audit log. The semantics is parameter-

ized by a guideline XGuidelines, typically taken from a logging specification. Given the

definition of Calls, these semantics would be easy to implement using e.g. a Datalog

proof engine. The extensions to FJlog semantics is also given in Figure 3.10.

Note that to ensure that these instrumentation commands do not change execu-

tion behavior, the configuration’s time is not incremented when callEvent(m, ū) and

emit(m, ū) are evaluated. That is, the configuration time counts the number of source

language computation steps.

The rules Log and NoLog rely on checking whether XGuidelines and logging precon-

69

ditions X entail LoggedCall(n− 1, C, v̄, m, ū).

To establish correctness of program rewriting, we need to define a correspondence

relation :≈. Source language execution traces and target language execution traces

correspond if they represent the same expression evaluated to the same point. We

make special cases for when the source execution is about to perform a function

application that the target execution will track or log via an callEvent(m, ū) or

emit(m, ū) command. In these cases, the target execution may be ahead by one or

two steps, allowing time for addition of information to the log.

Definition 3.2.2 Given source language execution trace τ = κ0 . . . κm and target

language execution trace τ ′ = κ′0 . . . κ
′
n, where κi = (ei, ti) and κ′i = (e′i, t′i, Xi,Li),

τ :≈ τ ′ iff e0 = e′0 and either

1. em = e′n (taking = to mean syntactic equivalence); or

2. em = e′n−1 and e′n = v.callEvent(m, ū); e′ for some v, m, ū, and e′; or

3. em = e′n−2 and e′n = v.emit(m, ū); e′ for some v, m, ū, and e′.

Finally, we need to define toFOL(L) for audit logs L produced by an instrumented

program. Since our audit logs are just sets of formulas of the form LoggedCall(n, C, v̄, m, ū),

we define toFOL(L) = L.

3.2.4 Program Rewriting Algorithm

Our program rewriting algorithm RFJ takes an FJ program p = (e, CT), a logging

specification LS = spec(XGuidelines, {LoggedCall}) ∈ Calls, and produces an FJlog

program p′ = (e′, CT ′) such that e and e′ are identical, and CT ′ is identical to CT

70

C.m = Logevent(LS) mbodyCT (m, C) = x̄, e
mbodyR(CT)(m, C) = x̄, this.callEvent(m, x̄); this.emit(m, x̄); e

C.m ∈ Triggers(LS) mbodyCT (m, C) = x̄, e
mbodyR(CT)(m, C) = x̄, this.callEvent(m, x̄); e

C.m /∈ Triggers(LS) ∪ {Logevent(LS)}
mbodyR(CT)(m, C) = mbodyCT (m, C)

Figure 3.11: Axioms for Rewriting Algorithm RFJ

except for the addition of callEvent(m, ū) and emit(m, ū) method invocations. The

algorithm is straightforward: we modify the class table to add callEvent(m, ū) to the

definition of any method C.m ∈ Triggers(LS)∪{Logevent(LS)} and add emit(m, ū) to

the definition of method C.m = Logevent(LS).

Definition 3.2.3 For FJ program p = (e, CT) and logging specifications LS ∈ Calls,

define:

RFJ((e, CT),LS) = (e,R(CT))

where R(CT) is the smallest class table satisfying the axioms given in Figure 3.11.

Program rewriting algorithm RFJ is semantics preserving, sound, and complete

for Calls. We have completely formalized these results (modulo well-known Horn

clause logic definitions and properties) in Coq [79]. In this section we summarize our

results.

Theorem 3.2.2 Program rewriting algorithm RFJ is semantics preserving (Defini-

tion 2.5.1).

Proof. Intuitively, the addition of this.callEvent(m, v̄) and this.emit(m, v̄) methods

does not interfere with FJ evaluation. The proof follows easily by induction on the

number of small-step reductions of programs. ut

71

Our proof strategy for soundness and completeness ofRFJ is to show that an audit

log produced by an instrumented program is the refinement of the least Herbrand

model of the logging specification semantics unioned with the logging specification’s

guidelines. By showing that audit logs combined with the guidelines are the least

Herbrand models of the logging specification semantics, we show that they contain

the same information. This implies soundness and completeness of program rewriting.

The following Lemma relates the syntactic property of closure with the properties

of a least Herbrand model [76, 80], and shows that the least Herbrand model of X

contains the same information as X. It holds by the soundness and completeness of

the logic.

Lemma 3.2.1 C(H(X)) = C(X) and H(X) = H(C(X)).

The following Lemmas states a similar but subtly different property relevant to sub-

language focusing that we will use in Theorem 3.2.3.

Lemma 3.2.2 C(C(H(X)) ∩ L) = C(H(X) ∩ L).

The key idea underlying the soundness of the program rewriting algorithm is that

any facts that are added to the set of logging preconditions or the audit log during

execution of the instrumented program are true facts: they are in the model of the

corresponding source language execution trace.

Lemma 3.2.3 Let p be a FJ program and LS ∈ Calls be a logging specification. For

all target language execution traces τ such that RFJ(p,LS) ⇓ τ , where τ = κ0 . . . κn

and κn = (e, t, X,L), there exists a source language execution trace τ ′ such that

τ ′ :≈ τ and p ⇓ τ ′ and X ⊆ toFOL(τ ′).

72

To show that RFJ is complete, we must show that for a logging specification

LS = spec(XGuidelines, {LoggedCall}) ∈ Calls and a source language execution τ , and

a corresponding target language execution τ ′ that produces audit log L, for any ground

instance LoggedCall(n, C, v̄, m, ū) ∈ LS(τ) we have LoggedCall(n, C, v̄, m, ū) ∈ L. In

order to show that, we need to show that (X ∪XGuidelines) ` LoggedCall(n, C, v̄, m, ū),

where X is the set of logging preconditions tracked during the target language exe-

cution τ ′ (see Rules Precondition and Log).

A key insight is that the only facts in toFOL(τ) relevant to deriving grounded

goals of the form LoggedCall(n, C, v̄, m, ū) are facts Call(n′, C′, v̄′, m′, u′) for C′.m′ ∈

{Logevent(LS)} ∪ Triggers(LS), and these are exactly the facts that appear in the

instrumented program’s set of logging preconditions tracked during execution. For-

mally, the support of a grounded goal ψ given assumptions X, denoted support(X,ψ),

is the set of conjuncts in φ where φ⇒ ψ is a grounding of a Horn clause of the form

∀x1, . . . , xm. φ
′ ⇒ ψ′ ∈ X and X ` φ. In Datalog terms, these are the grounded

subgoals of ψ in its derivation given knowledge base X. Hence:

Lemma 3.2.4 Let p be a FJ program and LS ∈ Calls be a logging specification where

LS = spec(Y, S). For all τ such that p ⇓ τ there exists a target language execution

trace τ ′ such that τ :≈ τ ′, R(p,LS) ⇓ τ ′ and τ ′ = κ0 . . . κn where κn = (e,m,X,L)

such that for all φ ∈ LS(τ) and Call(t, C, v̄, m, u) ∈ support(Y ∪ toFOL(τ), φ) we have

Call(t, C, v̄, m, u) ∈ X.

From Lemma 3.2.3 and Lemma 3.2.4, we can establish that the log generated by

the rewritten program is the least Herbrand model of the given logging specification

semantics.

73

Lemma 3.2.5 Let p be a FJ program and LS = spec(X, {LoggedCall}) ∈ Calls be a

logging specification. For all τ such that p ⇓ τ we have simlogs(RFJ(p,LS), τ) = {L}

such that:

L = H(X ∪ toFOL(τ)) ∩ L{LoggedCall}

Proof. (Sketch.) First, note that we can construct a target language execution trace

τ ′ such that RFJ(p,LS) ⇓ τ ′ and τ :≈ τ ′ (i.e., τ ′ executes the source program to the

same point that τ does). Let the last configuration of τ ′ be (e, n, Y,L). We observe

that this construction uniquely defines the log L due to determinism in the language

and Definition 4.4.8.

Let Z = H(X ∪ toFOL(τ)) ∩ L{LoggedCall}. If LoggedCall(n, C, v̄, m, ū) ∈ L, then

X ∪ Y ` LoggedCall(n, C, v̄, m, ū) by semantic definition of FJlog. But by Lemma

3.2.3 we have X ⊆ toFOL(τ), hence X ∪ toFOL(τ) ` LoggedCall(n, C, v̄, m, ū) so

LoggedCall(n, C, v̄, m, ū) ∈ Z.

Conversely, if LoggedCall(n, C, v̄, m, ū) ∈ Z, by Lemma 3.2.4 (and the determinism

of our languages), any Call fact in support(X ∪ toFOL(τ),LoggedCall(n, C, v̄, m, ū)) is

also inX, hence every such LoggedCall will also be in L. Thus LoggedCall(n, C, v̄, m, ū) ∈

Z iff LoggedCall(n, C, v̄, m, ū) ∈ L. The result follows by definition of H. ut

These Lemmas suffice to prove our main Theorem, demonstrating soundness and

completeness of program rewriting algorithm RFJ. This result establishes that the log

generated by the instrumented program and the semantics of the logging specification

contain exactly the same information with respect to the sublanguage L{LoggedCall}.

Theorem 3.2.3 (Soundness and Completeness) Program rewriting algorithmRFJ

is sound and complete (Definitions 2.5.2 and 2.5.3).

74

Proof. Let p be a FJ program and LS = spec(X, {LoggedCall}) ∈ Calls be a logging

specification. We aim to show that for all source language execution traces τ such

that p ⇓ τ we have simlogs(RFJ(p,LS), τ) = {L} such that C(L) = LS(τ).

By Lemma 3.2.5, we have that simlogs(RFJ(p,LS), τ) = {L} such that L = H(X∪

toFOL(τ)) ∩ L{LoggedCall}. By Lemma 3.2.1 and Lemma 3.2.2 LS(τ) = C(C(H(X ∪

toFOL(τ)))∩L{LoggedCall}) = C(H(X∪toFOL(τ))∩L{LoggedCall}). Hence, both LS(τ) ≤

C(L) and C(L) ≤ LS(τ). ut

3.3 Case Study on a Medical Records

System

As a case study, we have developed a tool [81] that enables automatic instrumentation

of logging specifications for the OpenMRS system. The implementation is based on

the formal model developed in Section 3.2 which enjoys a correctness guarantee. The

logging information is stored in a SQL database consisting of multiple tables, and

the correctness of this scheme is established via the monotone mapping defined in

Section 2.6.3. We have also considered how to reduce memory overhead as a central

optimization challenge.

OpenMRS [15] is a Java-based open-source web application for medical records,

built on the Spring Framework [82]. Previous efforts in auditing for OpenMRS in-

clude recording any modification to the database records as part of the OpenMRS

core implementation, and logging every function call to a set of predefined records

[72]. The latter illustrates the relevance of function invocations as a key factor in

75

 Logging

Speci cation

in JSON

Format

Parser
JSON

Objects

Source Code

Templates for

Dynamic

Components

Source Code

Generator

Source Code

for Dynamic

Components

Aggregator

and

Compiler

Source Code

for Static

Components

Module

Bytecode

Figure 3.12: Module Builder

logging. Furthermore, function calls define the fundamental unit of “secure opera-

tions” in OpenMRS access control [78]. This highlights the relevance of our Calls

logging specification class, particularly as it pertains to specification of break the glass

policies, which are sensitive to authorization.

In contrast to the earlier auditing solutions for OpenMRS, ours facilitates a smart

log generation mechanism in which only the necessary information are recorded, based

on accurate log specifications. Moreover, logging specifications are defined indepen-

dently from code, rather than being embedded in it in an ad-hoc manner. This

way, system administrators need to only assert logging specifications in the style of

Calls (Definition 3.2.1), and the tool builds the corresponding module that could

be installed on the OpenMRS server. This is more convenient, declarative, and less

error prone than direct ad-hoc instrumentation of code. In Figure 3.12 the details of

building the module is given.

76

Instrumented

OpenMRS
Proof Engine

Derivation

Listener

Initialize

De ne Predicate Symbols

Add/Remove Facts/Rules

Instant Query/Response

A
d
d
 L

is
te

n
e
r

N
o
tify

 L
is

te
n
e
r

Initialize

SQL

Database

Store Log Information

Figure 3.13: System Architecture

System Architecture Summary

To clarify the following discussion, we briefly summarize the architecture of our sys-

tem. Logging specifications are made in the style of Calls, which can be parsed into

JSON objects with a standard form recognized by our system. Instrumentation of

legacy code is then accomplished using aspect oriented programming. Parsed specifi-

cations are used to identify join points, where the system weaves aspects supporting

audit logging into OpenMRS bytecode. These aspects communicate with a proof

engine at the joint points to reason about audit log generation, implementing the

semantics developed for FJlog in Section 3.2.3. In our deployment logs are recorded

in a SQL database, but our architecture supports other approaches via the use of

listeners. Figure 3.13 illustrates the major components we have deployed to facilitate

auditing at runtime.

77

3.3.1 Break the Glass Policies for OpenMRS

Break the glass policies for auditing are intended to retrospectively manage the same

security that is proactively managed by access control (before the glass is broken).

Thus it is important that we focus on the same resources in auditing as those focused

on by access control. The data model of OpenMRS consists of several domains e.g.,

“Patient” and “User” domains contain information about the patients and system

users respectively, and “Encounter” domain includes the information regarding the

interventions of healthcare providers with patients. In order to access and modify the

information in different domains, corresponding service-layer functionalities are de-

fined that are accessible through web interface. These functionalities provide security

sensitive operations through which data assets are handled. Thus, OpenMRS autho-

rization mechanism checks user eligibility to perform these operations [78]. Likewise,

we focus on these functionalities to be addressed in the logging specifications, i.e.,

the triggers and logging events are constrained to the service-layer methods as they

provide access to data domains, e.g., the patient and user data.

We adapt the logical language of logging specifications developed above (Definition

3.2.1), with the minor extension that we allow logging of methods with more than

one argument. We note that logging specifications can include other information

specified as safe Horn clauses, e.g. ACLs, and generally define predicates specified in

φ((x0, t0), . . . , (xn, tn)) of Definition 3.2.1. We consider break the glass policies as a

key example application in our deployment. For instance a simple break the glass

policy states that if the glass is broken by some low-level user, and subsequently the

patient information is accessed by that user, the access should be logged. This policy

78

loggedCall(T, getPatient, U, P) :-
call(T, getPatient, U, P), call(S, breakTheGlass, U), @<(S, T), hasSecurityLevel(U, low).

hasSecurityLevel(admin, high).
hassecuritylevel(alice, low).

Figure 3.14: A Simple Break the Glass Policy Specified in the Proof Engine Database.

is depicted in Figure 3.141. The variable U refers to the user, and the variable P refers

to the patient. This specification also defines security levels for two users, alice and

admin. The predicate @< defines the usual total ordering on integers.

To enable these policies in practice, we have added a “break the glass” button

to a user menu in the OpenMRS GUI that can be manually activated on demand.

Activation invokes the breakTheGlass method parameterized by the user id. We

note that breaking the glass does not turn off access control in our current implemen-

tation, which we consider a separate engineering concern that is out of scope for this

work.

It is worth mentioning that while our tool is designed for OpenMRS, our general

approach can be used for arbitrary Java code at source or bytecode level.

3.3.2 Code Instrumentation

To instrument code for log generation, we leverage the Spring Framework that sup-

ports aspect-oriented programming (AOP). AOP is used to rewrite code where neces-

sary with “advice”, which in our case is before certain method invocations (so-called

“before advice”). Our advice checks the invoked method names and implements the

semantics given in Section 3.2.3, establishing correctness of audit logging. Join points
1We use the monospace font to present policies, data, and code excerpts that are relevant to the

implementation.

79

<advice>
<point>org.openmrs.api.PatientService</point>
<class>
org.openmrs.module.retrosecurity.advice.RetroSecurityAdvice
</class>
</advice>

Figure 3.15: Specifying Joint Points for Advices.

are automatically extracted from logging specifications, and defined with service-level

granularity in a configuration file. Weaving into bytecode is also performed automat-

ically by our system.

Since the generated code pieces are before advices, they are interposed before

every interface method of the declared services. An aspect is configured by declar-

ing where the join point and corresponding advice is. For example, Figure 3.15

shows an excerpt of a configuration file, where every interface method of the service

PatientService is a join point so before invoking each of those methods the advice

in RetroSecurityAdvice will be woven into the control flow.

The Advice

RetroSecurityAdvice is the before advice automatically generated by our system

based on the logging specification. It essentially determines whether a method call is

a trigger or a logging event and interacts with the proof engine appropriately in each

case.

The first time the advice is executed, the proof engine is initialized in a separate

thread. Moreover, a LoggedCall derivation listener is added to the list of the engine

listeners. Then, if memory overhead mitigation (Section 3.4) is not activated, the

invoked method names are checked and the rule Protection (Section 3.2.3) is imple-

mented for the triggers and the logging event, i.e., the proof engine is asked to add

80

the the information regarding the invocation of the method. In the case memory

overhead mitigation is activated, the set of Protection rules of Figure 3.17 are imple-

mented for the triggers and the logging event. The implementation of the rules Log

and NoLog (Section 3.2.3) is handled by the LoggedCall derivation listener.

The advice also checks for the invocation of the interface method queryLog().

This method communicates with the engine to facilitate instant querying based on

the invocations of the logging preconditions that exist in the memory.

3.3.3 Proof Engine

According to the the semantics of FJlog, it is necessary to perform logical deduction,

in particular resolution of LoggedCall predicates. As we will show in Section 3.4,

the required deductions could be generalized to any arbitrary formula. To this end,

we have employed XSB Prolog [83] as our proof engine, due to its reliability and

robustness. We have restricted our specifications to safe Horn clauses though, despite

the fact that XSB Prolog provides a more expressive tool. In order to have a bidi-

rectional communication between the Java application and the engine, InterProlog

Java/Prolog SDK [84] is used. A lightweight Datalog engine that communicates with

Java application is more preferable, but we were not able to identify such third-party

tool and thus it remains as future work.

The proof engine is initialized in a separate thread with an interface to the main

execution trace. The interface includes methods to define predicates, to add rules

and facts, and to revoke them asynchronously2. The asynchrony avoids blocking the

“normal” execution trace for audit logging purposes. The interface also provides an
2Revoking facts is required for memory overhead mitigation.

81

instant querying mechanism. The execution trace of instrumented program commu-

nicates with the XSB Prolog engine as these interface methods are invoked in the

advices.

3.3.4 Writing and Storing the Log

Asynchronous communication with the proof engine through multi-threading enables

us to modularize the deduction of the information that we need to log, separate from

the storage and retainment details. This supports a variety of possible approaches to

storing log information– e.g., using a strict transactional discipline to ensure writing

to critical log, and/or blocking execution until log write occurs. Advice generated by

the system for audit log generation just needs to include event listeners to implement

the technology of choice for log storage and retainment.

In our application, the logging information is stored in a SQL database consisting

of multiple tables. The generated advices include event listeners to implement our

technology of choice for log storage and retainment. In case a new logging information

is derived by the proof engine, the corresponding listeners in the main execution

trace are notified and the listeners partition and store the logging information in

potentially multiple tables. Correctness of this storage technique is established using

the monotone mapping rel defined in Section 2.6.3, i.e., the join of these tables are

information equivalent (Definition 2.1.4) to the semantics of logging specification for

a given break the glass policy. This ensures that the correctness guarantees extend

to database storage.

Consider the case where a loggedCall is derived by the proof engine given the

logging specification in Section 3.3.1. Here, the instantiation of U and P are user

82

select time, “getPatien”, uname, patient_name
from GetPatL, User, Patient
where GetPatL.uid = User.uid and GetPatL.pid = Patient.pid

Figure 3.16: Querying the Log with SQL.

and patient names, respectively, used in the OpenMRS implementation. However,

logged calls are stored in a table called GetPatL with attributes time, uid, and pid,

where uid is the primary key for a User table with a uname attribute, and pid is

the primary key for a Patient table with a patient_name attribute. Thus, for any

given logging specification of the appropriate form, the monotonic mapping rel of the

select statement in Figure 3.16 gives us the exact information content of the logging

specification following execution of an OpenMRS session:

3.4 Reducing Memory Overhead

A source of overhead in our system is memory needed to store logging preconditions.

We observe that a naive implementation of the intended semantics will add all trigger

functions to the logging preconditions, regardless of whether they are redundant in

some way. To optimize memory usage, we therefore aim to refrain from adding

information about trigger invocations if it is unnecessary for future derivations of

audit log information. As a simple example, in the following logging specification it

suffices to add only the first invocation of C1.m1 to the set of logging preconditions to

infer the relevant logging information.

∀t0, t1, x̄0, x̄1, ȳ0, ȳ1 .Call(t0, C0, x̄0, m0, ȳ0) ∧ Call(t1, C1, (t1, C1, x̄1, m1, ȳ1)) ∧ t1 < t0

=⇒ LoggedCall(t0, C0, x̄0, m0, ȳ0).

83

Intuitively, our general approach is to rewrite the body of a given logging specifi-

cation in a form consisting of different conjuncts, such that the truth valuation of each

conjunct is independent of the others. This way, the required information to derive

each conjunct is independent of the information required for other conjuncts. Then,

if the inference of a LoggedCall predicate needs a conjunct to be derived only once

during the program execution, we can limit the amount of information required to

derive that conjunct to the point where it is derivable, without affecting the derivabil-

ity of other conjuncts. In other words, following derivation of that conjunct, triggers

in the conjunct are “turned off”, i.e. no longer added to logging preconditions when

encountered during execution.

Formally, the logging specification is rewritten in the form

∀t0, . . . , tn, x̄0, . . . , x̄n, ȳ0, . . . , ȳn .
n∧
i=1

(ti < t0)
L∧
k=1

Qk =⇒ LoggedCall(t0, C0, x̄0, m0, ȳ0),

where each Qk is a conjunct of literals with independent truth valuation resting on

disjointness of predicated variables. In what follows, a formal description of the

technique is given.

