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ABSTRACT 

Cardiovascular disease (CVD) is a major cause of morbidity and mortality in the 
U.S. and worldwide.  Atherosclerosis, the buildup of plaque in the arteries, is a 
common cause of CVD.  For many years, research in atherosclerosis was focused 
on lipid metabolism and the accumulation of low-density lipoprotein in the arteries.  
While this research set public health guidelines for lipid management, lipid 
concentration was not the only factor influencing atherosclerosis and CVD events.  
Many scientists, as far back as the 1850’s recognized the role of inflammation in the 
progression of atherosclerotic disease.  The continuous low levels of immune 
activation in the body contribute to atherosclerosis.  Research in animal models and 
epidemiologic studies have shown the involvement of both the innate and the 
adaptive immune systems in plaque development and to elucidate the roles of 
monocytes and T cells.  In addition to animal studies and epidemiologic research, 
CVD and atherosclerotic research has extended to genetic analysis in the search for 
associations with risk factors and outcomes.   

 The first chapter is a review of the literature studying the immune system’s 
involvement in atherosclerosis.  Beginning with an examination of the impact of 
CVD and atherosclerosis, the basic pathophysiology, and the involvement of the 
innate and adaptive immune systems through animal models and epidemiology.  
Some of the significant cohort studies in CVD and genome wide association studies 
are also discussed.   

Chapter 2 examines the associations of soluble interleukin 2 receptor alpha 
(sIL-2Rα) with clinical events in the Cardiovascular Health Study and genetic 
variants. Interleukin 2 (IL-2) and its receptor regulate both tolerance and immunity, 
IL-2 induces the proliferation and differentiation of T cells, part of the adaptive 
immune system.  The results showed an association between sIL-2Rα and CVD 
events.  The genome-wide association study found 52 variants to be significantly 
associated with sIL-2Rα in European Americans. 

 Chapter 3 assesses the involvement of the innate immune system in 
atherosclerosis through the associations of soluble CD163 (sCD163).  CD163 is a 
marker of macrophage activation, specifically associated with M2 macrophages.  In 
CHS, sCD163 levels were analyzed for associations with cardiovascular events and 
genetic variants.  sCD163 was found to be associated with CVD risk factors and 
with cardiovascular events.  In a genome-wide association study six variants in 
European Americans and three variants in African Americans were found to be 
significant. 

 Chapter 4 summarizes the results and discusses some bench to bedside 
translational science already seen in atherosclerosis treatment and prevention. 
Continued investigation of markers of T-cell and monocyte differentiation in animal 
models and cohort studies may lead to opportunities for the prevention of 
atherosclerosis and/or treatment through an increased understanding of the biology 
and genetics of the innate and adaptive immune.  
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CHAPTER 1: Innate and Adaptive Immunity in Cardiovascular Disease: A 

Review of the Pathobiology of Immunity in Atherosclerosis 

Cardiovascular Disease is a major cause of morbidity and mortality in 

the U.S. and Worldwide.   

Cardiovascular disease (CVD) is a broad term covering a family of diseases 

linked by common risk factors, many of which are caused by atherosclerosis.   

Atherosclerosis plays a major role in coronary heart disease, peripheral artery 

disease, and myocardial infarction, some forms of heart failure, stroke, and 

hypertension, and contributes to poor outcomes in diabetes, chronic kidney disease, 

vascular dementia, and others included in ICD10 codes 100-199.  CVD is the 

leading cause of death throughout the world, accounting for more than 17.5 million 

deaths in 2012; 31% of all global deaths [1]; more deaths than all forms of cancer 

combined.   In the United States in 2013, CVD was the underlying cause of death 

for over 800,900 deaths and is the leading cause of death in both women and men 

over the age of 65 [2]. 

CVD, is both a huge burden on the health care system and a huge economic 

burden.  From 2011 to 2012, the average annual direct and indirect cost of CVD in 

the United States was estimated at $316.6 billion [2].  These costs included direct 

costs of physicians, hospitals, medication and health care, estimated at $193.1 

billion, as well as the indirect costs of lost productivity and mortality, estimated at 

$123.5 billion [2].  Projections for 2030 indicate that 43.9% of the US population 
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will have some form of CVD and total costs associated with CVD will increase to 

more than $1.2 trillion [2]. 

From 1979 to 2011 the US saw a large decline in deaths attributable to 

CVD; mortality rates dropped 52% in men and 49% in women between 1980 and 

2002[3].  Ford et al. found that that 47% of the decrease was due to improved 

treatment and therapies, including secondary preventive treatments, initial treatment 

of myocardial infarctions, heart failure treatments and others [4].  Forty-four 

percent of the decline was due to changes in risk factors; reductions in total 

cholesterol, systolic blood pressure and smoking, along with increased physical 

activity [4]. The most consistent declines were in adults ≥65 years of age between 

1979 and 1989.   Despite this success, the three subsequent decades showed little 

change in the mortality rates. This was especially true in both men and women 

between the ages of 35-54.  While there are fewer studies of younger people, and 

younger women are particularly understudied, it is possible that one of the 

mechanisms contributing to the sluggish decline of CVD mortality in this group is 

due to increased risk factors. 

Atherosclerosis is an underlying cause of CVD; preventing atherosclerosis 

by reducing risk factors may prevent 90% of all CVD.  Exercise, weight loss, 

healthy eating, limited alcohol consumption, the avoidance of smoking, treatment of 

hypertension and diabetes are all beneficial in the prevention of atherosclerosis, and 

have the potential to mitigate a major portion of the morbidity, mortality, and health 
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care burden of atherosclerotic CVD.  However, much remains to be understood 

about the underlying pathophysiology of CVD in general and atherosclerosis in 

particular if complete eradication is our goal. 

The General Pathophysiology of Atherosclerosis.  

The term atherosclerosis, from the Greek words athero meaning gruel or 

porridge and sclerosis meaning hardening specific to an artery, was first introduced 

in 1829 by the French surgeon, Jean Lobstein [5].  Over the years, our 

understanding of atherosclerosis, its development, and complications has emerged 

from studies of animal models, plus basic research, clinical research and 

epidemiology.  Although until recently viewed as solely a cholesterol storage 

problem with lipid accumulation clogging the arteries and culminating in a heart 

attack, it was Virchow who first noted inflammation as the beginning of 

atherosclerosis in 1859 [6].  ‘I have therefore felt no hesitation in siding with the 

old view in this matter, and in admitting an inflammation of the inner arterial coat 

to be the starting point of the so-called atheromatous degeneration…’[7].  Initially, 

Virchow’s hypothesis of atherosclerosis as an inflammatory disease was considered 

baseless, while his notion of cellular proliferation in the progression of atheromas 

(blister-like bulges in the arterial wall with central lipid pools) was acknowledged.  

Duguid [8], in the late 1940’s along with Mustard and Packham [9], French[10] in 

the mid 1960’s, and Ross[11, 12] in the mid 1970’s modified and extended those 

early observations of an association between inflammation and atherosclerosis. 



 

4 
 

The beginning of an atherosclerotic lesion can be found in infants as fatty 

streaks, consisting of lipid filled macrophages and T lymphocytes in the intima of 

arteries [13]. These fatty streaks may not progress and in some cases may even 

regress. Autopsies of young soldiers from the Korean War (average age 22) found 

that greater than 70% had some atherosclerosis in their coronary arteries [14].  Over 

one hundred years ago, the cholesterol hypothesis of atherosclerosis was born when 

Anitschokow published his work on arterial lesions seen in rabbits fed a high 

cholesterol diet [15, 16].  Anitschkow continued his work with rabbits documenting 

the cholesterol accumulation in the arteries, foam cell development, white cell 

involvement, and the conversion of fatty streaks to the mature form of 

atherosclerotic lesion, the atherosclerotic plaque.  While other laboratories 

confirmed Anitschokow’s results with further experiments in rabbits [17], many 

scientists at the time were working with other animals including dogs and rats, and 

were unable to substantiate the cholesterol hypothesis with the prevailing 

assumption being that atherosclerosis was considered a disease of aging, a chronic, 

inevitable progression.  Although Anitschokow believed that there could be no 

atherosclerosis without the deposition of cholesterol, his understanding evolved 

when he noted that blood pressure and arterial changes were significant factors in 

atheroma development, leading to his ‘combination theory’ of atherosclerosis [15].  

Today, the importance of cholesterol and hypertension in atherosclerosis are no 

longer questioned and the controls of hypercholesterolemia and blood pressure have 

been shown to reduce morbidity and mortality of CVD.  Since the early 1980’s 
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animal experiments, clinical studies and epidemiological research have focused on 

lipid metabolism and cholesterol deposition, and what we now recognize as the 

inflammatory response to such deposition, in the development and progression of 

atherosclerosis. 

Basic and Clinical Research: Atherosclerosis as an Inflammatory 

Disorder.  

While atherosclerotic plaques or atheromas may develop in the intima, or 

innermost layer, of many large arteries from the aorta to the coronaries, the arterial 

sites located near branch points with low shear stress [18, 19] (Figure 1) are the 

most common sites. 
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Figure 1:  Fatty streak development Ross, R. NEJM 1999; 340:115-126 

Plaque Development 

Plaque development and progression begins in adolescence and can last > 40 

years [20, 21].  The development of fatty streaks begins with the accumulation of 

lipid particles, primarily low-density lipoproteins (LDL), in the arterial intima.  

When the concentration of LDL particles exceeds the capacity to clear them from 
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the intima, they incorporate into the extracellular matrix and initiate activation of 

the innate immune system and the atherosclerotic process begins (Figure 2). 

 

Figure 2: Inflammation and Atherosclerosis 

Modification of these LDL particles to oxidized LDL (oxLDL) by activated 

endothelial cells [22] leads to the expression of leukocyte adhesion molecules, 

vascular cell adhesion molecule-1 and P-selectin, enabling lymphocytes and 

monocytes to preferentially adhere. 

The Key Role of Monocytes/Macrophages.  

The adherent monocytes respond to chemokines, monocyte chemoattractant 

proteins (MCP-1 and CCL2), and migrate into the intima [23].  Once exposed to 
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macrophage-stimulating factor, the monocytes differentiate into macrophages.  We 

currently recognize three subsets of macrophages found in human circulation, 

differentiated by their expression of CD14 and CD16 receptors.  M1 macrophages, 

or “classically” activated macrophages, constitute the majority of macrophages 

(~90%) and are CD14++CD16-; CD14++CD16+ macrophages are classified as 

intermediate macrophages, and “alternatively” activated or M2 macrophages 

(CD14+CD16++) [24-26].  Pro-inflammatory M1 macrophages are phagocytic and 

secrete interleukin-1β, tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), and 

IL-12[27] among other mediators of inflammation.  M2 macrophages produce the 

regulatory cytokine IL-10 and modulate inflammation.  Both types of macrophages 

bind and internalize oxLDL and are capable of forming foam cells.  If the transport 

of the lipids or macrophage egress from the intima is impaired there is excess lipid 

accumulation which results in cell death and the release of cholesterol and 

inflammatory cytokines; further perpetuating the recruitment of monocytes, 

continued chronic inflammation, and plaque formation [28].  Macrophages have the 

ability to switch their phenotype from M1 to M2 and vice versa depending on 

specific cytokine signals [29, 30].  M1 macrophages have long been implicated in 

the atherosclerotic process and have been identified in plaques as well [31]. 

However, it wasn’t until 2007 when Amine Bouhel et al. examined M2 macrophage 

marker RNA in the plaques of 27 patients that M2 cells were identified in plaques 

[29].  Histological analysis of plaques from more than 80 patients found that M2 

macrophages were localized to more stable areas of the lesions while M1 
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macrophages were predominant in symptomatic plaques [32].  Additionally, the 

presence of CD163, a macrophage specific receptor found on M2 macrophages 

[33], was inversely related to the progression of atherosclerosis [32].  Macrophage 

plasticity and the switch from pro-inflammatory M1 macrophages to immune 

modulating M2 macrophages illustrates the complex nature of atherosclerosis.  

While atherosclerosis is caused by continued inflammation, it may be that impaired 

immune regulation is also a contributing factor. 

The Emerging Role of the Adaptive Immune System.  

The initial inflammatory response in atherosclerosis begins with the innate 

immune system, followed by the involvement of the adaptive immune system.  The 

cells that comprise the innate or non-specific immune system include macrophages, 

neutrophils, dendritic cells, and natural killer cells, among others.  These cells are 

always present and mobilize when an infection occurs.  Adaptive immunity is 

composed of humoral immunity mediated by B cells, plasma cells, and antibodies; 

and cell mediated immunity driven by T lymphocytes.  Dendritic cells take up 

oxLDL, other LDL particles, and heat shock proteins, present these antigens to 

naïve T cells in peripheral lymphoid organs, and thereby generate an adaptive 

immune response[34-38].  T cell recruitment is similar to monocyte recruitment and 

involves both adhesion molecules and chemokines [39].  The naïve T cells 

differentiate to T helper cells (Th CD4+) and cytotoxic T cells (Th CD8+). T helper 

cells differentiate further becoming Th1, Th2, Th17, and T regulatory cells (Treg) 
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[40, 41] (Figure 3).  T cells are not as prominent in the atheroma as macrophages; 

the macrophage/T cell ratio ranges from 4:1 to 10:1 [40].   

Figure 3: T cell Differentiation: Cell Mol Immunol. 2010 May;7(3):182-9. 

 

T Helper Type 1 Cells Play a Major Role in Atherosclerosis.   

Analysis of human atherosclerotic plaques has shown that CD4+ T cells are 

present in higher numbers than CD8+ T cells [42].  The T cells are usually found in 

the shoulder region of a plaque near major histocompatibility complex (MHC) class 

II expressing macrophages and dendritic cells, suggesting a continuing 

inflammatory response in the atheroma [43-46].  Th1 and Th2 cells have been the 

most investigated and well characterized of the T cell subsets.  Differentiation of 

naïve CD4+ T helper cells requires three sequential signals; first, the T cell receptor 

https://www.ncbi.nlm.nih.gov/pubmed/?term=The+cytokine+milieu+in+the+interplay+of+pathogenic+Th1%2FTh17+cells+and+regulatory+T+cells+in+autoimmune+disease
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is stimulated, next dendritic cells produce cytokines, and last, co-stimulatory 

molecules on the cell surface of dendritic cells are activated [47].  Differentiation of 

naïve T cells depends upon the cytokines released.  IL-12 is an important 

connection between the innate and adaptive immune systems.  Produced by 

monocytes, macrophages, and dendritic cells during infection, IL-12 upregulates the 

production of IFN-γ and biases the differentiation of naïve CD4+ T cells to 

proinflammatory Th1 cells while reducing the production of anti-inflammatory 

cytokines IL-4, IL-5, and IL-13 [48, 49]. IL-12 and interferon γ (INF-γ) work by 

activating signal transducer and activator of transcription (STAT)-4 and T-box 

transcription factor TBX21 [47, 49].  The activation of TBX21 allows the continued 

expression of INF-γ, the predominate pro-inflammatory cytokine produced by Th1 

cells, further activation of macrophages and endothelial cells with increased 

expression of pro-inflammatory cytokines and adhesion molecules, and the down 

regulation of Th2 cytokines IL-4 and IL-5 [39, 50].  Differentiation of Th2 cells 

initiated by IL-4, activates the expression of STAT-6, in turn promoting T-cell 

specific transcription factor GATA3.  GATA3 upregulates the expression of both 

IL-4 and IL-5 while inhibiting the expression of IFN-γ thus promoting the 

differentiation of Th2 cells [47]. 

Both human and animal studies have identified Th1 cells as the primary driver of 

atherosclerosis with Th1 cells seen as the dominate cell type in lesions [51].  In 

1999 de Boer et al. reported that T cell clones isolated from a human aortic plaque 

contained 17% Th1 cells but only 2% Th2 cells.  Mouse studies have provided 
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compelling evidence for the pro-atherogenic function of Th1 cell, work by Huber et 

al. showed the importance of Th1 cells in the development of atherosclerosis [52, 

53]. When Huber et al. injected both atherosclerosis-susceptible and resistant 

strains of mice with weekly doses of IL-6 they found a 2 to 5 fold increase in 

atherosclerotic lesion size [53].  Class II major histocompatibility complex (MHC) 

molecules regulate T cell responses; the mouse has two different MHC molecules, 

IA and IE.  The atherosclerotic–susceptible mouse strain only expresses the IA 

molecules with Th1 cells being the predominant cell type, suggesting that 

atherosclerotic susceptibility may be due to T cell differentiation biased toward the 

Th1 cell type, while IE expression leads to a Th2 cell bias.  The proatherogenic 

cytokine IFN-γ is produced by Th1 cells, while Th2 cells produce the 

antiatherogenic cytokine IL-4 suggesting that pro-inflammatory cytokine expression 

is actively involved in plaque development.  Studies in the early 1990’s on sections 

of human atherosclerotic lesions found that T cells formed complexes with 

macrophages and that these interactions between the innate and adaptive immune 

systems are integral in the pathogenesis of atherosclerosis [54].  Although 

lipoprotein metabolism and immune function differ between mice and humans, 

atherosclerosis prone mice have provided information furthering the understanding 

of the atherosclerotic process.  Mice lacking either the LDL receptor (LDLR) or 

Apoliportotein E (ApoE), an integral component of lipoprotein metabolism, have 

been commonly used [55].  When fed a high fat diet, mice deficient in the LDLR 

(LDLR-/-) develop large atherosclerotic lesions associated with severe 



 

13 
 

hypercholesterolemia.  ApoE deficient (ApoE-/-) mice also develop atherosclerotic 

lesions morphologically similar to early human lesions when fed a high fat diet.  

When these mice are given INF-γ, they produce larger and more numerous 

atherosclerotic lesions than control mice. Conversely, mice deficient in INF-γ or the 

INF-γ receptor have fewer lesions [56-59].  Lee et al. showed that if ApoE-/- mice 

were injected with IL-12 they would develop plaques even when fed a normal diet 

[60].  Davenport and Tipping found that the deletion of the IL-12 encoding gene in 

mice prohibited early lesion development [61] as did Hauer et al. when they 

vaccinated mice against IL-12 [62].  Further evidence of the involvement of Th1 

cells in atherosclerosis comes from research done in ApoE-/- mice with IL-18, a Th1 

promoting cytokine.  Elhage et al. bred a mouse that was both ApoE and IL-18 

deficient and found reduced atherosclerotic lesion size when compared to wild type 

mice in spite of the double knockout mice having significantly higher levels of both 

serum cholesterol and triglycerides [63].  When Whitman et al. injected ApoE-/- 

mice with IL-18 over a period of thirty days, while being fed a normal diet, they 

found that atherosclerotic lesion size was increased two fold compared to animals 

not administered IL-18.  Buono et al. bred a mouse line that was deficient in both 

the LDLR and Tbx21, which codes for the T-bet transcription factor required for 

Th1 differentiation and regulation of Th1, Th2 balance in inflammation.  The 

amount of atherosclerosis in the Tbx21 deleted Ldlr-/- mice was significantly less 

than that in the mice that were only Ldlr deficient [64].  Additionally, the Tbx21 

deficiency caused a switch of the dominant cellular phenotype to Th2 cells [51].  In 
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a study of 28 patients with acute coronary syndrome, Methe et al. found there were 

significantly more Th1 cells when compared to controls in patients with stable 

angina and that elevated Th1 cell counts were predictive of cardiovascular events 

[65]. 

Th2 Cell Involvement in Atherosclerosis is Less Clear.  

While the role of Th1 cells in plaque development has been clearly defined 

as pro-atherogenic with both Th1 cells and their associated cytokines having been 

identified in human atherosclerotic plaques [51], the role of Th2 cells is not as well 

understood.  Dendritic cells stimulate the differentiation of naïve T cells to Th2 

cells through the production of IL-6/IL-13 and the interaction of the OX40 receptor 

on the T cell with the OX40 ligand on the antigen presenting dendritic cell [50].  

The Th2 cells produce IL-5, IL-4, IL-10 and IL-13 and activate B cell dependent 

responses [66, 67].  The transcription of GATA-3, the master regulator of Th2 cells, 

is triggered by the IL-4 dependent stimulation of STAT-6 and suppresses the 

expression of IFN-γ [50] while upregulating IL-5 expression.  Therefore, the Th2 

responses would seem to modulate inflammation, the pro-atherogenic effects of Th1 

cells, and provide atheroprotection.  However, the role of Th2 cells and their 

responses has proven to be more controversial depending upon the stage of lesion 

development, the site of the lesion, and the experimental model.  IL-4 has been 

shown to have both anti-atherogenic and pro-atherogenic affects in a number of 

murine studies [53, 61, 68].  Binder et al. showed in a murine model that IL-5 
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deficient mice had accelerated atherogenesis and that Th2 responses taken together 

not only are anti-atherogenic but also reduced lesion size[69-71].  IL-5 also 

promotes B-1 cell development, increasing the production of IgM antibodies which 

may inhibit foam cell formation and the initiation of an atherosclerotic lesion [72].  

IL-10 is an important regulator of immunity, balancing the Th1 and Th2 response 

[73-75].  Murine studies of double knockout mice, ApoE-/- and IL-10-/-, found 

increased LDL cholesterol levels, increased numbers of Th1 cells, and increased 

lesion size when compared to ApoE-/- mice [76].  In addition to the effect IL-10 has 

on lesion size, it also seems to stabilize plaques [67].  The role of IL-13 in 

atherosclerosis has not been investigated in depth; however, work by Cardil-Reis et 

al. in LDLR-/- mice showed that when injected intraperitoneally with IL-13 the mice 

had decreased expression of cellular adhesion molecules and decreased numbers of 

macrophages in atherosclerotic lesions (with a biasing toward M2 macrophages) 

when compared to controls [77].  A deficiency in IL-13 resulted in accelerated 

atherosclerosis. 

Contributions of other T Cell Subsets to Atherosclerosis.  

The contribution of Th17 cells to atherosclerosis is unclear.  Th17 cells 

promote both pro-inflammatory and anti-inflammatory responses based on the 

environment.  The association of Th17 cells with inflammatory autoimmune 

diseases including rheumatoid arthritis and inflammatory bowel disease is well 

documented [78].  However, the data on the role Th17 cells and their signature 
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cytokine, IL-17, is conflicting; both Th17 and Il-17 expression have been observed 

in human [79] and murine lesions [80].  A study by Eid et al. on patients with 

coronary atherosclerosis showed that IL-17 and INF-γ act together to promote 

proinflammatory responses in vascular smooth muscle cells [81].  Further research 

by Erbel et al. found that the secretion of IL-17A was associated with plaque 

inflammation and destabilization [82].  Conflicting research indicates that increased 

levels of IL-17 reduce macrophage numbers and promote fibrosis of the plaque [79, 

83]. 

Regulatory T cells (Tregs) are crucial in maintaining the balance between 

Th1 and Th2 cells by suppressing immune responses [84].  IL-10 and TGFβ are the 

primary cytokines responsible for the antiatherogenic effects of Treg cells.  Mouse 

models using both mice genetically altered for reduced Tregs and mice vaccinated 

against Tregs have both shown increased atherosclerosis [85-88].  Tregs are 

atheroprotective by not only inhibiting T cell activation, but also, by inhibiting 

foam cell formation and stimulating anti-inflammatory M2 macrophage 

differentiation [89, 90].  De Boer et al. examined atherosclerotic vessel fragments 

from 42 patients for the presence of Treg cells and found their presence in all stages 

of lesion development (0.5-5%) [91].  Il-2 plays a crucial role in T cell development 

and protective immunity, as well immune modulation moderated by Treg cells [92].  

Treg cells, like all T cells, express the alpha receptor of IL-2 (IL-2Rα).  In addition 

to the attached receptor, IL-2Rα circulates in a soluble form (sIL-2Rα) high levels 

of which have been associated with autoimmune diseases and coronary artery 
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disease [93], suggesting an important role for T cells in general and possibly Treg 

cells in particular. 

Other types of T cells including T effector memory (TEM) cells, CD8+ T 

cells, and natural killer T (NKT) cells play a role in atherosclerosis, although these 

cell types have not been investigated as thoroughly as the other T cell types.  

Murine studies showed that circulating TEM levels were positively correlated with 

the extent of artheosclerotic lesions [94].  CD8+ cytotoxic T cells are less prevalent 

in human lesions than CD4+ T cells and their impact on atherosclerotic 

development, while minor, is still pro-inflammatory.  CD8+ T cells induce 

macrophages through the secretion of IFN-γ.  Their presence in both human and 

murine lesions has been noted for many years [95] and advanced lesions seem to 

have a high concentration of cytotoxic T cells [96].  NKT cells are a minute subset 

of T cells involved in self and non-self-recognition.  These cells secrete numerous 

cytokines including IL-4, IL-10, IL-13, IL-21, IFNγ, and TNFα.  Their pro-

atherogenic role has been studied and confirmed in murine models, additionally, 

NKT cells have been detected in human plaques [97, 98]. 

Much like T cells, the impact of B cells on the development of 

atherosclerosis is also complicated and has not been studied extensively.  The work 

of Caligiuri et al. in mice provided the first evidence of B cell involvement in 

plaque development showing that the transfer of B cells, taken from the spleen,  to 

ApoE knockout mice conferred atherosclerotic protection [99] and these mice were 
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found to have fewer CD4+ T cells suggesting that interactions between B cells and 

T cells impact immune activity.  More recent investigations have shown that B cell 

depleted ApoE-/- and Ldlr-/- mice have significantly reduced plaques compared to 

non B cell depleted mice [100, 101], suggesting B cells promote atherosclerosis.  

This apparent contradiction in the role of B cells in atherosclerosis may be due to 

the different roles of unique subsets.  B2 cells which constitute the majority of B 

cells and are derived from the bone marrow have an as yet undefined role in 

atherosclerosis.  B1a cells, mainly found in the pleural and peritoneal cavities, seem 

to be atheroprotective [102]. 

The Role of Population Science in the Study of Atherosclerosis and 

CVD.  

Numerous epidemiology studies have provided much insight into risk 

factors for CVD.  These studies have also established risk assessment algorithms 

that help to identify those persons who would benefit most from risk factor 

interventions.  In the early 1880’s [103] the lack of data on CVD had already been 

recognized, but it took until 1934 for a conference to be convened to discuss CVD 

in the population and to further describe the occurrence of atherosclerotic lesion 

across cultures, geography, socioeconomic status and occupations [104].  The 

1940’s saw the first attempts at using epidemiology as a tool to identify risk factors 

and reduce the incidence of CVD.  The first prospective study of heart disease was 

initiated in 1947 by Ancel Keys and colleagues when they followed 281 middle 
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aged men in Minnesota for 15 years [105] and found that there was a statistically 

significant relationship between elevated serum cholesterol and coronary heart 

disease.  Keys followed up this work with the Seven Countries Study, one of the 

pioneering epidemiologic studies of heart disease, during the mid to late 1950’s.  

The Seven Countries Study was designed to examine the variability of heart disease 

in populations in relation to the fat composition of the diet and the serum 

cholesterol levels.  Over twelve thousand men age 40 to 59, without evidence of 

clinical CVD were recruited from the United States, Finland, Yugoslavia, the 

Netherlands, Italy, Greece and Japan in this a cross cultural, prospective study [106, 

107].  A 1970 paper from the Seven countries Study showed that diets high in 

saturated fat lead to heart disease and that this association is mediated by serum 

cholesterol [108]. With evidence that both saturated fatty acid intake and high levels 

of serum cholesterol were strongly associated with risk of heart disease, the Seven 

Countries Study had a large impact on the prevention of heart disease, and became a 

model for using population science to identify risk factors and underlying 

pathophysiologic mechanisms. 

Important NHLBI-Funded Cohort Studies.  

The Framingham Heart Study (FHS), begun in 1948, is another pioneering 

epidemiology study [109].  The original cohort of 5,209 participants aged 30 – 62 

years old from Framingham, MA received an extensive medical history, a 

comprehensive physical exam, and numerous laboratory measurements including 
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serum cholesterol and phospholipid and glucose levels [110].  In 1957, results from 

FHS showed age- and sex-related differences in CHD, and demonstrated that high 

blood pressure, elevated serum cholesterol levels, and being overweight were 

predictors of heart disease [111].  The results from FHS contributed to the 

identification of many factors associated with an increased risk of heart disease.  

Cigarette smoking, hypertension, and elevated serum cholesterol were all 

documented as being “risk factors”; a term coined by William B. Kannel, the 

director of FHS [107].  The success of FHS lead to other observational studies in 

CVD including the ARIC (Atherosclerosis Risk in Communities) study, the 

CARDIA (Coronary Artery Risk Development in Young Adults) study, the CHS 

(Cardiovascular Health Study), and the MESA (Multiethnic Study of 

Atherosclerosis) [109] . While our laboratory has worked within all of these studies, 

we have focused predominantly on CHS and MESA. 