Since we have a linear computational model, the predicates corresponding to the

timestamp comparisons (ti < t0) do not play a significant role in the inference of

LoggedCall predicates. There reason is, at any point in time, the set of logging

preconditions only contain function invocations that have been occurred in the past,

i.e., if the logging event is invoked at timestamp t0, then ti < t0 holds for all trigger

invocation timetamps ti that are retained in the set of logging preconditions. In what

follows, a formal description of the technique is given.

Consider the Definition 3.2.1, where C1.m1 = Logevent(LS). Let predicates of the

84

form ϕi′((x̄0, ȳ0, t0), . . . , (x̄n, ȳn, tn)) be positive literals and

φ((x̄0, ȳ0, t0), . . . , (x̄n, ȳ0, tn)) ,
n′∧
i′=1

ϕi′((x̄0, ȳ0, t0), . . . , (x̄n, ȳn, tn)).

Then, we define the set Ψ as

Ψ ,{ϕi′((x̄0, ȳ0, t0), . . . , (x̄n, ȳn, tn)) | i′ ∈ 1 · · ·n′}∪

{(Call(ti, Ci, x̄i, mi, ȳi)) | i ∈ 0 · · ·n}.

Moreover, let’s denote the set of free variables of a formula φ as FV (φ), and abuse this

notation to represent the set of free variables that exist in a set of formulas. Then,

FV (Ψ) = {x̄0, · · · , x̄n, ȳ0, · · · , ȳn, t0, · · · , tn}. Next, we define the relation, ~FV over

free variables of positive literals in Ψ, which represents whether they are free variables

of the same literal.

Definition 3.4.1 Let ~FV ⊆ FV (Ψ)×FV (Ψ) be a relation where α~FV β iff there

exists some literal P ∈ Ψ such that α, β ∈ FV (P). Then, the transitive closure of

~FV is denoted by ~TFV .

Lemma 3.4.1 ~FV is reflexive and symmetric.

Corollary 3.4.1 ~TFV is an equivalence relation and so, partitions FV (Ψ)

Let [α]~TFV denote the equivalence class induced by ~TFV over FV (Ψ), where

[α]~TFV , {β | α ~TFV β}. Intuitively, each equivalence class [α]~TFV represents a

set of free variables in Ψ that are free in a subset of literals of Ψ, transitively. To

be explicit about these subsets of literals, we have the following definition (Definition

85

3.4.2). Note that rather than representing an equivalence class using a representative

α (i.e., the notation [α]~TFV), we may employ an enumeration of these classes and

denote each class as Ck, where k ∈ 1 · · ·L. L represents the number of equivalence

classes that have partitioned FV (Ψ). In order to map these two notations, we consider

a mapping ω : FV (Ψ)→ {1, · · · , L} where ω(α) = k if [α]~TFV = Ck.

Definition 3.4.2 Let C be an equivalence class induced by ~TFV . The predicate class

PC is a subset of literals of Ψ defined as PC , {P ∈ Ψ | FV (P) ⊆ C}. We define

the independent conjuncts as QC ,
∧
P∈PC P . We also denote Q[α] as Qk if ω(α) = k.

Obviously, FV (Qk) = Ck.

Lemma 3.4.2 Let C1, · · · , CL be all the equivalence classes induced by ~TFV over

FV (Ψ). Then, PC1 , · · · ,PCL give a partition on Ψ.

Proof. We need to show that

• for all distinct k, k′ ∈ 1 · · ·L, PCk ∩ PCk′ = ∅:

By contradiction: Let k, k′ ∈ 1 · · ·L be specific distinct indexes where PCk ∩

PCk′ 6= ∅, i.e., there exists some P ∈ Ψ, such that P ∈ PCk and P ∈ PCk′ .

Then, according to the definition, we have FV (P) ⊆ Ck and FV (P) ⊆ Ck′ .

Since FV (P) is non-empty, we would have Ck∩Ck′ 6= ∅, which contradicts with

Ck and Ck′ being classes over FV (Ψ).

• ⋃L
k=1PCk = Ψ:

Obviously, ⋃Lk=1PCk ⊆ Ψby the definition of predicate classes. It only suffices

to show that ⋃Lk=1PCk ⊇ Ψ. Let P ∈ Ψ. Since FV (P) 6= ∅, there exists

some α ∈ FV (P). Considering the equivalence class [α]~TFV , we will then have

FV (P) ⊆ [α]~TFV . This entails that P ∈ P[α]~TFV and so, P ∈ ⋃Lk=1PCk .

86

ut

In order to specify and prove the correctness of the proposed technique, a new

calculus FJ′log is formalized with memory overhead mitigation capabilities. In what

follows the details of this calculus and the correctness result are given. Moreover,

a developed example of how these techniques could be applied to a sample logging

specification in Calls is discussed, later in this section.

The given techniques are implemented in the OpenMRS retrospective security

module as a case study.

3.4.1 Language with Memory Overhead Mitiga-

tion

The language FJlog is defined in Section 3.2 whose syntax includes a command to

track logging preconditions (callEvent(m, ū)) and a command to emit log entries

(emit(m, ū)). Configurations are quadruples of the form κ ::= (e, n,X,L) which

include a set X of logging precondtions (sometimes referred to as “database”), and

an audit log L. The semantics of FJlog includes the rule Precondition to update the

set of logging preconditions.

The language FJ′log has the same syntax as FJlog. The configurations, however,

have an additional component W which is a set of function names. It is used to

keep track of functions that we do not require to add their invocation information to

the database any more. By adding some trigger name Ci.mi to W , we indicate that

further additions of information regarding Ci.mi invocations to X will not cause new

87

LoggedCall predicates to be derived.

κ ::= (e, n,X,L,W) configurations

All stepwise reduction rules in this language are the same as the ones in FJlog,

except for Precondition. Instead of that rule, we impose the set of rules in Figure

3.17. Note that XG denotes the guidelines database. For the sake of brevity, we will

omit ~TFV from the class notations onward.

The rule Precondition-1 states that if a trigger is invoked, but is already added

to the set W , according to the semantics of W , we do not add the invocation to the

database. The remaining rules consider the other case, i.e., the trigger is not already

added to W . The rule Precondition-2 expresses the case where the trigger Ci.mi is not

in W , and there are no literals except for Call(ti, Ci, x̄i, mi, ȳi) with x̄i, ȳi or ti as free

variables. In this case, the invocation is added to database and the trigger name is

added to the set W , in order to avoid further addition of invocations to this trigger.

If there are literals other than Call(ti, Ci, x̄i, mi, ȳi) with free variables x̄i, ȳi or ti, but

the free variables of all those literals are restricted to x̄i, ȳi and ti, we study the

derivability of the ground form of Q[ti] considering the new invocation. Notice that

FV (Q[ti]) = {x̄i, ȳi, ti}. If the ground form of Q[ti] is derivable, then the invocation

is added to the database. The trigger name is also added to W (Precondition-4).

Otherwise, the invocation is not added to the database (Precondition-3). The reason

is, keeping the invocation information in the database will not help deriving a ground

form of Q[ti] in the future steps.

If there are literals other than Call(ti, Ci, x̄i, mi, ȳi) with free variables x̄i, ȳi or ti,

and the free variables of those literals are not restricted to x̄i, ȳi and ti, but exclude x̄0,

88

ȳ0 and t0, then the derivability of Q[ti] is studied. In this case, the set of free variables

of Q[ti] is [ti], for sure. If a ground form of Q[ti] is derivable, then the invocation is

added to the database and the trigger names whose timestamp and argument variable

are in [ti] are added toW (Precondition-6). Otherwise, the invocation is still added to

the database (Precondition-5) but the trigger name is not added toW . The reason is,

keeping the invocation information in the database might help derive a ground form

of Q[ti] in the future steps, since there exist free variables other than x̄i, ȳi and ti in

Q[ti] that could be substituted with proper values so that Q[ti] could be derived. Note

that ᾱi represents a sequence of free variables [ti] − {x̄i, ȳi, ti} and āi is a sequence

of timestamps and values, except for the timestamp and argument value of trigger i.

Moreover,
[
āi/ᾱi

]
denotes the substitution of values to their corresponding variables.

The rule Precondition-7 discusses the remaining case for triggers, that is when

there are literals other than Call(ti, Ci, x̄i, mi, ȳi) with free variables x̄i, ȳi or ti, the

free variables of those literals are not restricted to x̄i, ȳi and ti, and include x̄0, ȳ0 or

t0. Then, the invocation is added to the database but the trigger name is not added

to W , independent of whether a ground form of Q[ti] is derivable or not. If a ground

form of Q[ti] is not derivable at the moment, keeping the invocation information in the

database might help derive a ground form of Q[ti] in the future steps, since there exist

free variables other than x̄i, ȳi and ti in Q[ti] that could be substituted with proper

values so that a ground form of Q[ti] could be derived. Otherwise, if a ground form

of Q[ti] is derivable, we might still need to add future invocations of Ci.mi and other

triggers whose timestamp and argument variables are in [ti]. That is why, we avoid

adding trigger names to W . This is due to the fact that Q[ti] includes invocation

to the logging event and possibly other predicates defined over its timestamp and

89

argument variable (x̄i, ȳi and ti). Thus, future derivations of Q[ti] could be affected.

This represents a major difference between the case when Q[ti] includes {x̄0, ȳ0, t0}

and the case Q[ti] excludes these variables. In the latter case, it is only required to

derive a ground form of Q[ti] once during program execution, in order to study whether

LoggedCall predicates could be inferred. Therefore, whenever a ground form of Q[ti]

is derivable at the time of Ci.mi invocation, W is beefed up with the corresponding

trigger names. In the prior case, however, it is required to derive all possible ground

forms of Q[ti], so that we would be able to infer all possible LoggedCall predicates.

The last rule (Precondition-8) discusses the case where the logging event is in-

voked. Since we need to infer all possible LoggedCall predicates, we add all those

invocations to the database.

3.4.2 Correctness of Memory Overhead Mitiga-

tion

In order to study the executional behaviour of programs in FJ′log compared to the case

where they are executing in FJlog, we need to understand the relationship between

the set of logging preconditions in these languages. To this end, we develop an

algorithm that generates the reduced database and the set W of trigger names, out

of a full-blown database of logging preconditions. The algorithm Refine is defined in

Algorithm 2. We denote the reduced set of logging preconditions X as R(X), and

the generated set of trigger names as W(X), defined as follows:

R(X) , fst(Refine X [] ∅) W(X) , snd(Refine X [] ∅)

90

We do not express any explicit mapping between sets and sorted lists in our

formulation for the sake of brevity. The employment of sets and their corresponding

sorted lists are clear from the context. Let’s denote the restriction of a set X to

timestamps less than or equal to n, as X|n.

In what follows, Lemmas 3.4.3 to 3.4.7 discuss properties of R(X) and W(X).

Lemma 3.4.7, in particular, shows that R(X) is enough to derive all LoggedCall

predicates that are derivable from X. Lemma 3.4.8 states that in a single reduc-

tion step, the reduced set of logging preconditions is preserved and the generated

audit log is maintained, which then can be generalized straightforwardly to multi-

step reduction, in Theorem 3.4.1. Then, Corollary 3.4.2 gives us our intended result,

which states that a program could be evaluated in FJ′log with reduced set of logging

preconditions and the same audit log.

Lemma 3.4.3 Let X be a set of logging preconditions. For all i ∈ 1 · · ·n, if ti ∈ [t0]

then Ci.mi /∈ W(X).

Proof. Since ti ∈ [t0], [ti] = [t0] and so [ti]∩{x̄0, ȳ0, t0} 6= ∅. Thus, for each invocation

information of Ci.mi in X, only line 25 of Algorithm 2 is executed. Obviously, Ci.mi is

not added to W in this line. ut

Lemma 3.4.4 For all i ∈ 0 · · ·n, if ti ∈ [t0] and Call(n, Ci, v̄i, mi, ūi) ∈ X, then

Call(n, Ci, v̄i, mi, ūi) ∈ R(X).

Proof. First let’s consider the case where i = 0. Then, according to line 31 of Algo-

rithm 2, Call(n, Ci, v̄i, mi, ūi) ∈ R(X). Now, let i ∈ 1 · · ·n. According to Lemma 3.4.3,

Ci.mi /∈ W(X) and so Ci.mi /∈ W(X|n−1). This implies that only line 25 of Algorithm

91

Algorithm 2: Refine algorithm
Input: Sorted list of invocation facts, Sorted list of invocation facts, Set of

trigger names
Output: Sorted list of invocation facts, Set of trigger names

1 Refine [] Y W = (Y,W)
2

3 Refine ((Call(n, Ci, v̄i, mi, ūi)) :: X) Y W =
4 if i ∈ 1 · · ·n then
5 if Ci.mi ∈ W then
6 Refine X Y W
7 else
8 if P[ti] − {Call(ti, Ci, x̄i, mi, ȳi)} = ∅ then
9 Refine X (Y + [Call(n, Ci, v̄i, mi, ūi)]) (W ∪ {Ci.mi})

10 else
11 if [ti]− {x̄i, ȳi, ti} = ∅ then
12 if

Y ∪ {Call(n− 1, Ci, v̄i, mi, ūi)} ∪XG 0 Q[ti]
[
n− 1/ti

][
v̄i/x̄i

][
ūi/ȳi

]
then

13 Refine X Y W
14 else
15 Refine X (Y + [Call(n, Ci, v̄i, mi, ūi)]) (W ∪ {Ci.mi})
16 end
17 else
18 if [ti] ∩ {x̄0, ȳ0, t0} = ∅ then
19 if @āi . Y ∪ {Call(n− 1, Ci, v̄i, mi, ūi)} ∪XG `

Q[ti]
[
āi/ᾱi

][
n− 1/ti

][
v̄i/x̄i

][
ūi/ȳi

]
then

20 Refine X (Y + [Call(n, Ci, v̄i, mi, ūi)]) W
21 else
22 Refine X (Y + [Call(n, Ci, v̄i, mi, ūi)]) (W ∪ti′∈[ti] {Ci′ .mi′})
23 end
24 else
25 Refine X (Y + [Call(n, Ci, v̄i, mi, ūi)]) W
26 end
27 end
28 end
29 end
30 else
31 Refine X (Y + [Call(n, Ci, v̄i, mi, ūi)]) W
32 end

92

2 can be executed for Ci.mi, in which the invocation to Ci.mi is added to Y , which then

is reflected in R(X). ut

Let ¯̄t(k), ¯̄x(k) and ¯̄y(k) denote the sequences of timestamp, object field variables

and function argument variables respectively, that are in class Ck. Similarly, ¯̄s(k) and

¯̄v(k) and ¯̄u(k) are used to denote sequences of timestamps, field values and function

argument values that substitute ¯̄t(k), ¯̄x(k) and ¯̄y(k) respectively.

Lemma 3.4.5 Let i ∈ 1 · · ·n. Suppose that

X ∪XG ` Qω(i)
[
¯̄s(ω(i))/¯̄t(ω(i))

][
¯̄v(ω(i))/¯̄x(ω(i))

][
¯̄u(ω(i))/¯̄y(ω(i))

]
,

for some sequences of timestamps, field values and argument values ¯̄s(ω(i)), ¯̄v(ω(i))

and ¯̄u(ω(i)). If Call(si′ , Ci′ , v̄i′ , mi′ , ūi′) ∈ X and Call(n, Ci, v̄i, mi, ūi) /∈ R(X) for some

i′ such that ti′ ∈ [ti], then Ci′ .mi′ ∈ W(X|si′−1).

Proof. Let’s assume Ci′ .mi′ /∈ W(X|si′−1). Since Call(si′ , Ci′ , v̄i′ , mi′ , ūi′) ∈ X and

Call(si′ , Ci′ , v̄i′ , mi′ , ūi′) /∈ R(X), we need to follow Refine algorithm to extract the

places where the invocation information is not added to Y . The only place with such

a property is line 13 (other than line 6 which is refuted by the assumption). Then,

• P[ti′] − {Call(ti′ , Ci′ , x̄i′ , mi′ , ȳi′)} = ∅, [ti′]− {x̄i′ , ȳi′ , ti′} = ∅, and

• X|si′−1 ∪ {Call(si′ , Ci′ , v̄i′ , mi′ , ūi′)} ∪XG 0 Q[ti′]
[
si′ − 1/ti′

][
v̄i′/x̄i′

][
ūi′/ȳi′

]
.

The latter result is in contradiction with the general form

X ∪XG ` Qω(i)
[
¯̄s(ω(i))/¯̄t(ω(i))

][
¯̄v(ω(i))/¯̄x(ω(i))

][
¯̄u(ω(i))/¯̄y(ω(i))

]

93

considering the fact that ω(i) = ω(i′) due to ti′ ∈ [ti], and also Q[ti] = Qω(i′). ut

Lemma 3.4.6 Let X be a set of logging preconditions. For all i ∈ 1 · · ·n, if Ci.mi ∈

W(X), then there exist some n, v̄i, ūi and āi such that Call(n, Ci, v̄i, mi, ūi) ∈ R(X)

and

R(X) ∪XG ` Q[ti]
[
āi/ᾱi

][
n/ti

][
v̄i/x̄i

][
ūi/ȳi

]
.

Proof. The only places where a trigger is added toW in Algorithm 2 are the lines 9, 15,

and 22. In line 9, invocation to Ci.mi is added to Y , which then is reflected in R(X).

Moreover, this line is executed whenever P[ti] − {Call(ti, Ci, x̄i, mi, ȳi)} = ∅. Thus, for

this case Q[ti] = Call(ti, Ci, x̄i, mi, ȳi). Then, since Call(n, Ci, v̄i, mi, ūi) ∈ R(X), we

have R(X)∪XG ` Call(n, Ci, v̄i, mi, ūi). In line 15, similar to line 9, invocation to gi is

added to Y , so Call(n, Ci, v̄i, mi, ūi) ∈ R(X). Moreover, this line is executed provided

the condition in lines 12 does not hold. This ensures the derivation of the ground form

of Q[ti]. The line 22 is executed if the condition in lines 19 does not hold. Therefore,

a ground form of Q[ti] should be derivable. This entails that for all ti′ ∈ [ti], there

exist some n′, v̄i′ and ūi′ such that Call(n′, Ci′ , v̄i′ , mi′ , ūi′) ∈ Y ∪ {Call(n,gi, v)}. As

Y ∪ {Call(n, Ci, v̄i, mi, ūi)} is reflected in R(X), the proof is complete. ut

Lemma 3.4.7 If X ∪XG ` LoggedCall(s0, C0, v̄0, m0, ū0)} then

R(X) ∪XG ` LoggedCall(s0, C0, v̄0, m0, ū0).

94

Proof. If

X ∪XG ` LoggedCall(s0, C0, v̄0, m0, ū0)

then there exist s1, · · · , sn, v̄1, · · · , v̄n, ū1, · · · , ūn such that

X ∪XG `
n∧
i=1

(si < s0)
L∧
k=1

Qk

[
¯̄s(k)/¯̄t(k)

][
¯̄v(k)/¯̄x(k)

][
¯̄u(k)/¯̄y(k)

]
.

It implies that for all i ∈ 0 · · ·n, Call(si, Ci, v̄i, mi, ūi) ∈ X. For each i ∈ 0 · · ·n, we

consider the following two cases:

• [ti] = [t0]: Then, ti ∈ [t0]. Since Call(si, Ci, v̄i, mi, ūi) ∈ X, Lemma 3.4.4 implies

that Call(si, Ci, v̄i, mi, ūi) ∈ R(X). Then,

R(X) ∪XG `

(si < s0) ∧Qω(i)
[
¯̄s(ω(i))/¯̄t(ω(i))

][
¯̄v(ω(i))/¯̄x(ω(i))

][
¯̄u(ω(i))/¯̄y(ω(i))

]
.

• [ti] 6= [t0]: Then, [ti]∩{x0, t0} = ∅. Now, we consider the following two subcases:

– For all ti′ ∈ [ti], if Call(si′ , Ci′ , v̄i′ , mi′ , ūi′) ∈ X then

Call(si′ , Ci′ , v̄i′ , mi′ , ūi′) ∈ R(X).

Then obviously the following are provable under the assumption R(X) ∪

XG.:

∗ (si < s0), and

∗ Qω(i)
[
¯̄s(ω(i))/¯̄t(ω(i))

][
¯̄v(ω(i))/¯̄x(ω(i))

][
¯̄u(ω(i))/¯̄y(ω(i))

]
.

95

– There exists some ti′ ∈ [ti] such that

∗ Call(si′ , Ci′ , v̄i′ , mi′ , ūi′) ∈ X and

∗ Call(si′ , Ci′ , v̄i′ , mi′ , ūi′) /∈ R(X).

Then, by Lemma 3.4.5, Ci′ .mi′ ∈ W(X|si′−1), which implies that Ci′ .mi′ ∈

W(X). Using Lemma 3.4.6, we conclude that there exist some n ≤ si′− 1,

v̄i′ , ūi′ and āi′ such that Call(n, Ci′ , v̄i′ , mi′ , ūi′) ∈ R(X) and R(X) ∪XG `

Q[ti′]
[
āi′/ᾱi′

][
n/ti′

][
v̄i′/x̄i′

][
ūi′/ȳi′

]
. This entails that R(X) ∪ XG ` (n <

s0) ∧Qω(i)
[
āi′/ᾱi′

][
n/ti′

][
v̄i′/x̄i′

][
ūi′/ȳi′

]
considering the fact that Qω(i) =

Q[ti′], as ti′ ∈ [ti].

Thus, R(X) ∪XG suffices to derive ground forms of all Qω(i) and therefore R(X) ∪

XG ` LoggedCall(s0, C0, v̄0, m0, ū0). ut

Lemma 3.4.8 If (e, n,X,L)→ (e′, n′, X ′,L′) in FJlog, then

(e, n,R(X),L,W(X))→ (e′, n′,R(X ′),L′,W(X ′))

in FJ′log.