While CARDIA focuses on younger adults and the progression of risk 

factors, and ARIC focuses on risk in the middle aged, CHS is a longitudinal cohort 

study of 5888 participants with the main objectives of identifying risk factors for 

coronary heart disease and stroke in the elderly [112].  Recruitment began in 1989 

at four field centers for participants aged 65 years and older.  CHS was the first 

large scale, epidemiological study to focus on an older population.  In addition to a 

comprehensive physical exam, the baseline exam also included measures of 

subclinical CVD such as intimal-medial carotid artery wall thickness by ultrasound, 

electrocardiogram abnormalities, ankle brachial blood pressure index, and cardiac 
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motion abnormalities by echocardiogram [107], as well as obtaining blood for fluid 

biomarkers and DNA samples for genetic studies.  Since the study’s inception, CHS 

researchers have reported on cardiovascular morbidity [113], associated risk factors 

for mortality [114], and associations among established and novel risk 

factors/biomarkers and blood pressure and subclinical CVD [115] in an older 

population. 

MESA began in 2000 with the goal of understanding differences among 

ethnic groups in both the prevalence and outcomes of subclinical atherosclerosis 

[107, 116].   A population based cohort of 6814 men and women between the ages 

of 45 and 84 years was recruited at six field centers; the only major exclusions 

criterion was prior clinical CVD.  The ethnic composition of the cohort is 

approximately 38% European American, 28% African American, 23% Hispanic, 

and 11% Asian [116].  The baseline exam for the participants was extensive. 

Baseline measurements  included coronary calcium using computed tomography, 

ventricular mass and function using cardiac magnetic resonance imaging, flow-

mediated brachial artery endothelial vasodilation, carotid artery intimal medial wall 

thickness (cIMT) and distensibility using ultrasonography, peripheral vascular 

disease estimated by ankle and brachial blood pressures, and cardiac function by 

electrocardiography. Other assessments included microalbuminuria, standard CVD 

risk factors, sociodemographic factors, life habits, and psychosocial factors. Blood 

samples were assayed for putative biochemical risk factors and also stored for use 

in later studies. DNA was extracted and peripheral blood mononuclear cells were 
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cryopreserved for genetic studies. Measurement of selected subclinical CVD 

indicators and risk factors have been repeated at four subsequent exams with a sixth 

exam currently ongoing. Participants are being followed for identification and 

characterization of CVD events, including acute myocardial infarction and other 

coronary heart disease, stroke, peripheral vascular disease, and congestive heart 

failure; therapeutic interventions for CVD; and mortality [116].  MESA added to 

literature by being the first major study to assess subclinical CVD by using cardiac 

MRI [117] and by being the first to show coronary artery calcium differences 

among ethnicities as well as its association with coronary events [118, 119].  One of 

the largest contributions that these epidemiology studies have made to the 

understanding of CVD and the reduction of CVD is the development of risk 

markers. 

Molecular Epidemiology.  

A main objective of these CVD epidemiology studies has been (and 

remains) the detection of persons of high-risk through screening measures.  At first, 

research focused on tests having the greatest predictive power. However, these tests 

were associated with very small, high-risk populations.  Toward the 1970’s, the 

approach for a reduction of CVD began to focus on prevention and control 

programs centered on the entire population. In essence, CVD became a public 

health issue.  Rose’s 1981 publication defined the ‘mass strategy’ of prevention, 

which brought the focus of CVD reduction to not only those high risk patients, but 
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all members of the population [120].  The FHS helped to identify blood pressure, 

cigarette smoking, blood lipids and adiposity as conventional risk factors for CVD 

and a risk prediction equation was developed.   The Framingham risk score, 

calculated using age, sex, systolic blood pressure (treated or untreated status), total 

cholesterol, HDL cholesterol, smoking behavior, and diabetes status, proved to be a 

reliable measure of CVD potential not only in European American men and women 

but also for African American men and women [121, 122].  While a good predictor 

of CHD risk, these conventional risk factors only explained part of the risk [123, 

124]. Researchers have looked to novel biomarkers, independently associated with 

CHD, to explain not only the remaining risk, but also to provide insight into the 

biology of CHD development.  A number of these biomarkers are associated with 

the inflammatory response including IL-6, C-reactive protein (CRP), and fibrinogen 

among others [124-126].  Mouse studies and population studies both linked these 

inflammation markers to CHD development, progression and outcomes, while 

adding valuable knowledge of CHD biology and pathology. While they do not 

significantly improve risk score prediction models in the general population, 

recommendations suggest usefulness of CRP in certain settings [127].  Yeboah et 

al. compared novel risk markers in MESA and showed that including coronary 

artery calcium in the risk score improved risk classification for people previously 

classified as at intermediate risk by the Framingham score [128]. A novel, easily 

measured biomarker proven both a reliable diagnostic and prognostic tool would be 

beneficial in clinical practice and in treatment. One area where these biomarkers 
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may prove useful is in specific subpopulations such as the elderly [126].  ‘If the 

markers reflect different aspects of the disease process at different points in the 

natural history of the disease, this has implications for the interpretation of marker 

levels and the timing of future events.’ [126] 

Genetic Epidemiology.  

With the advent of genotyping, the quest for biomarkers, which elucidate the 

biological pathways of CHD and which present targets for intervention, took on a 

genetic focus.  For decades, scientists have recognized that there is a link between a 

family history of CHD and an increased risk of heart disease.  In 2004, Lloyd-Jones 

et al. showed that when a parent has a history of atherosclerotic CVD, the child will 

have ~3-fold increased risk of CVD [129].  Beginning with candidate gene studies, 

moving to genome wide association studies (GWAS) and now whole genome 

sequencing, researchers are examining associations between genotype and 

outcomes, genotype and risk factors, and genotype and biomarkers.  Some types of 

CVD have a single causal gene, which has a large effect on a particular phenotype.  

One example of this was identified in 1985 by Lehrman et al. when they found a 5 

kilo base deletion in the low-density lipoprotein receptor  gene of a patient with a 

family history of hypercholesterolemia [130].  However, most CVD risk factors 

seem to result from complex interactions between numerous genes and non-genetic 

factors. The completion of the Human Genome Project in 2003 [131, 132], followed 

by the completion of the HapMap Project in 2005 [133, 134], gave scientists the 
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ability to analyze common genetic variants for their association with CVD 

phenotypes with a near complete catalog of genes and new technologies.  GWAS 

genotyped common variants, mostly single nucleotide polymorphisms (SNPs) 

throughout the genome and analyzed these for association with CVD events, risk 

factors or biomarkers.  GWAS results reported in 2007 identified an association 

between heart disease and SNPs located in the p21 region of chromosome 9 [135-

137].  A recent search for results in the GWAS catalogue [138] with the search term 

‘cardiovascular disease’ reveals that there have been 324 publications citing 2224 

genetic associations with 183 traits related to CVD.  Since GWAS uses tag-SNPs 

which “tag” functional SNPs scattered across the genome, most of these associated 

variants are in non-coding regions of the genome and are not causal.  However, the 

associations may point to casual areas of the genome, which need further 

investigation.  Mapping studies and expression profiling as well as work in human 

cell lines and animal models are necessary to identify the functional variant. 

The Molecular Epidemiology of Innate and Adaptive Immunity & 

CVD.  

Through many decades of observation and experimentation, it has become 

clear that atherosclerosis is a complex disease process involving cellular 

proliferation, biochemical processes, genetics and environmental influences.  

While, as noted above, there is ample basic research to support the critical role of 

innate and adaptive immunity in atherosclerosis and CVD, there is only a small 
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body of work that directly addresses these roles through blood measures in 

epidemiologic cohorts. Regarding CD4+ T helper cells, Tracy et al. have shown a 

strong, independent association of Th1 bias with both coronary calcification and 

cIMT [139]. They went on to show that the single greatest association of an 

environmental variable with Th1 bias involved cytomegalovirus response. Work by 

Engelbertsen et al. in the Malmo Diet and Cancer Study showed an association 

between T cells and atherosclerosis; an analysis of seven hundred participants found 

that a high number of Th2 cells was associated with a decreased mean cIMT [77].  

This was confirmed by Tracy et al., who showed that Th2 cells were associated 

with lower cIMT in MESA [139]. Increased numbers of Th2 cells were associated 

with a reduced risk of myocardial infraction in women and serum IL-4 was 

associated with a reduced risk of CVD in both men and women [78]. Regarding the 

activation of adaptive immunity as assessed by measuring Effector/Memory cells 

vs. Naïve cells, Ammirati et al. analyzed data from over 400 patients and found that 

TEM cells were strongly related to increased IMT. Olson et al. analyzed TEM levels 

from more than 900 participants in the Multi-Ethnic Study of Atherosclerosis and 

found that TEM levels were positively associated with cIMT and the inflammatory 

cytokine IL-6 [41]. 

An analysis of the Framingham Heart Study which combined genome-wide 

association studies, gene expression and phenotypes found that B cells contributed 

to coronary artery disease [140].  This work linked phenotypic observations with 

molecular networks and genetic results supporting the theory that B cells are pro-
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atherogenic and substantiating murine results that B cells are involved in lipid 

dysregulation [141]. 

Research Reported in this Dissertation.  

The research reported here studied aspects of both the innate and the 

adaptive immune system in CVD from both molecular and genetic epidemiological 

standpoints in an effort to increase our understanding of the CVD disease process.  

‘Plasma Levels of Soluble Interleukin-2 Receptor α Associations with Clinical 

Cardiovascular Events and Genome-Wide Association Scan’ examines the 

relationship of cell-mediated immunity to CVD through the association of soluble 

interleukin-2 receptor α (sIL-2Rα; a biomarker of T cell activation) with CVD risk 

factors, CVD events and with common genetic polymorphisms.  Both interleukin-2 

and interleukin-2 receptor play significant roles in the proliferation and 

differentiation of T cells. 

The second paper ‘Circulating Soluble CD163, Genetic Associations, and Risk of 

Cardiovascular Disease and All-Cause Mortality in Older Persons: the 

Cardiovascular Health Study’, examines the innate immune systems through the 

association of soluble CD163 (sCD163), a marker for M2 macrophages, with CVD 

risk factors, outcomes, and common polymorphisms. 
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ABSTRACT 

 

Objective: Interleukin-2 receptor subunit alpha (IL-2Rα) regulates lymphocyte 

activation, which plays an important role in atherosclerosis.  Associations between 

soluble IL-2Rα and cardiovascular disease (CVD) have not been widely studied and 

little is known about the genetic determinants of sIL-2Rα levels. Approach and 

Results: We measured baseline levels of sIL-2Rα in 4408 European-American (EA) 

and 766 African-American (AA) adults from the Cardiovascular Health Study (CHS) 

and examined associations with baseline CVD risk factors, subclinical CVD and 

incident CVD events. We also performed a genome-wide association study (GWAS) 

for sIL-2Rα in CHS (2964 EAs and 683 AAs) and further combined CHS EA results  

with those from two other EA cohorts in a meta-analysis (N=4464 EAs).  In age, sex- 

and race- adjusted models, sIL-2Rα was positively associated with current smoking, 

type 2 diabetes, hypertension, insulin, waist circumference, C-reactive protein, 

interleukin-6, fibrinogen, internal carotid wall thickness, all-cause mortality, CVD 

mortality, and incident CVD, stroke and heart failure. When adjusted for baseline 

CVD risk factors and subclinical CVD, associations with all- cause mortality, CVD 

mortality and heart failure remained significant in both EAs and AAs. In the EA 

GWAS analysis, we observed 52 single nucleotide polymorphisms (SNPs) in the 

chromosome 10p15-14 region, which contains IL2RA, IL15RA and RMB17, that reached 

genome-wide significance (p<5x10-8). The most significant SNP was rs7911500 

(p=1.31x10-75). The EA meta-analysis results were highly consistent with CHS-only 
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results.  No SNPs reached statistical significance in the AAs. Conclusions: These 

results support a role for sIL-2Rα in atherosclerosis and provide evidence for multiple 

associated SNPs at chromosome 10p15-14. 

 

Abbreviations 

Interleukin-2 (IL-2) 

Soluble interleukin-2 receptor alpha (sIL-2Rα) 

Cardiovascular disease (CVD) 

European-American (EA) 

African-American (AA) 

Cardiovascular Health Study (CHS) 

Genome-wide association study (GWAS) 

Single nucleotide polymorphism (SNP) 

Health, Aging and Body Composition Study (Health ABC) 

Quality control (QC) 

Intima media thickness (IMT) 

Coronary heart disease (CHD) 

Congestive heart failure (CHF) 
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Systolic blood pressure (SBP) 

Low density lipoprotein (LDL) 
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Standard deviation (SD) 

High density lipoprotein (HDL) 

Coronary artery disease (CAD) 

Body mass index (BMI) 

Odds ratio (OR) 

Interleukin-6 (IL-6) 
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INTRODUCTION 

Interleukin (IL)-2 and IL-2 receptor (IL-2R) signaling play an important role in 

regulating both tolerance and immunity. IL-2 is a T cell growth factor, inducing the  

proliferation and differentiation of antigen-activated T cells1,2, and is particularly 

important in the development of regulatory T cells in the thymus3. The IL-2R is a 

trimeric receptor composed of the IL-2Rα subunit (CD25), the IL-2Rβ subunit 

(CD122), and the IL-2γc subunit (CD132). IL-2Rα is  specific for IL-2R, while IL-

2Rβ and IL-2Rγc are shared components of other cytokine receptors (e.g., IL-15)4,5.  

sIL-2Rα results from the proteolytic cleavage of IL-2Rα at the cell surface by a 

membrane metalloproteinase (ectodomain shedding)6; which is encoded by IL2RA on 

human chromosome 10. The function of sIL-2Rα has not been fully elucidated. 

Since the sIL-2Rα has IL-2 binding kinetics similar to the membrane form, sIL-2Rα 

may serve to mitigate the immune responses by binding and sequestering IL-27. 

High plasma levels of sIL-2Rα have been associated with autoimmune diseases 

including Crohn’s disease8, rheumatoid arthritis9, and multiple sclerosis10 and 

higher levels have been observed in patients with coronary artery disease11.  Murine 

models have  shown that IL-2 increases regulatory T cell numbers in atherosclerotic 

plaques and also reduces the size of those plaques12. When the IL-2 receptor is 

blocked in the same model, the plaque reduction is negated. 

Despite its potential importance in the immune system and cardiovascular disease 

(CVD), sIL-2Rα has not been widely investigated in large prospective population-
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based studies of CVD. A  2003 study in the Health, Aging and Body Composition 

(Health ABC) study did not result in evidence for a significant association between 

sIL-2Rα and CVD; however, sIL-2Rα measurements were only available in a subset of 

N=499 participants. In addition, little is known about the genetic determinants for sIL-

2Rα levels. While genome-wide association studies (GWAS) have identified single 

nucleotide polymorphisms (SNPs) in the IL-2RA gene for several autoimmune 

diseases10, there have been no published reports for GWAS of serum levels of sIL- 

2Rα. 