Proof. By induction on the derivation of (e, n,X,L)→ (e′, n′, X ′,L′). The interesting

cases are the reductions of new Ci(v̄i).callEvent(mi, ūi) and new Ci(v̄i).emit(mi, ūi).

Let

(new Ci(v̄i).callEvent(mi, ūi); e, n,X,L)→ (e, n,X ∪ {Call(n− 1, Ci, v̄i, mi, ūi)},L).

There are eight cases in FJ′log, then. The first case is where i ∈ 1 · · ·n and Ci.mi ∈

96

W(X). Then,

(new Ci(v̄i).callEvent(mi, ūi); e,R(X), n,L, C,W(X))→ (e, n,R(X),L,W(X)).

Then we need to show that R(X) = R(X ∪ {Call(n− 1, Ci, v̄i, mi, ūi)}) and W(X) =

W(X ∪ {Call(n− 1, Ci, v̄i, mi, ūi)}) for this case, which hold based on line 6 of Refine

in Algorithm 2. The other seven cases are similarly provable based on the definition

of Refine.

Let

(new Ci(v̄i).emit(mi, ūi); e, n,X,L)→ (e, n,X,L ∪ {LoggedCall(n− 1, Ci, v̄i, mi, ūi)}).

This holds when X ∪ XG ` LoggedCall(n − 1, Ci, v̄i, mi, ūi). Using Lemma 3.4.7, we

then have R(X) ∪XG ` LoggedCall(n− 1, Ci, v̄i, mi, ūi), which implies that

(new Ci(v̄i).emit(mi, ūi); e, n,R(X),L,W(X))→

(e, n,R(X),L ∪ {LoggedCall(n− 1, Ci, v̄i, mi, ūi)},W(X)).

Let

(new Ci(v̄i).emit(mi, ūi); e, n,X,L)→ (e, n,X,L).

Then X ∪ XG 0 LoggedCall(n − 1, Ci, v̄i, mi, ūi). Since R(X) ⊆ X and the proof

system is monotone, we conclude that R(X) ∪XG 0 LoggedCall(n − 1, Ci, v̄i, mi, ūi).

97

It then implies that

(new Ci(v̄i).emit(mi, ūi); e, n,R(X),L,W(X))→ (e, n,R(X),L,W(X)).

ut

Theorem 3.4.1 Let (e, n,X,L)→∗ (e′, n′, X ′,L′) in FJlog. This implies that

(e, n,R(X),L,W(X))→∗ (e′, n′,R(X ′),L′,W(X ′))

in FJ′log.

Proof. It is straightforward by induction on the derivation of multi-step evaluation

(e, n,X,L)→∗ (e′, n′, X ′,L′) using the result of Lemma 3.4.8. ut

The following corollary states the correctness in the sense that a program could

be evaluated in FJ′log with reduced set of logging preconditions and the same audit

log as it is evaluated in FJlog.

Corollary 3.4.2 If (e, 0, ∅, ∅)→∗ (v, n,X,L) in FJlog, then

(e, 0, ∅, ∅, ∅)→∗ (v, n,R(X),L,W(X))

in FJ′log.

98

3.4.3 An Illustrative Example for Memory Over-

head Mitigation

In the following example, we demonstrate details of our formulation for mitigating

memory overhead, considering a sample logging specification.

Example 3.4.1 In this example, for the sake of brevity we assume that FJ includes

primitive values e.g., integers as objects. Consider the logging specification in Figure

3.18. Then,

Ψ = {Call(ti, Ci, xi, mi, yi) | i ∈ 0 · · · 4} ∪ {t1 < t2, y1%2 = 0, y3 = y4,

HasSecLevel(y4, secret), Includes(y0, y4)}

and obviously FV (Ψ) = {ti, xi, yi | i ∈ 0 · · · 4}. Note that each literal could be defined

intensionally or extensionally beside the guideline.

Then, the relation ~FV includes several pairs including (t1, t2), (y3, y4), (y4, y0)

and (ti, yi) for all i ∈ {0, · · · , 4} among other pairs.

We then have the following equivalence classes:

C1 = {t1, x1, y1, t2, x2, y2} C2 = {t0, x0, y0, t3, x3, y3, t4, x4, y4}

Note that ω(1) = ω(2) = 1 and ω(0) = ω(3) = ω(4) = 2. As an example, ¯̄t(2) =

t0, t3, t4 is a possible sequence of timestamp variables of class C2.

99

This implies the following predicate classes in Ψ:

PC1 = {Call(t1, C1, x1, m1, y1),Call(t2, C2, x2, m2, y2), t1 < t2, y1%2 = 0} PC2 =

{y3 = y4,HasSecLevel(y4, secret), Includes(y0, y4)} ∪ i=0,3,4{Call(ti, Ci, xi, mi, yi)}

Then, Q1 and Q2 could be defined accordingly.

Q1 = Call(t1, C1, x1, m1, y1) ∧ Call(t2, C2, x2, m2, y2) ∧ t1 < t2 ∧ y1%2 = 0,

Q2 =Call(t0, C1, x0, m0, y0) ∧ Call(t3, C3, x3, m3, y3) ∧ Call(t4, C4, x4, m4, y4) ∧ y3 = y4∧

HasSecLevel(y4, secret) ∧ Includes(y0, y4).

Let X = {Call(2, C1, 0, m1, 4)} and W = ∅. We know that Q[t2] = Q1 and Q[t4] =

Q2. We then have

X ∪ {Call(6, C2, 0, m2, 5)} ∪XG ` Q[t2]
[
2/t1

][
4/y1

][
6/t2

][
5/y2

][
0/x1

][
0/x1

]
.

Therefore, according to Precondition-6 we would have

(callEvent(m2, 5); e, 7,{Call(2, C1, 0, m1, 4)},L, ∅)→

(e, 7, {Call(2, C1, 0, m1, 4),Call(6, C2, 0, m2, 5)},L, {C1.m1, C2.m2}).

Since a ground form of Q[t2] is derived, we add both C1.m1 and C2.m2 to W to ensure

that we will not add any invocation information of these triggers to X, any more.

100

Now suppose X has grown to be

X = {Call(2, C1, 0, m1, 4),Call(6, C2, 0, m2, 5),

Call(11, C3, 0, m3, 7),Call(16, C0, 0, m0, [5, 7, 9])}.

Note that the argument to C0.m0 is a list. At time 16, LoggedCall is not derivable as

one of triggers (C4.m4) has not been called yet. We then have

X∪{Call(25, C4, 0, m4, 7)} ∪XG `

Q[t4]
[
11/t3

][
7/y3

][
16/t0

][
[5, 7, 9]/y0

][
25/t4

][
7/y4

][
0/x0, x3, x4

]
,

assuming that XG ` HasSecLevel(7, secret). Then, according to Precondition-7 we

will have

(callEvent(m4, 7); e, 26,X,L, {C1.m1, C2.m2})→

(e, 26, X ∪ {Call(25, C4, 0, m4, 7)},L, {{C1.m1, C2.m2}).

Despite the fact that a ground form of Q[t4] is derived, W is not extended with trigger

names, e.g., C4.m4. This helps us adding invocations of these triggers to X in the

future, which might help derive LoggedCall predicates that otherwise we were not able

to derive. For instance, in this example, if Call(27, C3, 0, m3, 2), Call(31, C4, 0, m4, 2),

and Call(34, C0, 0, m0, [1, 4, 2]) are added later to the set of logging preconditions, the

predicate LoggedCall(34, C0, 0, m0, [1, 4, 2]) is derivable3.

3Assuming that XG ` HasSecLevel(2, secret).

101

Precondition-1
i ∈ 1 · · ·n Ci.mi ∈W

(new Ci(v̄i).callEvent(mi, ūi); e, n,X,L,W)→ (e, n,X,L,W)

Precondition-2
i ∈ 1 · · ·n Ci.mi /∈W P[ti] − {Call(ti, Ci, x̄i, mi, ȳi)} = ∅

(new Ci(v̄i).callEvent(mi, ūi); e, n,X,L,W)→ (e, n,X ∪ {Call(n− 1, Ci, v̄i, mi, ūi)}, n,L,W ∪ {Ci.mi})

Precondition-3
i ∈ 1 · · ·n Ci.mi /∈W P[ti] − {Call(ti, Ci, x̄i, mi, ȳi)} 6= ∅

[ti]− {x̄i, ȳi, ti} = ∅ X ∪ {Call(n− 1, Ci, v̄i, mi, ūi)} ∪XG 0 Q[ti]
[
n− 1/ti

][
v̄i/x̄i

][
ūi/ȳi

]
(new Ci(v̄i).callEvent(mi, ūi); e, n,X,L,W)→ (e, n,X,L,W)

Precondition-4
i ∈ 1 · · ·n Ci.mi /∈W P[ti] − {Call(ti, Ci, x̄i, mi, ȳi)} 6= ∅

[ti]− {x̄i, ȳi, ti} = ∅ X ∪ {Call(n− 1, Ci, v̄i, mi, ūi)} ∪XG ` Q[ti]
[
n− 1/ti

][
v̄i/x̄i

][
ūi/ȳi

]
(new Ci(v̄i).callEvent(mi, ūi); e, n,X,L,W)→ (e, n,X ∪ {Call(n− 1, Ci, v̄i, mi, ūi)},L,W ∪ {Ci.mi})

Precondition-5
i ∈ 1 · · ·n Ci.mi /∈W P[ti] − {Call(ti, Ci, x̄i, mi, ȳi)} 6= ∅ [ti]− {x̄i, ȳi, ti} 6= ∅

[ti] ∩ {x̄0, ȳ0, t0} = ∅ @āi . X ∪ {Call(n− 1, Ci, v̄i, mi, ūi))} ∪XG ` Q[ti]
[
āi/ᾱi

][
n− 1/ti

][
v̄i/x̄i

][
ūi/ȳi

]
(new Ci(v̄i).callEvent(mi, ūi); e, n,X,L,W)→ (e, n,X ∪ {Call(n− 1, Ci, v̄i, mi, ūi)},L,W)

Precondition-6
i ∈ 1 · · ·n Ci.mi /∈W P[ti] − {Call(ti, Ci, x̄i, mi, ȳi)} 6= ∅ [ti]− {x̄i, ȳi, ti} 6= ∅

[ti] ∩ {x̄0, ȳ0, t0} = ∅ ∃āi . X ∪ {Call(n− 1, Ci, v̄i, mi, ūi))} ∪XG ` Q[ti]
[
āi/ᾱi

][
n− 1/ti

][
v̄i/x̄i

][
ūi/ȳi

]
(new Ci(v̄i).callEvent(mi, ūi); e, n,X,L,W)→ (e, n,X ∪ {Call(n− 1, Ci, v̄i, mi, ūi)},L,W ∪ti′∈[ti] {Ci′ .mi′})

Precondition-7
i ∈ 1 · · ·n Ci.mi /∈W P[ti] − {Call(ti, Ci, x̄i, mi, ȳi)} 6= ∅ [ti]− {x̄i, ȳi, ti} 6= ∅ [ti] ∩ {x̄0, ȳ0, t0} 6= ∅

(new Ci(v̄i).callEvent(mi, ūi); e, n,X,L,W)→ (e, n,X ∪ {Call(n− 1, Ci, v̄i, mi, ūi)},L,W)

Precondition-8

(new C0(v̄0).callEvent(m0, ū0); e, n,X,L,W)→ (e, n,X ∪ {Call(n− 1, C0, v̄0, m0, ū0)},L,W)

Figure 3.17: Precondition rules for FJ′log.

∀t0, . . . , t4, x0, . . . , x4, y0, . . . , y4 .Call(t0, C0, x0, m0, y0)
4∧
i=1

(Call(ti, Ci, xi, mi, yi) ∧ ti < t0) ∧

t1 < t2 ∧ y1%2 = 0 ∧ y3 = y4 ∧HasSecLevel(y4, secret) ∧ Includes(y0, y4) =⇒ LoggedCall(t0, C0, x0, m0, y0).

Figure 3.18: Logging Specification for Example 3.4.1

102

Chapter 4

Direct Information Flow: Dynamic

Integrity Taint Analysis

In this chapter, we focus on another realm of application for combining prospec-

tive and retrospective measures. As introduced in Chapter 1, retrospective measures

could be leveraged as a testing suite to study the potentially vulnerable design and

implementation of prospective controls. For example, granted accesses to users can

be audited at runtime to discover potential vulnerabilities in the access control policy

specification and enforcement. Another example in this application space, is em-

ploying in-depth policy specification and enforcement to mitigate imperfect input

sanitization in taint analysis regarding direct flow of data integrity. Input sanitiza-

tion refers to the analysis and potential modification of user provided data in order to

enhance data integrity. However, erroneous implementation of input sanitizers leave

systems susceptible to command injection vulnerabilities that could be exploited by

different attacks, e.g., XSS, SQL injection, etc. As discussed in Section 1.3, many

real-world systems suffer from programming bugs that provide erroneous data saniti-

103

zation. By in-depth enforcement of taint analysis such vulnerabilities are discovered

at runtime, which helps mitigating injection attacks in a later stage.

In this chapter, we discuss how we can provably enforce prospective and retro-

spective measures in order to ameliorate legacy code against injection attacks [85]. In

this regard, we use the language model specified in Section 3.1 with some extensions.

In particular, we add the support for primitive types that may convey user supplied

data. The details of these extensions are discussed in Section 4.1. We use FOL-based

specifications to define taint and its propagation in each step of computation. Us-

ing these specifications, we define in-depth policies that analyze direct data integrity

flow both prospectively and retrospectively at runtime. These definitions are given in

Section 4.2. The rewriting algorithm that enforces these in-depth policies are given

in Section 4.3. The operational correctness of prospective enforcement and sound-

ness/completeness of retrospective enforcement are studied in Section 4.4. Later in

Chapter 5, we will propose a semantic framework to model direct flow of data in-

tegrity, called explicit integrity. Explicit integrity provides an underlying model for

dynamic integrity taint analysis, and identifies the security property that integrity

taint analysis tools support. This framework could be applied in functional settings

as well as other programming paradigms. Using explicit integrity, different taint anal-

ysis tools can be studied for correctness purposes. In particular, we prove that our

rewriting algorithm satisfies explicit integrity.

104

4.1 An OO Model for Integrity Taint

Analysis

In order to study dynamic integrity taint analysis in FJ, we extend the semantics

for library methods that allow specification of operations on base values (such as

strings and integers). Consideration of these features is important for a thorough

modeling of Phosphor-style taint analysis, and important related issues such as string-

vs. character-based taint [26] which have not been considered in previous formal work

on taint analysis [32]. Since static analysis is not a topic of this dissertation, for brevity

we omit the standard FJ type analysis which is described in [27].

The abstract calculus described in Section 3.1 is not particularly interesting with

respect to direct information flow and integrity propagation, especially since method

dispatch is considered an indirect flow. More interesting is the manner in which

taint propagates through primitive values and library operations on them, especially

strings and string operations. This is because direct flows should propagate through

some of these methods. Also, for run-time efficiency and ease of coding some Java

taint analysis tools treat even complex library methods as “black boxes” that are

instrumented at the top level for efficiency [25], rather than relying on instrumentation

of lower-level operations.

Note that treating library methods as “black boxes” introduces a potential for

over- and under-tainting– for example in some systems all string library methods

that return strings are instrumented to return tainted results if any of the arguments

are tainted, regardless of any direct flow from the argument to result [25]. Clearly

105

this strategy introduces a potential for over-taint. Other systems do not propagate

taint from strings to their component characters when decomposed [26], which is an

example of under-taint. Part of our goal here is to develop an adequate language

model to consider these approaches.

We therefore extend our basic definitions to accommodate primitive values and

their manipulation. These extensions are given in Figure 4.1. Let a primitive field

be a field containing a primitive value. We call a primitive object/class any objec-

t/class with primitive fields only, and a library method is any method that operates

on primitive objects, defined in a primitive class. We expect primitive objects to

be object wrappers for primitive values (e.g., Int(5) wrapping primitive value 5),

and library methods to be object-oriented wrappers over primitive operations (e.g.,

Int plus(Int) wrapping primitive operation +), allowing the latter’s embedding in

FJ. As a sanity condition we only allow library methods to select primitive fields

or perform primitive operations. Let LibMeths be the set of library method names

paired with their corresponding primitive class names. If C.m ∈ LibMeths, class C may

inherit the library method m from another class D.

The set of security sensitive operations (SSOs) and the set of sanitizer methods

(Sanitizers), introduced in Section 1.3, are similarly closed under inheritance, if the

methods are not overriden. We assume that in the body of each sanitizer, endorse

method is invoked. This method, simply returns this object that has been sanitized.

We posit a special set of field names PrimField that access primitive values ranged

over by ν that may occur in objects, and a set of operations ranged over by Op that

operate on primitive values. We require that special field name selections only occur

as arguments to Op, which can easily be enforced in practice by a static analysis. Sim-

106

D.m ∈ LibMeths Inherit(m, C, D)
C.m ∈ LibMeths

D.m ∈ SSOs Inherit(m, C, D)
C.m ∈ SSOs

D.m ∈ Sanitizers Inherit(m, C, D)
C.m ∈ Sanitizers

C.m ∈ Sanitizers mtypeCT (m, C) = C̄→ D fieldsCT (D) = f̄

mbodyR(CT)(endorse, D) = ∅, new D(this.f)
C.m ∈ Sanitizers

mbodyR(CT)(m, C) = x̄, e.endorse()

f∗ ∈ PrimField e ::= ν | e.f∗ e ::= · · · | Op(ē) v ::= new C(v̄) | ν E ::= · · · | Op(ν̄, E, ē)

Figure 4.1: Extending FJ for Dynamic Integrity Taint Analysis.

ilarly, primitive values ν may only occur in special object fields and be manipulated

there by any Op.

For library methods we require that the body of any library method be of the

form where C is a primitive class:

return new C(ē1, . . . , ēn)

We define the meaning of operations Op via an “immediate” big-step semantic relation

≈ where the rhs of the relation is required to be a primitive value, and we identify

expressions up to ≈. For example, to define a library method for integer addition,

where Int objects contain a primitive numeric val, field we would define a + operation

as follows:

+(n1, n2) ≈ n1 + n2

Then we can add to the definition of Int in CT a method Plus to support arithmetic

107

in programs:

Int plus(Int x) { return(new(Int)(+(this.val, x.val))); }

Similarly, to define string concatenation, we define a concatenation operation @ on

primitive strings:

@(s1, s2) ≈ s1s2

and we extend the definition of String in CT with the following method, where we

assume all String objects maintain their primitive representation in a val field:

String concat(String x)

{ return(new(String)(@(this.val, x.val))); }

In our security model, tainted input source is a specified argument to a top-level

program, i.e., in p(θ), we assume that θ is supplied by a low integrity source.

4.2 In-Depth Integrity Analysis Speci-

fied Logically

In this section, we demonstrate how in-depth integrity direct taint analysis for FJ can

be expressed as a single uniform policy separate from code. To accomplish this we

interpret program traces as information represented by a logical fact base in the style

of Datalog. We then define a predicate called Shadow that inductively constructs a

“shadow” expression that reflects the proper taint for all data in a configuration at

108

any point in a trace.

An important feature of Java based taint analyses is that they tend to be object

based, i.e. each object has an assigned taint level. In our model, a shadow expression

has a syntactic structure that matches up with the configuration expression, and

associates integrity levels (including “high” ◦ and “low” •) with particular objects via

shape conformance.

Example 4.2.1 Suppose a method m of an untainted C object with no fields is invoked

on a pair of tainted s1 and untainted s2 strings:

new C().m(new String(s1), new String(s2))

. The proper shadow is:

shadow C(◦).m(shadow String(•), shadow String(◦)).

On the basis of shadow expressions that correctly track integrity, we can logically

specify prospective taint analysis as a property of shadowed trace information, and

retrospective taint analysis as a function of shadowed trace information. An extended

example of a shadowed trace is presented in a later section (4.3.4).

4.2.1 Taint Tracking as a Logical Trace Prop-

erty

In order to specify taint tracking, we extend the mapping toFOL(·) that interprets

FJ traces as sets of logical facts.

109

Definition 4.2.1 We redefine toFOL(·) as a mapping on traces and configurations,

according to Definition 3.1.1, with the following extension:

toFOL((E[Op(ν̄)], n)) = {PrimCall(n,Op, ν̄),Context(n, E)}.

Integrity Identifiers

We introduce an integrity identifier t that denotes the integrity level associate with

objects. To support a notion of “partial endorsement” for partially trusted sanitiz-

ers, we define three taint labels, to denote high integrity (◦), low integrity (•), and

questionable integrity (�).

t ::= ◦ | � | •

We specify an ordering ≤ on these labels denoting their integrity relation:

• ≤ � ≤ ◦

For simplicity in this presentation we will assume that all Sanitizers are partially

trusted and cannot raise the integrity of a tainted or maybe tainted object beyond

maybe tainted. It would be possible to include both trusted and untrusted sanitizers

without changing the formalism.

We posit the usual meet ∧ and join ∨ operations on taint lattice elements, and

introduce logical predicates meet and join such that meet(t1 ∧ t2, t1, t2) and join(t1 ∨

t2, t1, t2) hold.

110

sv ::= shadow C(t, s̄v) | δ se ::= sv | se.f | se.m(s̄e) | shadow C(t, s̄e) | C.m(se) | Op(s̄e)

SE ::= [] | SE.f | SE.m(s̄e) | sv.m(s̄v,SE, s̄e′) | shadow C(t, s̄v,SE, s̄e′) | C.m(SE) | Op(s̄v,SE, s̄e)

Figure 4.2: Shadow Values, Expressions, and Evaluation Contexts.

4.2.2 Shadow Traces, Taint Propagation, and San-

itization

Shadow traces reflect taint information of objects as they are passed around programs.

Shadow traces manipulate shadow terms and context, which are terms T in the logic

with the following syntax. Note the structural conformance with closed e and E,

but with primitive values replaced with a single dummy value δ that is omitted for

brevity in examples, but is necessary to maintain proper arity for field selection.

Shadow expressions most importantly assign integrity identifiers t to objects. The

sytax for shadow values, expressions, and evaluation contexts is given in Figure 4.2.

The shadowing specification requires that shadow expressions evolve in a shape-

conformant way with the original configuration. To this end, we define a metatheo-

retic function for shadow method bodies, smbody, that imposes untainted tags on all

method bodies, defined a priori, and removes primitive values.

Definition 4.2.2 Shadow method bodies are defined by the function smbody.

smbodyCT (m, C) = x̄.srewrite(e),

where mbodyCT (m, C) = x̄.e and the shadow rewriting function, srewrite, is defined as

in Figure 4.3, where srewrite(ē) denotes a mapping of srewrite over the vector ē.

111

srewrite(x) = x

srewrite(new C(ē)) = shadow C(◦, srewrite(e))
srewrite(e.f) = srewrite(e).f
srewrite(e.m(ē′)) = srewrite(e).m(srewrite(ē′))
srewrite(C.m(e)) = C.m(srewrite(e))
srewrite(Op(ē)) = Op(srewrite(ē))
srewrite(ν) = δ

Figure 4.3: Definition of Mapping srewrite.

We use match as a predicate which matches a shadow expression se, to a shadow

context SE and a shadow expression se′ where se′ is the part of the shadow in the

hole. The definition of match is given in Figure 4.4.

112

match(sv, [], sv).
match(shadow C(t, sv).fi, [], shadow C(t, sv).fi).
match(shadow C(t, sv).m(su), [], shadow C(t, sv).m(su)).
match(C.m(sv), [], C.m(sv)).
match(se,SE, se′) =⇒ match(se.f,SE.f, se′).
match(se,SE, se′) =⇒ match(se.m(se),SE.m(se), se′).
match(se,SE, se′) =⇒

match(sv.m(sv, se, se), sv.m(sv,SE, se), se′).
match(se,SE, se′) =⇒

match(shadow C(t, sv, se, se), shadow C(t, sv,SE, se), se′).
match(se,SE, se′) =⇒ match(C.m(se), C.m(SE), se′).
match(se,SE, se′) =⇒ match(Op(s̄v, se, s̄e),Op(s̄v,SE, s̄e), se′).

Figure 4.4: match Predicate Definition.

Next, in Figure 4.5, we define a predicate Shadow(n, se) where se is the relevant

shadow expression at execution step n, establishing an ordering for the shadow trace.

Shadow has as its precondition a “current” shadow expression, and as its postcondi-

tion the shadow expression for the next step of evaluation (with the exception of the

rule for shadowing Ops on primitive values which reflects the “immediate” valuation

due to the definition of ≈– note the timestamp is not incremented in the postcondi-

tion in that case). We set the shadow of the initial configuration at timestamp 1, and

then Shadow inductively shadows the full trace. Shadow is defined by case analysis

on the structure of shadow expression in the hole. The shadow expression in the hole

and the shadow evaluation context are derived from match predicate definition.1

Note especially how integrity is treated by sanitization and endorsement in this

specification. For elements of Sanitizers, if input is tainted then the result is consid-

ered to be only partially endorsed. For library methods, taint is propagated given a
1Some notational liberties are taken in Figure 4.5 regarding expression and context substitutions,

which are defined using predicates elided for brevity.

113

Shadow(1, shadow TopLevel(◦).main(shadow C(•, δ̄))).
Shadow(n, se) ∧match(se,SE, sv.m(sv′)) ∧ C.m /∈ LibMeths ∧ smbodyCT (m, C) = x̄.se′ =⇒

Shadow(n+ 1,SE[C.m(se′[sv′/x̄][sv/this])]).

Shadow(n, se) ∧match(se,SE, shadow C(t0, sv).m(shadow C(t, sv))) ∧ C.m ∈ LibMeths∧
smbodyCT (m, C) = x̄.shadow D(◦, se) ∧ Prop(t, C.m(t0, t̄)) =⇒

Shadow(n+ 1,SE[C.m(shadow D(t, se)[shadow C(t0, sv)/this][shadow C(t, sv))/x̄])]).
Shadow(n, se) ∧match(se,SE, shadow C(t, sv).fi) =⇒ Shadow(n+ 1,SE[svi]).

Shadow(n, se) ∧match(se,SE,Op(δ̄)) =⇒ Shadow(n,SE[δ]).
Shadow(n, se) ∧match(se,SE, C.m(shadow D(t, sv))) ∧ C.m ∈ Sanitizers =⇒

Shadow(n+ 1,SE[shadow D(t ∨�, sv)]).
Shadow(n, se) ∧match(se,SE, C.m(sv)) ∧ C.m /∈ Sanitizers =⇒ Shadow(n+ 1,SE[sv]).

Figure 4.5: Shadow Predicate Definition.

user-defined predicate Prop(t, T) where T is a compound term of the form C.m(t̄) with

t̄ the given integrity of this followed by the integrity of the arguments to method

C.m, and t is the integrity of the result. For example, one could define:

meet(t, t1, t2)⇒ Prop(t, String.concat(t1, t2)) (4.1)

4.2.3 In-Depth Integrity Taint Analysis Policies

We define our in-depth policy for integrity taint analysis. The prospective component

blocks the execution of the program whenever a tainted value is passed to a secure

method. To this end, in Figure 4.6 we define the predicate BAD which identifies

traces that should be rejected as unsafe. The retrospective component specifies that

data of questionable integrity that is passed to a secure method should be logged.

The relevant logging specification is specified in terms of a predicate MaybeBad also

defined in Figure 4.6.

114

match(se,SE, shadow C(t, sv).m(shadow D(t′, sv′)) ∧ Shadow(n, se)∧
Call(n, C, v̄, m, u) ∧ C.m ∈ SSOs =⇒ SsoTaint(n, t′, u).

SsoTaint(n, •, u) =⇒ BAD(n). SsoTaint(n, t, u) ∧ t ≤ � =⇒ MaybeBAD(u).

Figure 4.6: Predicates for Specifying Prospective and Retrospective Properties

Definition 4.2.3 Let X be the set of rules in Figures 4.4, 4.5, and 4.6 and the set of

user defined rules for Prop. The prospective integrity taint analysis policy is defined

as the set of traces that do not end in BAD states.

SPtaint = {τ | (bτc ⊗ C(X))⇒{BAD} = C(∅)}.

The retrospective integrity taint analysis policy is the following logging specification:

LS taint = λτ.(bτc ⊗ C(X))⇒{MaybeBAD}

We define a program as being safe iff it does not produce a bad trace.

Definition 4.2.4 We call a program p(θ) safe iff for all τ it is the case that p(θ) ⇓ τ

implies τ ∈ SPtaint. We call the program unsafe iff there exists some trace τ such that

p(θ) ⇓ τ and τ /∈ SPtaint.

115

4.3 Taint Analysis Instrumentation via

Program Rewriting

Now we define an object based dynamic integrity taint analysis in a more familiar

operational style. Taint analysis instrumentation is added automatically by a program

rewriting algorithm R that models the Phosphor rewriting algorithm. It adds taint

label fields to all objects, and operations for appropriately propagating taint along

direct flow paths. In addition to blocking behavior to enforce prospective checks, we

incorporate logging instrumentation to support retrospective measures in the presence

of partially trusted sanitization.

4.3.1 In-Depth Taint Analysis Instrumentation

The target language of the rewriting algorithm R, called FJtaint, is the same as FJ,

except we add taint labels t as a form of primitive value ν, the type of which we posit

as Taint. For the semantics of taint values operations we define:

∨(t1, t2) ≈ t1 ∨ t2 ∧ (t1, t2) ≈ t1 ∧ t2

In addition we introduce a “check” operation ? such that ?t ≈ t iff t > •. We also add

an explicit sequencing operation of the form e; e to target language expressions, and

evaluation contexts of the form E; e. along with the appropriate operational semantics

rule that we define below in Section 4.3.3.

Now we define the program rewriting algorithm R as follows. Since in our security

116

model the only tainted input source is a specified argument to a top-level program,

the rewriting algorithm adds an untainted label to all objects. The class table is then

manipulated to specify a taint field for all objects, a check object method that blocks

if the argument is tainted, and an endorse method for any object class returned by

a sanitizer.

As discussed in Chapter 1, sanitization is typically taken to be “ideal” for integrity

flow analyses, however in practice sanitization is imperfect, which creates an attack

vector. To support retrospective measures specified in Definition 4.2.3, we define

endorse so it takes object taint t to the join of t and �. The algorithm also adds a log

method call to the beginning of SSOs, which will log objects that are maybe tainted

or worse. The semantics of log are defined directly in the operational semantics of

FJtaint below.

Definition 4.3.1 For any expression e, the expression µ(e) is syntactically equiva-

lent to e except with every subexpression new C(ē) replaced with new C(◦, ē). Given

SSOs and Sanitizers, define R(e, CT) = (µ(e),R(CT)), where R(CT) is the smallest

class table satisfying the axioms given in Figure 4.7.

4.3.2 Taint Propagation of Library Methods

Another important element of taint analysis is instrumentation of library methods

that propagate taint– the propagation must be made explicit to reflect the interference

of arguments with results. The approach to this in taint analysis systems is often

motivated by efficiency as much as correctness [25]. We assume that library methods

are instrumented to propagate taint as intended (i.e. in accordance with the user

defined predicate Prop).

117

fieldsR(CT)(Object) = Taint taint mbodyR(CT)(check, Object) = x, new Object(?x.taint)

C.m ∈ Sanitizers mtypeCT (m, C) = C̄→ D fieldsCT (D) = f̄

mbodyR(CT)(endorse, D) = ∅, new D(∨(�, this.taint), this.f)

C.m ∈ SSOs mbodyCT (m, C) = x, e
mbodyR(CT)(m, C) = x, this.log(x); this.check(x);µ(e)

C.m 6∈ Sanitizers ∪ SSOs mbodyCT (m, C) = x̄, e
mbodyR(CT)(m, C) = x̄, µ(e)

Figure 4.7: Axioms for Rewriting Algorithm

Here is how addition and string concatenation, for example, can be modified to

propagate taint. Note the taint of arguments will be propagated to results by taking

the meet of argument taint, thus reflecting the degree of integrity corruption:

Int plus(Int x)

{ return(new(Int)

(∧(this.taint, x.taint),+(this.val, x.val))); }

String concat(Int x)

{ return(new(String)

∧(this.taint, x.taint),@(this.val, x.val))); }

4.3.3 Operational Semantics of FJtaint

To support the semantics of log, we add an audit log L as a new configuration

component in FJtaint that stores objects of questionable integrity. The log method

is the only one that interacts with the log in any way. We “inherit” the reduction

semantics of FJ, and add a rule also for evaluation of sequencing. These extensions

are given in Figure 4.8.

118

Reduce
(e, n)→ (e′, n′)

(e, n,L)→ (e′, n′L)

Sequence
(v; e, n)→ (e, n)

Log
t ≤ �

(u.log(new C(t, v̄)), n,L)→ (new C(t, v̄), n,L ∪ {new C(t, v̄)})

NoLog
t > �

(u.log(new C(t, v̄)), n,L)→ (new C(t, v̄), n,L)

Figure 4.8: Operational Semantics of FJtaint.

As for FJ we use →∗ to denote the reflexive, transitive closure on → over FJtaint

configurations of the form (e, n,L). We define FJtaint configurations and traces as

for FJ. Abusing notation, we write R(p(θ)) ⇓ τ iff τ begins with the configuration

(R(p(θ)), 1,∅), and also κ ⇓ τ iff τ is a valid trace in the FJtaint semantics beginning

with κ.

4.3.4 An Illustrative Example: Dynamic Integrity

Taint Analysis

To illustrate the major points of our construction for source program traces and their

shadows, as well as the corresponding traces of rewritten programs, we consider an

example of program that contains an sso call on a string that has been constructed

from a sanitized low integrity input.

Example 4.3.1 Let

mbodyCT (main, TopLevel) =

x, new Sec().secureMeth(new Sec().sanitize(x.concat(

new String(′′world′′))).

119

p(new String(′′hello ′′))
→ TopLevel.main(new Sec().secureMeth(new Sec().sanitize(

new String(′′hello ′′).concat(new String(′′world′′))))
→ TopLevel.main(new Sec().secureMeth(new Sec().sanitize(

String.concat(new String(@(new String(′′hello ′′).val, new String(′′world′′).val))))))
→ TopLevel.main(new Sec().secureMeth(new Sec().sanitize(

String.concat(new String(@(′′hello ′′, new String(′′world′′).val))))))
→ TopLevel.main(new Sec().secureMeth(new Sec().sanitize(String.concat(new String(′′hello world′′)))))
→ TopLevel.main(new Sec().secureMeth(new Sec().sanitize(new String(′′hello world′′))))
→ TopLevel.main(new Sec().secureMeth(Sec.sanitize(new String(′′hello world′′).endorse())))
→ TopLevel.main(new Sec().secureMeth(Sec.sanitize(String.endorse(new String(′′hello world′′)))))
→ TopLevel.main(new Sec().secureMeth(Sec.sanitize(new String(′′hello world′′))))
→ TopLevel.main(new Sec().secureMeth(new String(′′hello world′′)))
→ TopLevel.main(Sec.secureMeth(new String(′′hello world′′)))
→ TopLevel.main(new String(′′hello world′′))
→ new String(′′hello world′′).

Figure 4.9: Example 4.3.1: Source Trace.

Assume the string ′′hello ′′ is tainted with low integrity. Figure 4.9, Figure 4.10,

and Figure 4.11 give the source trace, the shadow expressions and the target trace,

respectively. Note that shadow expressions in Figure 4.10 are derived based on the

rules given in Figure 4.5. For the sake of brevity and clarity in illustrating the main

ideas, we have assumed that methods Sec.sanitize and Sec.secureMeth are identity

functions. Some reduction steps are elided in the example as n-length multi-step

reductions →n.

4.4 Properties of Program Rewriting

The logical definition of in-depth integrity taint analysis presented in Section 4.2

establishes the proper specification of prospective and retrospective analysis. In this

120

Shadow(1, shadow TopLevel(◦).main(shadow String(•, δ)))
Shadow(2, TopLevel.main(shadow Sec(◦).secureMeth(shadow Sec(◦).sanitize(

shadow String(•, δ).concat(shadow String(◦, δ)))))
Shadow(3, TopLevel.main(shadow Sec(◦).secureMeth(shadow Sec(◦).sanitize(

String.concat(shadow String(•,@(shadow String(•, δ).val, shadow String(◦, δ).val)))))))
Shadow(4, TopLevel.main(shadow Sec(◦).secureMeth(shadow Sec(◦).sanitize(

String.concat(shadow String(•,@(δ, shadow String(◦, δ).val)))))))
Shadow(5, TopLevel.main(shadow Sec(◦).secureMeth(shadow Sec(◦).sanitize(

String.concat(shadow String(•,@(δ, δ)))))))
Shadow(5, TopLevel.main(shadow Sec(◦).secureMeth(shadow Sec(◦).sanitize(

String.concat(shadow String(•, δ))))))
Shadow(6, TopLevel.main(shadow Sec(◦).secureMeth(shadow Sec(◦).sanitize(shadow String(•, δ)))))
Shadow(7, TopLevel.main(shadow Sec(◦).secureMeth(Sec.sanitize(shadow String(•, δ).endorse()))))
Shadow(8, TopLevel.main(shadow Sec(◦).secureMeth(Sec.sanitize(String.endorse(shadow String(•, δ))))))
Shadow(9, TopLevel.main(shadow Sec(◦).secureMeth(Sec.sanitize(shadow String(•, δ)))))
Shadow(10, TopLevel.main(shadow Sec(◦).secureMeth(shadow String(�, δ))))
Shadow(11, TopLevel.main(Sec.secureMeth(shadow String(�, δ))))
Shadow(12, TopLevel.main(shadow String(�, δ)))
Shadow(13, shadow String(�, δ))

Figure 4.10: Example 4.3.1: Shadow Expressions.

section, we show how these definitions are used to establish operational correctness of

prospective enforcement and soundness/completeness of retrospective enforcement for

R, and how these conditions are proven. The main properties defined in this section

establish operational correctness for prospective measure and soundness/completeness

of retrospective measure in Definitions 4.4.3 and 4.4.5 respectively, and the main

results demonstrate that these properties are enjoyed by R in Theorems 4.4.2 and

4.4.3.

4.4.1 Semantics Preservation

A core condition for operational correctness of R is the proof of semantics preserva-

tion for safe programs in FJ, i.e. that rewritten programs simulate the semantics of

121

R(p(new String(′′hello ′′))),∅
→ TopLevel.main(new Sec(◦).secureMeth(new Sec(◦).sanitize(

new String(•, ′′hello ′′).concat(new String(◦, ′′world′′)))),∅
→ TopLevel.main(new Sec(◦).secureMeth(new Sec(◦).sanitize(

String.concat(new String(•,@(new String(•, ′′hello ′′).val, new String(◦, ′′world′′).val)))))),∅
→ TopLevel.main(new Sec(◦).secureMeth(new Sec(◦).sanitize(

String.concat(new String(•,@(′′hello ′′, new String(◦, ′′world′′).val)))))),∅
→ TopLevel.main(new Sec(◦).secureMeth(new Sec(◦).sanitize(

String.concat(new String(•, ′′hello world′′))))),∅
→ TopLevel.main(new Sec(◦).secureMeth(new Sec(◦).sanitize(new String(•, ′′hello world′′)))),∅
→ TopLevel.main(new Sec(◦).secureMeth(Sec.sanitize(new String(•, ′′hello world′′).endorse()))),∅
→ TopLevel.main(new Sec(◦).secureMeth(Sec.sanitize(String.endorse(new String(�, ′′hello world′′))))),∅
→ TopLevel.main(new Sec(◦).secureMeth(Sec.sanitize(new String(�, ′′hello world′′)))),∅
→ TopLevel.main(new Sec(◦).secureMeth(new String(�, ′′hello world′′))),∅
→ TopLevel.main(Sec.secureMeth(new Sec(◦).log(new String(�, ′′hello world′′));

new Sec(◦).check(new String(�, ′′hello world′′)); new String(�, ′′hello world′′))),∅
→ TopLevel.main(Sec.secureMeth(new Sec(◦).check(new String(�, ′′hello world′′));

new String(�, ′′hello world′′))), {new String(�, ′′hello world′′)}
→ TopLevel.main(Sec.secureMeth(new String(�, ′′hello world′′))), {new String(�, ′′hello world′′)}
→ TopLevel.main(new String(�, ′′hello world′′)), {new String(�, ′′hello world′′)}
→ new String(�, ′′hello world′′), {new String(�, ′′hello world′′)}

Figure 4.11: Example 4.3.1: Target Trace.

source program modulo security instrumentations. The way this simulation is defined

will naturally imply a full and faithful implementation of taint shadowing semantics.

Adapting Definition 2.5.1, we say that rewriting algorithm R is semantics preserving

for SPtaint iff there exists a relation :≈ with the following property.

Definition 4.4.1 Rewriting algorithm R is semantics preserving iff for all safe pro-

grams p(θ) (Definition 4.2.4) all of the following hold:

1. For all traces τ such that p(θ) ⇓ τ there exists τ ′ with τ :≈ τ ′ and R(p(θ)) ⇓ τ ′.

2. For all traces τ such that R(p(θ)) ⇓ τ there exists a trace τ ′ such that τ ′ :≈ τ

and p(θ) ⇓ τ ′.

122

Observe that :≈ may relate more than one trace in the target program to a trace in

the source program, since instrumentation in the target language may introduce new

reduction steps that can cause “stuttering” with respect to source language traces.

As evidenced in the statement of semantics preservation, we will generally relate

“executable” source programs p(θ) with rewritten programs R(p(θ)) for simplicity

in the statement of properties and ease of proofs. However, for practical purposes

it is important to observe that instrumentation can be performed on program entry

points p and class tables CT once, prior to invocation on possibly tainted θ, due to

the following property which follows immediately from the definition of R.

Lemma 4.4.1 R(p(θ)) = R(p)(R(θ))

4.4.2 Operational Correctness for Prospective

Analysis

Proof of semantics preservation establishes operational correctness for the prospective

component of R, since SPtaint expresses the correct prospective specification as a

safety property. To this end, we define the notion of security failure.

Definition 4.4.2 An FJtaint program e causes a security failure iff

e, 1,∅→∗ E[v.check(new C(•, v̄))], n,L

for some E, v, new C(•, v̄), n, and L.

The operational correctness of prospective component of rewriting algorithm is

then defined as follows:

123

Definition 4.4.3 We call rewriting algorithm R operationally correct for prospective

enforcement provided that a program p(θ) is unsafe (Definition 4.2.4) iff R(p(θ))

causes a security failure (Definition 4.4.2).

4.4.3 Soundness/Completeness for Retrospective

Analysis

In addition to preserving program semantics, a correctly rewritten program constructs

a log in accordance with the given logging specification. More precisely, if LS is a given

logging specification and a trace τ describes execution of a source program, rewriting

should produce a program with a trace τ ′ that corresponds to τ (i.e., τ :≈ τ ′), where

the log L generated by τ ′, written τ ′ ; L, ideally contains the same information

as LS(τ). A minor technical issue is that instrumentation imposed by R requires

that information is added to the log after an sso invocation with an argument of at

most questionable integrity, and :≈ accounts for this stuttering. In our trace based

correctness condition we need to account for this, hence the following Definition:

Definition 4.4.4 For FJtaint programs we write τ ; L iff tail(σ) = e, n,L where σ

is the longest trace such that τ ′ :≈ τ and τ ′ :≈ σ for some FJ trace τ ′.

The following definitions then establish soundness/completeness conditions re-

garding retrospective enforcement for rewriting algorithms. Note that satisfaction of

either of these conditions only implies condition (1) of Definition 4.4.1, not condition

(2), so semantics preservation is an independent condition. We define toFOL(L) =

{MaybeBAD(v) | v ∈ L}, and thus bLc = C(toFOL(L)).