In the current study, we examined sIL-2Rα levels in the Cardiovascular Health 

Study (CHS), a cohort of older adults with follow-up for incident clinical CVD and 

mortality for up to 20 years. We examined the relationships between sIL-2Rα at 

baseline and incident events as well as cross-sectionally with other CVD and 

inflammatory markers (fibrinogen, C-reactive protein [CRP], and IL-6). We then 

conducted a GWAS and region-specific conditional analyses to identify genetic variants 

associated with sIL-2Rα levels. Finally, we  performed a GWAS meta-analysis, 

including results from two additional studies: the Health ABC study and the Multi- 

Ethnic Study of Atherosclerosis (MESA), to increase our power to detect associated 

variants not detected in CHS alone. 

Materials and Methods 

Materials and Methods are available in the online-only Data Supplement. 
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RESULTS 

Associations between sIL2Rα and baseline CVD risk factors and other 

inflammation biomarkers 

The characteristics of the 5174 CHS participants with sIL-2Rα measurements at the 

baseline exam are summarized in Table 1, and Spearman correlation coefficients for 

sIL-2Ra with each continuous CVD risk factor and IMT are given in Supplemental 

Table 1.  sIL-2Rα levels were on average higher in older individuals, higher in men, 

and higher in EAs.  At  baseline, mean sIL-2Rα levels were 1146.4 pg/mL (standard 

deviation (SD)=507.5 pg/mL) and 1101.6 pg/mL (SD=556.4 pg/mL) in EA men and 

women, respectively; and 873.1 pg/mL (SD=505.5 pg/mL) and 910.9 pg/mL 

(SD=581.2 pg/mL) in AA men and women, respectively. In  age-, race- and sex-

adjusted models sIL-2Rα was additionally associated with current smoking,  type 2 

diabetes, hypertension, fasting insulin, waist circumference, CRP, IL-6, fibrinogen, 

and  internal carotid wall IMT and negatively associated with LDL and high density 

lipoprotein (HDL) cholesterol.  After further adjustment, sIL2Ra levels remained 

associated with age, race, smoking, hypertension, lipids, and inflammation. 

Incident events analysis 

We performed survival analysis in 4406 EAs and 768 AAs. There were 

2985(EA)/451(AA) all- cause deaths; including 1202/186 cases of cardiovascular 

mortality. There were 1234/195 incident cases of CHD, 762/117 incident strokes, and 

1246/199 incident cases of heart failure (fatal and non-fatal events). When minimally 

adjusted for age, sex, race, and study site, baseline sIL-2Rα was significantly 
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associated with increased risk for all outcomes in both EAs and AAs (Table 2). 

Results were slight attenuated in EAs after additional adjustment for baseline risk 

factors except for stroke, and not attenuated at all in AAs. When further adjustment 

was made for inflammation status and measures of subclinical CVD, all-cause 

mortality and heart failure remained significant for both the EAs and AAs; 

cardiovascular mortality remained significant only for EAs; and stroke remained 

significant only for AAs. Effect estimates were mostly similar between EAs and 

AAs (sIL-2Rα as a continuous predictor). In analyses where sIL-2Rα was modeled in 

quartiles, the risk of increased sIL-2Rα for stroke in AAs appears to be driven by the 

highest quartile of sIL-2Rα as compared to a more graded effect in EAs. We 

estimated a 63%(EA)/67%(AA) increased risk for all-cause mortality, and a 

57%/71% increased  risk of heart failure for individuals in the fourth quartile versus 

those in the first quartile, after adjustment for both established CVD risk factors, 

inflammation biomarkers and subclinical measures of CVD.  For cardiovascular 

mortality, this estimated increased risk was 64% in EAs and not significant in AAs; 

and 28% in EAs and 130% in AAs for stroke. 

Genome-wide association study of sIL-2Rα in CHS EA and AA 

We conducted a race-stratified GWAS in 2964 EAs and 683 AAs from CHS that had 

both sIL-2Rα measurement and GWAS data available.  A total of 52 SNPs in the 

chromosome 10p15- p14 region (containing IL2RA, IL15RA, and RBM17) reached 

genomewide significance (p<5x10-8) in the EA analysis. The most significant SNP 

was rs7911500 (p=1.31x10-75), which is located between IL2RA and IL15RA.  No 
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other regions reached genome-wide significance in the EA analysis.  No SNPs reached 

genome-wide significance in the AA analysis. The top findings in AAs were for an 

intergenic SNP between BRE and FOSL2 on chromosome 2 (rs7602568, p=5.8x10-6) 

and an intronic SNP in ADK (rs12220238, p=8.3x10-6), nearly 70Mb from IL2RA on 

chromosome 10. IL2RA SNP rs7911500 (p=0.52) demonstrated no evidence for 

association in AAs, though the minor allele frequency for this variant in AAs was only 

2.5% (compared to 13.4% in EAs). Several chromosome 10p15-p14 SNPs between 

IL15RA and IL2RA (lead SNP rs8177607, p=3.2x10-4) provided nominal evidence for 

an association in AAs. rs8177607 showed no evidence for association in EAs 

(p=0.65). 

Conditional and multiple variant analysis of IL2RA region in CHS EA 

In the CHS EAs, as described in Methods, we performed an iterative, forward-

selection conditional analysis of the chromosome 10p14-15 region (approximately a 

200 Kb span), beginning with conditioning on the rs7911500 SNP (Figure 1). The 

order of additional SNP conditioning was rs791590 (pcond=7.0x10-35; an intronic 

SNP in IL2RA), rs8177757 (pcond=2.3x10-10; located between IL15RA and IL2RA), 

rs10905716 (pcond=3.3x10-9; located between IL2RA and RBM17), and finally  

rs7924005 (pcond=4.4x10-10; located in LOC101928080 downstream from RBM17). 

There was still nominal evidence for further association of SNPs in the region after 

adjusting for these five, although none reached genome-wide significance.  The 

multiple variant penalized regression method LLARRMA identified six SNPs 
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(Resample Model Inclusion Probability (RMIP) > 0.8; namely, rs2104286 (RMIP 

=1.00), rs7924005 (RMIP=0.995), rs10905716 (RMIP=0.995), rs4749955  

(RMIP=0.911), rs11256497 (RMIP=0.899), and rs7898880 (RMIP=0.871)) that were 

consistently associated with sIL-2Rα levels across alternative resamplings of the data. 

Our top SNP in our initial GWAS, rs7911500 (RMIP = 0.002) was not predicted to be 

important in the multi-SNP LLARRMA model. However, LLARRMA did include the 

top variant, rs791590 (RMIP = 0.592), from the conditional analysis after conditioning 

on rs7911500, more often than not in the final multi-SNP model across different 

resamplings of the data. 

The five index SNPs identified in the conditional analysis, in total explain 

approximately 14% of the variation in sIL-2Rα levels after adjusting for age, sex and 

PCs to account for population admixture. When we further examined these five SNPs 

individually for association with i n c i d e n t  cardiovascular events in CHS, none of 

them was significant. We also observed no evidence for an association between a 

genetic risk score (equal to the sum of the alleles individually associated with 

increased sIL-2Rα for these five SNPs ) and clinical events. 

Meta-analysis of CHS, MESA and Health ABC EA 

We conducted a meta-analysis combining GWAS results for CHS (N=2964), MESA 

(N=714) and Health ABC (N=786) EA participants to increase power to detect loci 

potentially missed in the CHS-only analysis.  Meta-analysis results were highly 

consistent with those observed in the CHS-only analysis, where only variants in the 

chromosome 10p15-p14 region (IL15RA/IL2RA/ RBM17) reached statistical 
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significance (Figure 2). A total of 95 SNPs in this region were significant in the meta-

analysis, and the most significant SNP remained rs7911500 (p = 1.1 x10-100). 

We assessed the evidence for association between sIL2r and 1093 variants 

reported as significant in prior GWAS studies, according to the NHGRI GWAS 

catalogue (https://www.genome.gov) for the traits listed in Table 1. Only our top two 

SNPs, rs7911500 and rs12722606, which were previously reported to be significantly 

associated with an inflammatory phenotype based on the IL-6 – CRP pattern, were 

statistically significant with the sIL2rα levels in this candidate variant analysis after 

Bonferroni correction for 1093 test (p<4.6x10-5). Additionally, we searched the 

CARDIoGRAM+C4D database containing data from multiple GWAS (63,746 case 

and 130681 controls) combined to determine variants associated with coronary artery 

disease and myocardial infarction (http://www.cardiogramplusc4d.org14,15,16). No 

significant associations (all p>0.05) between our SNPs and CVD were identified. 

DISCUSSION 

We report the first large-scale assessment of sIL-2Rα for association with CVD related 

traits and events in a prospective cohort and the first GWAS for SNPs associated with 

sIL-2Rα levels.  The major findings from this study are:  A) sIL-2Rα levels are 

associated with a number of established CVD risk factors and carotid IMT, a measure 

of subclinical CVD.  B) Plasma sIL-2Rα predicted all-cause mortality and 

cardiovascular mortality independently of CVD risk factors and baseline subclinical 

CVD.  C) In CHS alone (N=2961) we identified 52 SNPs in the chromosome 10p15-

p14 region with genome-wide significance for association with plasma sIL-2Rα levels; 
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most  significant was rs7911500, intergenic to IL15RA and IL2RA. D) Conditional 

analysis indicated that there are multiple SNPs independently associated in this region; 

the five most significant loci, in total explain approximately 14% of the variation in 

plasma sIL-2Rα levels in CHS EAs. E) Combining results from EAs in CHS and two 

additional cohort studies, MESA and Health ABC (n=4464), did not result in any 

additional significantly associated loci.  F) We did not identify any significant 

associations in the CHS AAs, although we did observe nominal evidence for 

association in the IL15RA/IL2RA region. G) There was no evidence that sIL-2Rα-

associated SNPs were associated with incident clinical events in CHS; we also 

observed no evidence of association with coronary artery disease and myocardial 

infarction in a search of the CARDIoGRAM+C4D database results for these 

SNPs14,15,16. 

Activated T lymphocytes play an important role in atherosclerosis promoting 

chemokine secretion, inflammation, and eventually, the formation of atherosclerotic 

plaques.  IL-2, produced by T helper 1 cells, has been found in plaques and contributes 

to the development of atherosclerosis by its interaction with the IL-2 receptor 

increasing lymphocyte activation13.  IL-2 stimulates the synthesis of interferon gamma 

thereby promoting an increased immune response and atherosclerotic progression. 

However, IL-2 also promotes regulatory T cells, and may have an atheroprotective 

role as well12. 

While sIL-2Rα is a strong biological candidate for use as a biomarker for CVD 

morbidity and mortality, epidemiologic studies have been limited. Analysis in the 
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Health ABC study did not identify evidence for an association between sIL-2Rα and 

either subclinical (p=0.27) or clinical CVD (p=0.27), but measured sIL-2Rα levels 

were only available on a subset of 499 of the 3045 participants with incident event 

data.  Although it was not statistically significant, median sIL-2Rα level was slightly 

higher in those with incident clinical CVD as compared to those with no CVD (1.4 

mg/mL versus 1.2 mg/mL)14. Investigators from another study of 286 Japanese 

patients that underwent angiography (167 coronary artery disease [CAD] cases and 119  

controls) reported a significant positive association of sIL-2Rα and cross-sectional 

CAD case status based on extreme quartiles of sIL-2Rα (p=0.005 for minimally 

adjusted model and p=0.035 for model with additional adjustment for CVD risk 

factors)11. The current study represents the first well-powered effort examining sIL-

2Rα level prospectively with clinical CVD events and all-cause mortality. We 

observed statistically significant evidence for all incident events examined (all-cause 

mortality, CVD mortality, incident CHD, stroke and heart failure) in minimally 

adjusted models, and for all-cause mortality, CVD mortality and incident heart failure 

in fully adjusted models. We found sIL-2Rα levels to be significantly associated with 

carotid intima-media thickness in the minimally adjusted model; although this did not 

remain significant when other cardiovascular risk factors were added to the model. 

Fifty-two chromosome 10p15-p14 SNPs were significantly associated (p<5x10-8) 

with plasma sIL-2Rα levels in CHS EAs; no other regions reached genome-wide 

significance. The most significant SNP, rs7911500, was located between IL15RA and 

IL2RA. Iterative conditional analyses identified a total of five significant “independent” 
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SNPs across the region. LLARRMA identified six SNPs that were consistently associated 

with sIL-2Rα levels across alternative resamplings of the data. Both iterative conditional 

analyses and LLARRMA provide compelling evidence for the existence of multiple 

important causal variants in the region, though they did not agree with respect to the 

importance of our most significant SNP, rs7911500. Higher density genotype data, 

including both common haplotype-tagging variants and less-common putative functional 

variants, will be necessary to fine map the association signals in this region. Two of our 

significant SNPs in the region, rs2104286 (p=4.9x10-59; the top SNP identified by 

LLARRMA) and rs11594656 (p=1.5x10-41), have been shown to function in 

transcription factor binding. These SNPs have also been reported to be associated with 

sIL2Rα levels and type 1 diabetes and multiple sclerosis15, 16. 

No regions reached genome-wide significance in the smaller cohort of CHS 

AAs. Nominal evidence for association in AAs was detected between IL15RA and 

IL2RA (best result: rs8177607, p=3.2x10-4). The lead SNP in EAs, rs7911500, was 

less polymorphic in AAs and demonstrated no evidence for association. Similarly, no 

evidence for association was found for rs791590 (p=0.31) or rs10905716 (p=0.43), 

two significant variants in EAs in the conditional analyses. The two other significant 

SNPs in the conditional analyses, rs8177757 and rs7924005, were not successfully 

imputed in the AAs. The difference in findings between EAs and AAs could suggest 

different risk variants in the two populations, be reflective of different LD structures in 

the region that mask common underlying causal variants, or be the result of lower 

power in AAs. There are strong allele frequency differences between the two 
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populations for many of the EA SNPs in the region (see Supplemental Table 2 for 

frequencies in HapMap  CEU and YRI populations) and the AA sample size is 

considerably smaller than for EAs.  

Interestingly, the top SNP from LLARRMA, rs2104286, in EAs was nominally 

significant in AAs (p=0.011) despite the lower estimated frequency of the minor allele 

in AAs (MAF=0.065) compared to EAs (MAF=0.27). The effect estimates for the 

SNP were similar in AAs (β= -0.17) and EAs β=-0.15), where carriers of the minor 

allele were predicted to have lower sIL-2Rα levels. 