124

Definition 4.4.5 Rewriting algorithm R is retrospectively sound/complete for ret-

rospective enforcement iff for all programs R(p(θ)), and finite traces τ and σ where:

R(p(θ)) ⇓ σ τ :≈ σ σ ; L

we have that L is sound/complete with respect to LS taint and τ .

4.4.4 Definition of :≈ and Correctness Results

To establish operational correctness of prospective enforcement and soundness/com-

pleteness of retrospective enforcement for the program rewriting algorithm, we need

to define a correspondence relation :≈. Source language execution traces and target

language execution traces correspond if they represent the same expression evaluated

to the same point. We make a special case: when a sink method is called in the

source execution, in which the target execution needs to first check the arguments

to the sink method in order to log and enforce prospective policy by check. In this

case, the target execution may be ahead by some number of steps, allowing time to

enforce heterogeneous policies.

In order to define the correspondence between execution traces of the source and

target language, we first define a mapping, overlay, that computes the target config-

uration by overlaying the source configuration with its shadow.

Definition 4.4.6 The mapping overlay : (e, se) 7→ e′ is defined in Figure 4.12.

We define a way to obtain the last shadow in a trace. Give a source trace τ of

length n, LastShadow(τ) denotes the shadow of the last configuration in the trace τ .

125

overlay(x, x) = x overlay(ν, δ) = ν overlay(Op(ē),Op(se)) = Op(overlay(e, se))

overlay(e.f, se.f) = overlay(e, se).f overlay(new C(ē), shadow C(t, se)) = new C(t, overlay(e, se))

overlay(C.m(e), C.m(se)) = C.m(overlay(e, se)) overlay(e.m(ē′), se.m(se′)) = overlay(e, se).m(overlay(e′, se′))

Figure 4.12: Definition of overlay.

Considering the rule

Shadow(n, se) =⇒ LShadow(se), (4.2)

we define LastShadow(τ) = se such that bτc ⊗X ` LShadow(se), where X contains

the rules given in Figure 4.4, Figure 4.5 and (4.2). We need to show that LastShadow

is total function on non-trivial traces, i.e., LastShadow uniquely maps any non-empty

trace to a shadow expression.

Lemma 4.4.2 LastShadow is total function on non-trivial traces.

Proof. By induction on the length of traces and the fact that shadow expressions are

defined uniquely for every step of reduction in Figure 4.5. ut

We also define a mapping, trim, from the expressions of the target language to

the expressions of the source language. Intuitively, trim removes the invocations to

check and log.

Definition 4.4.7 The mapping trim : e 7→ e′ is defined in Figure 4.13. We assume

ε to be no-op, i.e., ε; e = e.

126

trim(x) = x trim(e.f) = trim(e).f trim(new C(ē)) = new C(trim(e)) trim(C.m(e)) = C.m(trim(e))

trim(Op(ē)) = Op(trim(e)) trim(e1; e2) = trim(e1); trim(e2)

trim(e.m(ē′)) =
{
ε if m ∈ {log, check}
trim(e).m(trim(e′)) if m /∈ {log, check}

Figure 4.13: Definition of trim.

Definition 4.4.8 Given source language execution trace τ = σκ and target language

execution trace τ ′ = σ′κ′, τ :≈ τ ′ iff overlay(κ, LastShadow(τ)) = trim(e′), where

κ′ = e′, n′,L.

In what follows, we prove the semantics preservation given by Definition 4.4.1.

To this end, in Lemma 4.4.3, we show that if trim of an expression is a value, that

expression eventually reduces to that value provided it is not a security failure. More-

over, Lemma 4.4.4 states that if trim of a non-security failure expression e is reduced

to e′ then e reduces (in potentially multiple steps) to some expression with the same

trim as e′.

Lemma 4.4.3 For all expressions e, if trim(e) = v, then either (1) for all L there

exists some trace σ such that e, n,L ⇓ σκ where κ = v, n′,L′ for some n′ and L′, or

(2) e causes a security failure.

Proof. By induction on the structure of e. Most of the cases are trivial. Non-trivial

cases are as follows:

• Let e = new C(e1, · · · , en) where e does not cause a security failure. We

need to show that if trim(new C(e1, · · · , en)) = trim(v), then for all n and

L there exist some trace σ such that e, n,L ⇓ σκ where κ = v, n′,L′ for

127

some n′ and L′. Let v = new C(v1, · · · , vn). Since trim(new C(e1, · · · , en)) =

new C(trim(e1), · · · , trim(en)), for each i ∈ {1, · · ·n} we have trim(ei) = vi.

Then by induction hypothesis, for all ni and Li there exists some trace σi such

that ei, ni,Li ⇓ σiκi where κi = vi, n′i,L′i for some n′i and L′i. This straightfor-

wardly gives the required result.

• Let e = e1; e2 where e does not cause a security failure. We need to show that

if trim(e1; e2) = trim(v), then for all n and L there exist some trace σ such

that e, n,L ⇓ σκ where κ = v, n′,L′ for some n′ and L′. Since trim(e1, e2) =

trim(e1); trim(e2), there are two cases: (1) trim(e1) = ε and trim(e2) = v, or

(2) trim(e2) = ε and trim(e1) = v. In either case the result is immediate by

induction hypothesis.

ut

Lemma 4.4.4 For all expressions e, if trim(e), n,L→ e′, n′,L′ then either (1) there

exists σ such that e, n,L ⇓ σκ with κ = e′′, n′′,L′′ and trim(e′′) = trim(e′), or (2) e

causes a security failure.

Proof. By induction on the structure of e, and applying Lemma 4.4.3. ut

Lemma 4.4.5 states that overlaying a method body with its shadow is equal to

the same method body in the rewritten class table.

Lemma 4.4.5 overlay(e, srewrite(e)) = µ(e).

Proof. By induction on the structure of e. Most of the cases are immediate or con-

cluded from the induction hypothesis. The core case is where e = new C(ē). In this

128

case, we have overlay(new C(ē), srewrite(new C(ē))) = overlay(new C(ē), shadow C(◦, ē)).

Using the induction hypothesis, overlay(e, srewrite(e)) = µ(e), we then have

overlay(new C(ē), srewrite(new C(ē))) = new C(◦, µ(ē)) = µ(new C(ē)).

ut

Lemma 4.4.6 and Lemma 4.4.7 state that single step and multi step reductions in

FJ preserve :≈.

Lemma 4.4.6 If τ1e1 :≈ τ2κ2 and e1 → e′1 then there exists σ such that κ2 ⇓ σ and

τ1e1e′1 :≈ τ2σ.

Proof. It is proven by induction on the derivation of e1 → e′1 and applying Lemmas

4.4.4 and 4.4.5. In the following the interesting cases are studied.

• Let new C(v̄).fi → vi, i.e., e1 = new C(v̄) and e′1 = vi. Then the shadow of

e1 is se1 = shadow C(t, s̄v).fi. Let κ2 = e2, n2,L2. Then, according to τ1e1 :≈

τ2κ2, we have trim(e2) = overlay(e1, se1) = new C(t, overlay(v, sv)).fi. Then,

trim(e2), n2,L2 → overlay(vi, svi), n2,L2. Using Lemma 4.4.4, there exists σ

such that κ2 ⇓ σκ with κ = e′2, n′2,L′2 and trim(e′2) = overlay(vi, svi), which

implies that τ1e1e′1 :≈ τ2σκ.

• Let C.m(v) → v, i.e., e1 = C.m(v) and e′1 = v. Then the shadow of e1 is

se1 = C.m(sv). Let κ2 = e2, n2,L2. Then, according to τ1e1 :≈ τ2κ2, we have

trim(e2) = overlay(e1, se1) = C.m(overlay(v, sv)). Then, trim(e2), n2,L2 →

overlay(v, sv), n2,L2. Using Lemma 4.4.4, there exists σ such that κ2 ⇓ σκ

with κ = e′2, n′2,L′2 and trim(e′2) = overlay(v, sv), which implies that τ1e1e′1 :≈

τ2σκ.

129

• Let v.m(ū) → e[v/this][ū/x̄], where mbodyCT (m, C) = x̄, e. That is, e1 =

v.m(ū) and e′1 = e[v/this][ū/x̄]. Then the shadow of e1 is se1 = sv.m(s̄u).

Let κ2 = e2, n2,L2. Then, according to τ1e1 :≈ τ2κ2, we have trim(e2) =

overlay(e1, se1) = overlay(v, sv).m(overlay(u, su)). We consider the following

cases for C.m:

– If C.m ∈ SSOs then trim(e2), n2,L2 → ê, n2,L2, where

ê = this.log(x); this.check(x);µ(e)[overlay(v, sv)/this][overlay(u, su)/x].

Using Lemma 4.4.4, there exists σ such that κ2 ⇓ σκ with κ = e′2, n′2,L′2

and trim(e′2) = trim(ê). We have

trim(ê) = trim(this.log(x); this.check(x);

µ(e)[overlay(v, sv)/this][overlay(u, su)/x])

= trim(µ(e[overlay(v, sv)/this][overlay(u, su)/x]))

= µ(e)[overlay(v, sv)/this][overlay(u, su)/x].

According to Lemma 4.4.5, overlay(e, se) = µ(e). Thus,

trim(e′2) = trim(ê) = overlay(e, se)[overlay(v, sv)/this][overlay(u, su)/x]

= overlay(e[v/this][u/x], se[sv/this][su/x]),

which implies that τ1e1e′1 :≈ τ2σκ.

– If C.m /∈ SSOs ∪ LibMeths, then trim(e2), n2,L2 → ê, n2,L2, where ê =

130

µ(e)[overlay(v, sv)/this][overlay(u, su)/x̄]. Then simialr to the case where

C.m ∈ SSOs, we conclude that τ1e1e′1 :≈ τ2σκ.

– If C.m ∈ LibMeths then mbodyCT (m, C) = x̄, new D(ē). We have e′1 =

new D(ē)[v/this][ū/x̄] and trim(e2), n2,L2 → ê, n2,L2, where

ê = new D(t, ē)[overlay(v, sv)/this][overlay(u, su)/x̄]

such that Prop(t, C.m(t0 ∧ t)), t0 is the taint tag in sv and t is the sequence

of taint tag in su. Using Lemma 4.4.4, there exists σ such that κ2 ⇓ σκ

with κ = e′2, n′2,L′2 and trim(e′2) = trim(ê). We have

trim(e′2) = trim(ê)

= new D(t, trim(e))[overlay(v, sv)/this][overlay(u, su)/x̄]

= new D(t, ē)[overlay(v, sv)/this][overlay(u, su)/x̄]

= overlay(new D(ē)[ū/x̄][v/this], shadow D(t, se)[su/x̄][sv/this]),

which implies that τ1e1e′1 :≈ τ2σκ.

ut

Lemma 4.4.7 If τ1e1 :≈ τ2κ2 and e1 ⇓ σ1, then there exists σ2 such that κ2 ⇓ σ2

and τ1σ1 :≈ τ2σ2.

Proof. By induction on the derivation of e1 ⇓ σ1 (reflexive and transitive closure) and

applying Lemma 4.4.6. ut

Similarly, Lemma 4.4.8 and Lemma 4.4.9 argue that single step and multi step

reductions in FJtaint preserve :≈.

131

Lemma 4.4.8 If τ1e1 :≈ τ2κ2 and κ2 → κ′2 then there exists σ where e1 ⇓ σ and

τ1σ :≈ τ1κ2κ
′
2.

Proof. It is proven by induction on the derivation of κ2 → κ′2 and applying Lemma

4.4.5. The interesting case is method invocation. Let κ2 = e2, n2,L2, where e2 =

v.m(ū). Assume that mbodyCT (m, C) = x̄, e. Then, we have the following two cases:

• If C.m ∈ SSOs then e2 → log(u); check(u);µ(e)[u/x][v/this]. Since τ1e1 :≈

τ2κ2, we have trim(e2) = overlay(e1, se1), which implies that e1 = v′.m(u′) such

that overlay(v′, sv ′) = v and overlay(u′, su′) = u. By Lemma 4.4.5, we conclude

that

overlay(e[u′/x][v′/this], se[su′/x][sv ′/this]) =

trim(log(u); check(u);µ(e)[u/x][v/this]).

As e1 → e[u′/x][v′/this], the proof is complete for this case.

• If C.m /∈ SSOs then e2 → µ(e)[ū/x̄][v/this]. Since τ1e1 :≈ τ2κ2, we have

trim(e2) = overlay(e1, se1), which implies that e1 = v′.m(ū′) such that overlay(v′, sv ′) =

v and overlay(u′, su′) = ū. By Lemma 4.4.5, we conclude that

overlay(e[ū′/x̄][v′/this], se[su′/x̄][sv ′/this]) = trim(µ(e)[ū/x][v/this]).

As e1 → e[ū′/x][v′/this], the proof is complete for this case similar the case

above.

ut

132

Lemma 4.4.9 If τ1e1 :≈ τ2κ2 and κ2 ⇓ σ2, then there exists σ1 such that e1 ⇓ σ1

and τ1σ1 :≈ τ2σ2.

Proof. By induction on the derivation of κ2 ⇓ σ2 (reflexive and transitive closure) and

applying Lemma 4.4.8. ut

Lemma 4.4.10 states that initial configuration in FJtaint corresponds to the initial

configuration in FJ. Finally, in Theorem 4.4.1, the semantics preservation property is

proven.

Lemma 4.4.10 Let θ = new C(ν̄) be a tainted input. Then,

new TopLevel().main(θ) :≈

new TopLevel(◦).main(new C(•, ν̄)),∅.

Proof. By the definition of shadow expressions and :≈. ut

Theorem 4.4.1 establishes semantics preservation for rewriting algorithm R.

Theorem 4.4.1 The rewriting algorithmR is semantics preserving (Definition 4.4.1).

Proof. Lemma 4.4.10 states that initial configuration of a program p corresponds to

the initial configuration of R(p). Lemmas 4.4.7 and 4.4.9 extend the correspondence

relation for traces of arbitrary lengths. More specifically, Lemmas 4.4.10 and 4.4.7

entail the 1st condition of Definition 4.4.1, and Lemmas 4.4.10 and 4.4.9 result in the

2nd condition of Definition 4.4.1. ut

In order to prove that prospective component of R is operationally correct, we

first need to show that SPtaint is a safety property.

133

Lemma 4.4.11 SPtaint is a safety property.

Proof. Let τ /∈ SPtaint. Then, (bτc ⊗ C(X))⇒{BAD} 6= C(∅). This implies that there

exists some n such that BAD(n) ∈ (bτc ⊗ C(X))⇒{BAD}. Let τ [· · ·n] denote the

finite prefix of τ up to timestamp n. By Definition 4.2.3 BAD only refers to events

that precede step n, so it follows that bτc ⊗ C(X) ` BAD(n) iff bτ [· · ·n]c ⊗ C(X) `

BAD(n), i.e. τ /∈ SPtaint iff τ [· · ·n] /∈ SPtaint for finite n, hence SPtaint is a safety

property [1]. ut

Theorem 4.4.2 The rewriting algorithm R is operationally correct for prospective

enforcement (Definition 4.4.3).

Proof. Suppose on the one hand that p(θ) is unsafe, which is the case iff p(θ) ⇓ τ and

τ /∈ SPtaint for some τ . Then according to Lemma 4.4.11, there exists some timestamp

n such that τ [· · ·n] characterizes SPtaint, i.e., BAD(n) is derivable from the rules in

Definition 4.2.3 and so (τ [· · ·n])σ /∈ SPtaint for any σ. Let n be the least timestamp

with such property and τ ′ = τ [· · ·n− 1], and τ [n] = E[v.m(new D(ū))] where v.m is an

sso invocation and new D(ū) has low integrity by the Definition 4.2.3. By Theorem

4.4.1 there exists some trace σ, such that R(p(θ)) ⇓ σ and τ ′ :≈ σ. Therefore, by

definition of :≈ and → we may assert that tail(σ) ⇓ κ1κ2κ3 such that

κ1 = E′[v.m(new D(•, ū))], n,L

κ2 = E′[v.log(new D(•, ū)); v.check(new D(•, ū))], n,L

κ3 = E′[v.check(new D(•, ū))], n,L ∪ {new D(•, ū)}

Thus, R(p(θ)) ⇓ σκ1κ2κ3 and therefore R(p(θ)) causes a security failure.

134

Supposing on the other hand that R(p(θ)) causes a security failure, it follows that

p(θ) is unsafe by similar reasoning (i.e. fundamental appeal to Theorem 4.4.1), since

security checks are only added to the beginning of SSOs and fail if the argument has

low integrity. ut

In what follows, we give a proof for retrospective soundness/completeness of

rewriting algorithm R, given in Definition 4.4.5. As in Section 3.2, our strategy

is based on an appeal to least Herbrand models H of the logging specifications and

logs (least Herbrand models are known to exist for safe Horn clause logics with com-

pound terms [86]). In essence, we demonstrate that audit logs generated by FJtaint

programs are the least Herbrand model of the logging specification for the source

program, hence contain the same information.

We study the cases where a record is added to the audit log for single step (Lemma

4.4.12) and multi step (Lemma 4.4.13) reductions.

Lemma 4.4.12 Let e, n,L → e′, n′,L′. If v ∈ L′ − L then we have e = E[u.log(v)]

for some evaluation context E and value u, v = new C(t, v′) and t ≤ �.

Proof. By induction on the derivation of e, n,L→ e′, n′,L′. ut

Lemma 4.4.13 Let e, n,L ⇓ σκ, where κ = e′, n′,L′. If v ∈ L′ − L then there exists

some trace σ′κ1κ2 as the prefix of σκ such that κ1 = e1, n1,L1, κ2 = e2, n2,L2, where

e1 = E[u.log(v)] for some evaluation context E and value u, v = new C(t, v′) and

t ≤ �.

Proof. By induction on the derivation of e, n,L ⇓ σκ and applying Lemma 4.4.12. ut

Lemmas 4.4.14, 4.4.15 and 4.4.16 extend the results of Lemmas 4.4.4, 4.4.6 and

4.4.7 respectively, for FJtaint traces with maximal length.

135

Lemma 4.4.14 For all expressions e, if trim(e), n,L → e′, n′,L′ then either (1)

there exists σ such that e, n,L ⇓ σκ with κ = e′′, n′′,L′′, trim(e′′) = trim(e′) and

κ→ ê, n̂, L̂ for some ê n̂, and L̂ implies trim(ê) 6= trim(e′) or (2) e causes a security

failure.

Proof. By induction on the structure of e, and applying Lemma 4.4.3. ut

Lemma 4.4.15 If τ1e1 :≈ τ2κ2 and e1 → e′1 then there exists σ such that κ2 ⇓ σ,

τ1e1e′1 :≈ τ2σ, and if tail(σ) = κ′2 and κ′2 → κ′′2 for some κ′′2 then τ1e1e′1 6:≈ τ2σκ
′′
2.

Proof. By induction on the derivation of e1 → e′1 and applying Lemmas 4.4.14 and

4.4.5. ut

Lemma 4.4.16 If τ1e1 :≈ τ2κ2 and e1 ⇓ σ1 non-trivially, then there exists σ2 such

that κ2 ⇓ σ2, τ1σ1 :≈ τ2σ2, and if tail(σ2) = κ′2 and κ′2 → κ′′2 for some κ′′2 then

τ1σ1 6:≈ τ2σ2κ
′′
2.

Proof. By induction on the derivation of e1 ⇓ σ1 and applying Lemma 4.4.15. ut

In Lemma 4.4.17, we establish that the log generated by the rewritten program is

the least Herbrand model of the given logging specification semantics. This allows us

to easily prove retrospective soundness/completeness in Theorem 4.4.3.

Lemma 4.4.17 Given R(p(θ)) ⇓ σ and τ :≈ σ and σ ; L, we have:

toFOL(L) = H(X ∪ toFOL(τ)) ∩ L{MaybeBAD}.

136

Proof. (Sketch) We first show that toFOL(L) is a subset of H(X ∪ toFOL(τ)) ∩

L{MaybeBAD}. Let MaybeBAD(v) ∈ toFOL(L). According to the definition of toFOL(L),

v ∈ L. Using Lemma 4.4.13, there exists some trace σ′κ1κ2 as the prefix of σ such

that κ1 = e1, n1,L1, κ2 = e2, n2,L2, where e1 = E[u.log(v)] for some evaluation con-

text E and value u, v = new C(t, v′) and t ≤ �. Using Theorem 4.4.1, there exists a

trace τ̂ such that p(θ) ⇓ τ̂ and τ̂ :≈ σ′κ1κ2. This ensures that

MaybeBAD(v) ∈ H(X ∪ toFOL(τ̂)) ∩ L{MaybeBAD},

as u.log(v) could only appear in the body of some method C.m ∈ SSOs, according

to the rewriting algorithm R, and thus the preconditions of the last rule defined in

Figure 4.6 are satisfied by X ∪ toFOL(τ̂). Moreover, τ̂ is a prefix of τ , and thus

toFOL(τ̂) ⊆ toFOL(τ). This entails that

MaybeBAD(v) ∈ H(X ∪ toFOL(τ)) ∩ L{MaybeBAD}.

Next, we show that H(X ∪ toFOL(τ)) ∩ L{MaybeBAD} is a subset of toFOL(L).

Let MaybeBAD(new D(t′, v̄′)) ∈ H(X ∪ toFOL(τ)) ∩ L{MaybeBAD} and v = new D(v̄′).

Then, there exist some n, C, ū and m where Call(n, C, ū, m, v) ∈ toFOL(τ). More-

over, there exist SE, se, t, se and se′, where the predicates Shadow(n, se) and

match(se, SE, shadow C(t, se).m(shadow D(t′, se′))) are derivable from the rules in X,

C.m ∈ SSOs and t′ ≤ �. Let τ [· · ·n] denote the prefix of τ ending in timestamp n.

Based on the definition of toFOL(·), we can infer that tail(τ [· · ·n]) = E[new C(ū).m(v)].