Elevated sIL-2Rα levels have been shown to be associated with a number of 

autoimmune diseases and may predict a relapse of those diseases7. We found a 

number of IL2RA SNPs previously associated with autoimmune-related diseases to be 

significantly associated with sIL-2Rα levels.   A number of our significant SNPs have 

also been observed to be associated in GWAS, fine mapping studies and SNP specific 

genotyping studies for autoimmune diseases including Graves’ disease (rs11594656, 

Odds Ratio (OR)=1.54, p=0.0053)17 , vitiligo (rs706779 OR=1.27, p=3X10-9)18, 

Crohn’s disease (rs12722489, OR=1.11, p=3X10-9) 19 , type 1 diabetes (rs7090530, 

OR=1.23, p=0.003)20 and multiple sclerosis (rs2104286, OR=0.81, p=0.017)20 .  Our 

two most significant SNPs, rs7911500 and rs12722605, were found to be 

significantly associated with an inflammatory phenotype derived from the high-

sensitivity CRP-interleukin-6 (IL-6) pattern in a  G W A S  o f  the Genetics of Lipid 

Lowering Drugs and Diet Network (p=5x10-9 and p=5x10-8)21. The nature of this 

association is uncertain; it is possible that these variants or others in linkage 
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disequilibrium with them are directly increasing the sIL-2Rα levels which in turn 

results in downstream increases in both IL-6 and CRP. 

There are several limitations in the current study which should be noted. We only 

analyzed common variants; rare polymorphisms may account for much of the 

variability in the sIL-2Rα levels.  Also, we had weak statistical power to detect 

associations in AAs.  Finally, our study was focused on older adults and the results 

may not be generalizable to other populations. 

Our findings suggest that serum sIL-2Rα, a surrogate marker of T lymphocyte 

activation, may be a valuable novel biomarker for all-cause mortality, cardiovascular 

morality, stroke and heart failure in older adults.  Additional studies are needed to 

assess whether sIL-2Rα levels predict mortality in younger populations. Also, further 

studies are needed a) to identify the causal  variants in the chromosomal region 

harboring IL15RA and IL2RA influencing sIL-2rα, b) to provide very large and multi-

ethnic samples to identify additional genetic loci for this  trait, and c) to determine the 

complex biology of the genetic control of IL-2/IL-2R interactions with respect to 

regulatory T cell promotion and pro-inflammatory cytokine production. 
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Significance 
 

This study found that sIL-2Rα, a regulator of white blood cells, is associated with a 
number of cardiovascular disease risk factors, as well as with all-cause mortality, 
cardiovascular disease mortality, and heart failure in the Cardiovascular Health 
Study. Analysis of genetic variants in European Americans found a number of 
variants in the chromosome 10 region containing the genes IL2RA, IL15RA, and 
RMB17 to be significantly associated with sIL-2Rα. These results provide support for 
a role of sIL-2Rα in atherosclerosis and cardiovascular disease. 
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Table 1: Associations between Soluble IL-2Rα and Other Cardiovascular Risk Factors and Atherosclerosis at the CHS Baseline Examination 

Each variable was examined for association with sIL-2Ra in a separate model, adjusting for the variables listed in each model; the exception is 
that a variable is not adjusted for itself when it is the variable being tested. β for all measures except sex, race, diabetes, and hypertension are for a 
1–SD change in the predictor; sIL-2Rα ln-transformed p values; 
*P<0.01; **P<0.001; ***P<0.0001. 
Model A: adjusted for age, race, and sex. 
Model B: adjusted for age, race, sex, smoking, diabetes mellitus, hypertension, systolic blood pressure, and BMI. 
Model C: adjusted for age, race, sex, smoking, diabetes mellitus, hypertension, systolic blood pressure, BMI, LDL cholesterol, HDL cholesterol, C-
reactive protein, interleukin-6, and fibrinogen. 
 

 
Baseline Characteristics (Mean±SD or %) 

Model 
A 

β±SE 

Model 
B β±SE 

Model 
C β±SE 

 
Age, y (5.6) 

 
0.074±0.005*** 

 
0.078±0.006*** 

 
0.067±0.006*** 

 
Female sex (57.2 %) 

 
-0.029±0.011* 

 
-0.031±0.011* 

 
0.017±0.012 

 
Black race (14.8%) 

 
-0.120±0.007*** 

 
-0.133±0.008*** 

 
-0.134±0.008*** 

 
Current smoking (54.0 %) 

 
0.100±0.164*** 

 
0.108±0.017*** 

 
0.079±0.017*** 

 
Type 2 diabetes (16.2 %) 

 
0.056±0.014** 

 
0.042±0.015** 

 
-0.002±0.015 

 
Hypertension (44.5 %) 

 
0.042±0.006*** 

 
0.046±0.007*** 

 
0.030±0.007*** 

 
Systolic blood pressure, mm Hg (136.6±21.8) 

 
0.013±0.005 

 
-0.011±0.026 

 
0.003±0.007 

 
LDL cholesterol, mg/dL (129.8±35.6) 

 
-0.030±0.005*** 

 
-0.030±0.005*** 

 
-0.032±0.007*** 

 
HDL cholesterol, mg/dL (54.2±15.7) 

 
-0.055±0.006*** 

 
-0.050±0.006*** 

 
-0.046±0.006*** 

 
Triglycerides, mg/dL (139.8±76.7) 

 
0.007±0.005 

 
-0.002±0.006 

 
-0.025±0.008* 

 
Glucose, mg/dL (111.1±35.9) 

 
0.013±0.005 

 
-0.009±0.008 

 
-0.013±0.007 



 

 
 

68 

 
Insulin, IU/mL (17.4±27.4) 

 
0.023±0.005*** 

 
0.017±0.005* 

 
0.011±0.005 

BMI, kg/m2 (26.6±4.7) 
 

0.009±0.006 
 

0.005±.006 
 

-0.016±0.006* 
 

Waist circumference, cm (94.4±13.1) 
 

0.014±0.005* 
 

0.016±0.010 
 

0.003±0.010 
 

C-reactive protein, mg/L (4.8±8.0) 
 

0.083±0.005*** 
 

0.080±0.005*** 
 

0.043±0.008*** 
 

Interleukin-6, pg/mL (2.2±1.8) 
 

0.059±0.005*** 
 

0.051±0.005*** 
 

0.024±0.006*** 
 

Fibrinogen, mg/dL (323.8±67.3) 
 

0.067±0.005*** 
 

0.063±0.054*** 
 

0.032±0.006*** 
 

Internal carotid wall thickness, mm (1.5±0.7) 
 

0.027±0.006*** 
 

0.014±0.006 
 

0.009±0.006 
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Table 2: Hazard ratios (HR) between sIL-2Rα and incident events in CHS 
A: European Americans 
Model 1: Adjusted for age, sex, and study site 
Model 2: Model 1 + smoking, diabetes, hypertension, SBP, LDL, baseline CVD 
Model 3: Model 2 + C-reactive protein, interleukin-6, fibrinogen, carotid intima-media thickness 
‡ Hazard ratios for a 1-SD unit increase in soluble IL-2R. 
‡‡Hazard ratios comparing quartiles to first quartile of soluble IL-2R. P values; *p<0.05; **p<0.005; 
***p<0.0001. 
 

 

 All-Cause 
Mortality 

(n=2985 events) 

Cardiovascular 
Mortality 

(n=1202 events) 

Coronary 
Heart Disease 

(n=1234 events) 

 
Stroke 

(n=762 events) 

 
Heart Failure 

(n=1246 events) 
Model HR (95%CI) HR (95%CI) HR (95%CI) HR (95%CI) HR (95%CI) 

Minimal‡ (1) 1.17 (1.14-1.19)*** 1.16 (1.11-1.20)*** 1.11 (1.05-1.15)*** 1.08 (1.01-1.14)* 1.16 (1.12-1.21)*** 

Multivariable
‡ (2) 

1.16 (1.13-1.19)*** 1.15 (1.10-1.20)*** 1.10 (1.05-1.15)*** 1.06 (0.99-1.14) 1.17 (1.12-1.22)*** 

Subclinical
‡ (3) 

1.14 (1.11-1.18)*** 1.13 (1.07-1.19)*** 1.05 (0.99-1.11) 1.03 (0.95-1.12) 1.14 (1.08-1.19)*** 

2nd Q vs 1st Q 
‡‡ (3) 

1.17 (1.04-1.32)* 1.19 (0.98-1.45) 1.16 (0.97-1.39) 1.46 (1.16-1.84)** 1.17 (0.97-1.40) 

3rd Q vs 1st Q 
‡‡ (3) 

1.25 (1.11-1.41)*** 1.38 (1.10-1.62)** 1.23 (1.03-1.46)* 1.38 (1.09-1.74)* 1.16 (0.97-1.40) 

4th Q vs 1st Q 
‡‡ (3) 

1.63 (1.45-1.83)*** 1.64 (1.36-1.99)*** 1.16 (0.97-1.402) 1.28(1.01-1.64)* 1.57 (1.31-1.88)*** 
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Table 2: Hazard ratios (HR) between sIL-2Rα and incident events in CHS 
B: African Americans 
Model 1: Adjusted for age, sex, and study site 
Model 2: Model 1 + smoking, diabetes, hypertension, SBP, LDL, baseline CVD 
Model 3: Model 2 + C-reactive protein, interleukin-6, fibrinogen, carotid intima-media thickness 
‡ Hazard ratios for a 1-SD unit increase in soluble IL-2R. 
‡‡Hazard ratios comparing quartiles to first quartile of soluble IL-2R. P values; *p<0.05; **p<0.005; 
***p<0.0001. 
 

 

 All-Cause 
Mortality 

(n=451 events) 

Cardiovascular 
Mortality 

(n=186 events) 

Coronary 
Heart Disease 
(n=195 events) 

 
Stroke 

(n=117 events) 

 
Heart Failure 

(n=199 events) 
Model HR (95%CI) HR (95%CI) HR (95%CI) HR (95%CI) HR (95%CI) 

Minimal‡ (1) 1.17 (1.10-1.25)*** 1.14 (1.02-1.28)* 1.15 (1.04-1.28)** 1.16 (1.02-1.33)* 1.18 (1.07-1.29)** 

Multivariable
‡ (2) 

1.17 (1.04-1.26)*** 1.15 (1.02-1.31)* 1.19 (1.06-1.33)** 1.21 (1.04-1.40)* 1.19 (1.07-1.32)** 

Subclinical
‡ (3) 

1.16 (1.07-1.18)*** 1.07 (0.89-1.29) 1.12 (0.96-1.31) 1.22 (1.06-1.41)* 1.21 (1.09-1.35)*** 

2nd Q vs 1st Q 
‡‡ (3) 

0.99 (0.76-1.29) 1.02 (0.67-1.55) 1.42 (0.98-2.06) 0.94 (0.55-1.61) 1.37 (0.93-2.01) 

3rd Q vs 1st Q 
‡‡ (3) 

1.31 (0.99-1.73) 1.48 (0.94-2.23) 1.50 (0.99-2.29) 1.20 (0.67-2.14) 1.84 (1.23-2.77)** 

4th Q vs 1st Q 
‡‡ (3) 

1.67 (1.22-2.28)** 1.33 (0.79-2.25) 1.09 (0.61-1.94) 2.30 (1.34-3.95)** 1.71 (1.05-2.80)* 
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Figure 1a: Conditional Analysis - CHS IL2sR alpha adjusted by rs7911500 
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Figure 1b: Conditional Analysis - CHS IL2sR alpha adjusted by rs7911500 and rs791590 
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Figure 1c: Conditional Analysis - CHS IL2sR alpha adjusted by rs7911500, rs791590 and 

rs8177757 
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Figure 1d: Conditional Analysis - CHS IL2sR alpha adjusted by rs7911500, rs791590, 

rs8177757, and rs10905716 
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Figure 1e: Conditional Analysis - CHS IL2sR alpha adjusted by rs7911500, rs791590, 

rs8177757, rs10905716, and rs7924005 
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Figure 2: Meta Analysis of European Americans 
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METHODS  Arterioscler Thromb Vasc Biol. 2015;35:2246-2253 

 

Study samples 

The Cardiovascular Health Study (CHS) is a prospective population-based cohort study 

of men and women recruited at age 65 or older at baseline. The original cohort of 5201 

participants was recruited between 1988 and 1989 at four field centers: Forsyth County, 

NC; Sacramento County, CA; Washington County, MD; and Pittsburgh, PA. Between 

1992 and 1993, an additional 687 mostly African-American (AA) participants were 

recruited for a total cohort of 5888. The baseline examination for CHS participants 

included a medical history, demographic and lifestyle history, physical exam, fasting 

blood collection and an assessment of vascular disease by carotid ultrasound and ankle-

brachial index. 

The Multi-Ethnic Study of Atherosclerosis (MESA) is a prospective cohort study 

comprised of 6814 European American (EA), African-American, Hispanic, and Asian 

participants between the ages of 45 and 84 recruited at six sites from 2000 to 2002. The 

six study sites were: Wake Forest University, University of Minnesota, Northwestern 

University, University of California at Los Angeles, Columbia University, and Johns 

Hopkins University.  At baseline, participants had no clinical CVD or atrial fibrillation.  

Baseline examinations included medical, demographic and lifestyle history, 

measurement of coronary calcium, ventricular mass, carotid intimal-medial wall 

thickness, ankle and brachial blood pressures, and standard CVD risk factors. 

Fasting blood was also collected. Our study used data from 699 EA participants and 
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647AA participants. 

The Health, Aging and Body Composition Study (Health ABC) is a cohort study of 3075 

participants age 70– 79 residing in Memphis, TN or Pittsburgh, PA who were enrolled 

between 1997 and 1998.   Participants were interviewed for medical and social history. 

The baseline clinical exam included a general physical, tests of physical performance and 

body composition as well as a blood collection. This analysis used data from 786  EA 

participants and 561 AA participants. 

 

Biomarker and Genotype Measurement 

sIL-2Rα was measured in plasma by ELISA (R&D Systems) with a detectable range of 

312 – 20,000pg/mL. The coefficients of variation in the current study ranged from 

5.11% to 7.59%. 