Using Theorem 4.4.1, we know that there exists trace σ′ such that R(p(θ)) ⇓ σ′ and

137

τ [· · ·n] :≈ σ′. Let tail(σ′) = ê, n̂, L̂. Therefore,

trim(ê) = overlay(E[new C(ū).m(new D(v̄′))],

SE[shadow C(t, se).m(shadow D(t′, se′))])

= Ê[new C(t, ū).m(new D(t′, v̄′))].

Obviously, trim(ê), n̂, L̂ → Ê[new C(t, ū).log(new D(t′, v̄′)); e], n̂, L̂ according to the

semantics of target language. Then, using Lemma 4.4.4, tail(σ′) ⇓ σ′′κ1κ2κ3, where

κ1 = Ê′[new C(t, ū).m(new D(t′, v̄′))], n̂′L̂′

κ2 = Ê′[new C(t, ū).log(new D(t′, v̄′)); e], n̂′, L̂′

κ3 = Ê′[e], n̂′, L̂′ ∪ {new D(t′, v̄′)},

for some Ê′ such that

trim(Ê′[new C(t, ū).log(new D(t′, v̄′)); e]) =

trim(Ê[new C(t, ū).log(new D(t′, v̄′)); e]).

Since τ [· · ·n+1] :≈ σ′σ′′κ1κ2κ3, τ [· · ·n+1] is a prefix of τ and L̂′∪{new D(t′, v̄′)} ⊆ L

due to the monotonic growth of log, we conclude that new D(t′, v̄′) ∈ L. ut

Theorem 4.4.3 The rewriting algorithm R is retrospectively sound and complete

(Definition 4.4.5).

Proof. Let p be a source program and LS be a logging specification defined as LS =

spec(X, {MaybeBAD}). We aim to show that for all R(p(θ)) and finite traces τ and

138

σ, such that R(p(θ)) ⇓ σ, τ :≈ σ and σ ; L, C(toFOL(L)) = LS(τ). By Lemma

4.4.17, we have

toFOL(L) = H(X ∪ toFOL(τ)) ∩ L{MaybeBAD}.

By Lemma 3.2.1 and Lemma 3.2.2

LS(τ) = C(C(H(X ∪ toFOL(τ))) ∩ L{MaybeBAD})

= C(H(X ∪ toFOL(τ)) ∩ L{MaybeBAD}).

Hence, LS(τ) ≤ C(toFOL(L)) and C(toFOL(L)) ≤ LS(τ) both hold. ut

139

Chapter 5

The Meaning of Dynamic Integrity

Taint Analysis

The semantics of information flow has been well studied and is typically characterized

via noninterference properties, but surprisingly little work has been done to develop

similar properties for taint analysis. Recently, it has been shown that direct flow

of data confidentiality is not comparable with noninterference [24], i.e., there are

both noninterfering programs with direct leakage of secret data to public domain,

and programs without such direct leakges, but interfering. For instance consider

the following two statements in a core imperative language, in which s and p are

respectively secret and public variables:

if s = 0 then p := s else p := 0 if s = 0 then p := 1 else p := 2

The first statement is noninterfering, but direct flow of information from s to p exists,

whereas the second statement is interfering due to the indirect flow from s to p,

140

but there are not any direct flows from s to p. In this chapter, we show similar

examples that distinguish noninterference from the security property that is enforced

by dynamic integrity taint analysis. Our examples are in a functional setting with

hierarchical data structures.

Formal definitions of taint analysis implementations do exist, but they are usu-

ally operational in nature. For example, in Section 4.4.4, we have established an

operational correctness for the prospective enforcement of direct integrity flow.

In this chapter, we propose a semantic framework to model direct flow of data in-

tegrity enforced by integrity taint analysis techniques. We intend to use the proposed

semantics to establish provable correctness conditions for rewriting algorithms that

instrument integrity taint analysis in the presence of input sanitization. This way an

underlying semantic framework is provided to study numerous other integrity taint

analyzers in the future.

5.1 Direct Integrity Flow Semantics: Ex-

plicit Integrity

In this section, we build “explicit integrity” a semantic property that builds on the

notions of explicit secrecy [24] and attacker power [37]. Similar to explicit secrecy,

explicit integrity is language-agnostic. In later sections, we discuss instantiation of

this model for FJ.

Explicit secrecy is defined as a property of a program, where the execution does not

change the knowledge of a low confidentiality user. Knowledge [64] is defined as the set

of initial states that a low confidentiality user is able to consider to generate a given

141

sequence of observables. Explicit knowledge [24] restricts attacker knowledge for direct

confidentiality flows only. In this section, we demonstrate how explicit knowledge can

be “dualized” for direct integrity flow analysis and applied as a semantic framework

for dynamic integrity taint analysis tools, particularly in functional languages with

hierarchical data structures (FJ).

Attacker power [37] is introduced as a counterpart to attacker knowledge in the

context of integrity, as the set of low integrity inputs that generate the same sequence

of high integrity events. Each high integrity event could be a simple assignment to

a predefined high integrity variable, a method that manipulates trusted data (secure

sinks), etc. according to the language model. The more refined the attacker power is,

the more powerful the low integrity attacker becomes, as she becomes more capable

to distinguish between the effects of different attacks on high integrity data.

We define explicit attacker power as the attacker power constrained on direct in-

tegrity flows. Then, explicit integrity is defined as the property of preserving explicit

attacker power during program execution. In order to limit flows to direct ones, we

have followed the techniques introduced in [24] to define state transformers. State

transformers extract direct flows semantically by specifying the ways in which pro-

gram state is modified in each step of execution, along with direct-flow events that

are generated.

5.1.1 Model Specification

In what follows, we formulate our explicit integrity semantics. We first define the

interface for our framework. Let K be the of program configurations for a given

object language. κ ranges over configurations. Configurations consist of control and

142

state segments. Control refers to the code and state refers to data. Let C be the set

of controls with c ranging over the elements of C. Moreover, let S denote the set of

states and s represent a given state. We also define a set of high integrity events,

E. A high integrity event e may refer to different computations in different language

models and settings. For example, it could be as simple as assigning a low integrity

data to a high integrity variable, or invoking a method with a low integrity data as

its parameter to store that parameter in a database. We assume the existence of

the small step evaluation relation →⊆ K×E∗×K where (κ, e, κ′) ∈→ is denoted as

κ
e−→ κ′. We use κ→ κ′ if e is empty (ε) or could be elided in the discussion. Notation

→∗ is used for reflexive and transitive closure of →.

Each configuration is considered to include two segments: control (code) and

state (data). These segments are not necessarily disjoint and could overlap in some

language models. In this regard, let mappings state : K → S and control : K → C

extract the state and control segments of configurations, and 〈·, ·〉 : C × S → K

construct a configuration from its control and state segments. These mappings need

to satisfy the following property, for any κ:

〈control(κ), state(κ)〉 = κ.

We assume the existence of an entry point [·] in the controls denoted by c[·] by

which the attacker can inject low integrity input. The attacker input is denoted by

a. Then c[a] represents a control in which the attacker has injected input a. Note

that an attack a is a data piece itself, i.e., a is a value.

We define state transformers as follows:

143

Definition 5.1.1 Let κ→ κ′ and control(κ) = c for some c. f : S→ S× E∗ is the

function where f(s) = (state(κ′′), e) for all s and for the unique κ′′ and e such that

〈c, s〉 e−→ κ′′. We write κ→f κ
′ to associate the state transformer f with the reduction

κ→ κ′.

This definition is then extended to multiple evaluation steps by composing state

transformers at each step. Let f(s) = (s′, e) and g(s′) = (s′′, e′). Then, (g ∗ f)(s) =

(s′′, e e′).

We now define the power an attacker obtains by observing high integrity events.

We capture this by defining a set of high integrity equivalent states that generate

the same sequence of high integrity events. We posit the binary relation =T on S

to denote high integrity equivalent (or trust equivalent) states. Intuitively, s =T s′

if s and s′ agree on high integrity data. The instantiation of the relation depends

on the language model in which the states are defined. For a state s and some state

transformer f , the state s′ is considered as an element of the explicit attacker power,

if s =T s′ and s′ agrees with s on the generated high integrity events.

Definition 5.1.2 We define explicit attacker power with respect to state s and state

transformer f as follows, where projection on the ith element of a tuple is denoted by

πi.

pe(s, f) = {s′ | s =T s′, π2(f(s)) = π2(f(s′))}.

A control then satisfies explicit integrity for some state iff no state can be excluded

from observing the high integrity events generated by the extracted state transformer.

144

Definition 5.1.3 A control c satisfies explicit integrity for state s, iff 〈c, s〉→∗fκ′

implies that for any s′ and s′′, if s′ =T s′′ then we have s′′ ∈ pe(s′, f).

A control c satisfies explicit integrity iff for any s, c satisfies explicit integrity for

s.

We can now consider explicit integrity in the presence of endorsement in the style

of gradual release [64]. We assume that there exists a set of integrity events Een ⊆ E

that are generated when endorsements occur. Explicit attacker power is only allowed

to change for such events.

Definition 5.1.4 A control c satisfies explicit integrity modulo endorsement for

state s iff 〈c, s〉 →∗f κ′
e−→∗gκ′′ and e /∈ Een

∗ imply that pe(s, f) = pe(s, g ∗ f).

We also define a variant of noninterference for the sake of comparison with explicit

integrity.

Definition 5.1.5 Program c is noninterfering iff for any two trust equivalent states

s and s′, if 〈c, s〉 and 〈c, s′〉 generate sequence of events e and e′ respectively, up to a

given number of steps of evaluation, then we have e = e′.

5.2 An OO Model

For practical purposes we are interested in applications of taint analysis for HLLs,

especially Java [85]. Therefore in our formulation we consider a core model of Java,

which is based on Featherweight Java (FJ), discussed in Section 4.1. We extend the

configurations with states, defined below.

145

5.2.1 Operational Semantics

Rather than a substitution-based semantics (Section 3.1), we use a stack-based se-

mantics to keep track of program variables in effect and their integrity level. Stack-

based semantics provides a framework to distinguish between controls and states in

functional settings, where as in substitution-based semantics these components are

mingled within the structure of expressions. The separation of data from code is

leveraged in our framework to study explicit integrity.

We assume the existence of at least two integrity levels H and L which denote the

high integrity and the low integrity levels, respectively. A stack, denoted by Σ, is a

possibly empty sequence of substitutions γ, where each γ is a partial mapping from

variables to values.

Σ ::= ∅ | γ :: Σ

Then we can define a stack-based semantics in a standard fashion as follows. Config-

urations are expression, stack pairs (e,Σ). The reduction relation is ternary, of the

form κ
α→ κ′ where α is a sequence of events– either integrity events iev or endorse-

ment events eev. The former occurs when an sso is invoked, the latter occurs when

a sanitizer returns, and both events are parameterized with the values flowing into

the sso or the value just sanitized, respectively. Figure 5.1 defines the stack-based

operational semantics for FJ.

146

Context
(e,Σ) α→ (e′,Σ′)

(E[e],Σ) α→ (E[e′],Σ′)

Var
(x, γ :: Σ)→ (γ(x), γ :: Σ)

Field
fieldsCT (C) = C̄ f̄ fi ∈ f̄
(new C(v̄).fi,Σ)→ (vi,Σ)

Invoke
mbodyCT (m, C) = x̄, e C.m 6∈ SSOs

(new C(v̄).m(ū),Σ)→ (C.m(e), [new C(v̄)/this][ū/x̄] :: Σ)

SSO
mbodyCT (m, C) = x̄, e C.m ∈ SSOs

(new C(v̄).m(ū),Σ)
iev(u)
→ (C.m(e), [new C(v̄)/this][ū/x̄] :: Σ)

Return
C.m 6∈ Sanitizers

(C.m(v), γ :: Σ)→ (v,Σ)

Sanitized
C.m ∈ Sanitizers

(C.m(v), γ :: Σ)
eev(v)
→ (v,Σ)

Figure 5.1: Stack-based Operational Semantics for FJ.

e redex
control(E[e],Σ) = e

e redex
state(E[e],Σ) = (E,Σ)

〈e, (E,Σ)〉 = (E[e],Σ)

Figure 5.2: Definitions of control, state and 〈·, ·〉 in FJ.

5.2.2 Model instantiation for FJ

In this section, we instantiate explicit integrity for FJ. First, we define the required

interface specified in Section 5.1. Let C be the set of redexes. We define s to be a pair

of an evaluation context and a stack (E,Σ). We define κ as the pair of expressions

and stacks, i.e., (e,Σ). Mappings control, state and 〈·, ·〉 are defined in Figure 5.2.

These definitions satisfy 〈control(κ), state(κ)〉 = κ.

Lemma 5.2.1 For any FJ configuration κ, we have 〈control(κ), state(κ)〉 = κ.

Proof. Straightforward based on the definition of mappings in Figure 5.2. ut

147

E1 = E2 Σ1 =T Σ2

(E1,Σ1) =T (E2,Σ2)
∅ =T ∅

dom(γ1) = dom(γ2) ∀x ∈ dom(γ1).Γ(x) = H⇒ γ1(x) = γ2(x) Σ1 =T Σ2

(γ1 :: Σ1) =T (γ2 :: Σ2)

Figure 5.3: Definition trust equivalent states in FJ.

The set E is the set of events of the form iev(v) and eev(v). We modify the

operational semantics of FJ slightly in order to consider integrity events. When an

sso is invoked with argument v the integrity event iev(v) is generated. Moreover, the

event eev(v) is generated when a sanitizer is returned (with endorsed value).

Now, in order to define trust equivalent states in FJ, we posit a function Γ that

maps every program variable (method argument) to high or low integrity– without

loss of generality we assume that all method variables are uniquely named. Essen-

tially, Γ(x) = H for all and only sso arguments. To complete the instantiation of

the model we define trust equivalence relation =T on FJ states as given in Figure

5.3. Note that we abuse the notation to define trust equivalent stacks as part of

the definition. Two states in FJ are trust equivalent, if the evaluation contexts of

those states are syntactically equal and their stacks are trust equivalent. Two stacks

are trust equivalent if they map high integrity variables to the same values in each

activation record.

The initial state is s0 = ([], [a/attack] :: ∅), where Γ(attack) = L. s0 refers to

the initial attacker capabilities.

We have a single code injection (attack) entry point in FJ top-level programs p

which we have defined to be of the form new TopLevel().main([·]). Attacks are defined

as primitive values being fed to TopLevel.main, i.e., a ::= new C(v̄). In FJtaint, the

148

attacks have taint tag •, i.e., a ::= new C(•, v̄).

For the sake of brevity, we may elide stacks from FJ-configurations in the following.

5.2.3 Sanity Conditions on Library Methods

As noted before, taint is propagated by library methods according to a user-defined

predicate Prop. We define two sanity conditions for library methods: not undertaint-

ing and not overtainting. The former condition is required in the implementation

in order to meet explicit integrity modulo endorsement, whereas the latter is a good

practice in the implementation of taint analysis tools.

First we define trust equivalence relation between FJtaint configurations in order

to specify sanity conditions for library methods. We accomplish this by definition

of a relation =◦ on configurations that requires identity of high integrity values, but

allows low integrity values to be different.

Definition 5.2.1 The relation =◦ on configurations is the least relation inductively

defined by inference rules in Figure 5.4.

Definition 5.2.2 Let the following hold:

• E[new C(t, v̄).m(ū)],Σ1→∗E[w],Σ2,

• E′[new C(t ′, v̄′).m(ū′)],Σ′1→∗E′[w′],Σ′2,

• C.m ∈ LibMeths, and

• E[new C(t, v̄).m(ū)]],Σ1 =◦ E′[new C(t ′, v̄′).m(ū′)],Σ′1.

We say C.m is not undertainting iff E[w],Σ2 =◦ E′[w′],Σ′2.

149

x =◦ x ν =◦ ν
e1 =◦ e2

e1.f =◦ e2.f
e1, ē1 =◦ e2, ē2

e1.m(ē1) =◦ e2.m(ē2)
e1 =◦ e2

C.m(e1) =◦ C.m(e2)

ē1 =◦ ē2

new C(◦, ē1) =◦ new C(◦, ē2)
new C(•, ē1) =◦ new D(•, ē2)

e1 =◦ e′1 e2 =◦ e′2
e1; e2 =◦ e′1; e′2

e1
1 =◦ e2

1 · · · e
1
n =◦ e2

n

e1
1 · · · e

1
n =◦ e2

1 · · · e
2
n

∅ =◦ ∅

Σ1 =◦ Σ2 dom(γ1) = dom(γ2) ∀x ∈ dom(γ1).γ1(x) = new C(◦, v̄)⇒ v̄ =◦ ū ∧ γ2(x) = new C(◦, ū)
∀x ∈ dom(γ1).γ1(x) = new C(•, v̄)⇒ γ2(x) = new D(•, ū)

γ1 :: Σ1 =◦ γ2 :: Σ2

e1 =◦ e2 Σ1 =◦ Σ2

e1,Σ1 =◦ e2,Σ2

Figure 5.4: Definition of =◦ Relation.

Definition 5.2.3 Let C.m be a library methods that is constant. We say C.m is not

overtainting iff Prop(◦, C.m(t1, t2)).

For example, String.concat is not undertainting if the taint propagation pol-

icy is defined as the rule (4.1) in Section 4.2.2, but if it is defined as the predi-

cate Prop(◦, String.concat(t1, t2)) then this library method is undertainting. As

an example of overtainting, consider primitive operation prim(str) to be a con-

stant function over strings with return value 0. Let the OO wrapper for prim be

a library method String.primwrapper such that mbodyCT (primwrapper, String) =

∅, new Int(prim(this.val)) with propagation policy Prop(t, String.primwrapper(t)).

150

5.2.4 Illustrative Examples: Incompatibility of

Noninterference and Explicit Integrity

In what follows, we give examples to show incomparability of noninterference and

explicit integrity in FJ. In this regard, Example 5.2.1 demonstrates a program which

satisfies explicit integrity while it is interfering. Conversely, the program given in

Example 5.2.2 satisfies noninterference but not explicit integrity. Example 5.2.3 dis-

cusses a case where the program satisfies explicit integrity modulo endorsement. In

the following examples, method C.sso ∈ SSOs is assumed to be an identity function.

Moreover, the shadow of a is denoted sa.

Example 5.2.1 Let mbodyCT (main, TopLevel) = x, x.m(x), C <: D, mbodyCT (m, D) =

x, new B().sso(new D(′′hi′′)) and mbodyCT (m, C) = x, new B().sso(new C(′′hi′′)). Whether

the user input to TopLevel.main is an object of class C or D, different methods m are

invoked by dynamic dispatch. Let the attack be new C(′′hello′′). Corresponding exe-

cution trace, state transformer definitions, and attacker powers are given in Figure

5.5. Then, according to the composition of state transformers, the attacker power is

preserved. Thus, explicit integrity is satisfied. However, this program does not satisfy

noninterference. Considering trust equivalent initial states depicted in Figure 5.5,

the attacks new C(′′hello′′) and new D(′′hello′′) generate unequal sequence of events

[iev(new C(′′hi′′))] and [iev(new D(′′hi′′))].

Example 5.2.2 Let mbodyCT (main, TopLevel) = x, x.m(x), C <: D, mbodyCT (m, D) =

x, new B().sso(new C()) and mbodyCT (m, C) = x, new B().sso(x). Note that we assume

no fields for classes C and D, and so only objects new C() and new D() are definable. Let

151

new TopLevel().main(new C(′′hello′′))→∗f1

TopLevel.main(C.m(new B().sso(new C(′′hi′′))))→∗f2
new C(′′hi′′)

f1(E, γ :: Σ) = ((E[TopLevel.main(C.m[])],
[γ(attack)/this][γ(attack)/x] :: [new TopLevel()/this][γ(attack)/x] :: γ :: Σ), ε)

f2(E[TopLevel.main(C.m[])], γ′ :: γ :: Σ) = ((E,Σ), iev(new C(′′hi′′)))
f2 ∗ f1(s0) = (s0, iev(new C(′′hi′′)))

pe(s0, f1) = pe(s0, f2 ∗ f1) = {s′ | s′ =T s0}

([], [new C(′′hello′′)/attack] :: ∅) =T ([], [new D(′′hello′′)/attack] :: ∅)

Figure 5.5: Example 5.2.1: The Execution Trace, State Transformers, Attacker Powers and
Trust Equivalent Initial States.

the attack be new C(). Similar to Example 5.2.1, details are given in Figure 5.6. Since

the explicit attacker power is refined to the attack, explicit integrity is not satisfied.

However, this program satisfies noninterference. The attacks new C() and new D()

both generate the same event iev(new C()) considering trust equivalent initial states

given in Figure 5.6.

Example 5.2.3 Let mbodyCT (main, TopLevel) = x, x.m(x), C <: D, mbodyCT (m, D) =

x, new B().sso(new D(′′hi′′)), mbodyCT (m, C) = x, new B().sso(new F().sanitize(x)),

and mbodyCT (sanitize, F) = x, x.endorse(). Let the attack be new C(′′hello′′). De-

tails are given in Figure 5.7. As explicit attacker power is not further refined after en-

dorsement, explicit integrity modulo endorsement is satisfied. However, the program is

not satisfying noninterference, since the attacks new C(′′hello′′) and new D(′′hello′′)

generate different sequences of events.

152

new TopLevel().main(new C())→∗f1
TopLevel.main(C.m(new B().sso(new C())))→∗f2

new C()

f1(E, γ :: Σ) = ((E[TopLevel.main(C.m[])],
[γ(attack)/this][γ(attack)/x] :: [new TopLevel()/this][γ(attack)/x] :: γ :: Σ), ε)

f2(E[TopLevel.main(C.m[])], γ′′ :: γ′ :: γ :: Σ) = ((E, γ :: Σ), iev(γ(attack)))
f2 ∗ f1([], [a/attack] :: ∅) = (([], [a/attack] :: ∅), iev(a))

pe(s0, f2 ∗ f1) = {s0}

([], [new C(′′hello′′)/attack] :: ∅) =T ([], [new D(′′hello′′)/attack] :: ∅)

Figure 5.6: Example 5.2.2: The Execution Trace, State Transformers, Attacker Powers and
Trust Equivalent Initial States.

5.3 Taint Analysis Instrumentation via

Program Rewriting

In Section 4.3.1, we have defined a rewriting algorithm for both prospective and

retrospective enforcement of taint analysis. Since in this section our goal is to study

the meaning of prospective taint analysis, we define a more restricted version of R

that only focuses on prospective enforcements through check method. In this regard,

the target language, FJtaint, only reflects on prospective checks. The stack-based

semantics of FJtaint is similar to the semantics of FJ, given in Figure 5.1, as the

configurations are defined as pairs of expressions and stacks. One difference is that,

in FJtaint, the integrity event is not generated when a sso is called, but the integrity

is generated after check passes in the body of that sso. Moreover, the expressions

153

new TopLevel().main(new C(′′hello′′))→∗f1

TopLevel.main(new B().sso(new C(′′hello′′))))→∗f2
new C(′′hello′′)

f1(E, γ :: Σ) = ((E[TopLevel.main(C.m[])],
[γ(attack)/this][γ(attack)/x] :: [new TopLevel()/this][γ(attack)/x] :: γ :: Σ), eev(γ(attack)))

f2(E[TopLevel.main(C.m[])], γ′′ :: γ′ :: γ :: Σ) = ((E, γ :: Σ), iev(γ(attack)))
f2 ∗ f1([], [a/attack] :: ∅) = (([], [a/attack] :: ∅), [eev(a), iev(a)])

pe(s0, f1) = pe(s0, f2 ∗ f1) = {s0}

([], [new C(′′hello′′)/attack] :: ∅) =T ([], [new D(′′hello′′)/attack] :: ∅)

Figure 5.7: Example 5.2.3: The Execution Trace, State Transformers, Attacker Powers and
Trust Equivalent Initial States.

are extended with sequences that evaluate according to the following rule:

Sequence

(v; e,Σ)→ (e,Σ).

Taint analysis instrumentation adds taint label fields to all objects, and operations

for appropriately propagating taint along direct flow paths. We incorporate blocking

behavior to enforce blocking checks at secure sinks. In the next section, we will show

that this analysis satisfies explicit integrity modulo endorsement, assuming that the

library methods are not undertainting.

We redefine the program rewriting algorithm R as follows. Since in our security

model the only tainted input source is a specified argument to a top-level program,

the rewriting algorithm adds an untainted label to all objects. The class table is then

manipulated to specify a taint field for all objects and a check object method that

blocks if the argument is tainted.

154

fieldsR(CT)(Object) = Taint taint mbodyR(CT)(check, Object) = x, new Object(?x.taint)

C.m ∈ SSOs mbodyCT (m, C) = x, e
mbodyR(CT)(m, C) = x, this.check(x);µ(e)

C.m 6∈ SSOs mbodyCT (m, C) = x̄, e
mbodyR(CT)(m, C) = x̄, µ(e)

Figure 5.8: Axioms for Rewriting Algorithm Restricted to Prospective Measures

Definition 5.3.1 For any expression e, the expression µ(e) is syntactically equiva-

lent to e except with every subexpression new C(ē) replaced with new C(◦, ē). Given

SSOs, define R(e, CT) = (µ(e),R(CT)), where R(CT) is the smallest class table

satisfying the axioms given in Figure 5.8.

Note that in Figure 5.8, we do not need to explicitly specify a case for endorse()

method body, as µ assigns untainted label for the object returned from that method

(Definition 4.3.1).

5.4 Enforcement of Explicit Integrity

Modulo Endorsement by R

To satisfy explicit integrity modulo endorsement, R is required to be an operationally

correct implementation of integrity taint policy (Definition 4.4.3). The detailed proofs

of operational correctness of R and semantics preservation have already been studied

for substitution-based semantics of FJ in Section 4.4. We avoid to study the same

steps for stack-based semantics here due to the obvious bisimiliarty that exists be-

tween the two proposed operational semantics. Bisimiliarity states that each step of

execution in one semantics can be simulated in zero or more steps in the couterpart

155

operational semantics.

In what follows, we show that the rewritten program satisfies explicit integrity

modulo endorsement if the sanity conditions are met. In particular, the library meth-

ods must be non-undertainting. In this regard, Lemma 5.4.1 conveys the core property

to meet such goal.

Lemma 5.4.1 Let (e1,Σ1) → (e′1,Σ′1), (e2,Σ2) → (e′2,Σ′2), e1,Σ1 =◦ e2,Σ2 and

e1 = E[ê] such that ê is the redex. Then e′1,Σ′1 =◦ e′2,Σ′2 provided that (e1,Σ1) →

(e′1,Σ′1) does not refer to library method computations, i.e., the following conditions

must hold:

• ê 6= new C(t, v̄).m(ū) for some library method C.m and sequences of values v̄ and

ū, i.e., ê is not a library method invocation.

• E 6= E′[C.m([])] for some evaluation context E′ and library method C.m, i.e., ê is

not a redex within a library method.

Proof. By induction on the derivation of (e1,Σ1) → (e′1,Σ′1). Here we study one

interesting case. Let e1 = new C(t, v̄).m(ū), where mbodyCT (m, C) = x̄.e. We then

have new C(t, v̄).m(ū),Σ1 → C.m(e), [new C(t, v̄)/this][ū/x] :: Σ1, assuming that C.m /∈

SSOs. Note that the taint tag • is only assigned to primitive objects during eval-

uation. This can be straightforwardly shown by induction on the derivation of

(e1,Σ1) → (e′1,Σ′1). Therefore we have t = ◦, otherwise C.m ∈ LibMeths which is

a contradiction. If new C(◦, v̄).m(ū),Σ1 =◦ e2,Σ2 and (e2,Σ2) → (e′2,Σ′2), we need to

show that C.m(e), [new C(◦, v̄)/this][ū/x] :: Σ1 =◦ e′2,Σ′2.

From new C(◦, v̄).m(ū),Σ1 =◦ e2,Σ2 we have new C(◦, v̄).m(ū) =◦ e2 and Σ1 =◦

Σ2. Using new C(◦, v̄).m(ū) =◦ e2, we conclude that e2 = new C(◦, ¯̂v).m(¯̂u) such that

156

new C(◦, v̄) =◦ new C(◦, ¯̂v), v̄ =◦ ¯̂v, and ū =◦ ¯̂u. Next, we have new C(◦, ¯̂v).m(¯̂u),Σ2 →

C.m(e), [new C(◦, ¯̂v)/this][¯̂u/x] :: Σ2. Since Σ1 =◦ Σ2, v̄ =◦ ¯̂v, and ū =◦ ¯̂u we conclude

that [new C(◦, v̄)/this][ū/x] :: Σ1 =◦ [new C(◦, ¯̂v)/this][¯̂u/x] :: Σ2. This implies that

C.m(e), [new C(◦, v̄)/this][ū/x] :: Σ1 =◦ C.m(e), [new C(◦, ¯̂v)/this][¯̂u/x] :: Σ2. ut

Lemma 5.4.2 Let (e1,Σ1) →∗ (e′1,Σ′1), (e2,Σ2) →∗ (e′2,Σ′2), e1,Σ1 =◦ e2,Σ2 and

e1 = E[ê] such that ê is the redex. Then e′1,Σ′1 =◦ e′2,Σ′2 provided that (e1,Σ1) →∗

(e′1,Σ′1) does not refer to library method computations, i.e., the following conditions

must hold:

• ê 6= new C(t, v̄).m(ū) for some library method C.m and sequences of values v̄ and

ū, i.e., ê is not a library method invocation.

• E 6= E′[C.m([])] for some evaluation context E′ and library method C.m, i.e., ê is

not a redex within a library method.

Proof. By induction on the derivation of (e1,Σ1)→∗ (e′1,Σ′1) using Lemma 5.4.1. ut

In the following, let the state transformer defined over a trace τ in FJtaint be

denoted by st(τ, f).

Theorem 5.4.1 If there does not exist any undertainting library method, then for

any arbitrary program p, R(p) satisfies explicit integrity modulo endorsement.

Proof. Let R(p(a)) ⇓ σσ′. Let st(σ, f) and st(tail(σ)σ′, g). Then, according to the

definition of state transformers, the state transformer defined over σσ′ is g ∗ f , i.e.,

st(σσ′, g ∗ f).

Let the state at tail(σ) be s. In order to prove that R(p) satisfies explicit integrity

modulo endorsement, we need to show that if π2(g(s)) /∈ Een
∗, then π2(f(s0)) =

157

π2(f(s′)) implies that π2((g ∗ f)(s0)) = π2((g ∗ f)(s′)) for all state s′ where s′ =T s0.

This is accomplished by induction on the length of σ′.

When σ′ has length 0, π2(g(s)) = ε and so the result is immediate. For the

inductive phase, we show that the property holds for σ′ of length n + 1, assuming

that for n-length σ′ the property is met. So, let’s assume the state transformer

corresponding to n-length σ′ is g1 and the (n+ 1)’s step defines state transformer g2.

By induction hypothesis we have π2((g1∗f)(s0)) = π2((g1∗f)(s′)). The goal is to show

that π2((g2 ∗ g1 ∗ f)(s0)) = π2((g2 ∗ g1 ∗ f)(s′)). The only interesting case for the last

step of execution is where a sso is invoked1. So, let the (n− 1)th configuration of σ′

be (E[new C(t, v̄).m(new D(t ′, ū))],Σn−1) where C.m ∈ SSOs, and thus nth configuration

of σ′ be (E[C.m(new C(t, v̄).check(new D(t ′, ū)); e)], [new C(t, v̄)/this][new D(t ′, ū)/x] ::

Σn−1), considering mbodyCT (m, C) = x, e.

Note that if t′ = •, then check halts the execution, and no integrity event is

generated. Therefore, in this case the result is immediate.

Let t′ = ◦. Then, check does not halt the execution, and the integrity event

iev(new D(t ′, ū)) is generated by g2. By Lemma 5.4.2, since R(p(a)), [a/attack] ::

∅ =◦ R(p(a′)), [a′/attack] :: ∅ for all attacks a′, the invocations to C.check are

trust equivalent. Since the same objects are fed to C.check and the sso C.m, and

SSOs are only applied on primitive objects, if two such untainted objects are trust

equivalent, then they are syntactically equal. Thus untainted object being fed to

C.check under attacks a and a′ is of the form new D(◦, ū). This completes the proof.

ut

1In the rest of the cases integrity events are not generated and so the result is immediate.

158

5.4.1 Discussion

In this section, we exemplify how taint propagation instrumentation of library meth-

ods (in light of Definition 5.2.2 and Definition 5.2.3) affects the satisfaction of explicit

integrity modulo endorsement.

To study the role of undertainting library methods assume we have defined taint

propagation policy Prop(◦, String.concat(t1, t2)) for library method String.concat.

Let

mbodyCT (main, TopLevel) = x, x.sso(x.concat(new String(′′world′′))).

Consider two attacks new String(′′Hello′′) and new String(′′Attack′′). Note that

when concat is invoked for these two attacks, expressions are trust equivalent, given

as the first trust equivalence formula in Figure 5.9. But when library method returns

value the expressions are not trust equivalent (second formula in Figure 5.9), since

the primitive values are syntactically different but untainted in those expressions.

Then explicit integrity modulo endorsement is not satisfied, since attacks generate

different events that refine attacker power: iev(new String(◦,′′ Helloworld′′)) and

iev(new String(◦,′′ Attackworld′′)).

However, if the propagation policy for String.concat is defined as (4.1) in Section

4.2.2, then String.concat is not undertainting, since the expressions are trust equiv-

alent after return. This is due to the fact that syntactically different primitive values

are marked as tainted in those expressions (third formula in Figure 5.9). In this case,

both sso invocations are halted by String.check before generating integrity events,

and therefore explicit integrity modulo endorsement is satisfied trivially.

159

TopLevel.main(new String(•,′′ Hello′′).sso(new String(•,′′ Hello′′).concat(new String(◦,′′ world′′)))) =◦
TopLevel.main(new String(•,′′ Attack′′).sso(new String(•,′′ Attack′′).concat(new String(◦,′′ world′′))))

TopLevel.main(new String(•,′′ Hello′′).sso(new String(◦,′′ Helloworld′′))) 6=◦
TopLevel.main(new String(•,′′ Attack′′).sso(new String(◦,′′ Attackworld′′)))

TopLevel.main(new String(•,′′ Hello′′).sso(new String(•,′′ Helloworld′′))) =◦
TopLevel.main(new String(•,′′ Attack′′).sso(new String(•,′′ Attackworld′′)))

Figure 5.9: Undertainting Example.

To study effects of overtainting, consider primitive operation prim(str) and its

OO wrapper String.primwrapper with the taint propagation policy given in Section

5.2.3, i.e., Prop(t, String.primwrapper(t)). Assuming

mbodyCT (main, TopLevel) = x, x.sso(x.primwrapper()),

any two attacks new String(str) and new String(str ′) end up invoking String.sso

on new Int(•, 0) in the image of R, but are blocked by String.check in the body of

String.sso before generating any integrity event. This represents the unnecessary

conservativeness of taint propagation policy for library method String.primwrapper.

If the taint propagation policy is defined as Prop(◦, String.primwrapper(t)) (i.e.,

String.primwrapper to be non-overtainting), then given any two arbitrary attacks

new String(str) and new String(str ′), the integrity event iev(new Int(◦, 0)) is gen-

erated, which does not affect the satisfaction of explicit integrity modulo endorsement

by the rewritten program.

Since each primitive operation Op could be defined arbitrarily and the taint propa-

gation policy predicated on Prop for the library method that wraps Op is user-defined,

160

satisfaction of explicit integrity modulo endorsement depends on the accuracy of the

user-defined taint propagation policy for each given primitive operation. Therefore,

the framework that has been proposed in this chapter, provides guidelines to imple-

ment semantically sound taint propagation mechanisms that enforce direct integrity

flow policies in the presence of input sanitization.

161

Chapter 6

Conclusion and Future Work

The major contributions of this dissertation are as follows:

• The first semantic notion for retrospective enforcement that enables discussing

sound (Definition 2.5.2) and complete (Definition 2.5.3) audit logs.

• A rewriting algorithm to enforce retrospective measures (Definition 3.2.3), and

prove its soundness and completeness (Theorem 3.2.3).

• The first logical assertion of taint analysis that supports uniform specification

and enforcement of the in-depth dynamic integrity taint analysis policies (Def-

inition 4.2.3).

• The first semantic framework for dynamic integrity taint analysis that is inclu-

sive enough to support functional languages along with imperative ones (Defi-

nition 5.1.3).

In this dissertation, we establish a formal framework to specify and enforce prospec-

tive and retrospective security measures in concert, called in-depth enforcement of se-

curity. In this regard, we address the problem of audit log correctness. In particular,

162

we consider how to separate logging specifications from implementations, and how to

formally establish that an implementation satisfies a specification. By leveraging the

theory of information algebra, we define a semantics of logging specifications. To this

end, we formulate information algebras based on first-order logic (Theorem 2.6.1) and

show that this formulation enjoys information-algebraic properties.

As a major application space for in-depth enforcement of security, we have pro-

vided a general class of logging specifications that employ retrospective security for

the sake of surveillance and accountability. We define a particular program rewriting

strategy for a core OO calculus that supports instrumentation of this class of specifi-

cations expressed in first order logic, and then prove this strategy correct (Theorem

3.2.3). This illustrates how to prove program instrumentation correctness for partic-

ular rewriting algorithms leveraging the proposed auditing semantics. This strategy

is then applied to develop a practical tool for instrumenting logging specifications in

OpenMRS, a popular medical records system. We discuss implementation features of

this tool, including optimizations to minimize memory overhead.

Aiming to leverage in-depth enforcement for ameliorating potentially flawed prospec-

tive mechanisms, we consider integrity taint analysis in the OO language model. Our

security model accounts for sanitization methods that may be incomplete, a known

problem in practice. We propose an in-depth security mechanism based on combin-

ing prospective measures (to support access control) and retrospective measures (to

support auditing and accountability) that address incomplete sanitization. In particu-

lar, we consider sanitization results to be prospectively endorsed, but retrospectively

tainted. We develop a uniform security policy that specifies both prospective and

retrospective measures. This policy is used to establish provable correctness condi-

163

tions for a rewriting algorithm that instruments in-depth integrity taint analysis. A

rewriting approach supports development of tools that can be applied to legacy code

without modifying language implementations. We prove that the proposed rewriting

algorithm is operationally correct for the prospective enforcement (Theorem 4.4.2),

and retrospectively sound and complete (Theorem 4.4.3).

Moreover, we propose a semantic framework to model direct flow of data integrity

enforced by integrity taint analysis techniques. In contrast to previous work, this

framework is general enough to model direct flows in both imperative and functional

settings and could be used to study the prerequisites for correct taint propagation.

We use this framework to extract such requirements for our proposed taint analysis

solution and prove the satisfaction of proposed semantic property (Theorem 5.4.1).

This exemplifies the use of the proposed semantics to establish provable correctness

conditions for a rewriting algorithm that instruments integrity taint analysis in the

presence of input sanitization.

6.1 Future Work

Our research on provably correct in-depth enforcement of security policies relies on

the proposed semantic framework for audit log generation that is constrained to linear

processes. This limitation, in practice, restricts the application of our framework to

systems where a single process is responsible to generate audit logs. In our case study

on a medical records system, for instance, audit logging capability is considered as

an extension to the web server program and all preconditions for logging depend on

events in the same program execution trace.

164

For example, breaking the glass event is a precondition to log accesses to par-

ticular patient information in break the glass policies. Instrumentation of medical

records web server guarantees correct audit logging as long as such events occur in

the execution trace of the web server. This eliminates the possibility of distributing

authentication and authorization tasks to other nodes of the network. Such restric-

tion encourages us to study the semantics of distributed audit log generation that

underlies correct instrumentation of distributed programs for auditing purposes.

Majority of previous work on audit logging in distributed environments focus on

audit log analysis (e.g., [87]) and security concerns regarding in transit and/or at

rest log information (e.g., [88, 89, 90]). Studies regarding the collection of logs from

multiple monitors in distributed intrusion detection systems is such an example (e.g.,

[91, 92]). But we currently lack any correctness measures for audit logs generated

simultaneously within multiple nodes of a distributed system, where log generation

could depend on events in potentially other nodes. This represents the lack of an

auditing model in distributed systems, by which retrospective measures could be

studied in their fulfillment of accountability goals.

The proposed semantic framework needs to provide a mechanism to specify au-

diting requirements based on concurrent execution traces. Our framework needs to

be general enough to encompass different audit log generation and representation

approaches as its instances. We have already shown the generality of information

theoretic models in this realm [77]. To this end, I am interested to pursue studying

the ways in which these models could be employed to interpret audit logs, specify

auditing requirements and define correct enforcement of retrospective security in dis-

tributed environments. Similar to our current model for linear processes, correctness

165

of log in distributed environments needs to be conditioned on the specifications of

auditing requirement through the comparison between the information contained in

the log and the information advertised by those specifications.

We also need to study the languages to specify auditing requirements in distributed

environments as instances of our general model. As we have discussed in the previous

work, Horn clause logic is a proper language for this purpose in linear executions, due

to straightforward modeling of execution traces as sets of facts, sufficient expressivity

to specify auditing requirements and available logic programming implementations.

Therefore, I intend to investigate the employment of Datalog-like languages for the

specification of auditing requirements in concurrent executions.

A formal language model can be used to specify and establish correct enforcement

of retrospective security in concurrent systems according to the developed framework.

This formalism provides a model for developing tools with correctness guarantees.

This model needs to at least enjoy the following features.

• Concurrency: In order to reflect distributed environments, the language model

needs to support concurrent process executions with inter-process communica-

tion capabilities.

• Generality: The language model needs to be sufficiently concise and high level

to describe interactions among processes. Therefore, a wide range of distributed

systems could be modeled with this formalism.

• Universal timing: We need to be able to specify the ordering of interesting

events for the sake of specifying auditing requirements. For example, in break

the glass policies access to particular patient information is logged as long as

166

the glass is already broken. In order to implement such specifications, we need

to apply a timing mechanism that is shared among all nodes of the network.

Each step of concurrent execution of processes updates this universal time.

• Named functions: To specify auditing requirements, a fundamental unit of se-

cure operations is required to be defined. Functions can be considered as ab-

stractions of these fundamental units in many languages and systems. There-

fore, the language model needs to support named functions. When a function

is invoked the corresponding function body is required to be fetched and exe-

cuted. This necessitates a codebase for function definitions. Codebases can be

modeled in a straightforward way by mappings from function names to closed

language terms.

• Optimizations: The formal specification of retrospective security enforcement

in concurrent systems needs to address optimizations regarding bandwidth con-

sumption and memory usage for audit logging. High bandwidth consumption

is caused where inter-process communication of logging preconditions becomes

overwhelming. Storing logging preconditions in local memory may cause mem-

ory overhead. In this regard, we need to refrain from communicating and storing

“unnecessary” logging preconditions by each process.

Using the formalism with aforementioned features enables us to deploy distributed

environments that guarantee the correct generation of audit logs according to the

developed semantic framework. Deployment of correct logging capabilities in health

care informatics and intrusion detection systems are examples of case studies that

could be considered as final stages of this research.

167

Our work on the correctness of in-depth policy enforcement and extending it to

distributed systems as described above are predicated on given sets of prospective

and retrospective policies. Traditionally, these sets of policies are defined according

to the expert knowledge that realizes the security requirements and mechanics of

the systems being studied. As information systems become more complex in today’s

world, extracting the required policies that dictate the safety and security of data and

code becomes more and more difficult. This encourages us to use machine learning

techniques to identify unified in-depth security policies in legacy systems based on

a history of executions, access denials, security breaches and audit logs. Such a

framework facilitates the long-term adaptivity of legacy systems to the situations that

may require policies to be modified, and paves the way for correct enforcement of in-

depth security policies that are adjustable in the long run, when accompanied with

our frameworks for prospective and retrospective security in linear and concurrent

systems. Generally, this approach opens up a wide array of opportunities for future

security studies with different applications in healthcare, payment systems, security

tools, etc.