A total of 3388 EA and 607 AA CHS samples were genotyped using the Illumina 

370CNV platform. In ancestry specific quality control (QC) analyses, SNPs were 

excluded from consideration if any of the following applied: 1) minor allele frequency < 

0.005, 2) missing rate across subjects > 5%, or 3) Hardy-Weinberg equilibrium p-value 

< 1.0x10-5. Genotype imputation was performed to expand the coverage of common 

variants in our GWAS to SNPs that were not included on the genotype panel or that were 

included but were lost during QC. Ancestry-specific imputation was performed using 

the software package MaCH1,2. Genotype data for 314,364 SNPs in EAs and 311,324 

SNPs in AAs, after QC SNP removal, were used to impute 2.2 million SNPs from 

HapMap Phase 2 and HapMap Phase 3 reference samples. For EAs, HapMap CEU 
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(Phases 2 and 3) and TSI (Phase 3) reference samples were included. For AAs, CEU 

(Phases 2 and 3), YRI (Phases 2 and 3), TSI (Phase 3), LWK (Phase 3), ASW (Phase 3) 

reference samples were used. Finally, sets of unrelated subjects for analyses (n=3232 EA 

and n=594 AA) were identified by iteratively removing one subject at a time from 

subject-pairings with a global identity-by-descent (IBD) estimate > 0.10 until no subject 

pairs had a global IBD estimated greater than that threshold. IBD estimation was 

performed using a linkage- disequilibrium-pruned set of SNPs that had similar 

frequencies in EAs and AAs (to minimize confounding of IBD with background ancestry 

similarity). QC analyses and IBD estimation were performed using the software 

PLINK3. 

MESA participants were genotyped using the Affymetrix Human SNP array 6.0 

(Affymetrix Inc. Santa Clara, CA). Ancestry-specific imputation was performed using 

IMPUTE v24 using HapMap Phase 2 CEU reference samples for the European 

American (EA) participants. 

In the Health ABC study, genotyping was performed using the Illumina Human1M-

DuoBeadChip system. 

Imputation in the EAs was performed using Mach version 1.0.16 using HapMap Phase 2 

CEU reference samples. 

 

Statistical Analysis 

To satisfy model assumptions, sIL-2Rα was natural log-transformed for association 

analyses with CVD risk factors and genetic variants.  Associations between sIL-2Rα and 
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quantitative traits (systolic blood pressure [SBP], LDL cholesterol, HDL cholesterol, 

triglycerides, fasting glucose, fasting insulin, BMI, waist circumference, CRP, IL-6, 

fibrinogen, and carotid intima media thickness [IMT]) and binary traits (diabetes mellitus 

and hypertension) were analyzed using multiple linear regression and logistic regression, 

respectively. Hypertension was defined as current use of antihypertensive medication or 

SBP>140 and DBP>90. 

Cox proportional hazards models were used to test for association between sIL-2Rα and 

the risk of incident coronary heart disease (CHD), incident stroke, congestive heart failure 

(CHF), CVD mortality and all-cause mortality, separately for EAs and AAs. All events 

were adjudicated by an expert review panel.  Incident CHD included non-procedure-

related fatal or nonfatal MI.  CVD mortality included fatal events where death was 

adjudicated as due to atherosclerotic CHD or cerebrovascular disease, including definite 

fatal MI, definite fatal stroke and definite or probable fatal CHD5.  Participants with 

adjudicated baseline prevalent disease for the corresponding incident disease were 

excluded from analysis (e.g. individuals with a history of myocardial infarction at first 

visit were excluded from incident CHD analysis). Three progressive levels of covariate 

adjustments were used to assess risk of incident events associated with sIL-2Rα levels. 

The first model was minimally adjusted for the potential confounders baseline age, sex 

and study site. The second model was additionally adjusted for CVD risk factors 

(baseline measures of current smoking status, type 2 diabetes, hypertension, systolic blood 

pressure (SBP), and low density lipoprotein (LDL) cholesterol) and baseline CVD (for the 

mortality outcomes). The third model added adjustments for baseline measures of 
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inflammation (C- reactive protein (CRP), interleukin-6 (IL-6), fibrinogen), and carotid 

IMT. 

For the genetic analyses of CHS data, the associations between sIL-2Rα and individual 

genotyped and imputed SNPs, scored as dosage values (expected number of copies of the 

minor alleles), were tested in   linear regression models implemented in Mach2qtl1, 2. 

Covariates in the regression models included age, sex, study site, and the first two 

principal components (PCs), used to control for potential population substructure. PCs 

were calculated using the program EIGENSOFT6, 7. The statistical significance threshold 

used for defining significance was set to 5x10-8. 

Targeted conditional analysis was performed in regions where multiple SNPs achieved 

statistical significance to ascertain how many sIL-2Rα-associated SNPs provided 

independent evidence for association in the region of interest. The conditional analysis 

was performed by iteratively adding the most significant genotyped or imputed SNP in 

with other model covariates and re-assessing the region for any SNP meeting genome-

wide significance using forward-stepwise linear regression. A series of regional association 

plots showing results after each successive model iteration were constructed using the 

software LocusZoom8. Given the rigidity of the forward step wise conditional analysis 

approach with respect to order of SNP inclusion, we additionally applied the LASSO local 

automatic regularization resample model averaging (LLARRMA) method9 to assess the 

number of important SNPs across the region. Both the conditional analyses and the 

LLARRMA analyses were restricted to CHS EA HapMap Phase 2 imputed data. 

Estimation of sIL-2Rα phenotypic variance explained by individual SNPs was performed 
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using the REG procedure with PCORR2 option in SAS. Cox proportional hazards models 

were used to assess whether SNPs associated with sIL-2Rα were also associated with 

incident events, both before and after adjusting for sIL-2Rα level. The significance 

threshold for these analyses was set at p=0.05 and analyses were performed using STATA 

statistical software. 

Tests of association between imputed SNP dosage and sIL-2Rα were performed using 

SNPTEST version 

2.4.110 in MESA and Mach2qtl1, 2 in Health ABC. We used fixed effects inverse-

variance weighted meta- analysis implemented in Metal11 to combine results from CHS, 

MESA and Health ABC EAs. 
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Supplemental Table I: Spearman correlation coefficients for sIL2sR and continuous CVD risk factors and 
subclinical CVD.  *P<0.01; **P<0.001; ***P<0.0001 
 
 

 
Baseline characteristic 

Spearman 
correlation 
coefficient 

 
Age, y 

 
0.19*** 

 
Systolic blood pressure 

 
0.037* 

 
LDL cholesterol 

 
-0.084*** 

 
HDL cholesterol 

 
-0.16*** 

 
Triglycerides 

 
0.042* 

 
Glucose 

 
0.038* 

 
Insulin 

 
0.080*** 

 
BMI 

 
-0.038** 

 
Waist circumference 

 
0.018 

 
C-reactive protein 

 
0.17*** 

 
Interleukin-6 

 
0.24*** 

 
Fibrinogen 

 
0.14*** 

 
Internal carotid wall 
thickness 

 
0.13*** 
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Supplemental Table II. Minor allele frequencies for 5 CHS independently associated SNPs, using HapMap 
data.  *Not available in Hapmap, based on 1000 Genomes YRI data. 
 
 

SNP Minor allele CEU YRI 
rs7911500 T 0.14 0 
rs791590 T 0.16 0.10 
rs8177757 T 0.04 0 
rs10905716 T 0.24 0.31 
rs7924005 C 0.19 0.18* 
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Abstract 

Objective: Monocytes/macrophages play a key role in atherosclerosis and emerging 

evidence supports a role for the M2 lineage in fibrosis and heart failure.  CD163 is a 

monocyte/macrophage specific receptor involved in the clearance and endocytosis of 

hemoglobin-haptoglobin complexes, and soluble CD163 (sCD163) has been shown to 

reflect macrophage activation especially of the M2 lineage. There are no large 

epidemiologic studies of sCD163 with incident cardiovascular disease (CVD) events or 

genetic studies of sCD163 levels. Approach and Results: We measured sCD163 in 5000 

Cardiovascular Health Study (CHS) participants; 4208 European Americans (EA) and 

792 African Americans (AA).  At baseline, sCD163 levels were positively associated 

with female sex, white race, increasing age, BMI, systolic blood pressure, C-reactive 

protein, interleukin-6, and fibrinogen levels (all p<0.0001).  In minimally adjusted (race, 

age and sex) models we observed sCD163 levels to be strongly associated (p<0.0001) 

with all-cause mortality, cardiovascular mortality, incident coronary heart disease, and 

incident heart failure.  After adjustment for established CVD risk factors, evidence for 

association weakened for all outcomes but remained significant for incident heart failure 

(p<0.005), all-cause mortality (p<0.05), and cardiovascular mortality (p<0.05).  A 

genome-wide association study (using Hapmap Phase 2 genotype imputation) of 2769 

unrelated CHS EAs and 552 AAs identified (p<5x10-8)in EAs  five variants upstream of 

chromosome 2q gene MGAT5 (top result rs4954118, p=7.1x10-14) and a single variant 

(rs314253, p=6.0x10-13) on chromosome 17p gene DLG4; and three variants in AAs in 

the HLA region of chromosome 6 (top results rs9271366, p=1.8x10-8).  Conclusions: Our 
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results implicate sCD163 levels as a potentially useful biomarker for incident heart 

failure, provide evidence for the association of multiple genetic variants with sCD163 

levels, and support a potential role for M2 monocyte/macrophage in heart failure. 

Introduction 

Atherosclerosis is an inflammatory disease [1] characterized by an influx of 

monocytes and lymphocytes in the arterial wall, resulting from an increase in both 

circulating low-density lipoprotein (LDL) cholesterol and the oxidized LDL in the 

subendothelial space.  In the subendothelium space monocytes differentiate into 

macrophages and infiltrate the atherosclerotic lesion, ultimately becoming cholesterol-

laden foam cells. M1 and M2 macrophages, defined by their expression of CD14 and 

CD16 surface receptors [2], have different roles in innate immunity and express different 

cell surface markers and receptors.  Both M1 and M2 macrophages play a role in 

atherosclerotic plaque formation and in the repair of cardiovascular injury.  M1 

classically activated macrophages are considered proinflammatory due to their 

production of Tumor Necrosis Factor–α (TNF-α), interleukin 6 (IL-6) and IL-12; as well 

as their phagocytic activity [3].  M2 alternatively activated macrophages produce IL-10 

and play a role in fibrosis and immunomodulation [4].   Discovered in 1987[5], CD163 is 

a 130 kDa type 1 transmembrane protein of the cysteine-rich scavenger receptor family 

[6] expressed on M2 macrophages.  A hemoglobin scavenger receptor, CD163 is 

responsible for the clearance of hemoglobin-haptoglobin (Hb-Hp) complexes in the liver, 

spleen, and plasma [7].   By removing the proinflammatory Hb-Hp complex as well as 

unbound hemoglobin (Hb )[8], CD163 contributes to the anti-inflammatory or immune 
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modulating response; lowering oxidative stress and the metabolism of the extracellular 

Hb.  Both in vitro and in vivo studies have shown that CD163 - Hb-Bp binding triggers 

the release of IL-10 and carbon monoxide both of which exhibit substantial anti-

inflammatory effects [9].  Increased IL-10 further up-regulates CD163 and heme-

oxygenase-1 expression which protects against an inflammatory response due to the 

extracellular Hb [10, 11].  M2 macrophage also produce TGF-, a major stimulant of 

collagen production and fibrosis [12].  

A soluble form of CD163 (sCD163) is present in serum [13, 14] with a median 

concentration of 1.9 mg/L in healthy individuals [13]; sCD163 contains 94% of the 

membrane bound form, consisting of 945 amino acids [15].  The shedding of CD163 is 

upregulated by inflammatory factors including lipopolysaccharide [16, 17], phorbol12-

myristate 13-acetate [18], and Fcγ receptor cross-linking [19]. The soluble form of 

CD163 results from proteolytic cleavage of CD163 at the cell surface by Matrix 

MetalloProteinase-9 (MMP-9) [16] and A Disintegrin and Metalloproteinase 17 

(ADAM17)/TNF-α-cleaving enzyme (TACE) [20].  Elevated levels of sCD163 are 

associated with a number of inflammatory conditions all involving macrophage 

proliferation and activation including rheumatoid arthritis, multiple sclerosis, cancers, 

sepsis, and atherosclerosis [21-24].   

Despite the fact that macrophages are intimately involved in the development of 

atherosclerosis as well as the fibrosis associated with heart failure, only a small number 

of studies have examined the relationship between sCD163 levels and cardiovascular 

disease (CVD) [21, 25, 26].  Aristoteli, et al. found an association between sCD163 
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levels and the extent of atherosclerotic burden in a study of 147 coronary patients [21]  

Moreno, et al. observed an association between carotid intima-thickness and elevated 

sCD163 [27], and McKibben et al. found an association between sCD163 levels and 

coronary artery calcium in a cohort of HIV infected and HIV uninfected men [28].  We 

examined sCD163 levels in the Cardiovascular Health Study (CHS), a cohort of older 

adults with follow-up for incident CVD and mortality for up to 20 years.  We determined 

the associations of sCD163 with known CVD risk factors and inflammatory biomarkers 

measured at baseline, and with incident events.  We also conducted a genome-wide 

association study (GWAS) to identify genetic variants associated with sCD163 levels. 

Results 

Associations Between sCD163 and Baseline CVD Risk Factors and Inflammation 

Biomarkers 

sCD163 levels were approximately normally distributed with a mean of 787.3 

ng/mL (SD=221.6 ng/mL) and a range of 145.9 – 1633.0 ng/mL.  In European Americans 

(EA) the mean baseline level of sCD163 was 780.0 ng/mL (SD=216.9 ng/mL) in men 

and 810.9 ng/mL (SD=214.9 ng/mL) in women.  In African Americans (AA) men and 

women the mean sCD163 levels were 688.3 ng/mL (SD=232.6 ng/mL) and 756.0 ng/mL 

(SD=242.0 ng/mL), respectively. sCD163 levels were significantly higher in older 

individuals, EA as compared to AA, and women (Tables 1 and 2; all p<0.0001).  In an 

age-, race-, and sex-adjusted models, sCD163 levels were positively associated with type 

2 diabetes, hypertension, systolic blood pressure, triglycerides, glucose, insulin, body 
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mass index, waist circumference, C-reactive protein, interleukin-6, fibrinogen and 

internal carotid wall thickness; while negatively associated with current smoking, and 

high density lipoprotein (table 1).  There was no statistically significant association 

(p>0.05) with low density lipoprotein.   

Incident Events Analysis 

The median follow up time for the CHS participants was 13 years. There were 

3392 all-cause deaths; including 1360 cardiovascular deaths.  There were 1367 incident 

cases of coronary heart disease, 861 cases of incident stroke, and 1421 cases of incident 

heart failure (fatal and nonfatal events).  In survival models minimally adjusted for age, 

sex, race, and study site, baseline levels of sCD163 were significantly (all p<0.0001) 

associated with increased risk for all-cause mortality, cardiovascular mortality, coronary 

heart disease, and incident heart failure (Table 3).  The association between baseline 

sCD163 and incident stroke was significant at p<0.05.  With further adjustment for 

known CVD risk factors (smoking, diabetes, hypertension, systolic blood pressure, LDL 

cholesterol) and BMI the association between baseline sCD163 and all-cause mortality, 

cardiovascular mortality, and incident heart failure remained significant, although the 

signals were attenuated. The associations with coronary heart disease and incident stroke 

were no longer significant.  

GWAS of sCD163 in CHS EA and AA 

We conducted a race-stratified GWAS in 2769 EAs and 552 AAs from CHS that 

had both sCD163 measurements and GWAS data available.  The EA GWAS identified 
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five significant (p<5x10-8) SNPs near the MGAT5 gene on chromosome 2; rs4954118 

(p=7.11X10-14), rs3748896 (p=8.16X10-14), rs1257169 (p=1.68X10-12), rs1879018 

(p=4.68X10-8), and rs1996589 (p=4.80X10-8) and one significant SNP near the DLG4 

gene on chromosome 17; rs314253 (p=6.03X10-13) (Figures 1, 2, and 3).  When we 

modeled sCD163 levels using the five MGAT5 SNPs (Table 4) in a stepwise forward 

regression analysis, we found that four SNPs, rs314253, rs4954118, rs125169, and 

rs1879018, all remained significant (all p≤0.001) in a model adjusted for age, sex, and 

clinic site.  These four SNPs explained 5.2% of the sCD163 distribution. 

Three SNPs on chromosome 6 (rs9271366, p=1.18X10-8; rs3135005, p=2.86X10-8; and 

rs9270986, p=3.13X10-8) reached genome-wide significance in the AA analysis (Figures 

4 and 5); all are in HLA-DRB1 region and all are highly correlated with each other (all 

pairwise R2>0.90). rs9271366 accounts for approximately 5% of the variance in sCD163 

in AAs.   

None of the SNPs that were identified in one race/ethnic group were significant in 

the other (Table 5).  In AAs, the most significant MGAT5 SNP was rs1111961 

(p=0.02218) and the most significant DLG4 gene SNP was rs2242449 (p=0.18554).  In 

EAs, the most significant HLA region SNP was rs9271366 (p=0.214).  No SNPs in the 

CD163 region were statistically significant at the genome-wide level in either EAs or 

AAs.  The most significant CD163 SNPs were rs6488429 (p=8.17x10-5) in EAs and 

rs7485773 (p=4.74x10-4) in AAs. 
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We searched the CARDIoGRAM+C4D database, which contains meta-analyzed 

GWAS results from multiple case controls studies (total of 63,746 cases and 130,681 

controls) for coronary heart disease and myocardial infarction 

(http://www.cardiogramplusc4d.org) [29-31].  None of the nine SNPs identified in the 

current study for sCD163 were significantly associated with case control status in 

CARDIoGRAM+C4D (all p>0.05).   We further examined whether any of the SNPs 

identified to be associated with sCD163 level were also associated with incident events in 

CHS. The two perfectly correlated MGAT5 SNPs, rs4954118 and rs3748896, were 

significantly associated with incident heart failure in analyses adjusted for baseline age, 

sex, and study clinic site (p=0.030).  When the model was further adjusted for sCD163 

level the p-value for association was slightly smaller than for the model without 

adjustment for sCD163 level (p=0.006).  We also conducted a Mendelian randomization 

analysis, using SNP rs4954118, to test whether there was evidence for a causal 

association between sCD163 levels and heart failure. The result for this analysis was not 

significant (p=0.086), although it was suggestive.  We observed evidence for association 

between HLA SNPs rs9271366; p=0.048, rs3135005; p=0.038; with incident coronary 

heart disease in AAs.  When further adjusted for sCD163 level, the HLA SNPs were no 

longer significantly associated with incident heart failure (both p>0.05). 

Discussion 

This represents the first large-scale study of sCD163, a marker of macrophage 

activation, in a population based CVD study with incident events, as well as the first 

GWAS for sCD163. Our major findings are: (1) sCD163 levels are associated with many 

http://www.cardiogramplusc4d.org)/
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established CVD risk factors and with carotid intima thickness; a measure of subclinical 

CVD; (2) In older adults, sCD163 levels predict all-cause mortality, cardiovascular 

mortality, coronary heart disease, stroke, and incident heart failure in minimally adjusted 

models (P<0.0001), with a 50% greater risk of cardiovascular mortality and incident heart 

failure comparing the fourth quartile to the first quartile of sCD163; (3) sCD163 levels 

significantly predict all-cause mortality, cardiovascular mortality, and incident heart 

failure independently of established CVD risk factors (P<0.05); (4) Genetic variants near 

MGAT5 and DLG4 are associated with sCD163 in EAs and variants near HLA-DRB1 are 

associated with sCD163 levels in AAs; (5) There is evidence that genetic variants 

associated with sCD163 level (MGAT5 in EAs and HLA-DRB1 in AA) are also 

associated with incident heart failure in older adults.   

The function of sCD163 has not been well characterized but it has been postulated 

that sCD163 may contribute to innate immunity by binding hemoglobin-iron in the 

circulatory system thus making the iron unavailable to pathogens [17, 32].  sCD163 also 

modulates the immune system by inhibiting T cell proliferation[33, 34].  Frings, et al. 

have shown that it is only the soluble form of CD163 and not the membrane bound form 

that inhibits T cells [33].  The work of Timmermann, et al. showed that sCD163 binds to 

non-muscle myosin heavy chain in T lymphocytes causing this inhibition [35].  In vivo 

studies have shown reduced T cell response and increased sCD163 expression in patients 

with rheumatoid arthritis [36]. 

While sCD163 may directly reflect the level of M2 macrophages, sCD163 might 

also result from the transition of M2 macrophages to M1 macrophages during tissue 
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repair, including cardiac injury repair.  Upon initial cardiac injury the percentage of 

proinflammatory, M1 macrophages increase [37].  Once the acute phase of the injury has 

passed, there is a transition to an increased population of anti-inflammatory, CD163 

expressing macrophages essential in the remodeling phase where fibrosis and anti-

inflammatory cytokine expression is increased.  This transition from M1 to M2 

macrophages can happen through the differentiation of monocytes to M2 macrophages 

and through the plasticity of the M1 macrophages transitioning to M2 macrophages [37].  

As the tissue remodeling continues there is a return to the M1 and M2 macrophage 

balance; it is possible that this also occurs due to macrophage plasticity and the shedding 

of the CD163 receptor thereby increasing the level of circulating sCD163.  Work done in 

a mouse model of skeletal muscle repair shows that after the injury, pro-inflammatory, 

M1 macrophages phagocytose cellular debris and then change their phenotype to 

alternatively activated, anti-inflammatory, M2 macrophage promoting tissue remodeling 

[38].  This study went on to show that ultimately these macrophages entered an 

‘exhaustion-like state’ with no cytokine expression; if this inflammatory response was 

altered muscle regeneration was negatively impacted [38].  Other studies have shown 

sCD163 to be a marker of macrophage activation [39, 40], associated with noncalcified 

coronary plaque [39], and over expressed in carotid plaques [41]. 

 Our findings indicate that sCD163 is a predictor of heart failure (HR=1.50, 

p<0.0001) and cardiovascular mortality (HR=1.51, p<0.0001) when comparing the first 

quartile of sCD163 levels to the fourth quartile in a model adjusted for age, race, sex, and 

clinic.   
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Our GWAS identified three genes associated with sCD163 levels, MGAT5, 

DLG4, and HLA-DRB1.  MGAT5, has been associated with the M2 macrophage 

phenotype and fibrosis [42] and DLG4 is involved in the cellular response to oxidative 

stress, a key factor in cardiovascular diseases [43]. HLA-DRB1 is a linchpin of the 

inflammatory response and has been associated with fibrosis [44].  Five of the six 

significant SNPs from the EA GWAS were in MGAT5, a gene on chromosome 2, which 

codes for a glycosyltransferase (mannosyl (alpha-1,6-)-glycoprotein beta-1,6-N-acetyl-

glucosaminyltransferase) and has been shown to be associated with multiple sclerosis 

(MS), systemic sclerosis, cancer metastasis, and liver fibrosis [45-47].  The deregulation 

of the glycosyltransferase increases susceptibility to autoimmune diseases and is 

associated with the severity of MS [48, 49].  Kato et al. showed in a mouse model of 

scleroderma, a fibrotic disease involving vascular injury and repair, with similarities to 

heart failure, that MGAT5+/+ mice had higher levels of M2 macrophages compared to 

MGAT5-/- mice and that glycosylated cell surface proteins cause a shift in the macrophage 

phenotype to M2 [47].  The other significant SNP found in the EA GWAS was on 

chromosome 17 in DLG4, rs314253.  rs314253 has been cited in the literature as being 

associated with total cholesterol [50] and with the concentration of liver enzymes in 

plasma [51].     DLG4 codes for post-synaptic density protein 95, a protein involved in 

the regulation and structure of receptors and associated signaling proteins.  DLG4 is an 

important regulator of enzyme complexes essential to the cellular response to oxidative 

stress and has been linked to MS, a chronic inflammatory autoimmune disease [43].  An 

increase in reactive oxygen species is a key feature of the development of cardiovascular 
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disease.  It is interesting that both MGAT5 and DLG 4 have been linked to fibrotic 

diseases.  Fibrosis is a contributing factor to heart failure and cardiac senescence.  It is 

possible that our results showing an association of higher sCD163 levels with an 

increased hazards ratio for heart failure are the result of increased fibrosis.  Work by 

Pinto et al. in mice showed that the M2 macrophages in the aging heart might contribute 

to cardiac senescence and heart failure [52].  Further research is necessary to understand 

the balance and role of the anti-inflammatory and the pro-fibrotic effects of M2 

macrophages in heart failure.  Further research is also necessary to understand whether 

any of the variants we found have functional relevance. 

The three significant results from the AA GWAS were all on chromosome 6 in 

the HLA-DRB1 region.  Two of the significant SNPs from the AA GWAS have been 

cited in the literature; rs9271366 has been shown to be associated with Crohn’s disease, 

inflammatory bowel disease [53], multiple sclerosis [54], and immunoglobulin A 

deficiency [55] and rs9270986 has been found to be associated with myasthenia gravis 

[37].  HLA-DRB1 is a MHC class II gene that encodes for proteins that are on particular 

immune cells.  HLA-DRB1 protein binds to the product of HLA-DRA forming the 

functional HLA-DR antigen binding heterodimer; involved in triggering an immune 

response by presenting antigen to T helper cells.  

There are several limitations to this study.  In our GWAS we only analyzed 

common variants (minor allele frequency>0.05); rare variants may also be important in 

accounting for the variability in the sCD163 levels.  Given that the sample size in AAs 

was considerably smaller than that in EAs, the statistical power to detect associations was 
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much more limited. The Mendelian randomization analysis in EAs had limited power to 

detect a causal effect, as large sample sizes are required for this approach.  Lastly, our 

study was focused on older adults and, therefore, our results may not be generalizable to 

other populations.  

In summary, our findings suggest that sCD163 may be a novel biomarker for all-

cause mortality, cardiovascular mortality, coronary heart disease, and in particular heart 

failure in older adults. The association of sCD163 with heart failure is independent of 

established CVD risk factors. We have observed several novel genetic associations for 

sCD163, and association and Medelian Randomization studies suggest a possible causal 

role monocyte activation, especially related to M2, in heart failure.  Additional studies are 

needed to assess whether sCD163 levels predict the outcomes in younger populations.   
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Table 1.  Association Between Soluble CD163 and Cardiovascular Risk Factors, 
Inflammation Biomarkers and Measures of Subclinical Cardiovascular Disease at 
the CHS Baseline Examination 

Each variable was examined for association with sCD163 in a separate model, adjusting 
for the variables listed (the exception is that a variable is not adjusted for itself when it is 
being tested): Model A: adjusted for age, race, and sex. Model B: adjusted for age, race, 
sex, smoking, diabetes mellitus, hypertension, systolic blood pressure, and BMI. β for all 
measures except sex, race, diabetes mellitus, and hypertension are for a 1-SD change in 
the predictor. P values: *P<0.01, **P<0.001, ***P<0.0001. 

 

  

Baseline Characteristics (Mean ± SD or 
%) 

Model A,sCD163 
β±SE 

Model B, 
sCD163 
β±SE 

Age, y (72.5 ± 5.4) 3.22±0.58*** 3.15±064l*** 
Male sex (41.4%) -38.51±6.30*** -38.83±6.63*** 
Black race (15.8%) -69.54±8.49*** -79.29±15.96*** 
Current smoking (13.6%) -57.21±9.47*** -42.36±10.24*** 
Type 2 diabetes (16.5%) 101.28±8.51*** 77.20±9.20*** 
Hypertension (66.3%) 50.63±6.62*** 27.64±7.56*** 
Systolic blood pressure, mm Hg 
(138.7±19.9) 

0.69±0.17*** 0.28±0.18  

LDL cholesterol, mg/dL (130.11±35.7) -0.11±0.09 -0.18±0.09 
HDL cholesterol, mg/dL (54.3±15.8) -3.23±0.21*** -2.74±0.23*** 
Triglycerides, mg/dL (140.7±77.7) 0.33±0.04*** 0.14±0.04* 
Glucose, mg/dL (111.4±37.2) 1.05±0.08*** 0.50±0.14*** 
Insulin, IU/mL (17.3±27.4) 0.90±0.11*** 0.34±0.14  
BMI, kg/m2 (26.7±4.7) 8.30±0.67*** 6.99±0.76*** 
Waist circumference, cm (93.7±12.7) 2.93±0.26*** 0.74±0.47  
C-reactive protein, mg/L (4.8±8.3) 3.42±0.37*** 3.03±0.42*** 
Interleukin-6, pg/mL (2.2±1.9) 15.66±1.65*** 12.96±1.78*** 
Fibrinogen, mg/dL (324.0±67.0) 0.30±0.05*** 0.27±0.05*** 
Internal carotid wall thickness, mm 
(1.4±0.6) 

27.70±6.06*** 19.43±6.28* 
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Table 2. Spearman correlation coefficients for sCD163 and continuous CVD risk 
factors and subclinical CVD.  

*P<0.01; **P<0.001; ***P<0.0001  

Variables are unadjusted. 