In addition to aforementioned research opportunities, multiple theses can be de-

fined on the basis of projects that arise from this doctoral research. These projects

may refer to

• legacy systems in which security enforcement is needed to be improved through

the addition of retrospective measures beside the existing prospective controls.

• legacy systems that require to be hardened against potential vulnerabilities

through in-depth analysis of security.

168

• taint analysis tools whose formal correctness results are required to be explored.

Moreover, as legacy systems depend on different technologies and platforms and

for the sake of generality and support for software with inaccessible source code, it

is recommended to define projects that study the deployment of our enforcement

techniques in lower level languages, e.g., LLVM-IR, Java bytecode, etc.

169

References
[1] Fred B. Schneider. Enforceable security policies. ACM Transactions on Infor-

mation and System Security, 3(1):30–50, 2000.

[2] Butler W. Lampson. Computer security in the real world. IEEE Computer,
37(6):37–46, 2004.

[3] Dean Povey. Optimistic security: A new access control paradigm. In NSPW
1999, pages 40–45, 1999.

[4] Daniel J. Weitzner. Beyond secrecy: New privacy protection strategies for open
information spaces. IEEE Internet Computing, 11(5):94–96, 2007.

[5] Audit finds employee access to patient files without apparent business or treat-
ment purpose. http://www.cpmc.org/about/press/News2015/phi.html,
2015. Accessed: 2015-01-30.

[6] Daniel J. Weitzner, Harold Abelson, Tim Berners-Lee, Joan Feigenbaum,
Ja<mes A. Hendler, and Gerald J. Sussman. Information accountability. Com-
munications of the ACM, 51(6):82–87, 2008.

[7] Wen Zhang, You Chen, Thaddeus Cybulski, Daniel Fabbri, Carl A. Gunter,
Patrick Lawlor, David M. Liebovitz, and Bradley Malin. Decide now or decide
later? Quantifying the tradeoff between prospective and retrospective access
decisions. In CCS 2014, pages 1182–1192, 2014.

[8] Jason Tyler King, Ben Smith, and Laurie Williams. Modifying without a trace:
General audit guidelines are inadequate for open-source electronic health record
audit mechanisms. In IHI 2012, pages 305–314. ACM, 2012.

[9] Qiang Fu, Jieming Zhu, Wenlu Hu, Jian-Guang Lou, Rui Ding, Qingwei Lin,
Dongmei Zhang, and Tao Xie. Where do developers log? An empirical study on
logging practices in industry. In ICSE 2014, pages 24–33, 2014.

[10] Anton Chuvakin. Beautiful log handling. In Andy Oram and John Viega, edi-
tors, Beautiful security: Leading security experts explain how they think. O’Reilly
Media Inc., 2009.

[11] Richard A Kemmerer and Giovanni Vigna. Intrusion detection: A brief history
and overview. Computer, 35(4):27–30, 2002.

[12] Duncan Cook, Jacky Hartnett, Kevin Manderson, and Joel Scanlan. Catching
spam before it arrives: Domain specific dynamic blacklists. In AusGrid 2006,
pages 193–202. Australian Computer Society, Inc., 2006.

[13] J. Kohlas. Information Algebras: Generic Structures For Inference. Discrete
mathematics and theoretical computer science. Springer, 2003.

170

http://www.cpmc.org/about/press/News2015/phi.html

[14] Úlfar Erlingsson. The inlined reference monitor approach to security policy en-
forcement. PhD thesis, Cornell University, 2003.

[15] OpenMRS. http://openmrs.org/, 2016. Accessed: 2016-07-28.

[16] Pam Matthews and Holly Gaebel. Break the glass. In HIE Topic Series. Health-
care Information and Management Systems Society, 2009. http://www.himss.
org/files/himssorg/content/files/090909breaktheglass.pdf.

[17] Jeffrey A. Vaughan, Limin Jia, Karl Mazurak, and Steve Zdancewic. Evidence-
based audit. In CSF 2008, pages 177–191, 2008.

[18] Anupam Datta, Jeremiah Blocki, Nicolas Christin, Henry DeYoung, Deepak
Garg, Limin Jia, Dilsun Kirli Kaynar, and Arunesh Sinha. Understanding and
protecting privacy: Formal semantics and principled audit mechanisms. In ICISS
2011, pages 1–27, 2011.

[19] Benjamin Livshits, Michael Martin, and Monica S Lam. Securifly: Runtime
protection and recovery from web application vulnerabilities. Technical report,
Technical report, Stanford University, 2006.

[20] Gary Wassermann and Zhendong Su. Sound and precise analysis of web appli-
cations for injection vulnerabilities. In PLDI, pages 32–41, 2007.

[21] Vinod Ganapathy, Trent Jaeger, Christian Skalka, and Gang Tan. Assurance for
defense in depth via retrofitting. In LAW, 2014.

[22] Jonathan Bell and Gail E. Kaiser. Phosphor: illuminating dynamic data flow in
commodity jvms. In OOPSLA, pages 83–101, 2014.

[23] Jonathan Bell and Gail E. Kaiser. Dynamic taint tracking for java with phosphor
(demo). In ISSTA, pages 409–413, 2015.

[24] Daniel Schoepe, Musard Balliu, Benjamin C. Pierce, and Andrei Sabelfeld. Ex-
plicit secrecy: A policy for taint tracking. In IEEE EuroS&P, pages 15–30, 2016.

[25] Vivek Haldar, Deepak Chandra, and Michael Franz. Dynamic taint propagation
for java. In ACSAC, pages 303–311, 2005.

[26] Erika Chin and David Wagner. Efficient character-level taint tracking for java.
In ACM SWS, pages 3–12, 2009.

[27] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight java:
a minimal core calculus for java and GJ. ACM Trans. Program. Lang. Syst.,
23(3):396–450, 2001.

[28] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung,
Patrick McDaniel, and Anmol Sheth. Taintdroid: an information flow track-
ing system for real-time privacy monitoring on smartphones. Commun. ACM,
57(3):99–106, 2014.

171

http://openmrs.org/
http://www.himss.org/files/himssorg/content/files/090909breaktheglass.pdf
http://www.himss.org/files/himssorg/content/files/090909breaktheglass.pdf

[29] David (Yu) Zhu, Jaeyeon Jung, Dawn Song, Tadayoshi Kohno, and David
Wetherall. Tainteraser: protecting sensitive data leaks using application-level
taint tracking. Operating Systems Review, 45(1):142–154, 2011.

[30] Andrei Sabelfeld and Andrew C Myers. Language-based information-flow secu-
rity. IEEE Journal on selected areas in communications, 21(1):5–19, 2003.

[31] Joseph A. Goguen and José Meseguer. Security policies and security models. In
IEEE S&P, pages 11–20, 1982.

[32] Edward J. Schwartz, Thanassis Avgerinos, and David Brumley. All you ever
wanted to know about dynamic taint analysis and forward symbolic execution
(but might have been afraid to ask). In IEEE S&P, pages 317–331, 2010.

[33] Benjamin Livshits. Dynamic taint tracking in managed runtimes. Technical
report, Technical Report MSR-TR-2012-114, Microsoft Research, 2012.

[34] R. Sekar. An efficient black-box technique for defeating web application attacks.
In NDSS, 2009.

[35] Juan José Conti and Alejandro Russo. A taint mode for Python via a library.
In NordSec, pages 210–222, 2010.

[36] Arnar Birgisson, Alejandro Russo, and Andrei Sabelfeld. Unifying facets of in-
formation integrity. In ICISS, pages 48–65, 2010.

[37] Aslan Askarov and Andrew Myers. A semantic framework for declassification
and endorsement. In ESOP, pages 64–84, 2010.

[38] Henry DeYoung, Deepak Garg, Limin Jia, Dilsun Kirli Kaynar, and Anupam
Datta. Experiences in the logical specification of the HIPAA and GLBA privacy
laws. In WPES 2010, pages 73–82, 2010.

[39] Henry DeYoung, Deepak Garg, Limin Jia, Dilsun Kaynar, and Anupam Datta.
Privacy policy specification and audit in a fixed-point logic: How to enforce
HIPAA, GLBA, and all that. Technical Report CMU-CyLab-10-008, Carnegie
Mellon University, April 2010.

[40] Deepak Garg, Limin Jia, and Anupam Datta. Policy auditing over incomplete
logs: Theory, implementation and applications. In CCS 2011, pages 151–162,
2011.

[41] Benjamin Böck, David Huemer, and A. Min Tjoa. Towards more trustable log
files for digital forensics by means of “trusted computing”. In AINA 2010, pages
1020–1027. IEEE Computer Society, 2010.

[42] Ricardo Corin, Sandro Etalle, J. I. den Hartog, Gabriele Lenzini, and I. Staicu. A
logic for auditing accountability in decentralized systems. In FAST 2004, pages
187–201, 2004.

172

[43] J. G. Cederquist, Ricardo Corin, M. A. C. Dekker, Sandro Etalle, J. I. den
Hartog, and Gabriele Lenzini. Audit-based compliance control. International
Journal of Information Security, 6(2-3):133–151, 2007.

[44] Radha Jagadeesan, Alan Jeffrey, Corin Pitcher, and James Riely. Towards a
theory of accountability and audit. In ESORICS 2009, pages 152–167, 2009.

[45] Sandro Etalle and William H. Winsborough. A posteriori compliance control. In
SACMAT 2007, pages 11–20, 2007.

[46] Michael Martin, Benjamin Livshits, and Monica S. Lam. Finding application
errors and security flaws using PQL: A program query language. In OOPSLA
2005, pages 365–383. ACM, 2005.

[47] Chris Allan, Pavel Avgustinov, Aske Simon Christensen, Laurie J. Hendren,
Sascha Kuzins, Ondrej Lhoták, Oege de Moor, Damien Sereni, Ganesh Sittam-
palam, and Julian Tibble. Adding trace matching with free variables to AspectJ.
In OOPSLA 2005, pages 345–364, 2005.

[48] Nataliya Guts, Cédric Fournet, and Francesco Zappa Nardelli. Reliable evidence:
Auditability by typing. In ESORICS 2014, pages 168–183. Springer-Verlag, 2009.

[49] Peter Buneman, Sanjeev Khanna, and Wang-Chiew Tan. Why and where: A
characterization of data provenance. Lecture Notes in Mathematics - Springer
Verlag, pages 316–330, 2000.

[50] Peter Buneman, Adriane Chapman, and James Cheney. Provenance management
in curated databases. In SIGMOD 2006, pages 539 – 550, 2006.

[51] James Cheney. A formal framework for provenance security. In CSF 2011, pages
281–293, 2011.

[52] Khalid Belhajjame, Reza B’Far, James Cheney, Sam Coppens, Stephen Cress-
well, Yolanda Gil, Paul Groth, Graham Klyne, Timothy Lebo, Jim McCusker,
Simon Miles, James Myers, Satya Sahoo, and Curt Tilmes. PROV-DM: The
PROV data model. http://www.w3.org/TR/2013/REC-prov-dm-20130430,
2013. Accessed: 2015-02-07.

[53] James Cheney. Semantics of the PROV data model. http://www.w3.org/TR/
2013/NOTE-prov-sem-20130430, 2013. Accessed: 2015-02-07.

[54] Ragib Hasan, Radu Sion, and Marianne Winslett. The case of the fake Picasso:
Preventing history forgery with secures provenance. In FAST 2009, pages 1–14,
2009.

[55] Juerg Kohlas and Juerg Schmid. An algebraic theory of information: An intro-
duction and survey. Information, 5(2):219–254, 2014.

[56] Michael Martin, Benjamin Livshits, and Monica S. Lam. Finding application
errors using PQL: A program query language. In OOPSLA, 2005.

173

http://www.w3.org/TR/2013/REC-prov-dm-20130430
http://www.w3.org/TR/2013/NOTE-prov-sem-20130430
http://www.w3.org/TR/2013/NOTE-prov-sem-20130430

[57] Zheng Wei and David Lie. Lazytainter: Memory-efficient taint tracking in man-
aged runtimes. In SPSM Workshop at CCS, pages 27–38, 2014.

[58] Prateek Saxena, R. Sekar, and Varun Puranik. Efficient fine-grained binary
instrumentationwith applications to taint-tracking. In CGO, pages 74–83, 2008.

[59] Winnie Cheng, Qin Zhao, Bei Yu, and Scott Hiroshige. Tainttrace: Efficient flow
tracing with dynamic binary rewriting. In IEEE ISCC, pages 749–754, 2006.

[60] Erik Bosman, Asia Slowinska, and Herbert Bos. Minemu: The world’s fastest
taint tracker. In RAID, pages 1–20, 2011.

[61] Dorothy E Denning and Peter J Denning. Certification of programs for secure
information flow. Communications of the ACM, 20(7):504–513, 1977.

[62] Michael R. Clarkson and Fred B. Schneider. Hyperproperties. Journal of Com-
puter Security, 18(6):1157–1210, 2010.

[63] Benjamin Livshits and Stephen Chong. Towards fully automatic placement of
security sanitizers and declassifiers. In POPL, pages 385–398, 2013.

[64] Aslan Askarov and Andrei Sabelfeld. Gradual release: Unifying declassification,
encryption and key release policies. In IEEE S&P, pages 207–221, 2007.

[65] Andrei Sabelfeld and David Sands. Declassification: Dimensions and principles.
Journal of Computer Security, 17(5):517–548, 2009.

[66] Aslan Askarov, Sebastian Hunt, Andrei Sabelfeld, and David Sands.
Termination-insensitive noninterference leaks more than just a bit. In ESORICS,
pages 333–348, 2008.

[67] Aslan Askarov and Andrei Sabelfeld. Tight enforcement of information-release
policies for dynamic languages. In CSF, pages 43–59, 2009.

[68] Dennis M. Volpano. Safety versus secrecy. In SAS, pages 303–311, 1999.

[69] Andrew C. Myers, Andrei Sabelfeld, and Steve Zdancewic. Enforcing robust de-
classification and qualified robustness. Journal of Computer Security, 14(2):157–
196, 2006.

[70] Sepehr Amir-Mohammadian, Stephen Chong, and Christian Skalka. Foundations
for auditing assurance. In Layered Assurance Workshop (LAW), 2015.

[71] Juerg Kohlas and Juerg Schmid. An algebraic theory of information: An intro-
duction and survey. Information, 5(2):219–254, 2014.

[72] Usage statistics module. https://wiki.openmrs.org/display/docs/
Usage+Statistics+Module, 2010. Accessed: 2015-09-27.

174

https://wiki.openmrs.org/display/docs/Usage+Statistics+Module
https://wiki.openmrs.org/display/docs/Usage+Statistics+Module

[73] Debmalya Biswas and Valtteri Niemi. Transforming privacy policies to auditing
specifications. In HASE 2011, pages 368–375, 2011.

[74] Lujo Bauer, Jarred Ligatti, and David Walker. More enforceable security policies.
Technical Report TR-649-02, Princeton University, June 2002.

[75] Alice X. Zheng, Michael I. Jordan, Ben Liblit, Mayur Naik, and Alex Aiken.
Statistical debugging: Simultaneous identification of multiple bugs. In ICML
2006, pages 1105–1112. ACM, 2006.

[76] Stefano Ceri, Georg Gottlob, and Letizia Tanca. What you always wanted to
know about Datalog (And never dared to ask). IEEE Transactions on Knowledge
and Data Engineering, 1(1):146–166, 1989.

[77] Sepehr Amir-Mohammadian, Stephen Chong, and Christian Skalka. Correct
audit logging: Theory and practice. In POST, pages 139–162, 2016.

[78] Syed Zain Rizvi, Philip W. L. Fong, Jason Crampton, and James Sellwood.
Relationship-based access control for an open-source medical records system. In
SACMAT 2015, pages 113–124, 2015.

[79] Sepehr Amir-Mohammadian, Stephen Chong, and Christian Skalka. Coq formal-
ization of auditing correctness for core functional calculus. https://github.
com/sepehram/auditing-instrumentation-correctness, 2015.

[80] M. H. Van Emden and R. A. Kowalski. The semantics of predicate logic as a
programming language. Journal of the ACM, 23(4):733–742, October 1976.

[81] Sepehr Amir-Mohammadian, Stephen Chong, and Christian Skalka. Retro-
spective Security Module for OpenMRS. https://github.com/sepehram/
retro-security-openmrs, 2015.

[82] Spring framework. http://projects.spring.io/spring-framework/, 2015.
Accessed: 2015-09-27.

[83] XSB. http://xsb.sourceforge.net/, 2012. Accessed: 2015-09-27.

[84] Logic for your app. http://interprolog.com/, 2014. Accessed: 2015-09-27.

[85] Sepehr Amir-Mohammadian and Christian Skalka. In-depth enforcement of dy-
namic integrity taint analysis. In PLAS, 2016.

[86] Ulf Nilsson and Jan Maluszyynski. Definite logic programs. In Logic, Program-
ming and Prolog, chapter 2. 2000.

[87] Abdelaziz Mounji, Baudouin Le Charlier, D. Zampuniéris, and Naji Habra. Dis-
tributed audit trail analysis. In 1995 Symposium on Network and Distributed
System Security, (S)NDSS ’95, San Diego, California, February 16-17, 1995,
pages 102–113, 1995.

175

https://github.com/sepehram/auditing-instrumentation-correctness
https://github.com/sepehram/auditing-instrumentation-correctness
https://github.com/sepehram/retro-security-openmrs
https://github.com/sepehram/retro-security-openmrs
http://projects.spring.io/spring-framework/
http://xsb.sourceforge.net/
http://interprolog.com/

[88] Adam J. Lee, Parisa Tabriz, and Nikita Borisov. A privacy-preserving interdo-
main audit framework. In Proceedings of the 2006 ACM Workshop on Privacy
in the Electronic Society, WPES 2006, Alexandria, VA, USA, October 30, 2006,
pages 99–108, 2006.

[89] Attila Altay Yavuz and Peng Ning. BAF: an efficient publicly verifiable secure
audit logging scheme for distributed systems. In Twenty-Fifth Annual Com-
puter Security Applications Conference, ACSAC 2009, Honolulu, Hawaii, 7-11
December 2009, pages 219–228, 2009.

[90] Rafael Accorsi. Bbox: A distributed secure log architecture. In Public Key
Infrastructures, Services and Applications - 7th European Workshop, EuroPKI
2010, Athens, Greece, September 23-24, 2010. Revised Selected Papers, pages
109–124, 2010.

[91] Yu-Sung Wu, Bingrui Foo, Yongguo Mei, and Saurabh Bagchi. Collaborative
intrusion detection system (CIDS): A framework for accurate and efficient IDS.
In 19th Annual Computer Security Applications Conference (ACSAC 2003), 8-12
December 2003, Las Vegas, NV, USA, pages 234–244, 2003.

[92] Vinod Yegneswaran, Paul Barford, and Somesh Jha. Global intrusion detection
in the DOMINO overlay system. In Proceedings of the Network and Distributed
System Security Symposium, NDSS 2004, San Diego, California, USA, 2004.

176

	University of Vermont
	ScholarWorks @ UVM
	2017

	A Formal Approach to Combining Prospective and Retrospective Security
	Sepehr Amir-Mohammadian
	Recommended Citation

	Dedication
	Acknowledgements
	List of Figures
	Introduction
	Foundations of Audit Logging
	Application 1: Temporal Properties of Function Calls and Break the Glass Policies
	A Motivating Example from Practice
	Threat Model

	Application 2: Direct Information Flow and Dynamic Integrity Taint Analysis
	Vulnerability and Countermeasures
	Semantics of Dynamic Integrity Taint Analysis
	The Security and Threat Model

	Related Work
	Overview and Main Technical Results of this Dissertation

	A Semantics of Audit Logging
	Introduction to Information Algebra
	Illustrative Example: Relational Algebras

	General Model for Logging Specifications
	Correctness Conditions for Audit Logs
	Correct Logging Instrumentation is a Safety Property
	Implementing Logging Specifications with Program Rewriting
	Languages for Logging Specifications
	First Order Logic (FOL)
	Relational Database
	Transforming and Combining Audit Logs

	Temporal properties of function calls: Break the glass policies
	Source Language
	Syntax
	Semantics

	Rewriting Programs with Logging Specifications
	Specifications Based on Function Call Properties
	Edit Automata Enforcement of Calls Specifications
	Target Language
	Program Rewriting Algorithm

	Case Study on a Medical Records System
	Break the Glass Policies for OpenMRS
	Code Instrumentation
	Proof Engine
	Writing and Storing the Log

	Reducing Memory Overhead
	Language with Memory Overhead Mitigation
	Correctness of Memory Overhead Mitigation
	An Illustrative Example for Memory Overhead Mitigation

	Direct Information Flow: Dynamic Integrity Taint Analysis
	An OO Model for Integrity Taint Analysis
	In-Depth Integrity Analysis Specified Logically
	Taint Tracking as a Logical Trace Property
	Shadow Traces, Taint Propagation, and Sanitization
	In-Depth Integrity Taint Analysis Policies

	Taint Analysis Instrumentation via Program Rewriting
	In-Depth Taint Analysis Instrumentation
	Taint Propagation of Library Methods
	Operational Semantics of FJtaint
	An Illustrative Example: Dynamic Integrity Taint Analysis

	Properties of Program Rewriting
	Semantics Preservation
	Operational Correctness for Prospective Analysis
	Soundness/Completeness for Retrospective Analysis
	Definition of :::: and Correctness Results

	The Meaning of Dynamic Integrity Taint Analysis
	Direct Integrity Flow Semantics: Explicit Integrity
	Model Specification

	An OO Model
	Operational Semantics
	Model instantiation for FJ
	Sanity Conditions on Library Methods
	Illustrative Examples: Incompatibility of Noninterference and Explicit Integrity

	Taint Analysis Instrumentation via Program Rewriting
	Enforcement of Explicit Integrity Modulo Endorsement by R
	Discussion

	Conclusion and Future Work
	Future Work