 

 
Baseline characteristic 

Spearman 
correlation 
coefficient 

 
Age, y 

 
0.071*** 

 
Systolic blood pressure 

 
0.064*** 

 
LDL cholesterol 

 
-0.006 (0.682) 

 
HDL cholesterol 

 
-0.194*** 

 
Triglycerides 

 
0.015*** 

 
Glucose 

 
0.136*** 

 
Insulin 

 
0.235*** 

 
BMI 

 
0.134*** 

 
Waist circumference  

 
0.123*** 

 
C-reactive protein  

 
0.176*** 

 
Interleukin-6  

 
0.211*** 

 
Fibrinogen 

 
0.081*** 

 
Internal carotid wall 
thickness 

 
0.083*** 

sCD14 0.152*** 
sIL-2Rα 0.261*** 
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Table 3. Hazard Ratios Between sCD163 and Incident Events in CHS 

Minimal model: Age, sex, race, clinic. Model 2: Minimal Model  + smoking, diabetes, hypertension, systolic BP, LDL, BMI 

Hazard ratios reflect a 1-SD change in sCD163. P values: *=P<0.05  **=P<0.005  ***=P<0.0001 

 All-Cause 
Mortality  

(5000 records 
/ 3392 events) 

Cardiovascul
ar Mortality  
(5000 records 
/ 1360 events) 

Coronary Heart 
Disease  

(3963 records /  
1367 events) 

Stroke 
(4777 records / 
861 events) 

Incident  Heart 
Failure (4758 
records / 1421 
events) 

Model HR (95%CI) HR (95%CI) HR (95%CI) HR (95%CI) HR (95%CI) 

Minimal  1.08 (1.04-
1.12)*** 

1.15 (1.09-
1.21)*** 

1.10 (1.05-1.17)*** 1.07 (1.00-1.15)* 1.18 (1.12-1.25)*** 

2nd Q vs 1st 
Q 
 

1.06 (0.96-1.17) 1.25 (1.06-
1.47)* 

1.26 (1.08-1.47)** 1.18 (0.97-1.44) 1.06 (0.91-1.25) 

3rd Q vs 1st Q 
 1.07 (0.96-1.18) 1.27 (1.08-

1.50)** 
1.23 (1.05-1.44)* 1.15 (0.94-1.40) 1.21 (1.03-1.41)* 

4th Q vs 1st Q 
 1.23 (1.11-

1.36)*** 
1.50 (1.28-
1.76)*** 

 1.36 (1.16-.160)*** 1.22 (1.00-1.49) 1.51 (1.30-1.76)*** 

Model 2 
 1.05 (1.01-1.10)* 1.08 (1.01-

1.14)* 
1.03 (0.96-1.09) 1.02 (0.94-1.10) 1.11 (1.04-1.18)** 

2nd Q vs 1st 
Q 
 

1.02 (0.91-1.14) 1.11 (0.93-1.33) 1.12 (0.94-1.33) 1.04 (0.83-1.30) 0.95 (0.79-1.14) 

3rd Q vs 1st Q 
 1.05 (0.94-1.18) 1.20 (1.00-

1.43)* 
1.10 (0.92-1.31) 1.09 (0.88-1.36) 1.08 (0.91-1.29) 

4th Q vs 1st Q 
 1.14 (1.02-1.27)* 1.23 (1.03-

1.47)* 
1.09 (0.91-1.31) 1.04 (0.83-1.30) 1.22 (1.03-1.46)* 
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Table 4.  Pairwise R2 MGAT5 SNPs EA 

SNP rs4954118 rs3748896 rs1257169 rs1879018 rs1996589 
rs4954118 1 0.997 0.3747 0.0711 0.0712 
rs3748896 0.997 1 0.3732 0.0705 0.0707 
rs1257169 0.3747 0.3732 1 0.0268 0.0269 
rs1879018 0.0711 0.0705 0.0268 1 0.9998 
rs1996589 0.0712 0.0707 0.0269 0.9998 1 
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Table 5.  Significant SNPs in EAs and AAs 

 Chrm SNP Gene EA p value EA 
MAF 

EA β AA p 
value 

AA 
MAF  

AA β 

2 rs4954118 MGAT5 7.11x10-14 0.7128 -48.9 0.1867 0.7453 21.2 
2 rs3748896 MGAT5 8.16x10-14 0.7123 -48.5 0.1886 0.7455 21.1 
2 rs1257169 MGAT5 1.68x10-12 0.4548 -43.2 0.0787 0.8563 36.0 
2 rs1879018 MGAT5 4.68x10-8 0.6912 -33.9 0.9774 0.7190 0.5 
2 rs1996589 MGAT5 4.80x10-8 0.691 -33.9 0.0383 0.4261 -30.4 
17 rs314253 DLG4 6.03x10-13 0.6575 43.15 0.8085 0.6128 3.7 
6 rs9271366 HLA_DRB1 0.214 0.8592 10.4 1.81x10-8 0.8612 115.1 
6 rs3135005 HLA_DRB1 0.1994 0.8696 10.9 2.86x10-8 0.8647 114.1 
6 rs9270986 HLA_DRB1 0.2763 0.8558 8.9 3.31x10-8 0.8537 113.7 
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Figure 1. Manhattan Plot of CHS EA Results 
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Figure 2. LocusZoom Plot of CHS EA Results Chromosome 2 
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Figure 3. LocusZoom Plot of CHS EA Results Chromosome 17 
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Figure 4. Manhattan Plot of CHS AA Results 
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Figure 5. LocusZoom Plot of CHS AA Results Chromosome 6
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METHODS sCD163 with CVD events and genome-wide scan 

Study samples 

The Cardiovascular Health Study (CHS) is a prospective population-based cohort study 

of men and women recruited at age 65 or older at baseline. The original cohort of 5201 

participants was recruited between 1988 and 1989 at four field centers: Forsyth County, 

NC; Sacramento County, CA; Washington County, MD; and Pittsburgh, PA. Between 

1992 and 1993, an additional 687 mostly African-American (AA) participants were 

recruited for a total cohort of 5888. The baseline examination for CHS participants 

included a medical history, demographic and lifestyle history, physical exam, fasting 

blood collection and an assessment of vascular disease by carotid ultrasound and ankle-

brachial index.  Our analysis was carried out on 5000 CHS participants with sCD163 

measurements at baseline. 

 

Biomarker and Genotype 

Measurement

  

sCD163 was measured in plasma by ELISA (R&D Systems) with a detectable range of 

17 – 2,000 ng/mL. The coefficients of variation in the current study ranged from 2.37% 

to 3.72%. 

A total of 4368 EA and 846 AA CHS samples were genotyped using the Illumina 

370CNV platform. In ancestry specific quality control (QC) analyses, SNPs were 

excluded from consideration if any of the following applied: 1) minor allele frequency < 
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0.005, 2) missing rate across subjects > 5%, or 3) Hardy-Weinberg equilibrium p-value 

< 1.0x10-5. Genotype imputation was performed to expand the coverage of common 

variants in our GWAS to SNPs that were not included on the genotype panel or that 

were included but were lost during QC.  Ancestry-specific imputation was performed 

using the software package MaCH1,2. Genotype data for 314,364 SNPs in EAs and 

311,324 SNPs in AAs, after QC SNP removal, were used to impute 2.2 million SNPs 

from HapMap Phase 2 and HapMap Phase 3 reference samples. For EAs, HapMap CEU 

(Phases 2 and 3) and TSI (Phase 3) reference samples were included. For AAs, CEU 

(Phases 2 and 3), YRI (Phases 2 and 3), TSI (Phase 3), LWK (Phase 3), ASW (Phase 3) 

reference samples were used. Finally, sets of unrelated subjects for analyses (n=3232 

EA and n=594 AA) were identified by iteratively removing one subject at a time from 

subject-pairings with a global identity-by-descent (IBD) estimate > 0.10 until no subject 

pairs had a global IBD estimated greater than that threshold. IBD estimation was 

performed using a linkage- disequilibrium-pruned set of SNPs that had similar 

frequencies in EAs and AAs (to minimize confounding of IBD with background 

ancestry similarity). QC analyses and IBD estimation were performed using the software 

PLINK3. 

 

 

Statistical Analysis 

 

Associations between sCD163 and quantitative traits (systolic blood pressure [SBP], 
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LDL cholesterol, HDL cholesterol, triglycerides, fasting glucose, fasting insulin, BMI, 

waist circumference, CRP, IL-6, fibrinogen, and carotid intima media thickness [IMT]) 

and binary traits (diabetes mellitus and hypertension) were analyzed using multiple 

linear regression and logistic regression, respectively. Hypertension was defined as 

current use of antihypertensive medication or SBP>140 and DBP>90. 

Cox proportional hazards models were used to test for association between sCD163 and 

the risk of incident coronary heart disease (CHD), incident stroke, congestive heart 

failure (CHF), CVD mortality and all-cause mortality, separately for EAs and AAs.  All 

events were adjudicated by an expert review panel.  Incident CHD included non-

procedure-related fatal or nonfatal MI.  CVD mortality included fatal events where death 

was adjudicated as due to atherosclerotic CHD or cerebrovascular disease, including 

definite fatal MI, definite fatal stroke and definite or probable fatal CHD4.  Participants 

with adjudicated baseline prevalent disease for the corresponding incident disease were 

excluded from analysis (e.g. individuals with a history of myocardial infarction at first 

visit were excluded from incident CHD analysis). Three progressive levels of covariate 

adjustments were used to assess risk of incident events associated with sCD163 levels. 

The first model was minimally adjusted for the potential confounders baseline age, sex 

and study site. The second model was additionally adjusted for CVD risk factors 

(baseline measures of current smoking status, type 2 diabetes, hypertension, systolic 

blood pressure (SBP), and low density lipoprotein (LDL) cholesterol) and baseline CVD 

(for the mortality outcomes). The third model added adjustments for baseline measures 

of inflammation (C- reactive protein (CRP), interleukin-6 (IL-6), fibrinogen), and carotid 
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IMT. 

For the genetic analyses of CHS data, the associations between sCD163 and individual 

genotyped and imputed SNPs, scored as dosage values (expected number of copies of the 

minor alleles), were tested in   linear regression models implemented in Mach2qtl1, 2. 

Covariates in the regression models included age, sex, study site, and the first two 

principal components (PCs), used to control for potential population substructure. PCs 

were calculated using the program EIGENSOFT 5,6. The statistical significance 

threshold used for defining significance was set to 5x10-8.  A series of regional 

association plots showing results were constructed using the software LocusZoom7. 
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Chapter 4: Summary and a Look to the Future.  

The major cause of CVD is atherosclerosis, a chronic inflammatory process 

involving both the innate and adaptive immune systems.  Animal work and epidemiology 

have elucidated many of the underlying processes in the development of atherosclerotic 

plaques.  However, CVD is complex and has other contributing factors including genetic 

predisposition, modifiable and non-modifiable risk factors, environmental exposures and 

the interactions of all of these.  Our studies of both sIL-2Rα and sCD163 provide further 

evidence of both the adaptive and innate immune systems involvement in CVD.  Our 

analysis of sIL-2Rα levels in CHS was the first large-scale assessment of sIL-2Rα for 

association with CVD traits and events; and the first GWAS for SNPs associated with 

sIL-2Rα levels. When we analyzed data from CHS our results found that sIL-2Rα, a 

surrogate for T lymphocyte activity, is a novel biomarker for all-cause mortality, 

cardiovascular mortality, stroke, and heart failure in older adults as well as associated 

with other CVD risk factors.  We also identified 52 SNPs in chromosome 10 at and near 

the IL2RA gene that had genome wide significance for association with sIL-2Rα levels in 

European Americans.  A number of these SNPs were previously associated with type 1 

diabetes mellitus and multiple sclerosis. These findings combined with our results 

provides additional support for the position that T cell activation plays an important role 

in several disorders including, but not limited to, CVD. 

We cannot identify the casual SNP(s) based on our current analyses; further high-

density genotyping of the chromosome 10 region will be necessary.  While sIL-2Rα 
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levels may be a novel biomarker in older adults, further studies are necessary to verify the 

generalizability to other populations.  Continued investigation into the genetic control of 

IL-2/IL-2R interplay with regard to T-cell differentiation and cytokine production is also 

needed. 

Our work on sCD163 represents the first large-scale study in a population-based 

cohort with incident events and GWAS data.  We found sCD163, a marker of 

macrophage activation, to be associated with many CVD risk factors and to be an 

independent predictor of all-cause mortality, cardiovascular mortality, and incident heart 

failure in older adults.  Our GWAS found genetic variants in the genes MGAT5 and 

ASGR1/DLG4 to be associated with sCD163 levels in European Americans while 

variants in HLA-DRB1 were associated with sCD163 levels in African Americans; no 

SNPs in the region of CD163 reached genome-wide significance.  Mendelian 

Randomization analysis indicated that the variants in MGAT5 in European Americans 

and those in HLA-DRB1 in African Americans associated with sCD163 levels also 

associated with incident heart failure in older adults.  As for sIL2Rα, additional genetic 

work is necessary to identify the functional variant for sCD163 levels. 

Atherosclerosis prevention and treatment is a prime example of translational 

science.  Basic science research in mice and rabbits combined with studies of 

biochemical pathways and epidemiological and genetic studies in cohorts have informed 

clinical practice. To date much of atherosclerosis prevention has fallen under the 

umbrella of Public Health with the focus being on lifestyle changes as a management of 

risk factors including smoking, hypertension, hyperlipidemia, diabetes mellitus, high 
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blood pressure, sedentary lifestyle, and diet.  Research into the development and 

progression of atherosclerosis led to an understanding of the importance of cholesterol in 

the process. In the 1950’s the work of Konrad E. Bloch, Feodor Lynen, John Cornforth, 

and George Popják elaborated the biosynthetic pathway of cholesterol leading to the 

search for cholesterol synthesis inhibitors [1].  With the Food and Drug Administration 

approval of the Merck drug lovastatin, it became the first commercially available drug for 

lowering LDL cholesterol [2] moving atherosclerosis prevention from Public Health to a 

more targeted approach.  Since the advent of statins, many approaches to the prevention 

of CVD have been examined.  In addition to cholesterol lowering medications, other 

treatments include anti-platelet drugs to prevent platelet clumping, beta-blockers, 

angiotensin-converting enzyme inhibitors, and calcium channel blockers.  Other 

treatments have targeted the inflammatory system.  Work by Huber et al. in mice showed 

that increased levels of IL-6 resulted in a large increase in size of fatty lesions [3].  Down 

regulating, the immune response or biasing the immune response toward an 

antithrombotic response might slow plaque progression.  A recent report on the effects of 

cyclodextrin in mice found that the drug increases cholesterol solubility and essentially 

reprograms the macrophages to improve cholesterol efflux and reduce atherosclerotic 

plaque size [4].  Genetic associations and the continued search for casual variants will 

lead to targeted, personalized, therapies for atherosclerosis.   The identification of loss of 

function variants and their association with a decreased risk of heart disease in genes 

PCSK9, NPC1L1, APOC3, and APOA5 [5] give encouragement to other potential 

therapies and the translation of bench science to clinical practice.    Continued 
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investigation of both sIL-2Rα and sCD163, markers of T-cell and monocyte 

differentiation, in animal models and cohort studies may lead to opportunities for the 

prevention of atherosclerosis and/or treatment through an increased understanding of both 

the biology and genetics of both the innate and adaptive immune responses in 

atherosclerosis. 
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