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Imitating the Shazam App with Wavelets
EDWARD ABOUFADEL

Grand Valley State University
Allendale, Michigan
aboufade@gvsu.edu

Like searching for a needle in a haystack, suppose that we have a large set of signals
(finite sequences of numbers) {s1, s2, s3, . . . }, and a special signal q that may or may
not be in the collection. How can we find signals in the collection that are similar if
not identical to q, and how can we do this quickly? A solution to this question is the
basis of the Shazam smartphone app, where a listener captures a short excerpt of a
recorded song with the smartphone’s microphone, and in a matter of moments the app
reports the name of the song and the artist [12]. There the “needle” is the excerpt, and
the “haystack” is a vast corpus of popular music. The Shazam algorithm is powered
by Fourier analysis [15], and the purpose of this paper is to present a simpler, wavelet-
based method that captures the basic process used by the app.

Solutions to this problem are useful in situations where the description of the “nee-
dle” might not be precise or may have noise in it, such as the Shazam problem, and
where there will be frequent searches of the “haystack.” For this presentation, we will
use a “haystack” of comparable and accessible signals. The Jaeb Center for Health
Research has made a large database of continuous glucose monitor (CGM) data avail-
able to the public∗. The data comes from a recent study of type-1 diabetes (an autoim-
mune disorder characterized by the destruction of the islet beta cells in the pancreas
by the body’s own immune system) that involved 451 patients wearing a CGM for 6 or
12 months [9]. In Figure 1 we see an example of a “CGM day” from a type-1 diabetic
patient: 288 readings of positive integers—one every five minutes.
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Figure 1 Example of an blood glucose daily chart.
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In the following, we will describe how to take a “needle”—a CGM day labeled q—
and find similar days in our database. The key idea—which is how the Shazam app
works—is to create reduced, and practically unique, representations of every CGM
day in the database, and then to compare these short representations rather than the
original signals. Basically, there is an initial investment of time and computing power
to generate short signatures for each signal in the database, and then a search can be
performed quickly by comparing the signatures. To create the signatures, we will use a
visualization called a wavelet scalogram. Wavelets are excellent tools for this type of
signal reduction for CGM data, because of the rough and irregular quality of the data.

Wavelet filters

For our signal matching algorithm, wavelet filtering is an important tool. Wavelets have
been applied in a wide range of areas, such as video cameras [5], Internet worm detec-
tion [6], and the design of low-power pacemakers [8]. Wavelets came to prominence
in the late 1980s, and Ingrid Daubechies was a key researcher in their development.
For good reason, there are families of wavelet filters that are named after her [11]. In
our simplified version of the Shazam process, we will use the Daubechies-6 wavelet
filters. Applying a filter to a finite time series yields another finite series. Filtering a
time series may identify structures in the signal.

There are two Daubechies-6 filters: a low-pass filter which creates a “blur” of the
input time series, and a high-pass filter which reveals details within the time series.
The low-pass filter is a weighted average of entries in the time series, leading to a new
and shorter time series that appears similar to the original. Entries in the high-pass
filter output are close to 0 when the input series is nearly constant, linear, or quadratic,
while other behavior in the input series shows up as larger values (in absolute value)
in the high-pass output.

Given a signal s = {si }, i from 1 to n, we take six entries at a time to compute filter
outputs. For the low-pass filter [14], the calculation is

Hk = h0s2k + h1s2k+1 + h2s2k+2 + h3s2k+3 + h4s2k+4 + h5s2k+5, (1)

where the filter coefficients {hi } are

h0 ≈ 0.2352, h1 ≈ 0.5706, h2 ≈ 0.3252,

h3 ≈ −0.0955, h4 ≈ −0.0604, h5 ≈ 0.02491
(2)

and k varies from 1 to n/2. These coefficients were derived by Daubechies so that the
underlying wavelet functions satisfy certain properties: compact support, orthogonal-
ity, and regularity [1]. Filtering in this way creates a new signal that is half the length
of the input signal. The high-pass filter calculation is

Gk = −h0s2k−4 + h1s2k−3 − h2s2k−2 + h3s2k−1 − h4s2k + h5s2k+1. (3)

Applying these filters yield two new time series of length n/2. The low-pass output
is a weighted moving average of entries in the original time series, while the high-pass
output captures short-term changes in the time series. We call this the first scale of the
analysis.

When using wavelet filters, a pyramid scheme is often implemented. A pyramid
scheme involves applying the filters over-and-over to the low-pass output from the
previous scale. So the second scale consists of two new time series of length n/4, the
third scale has output length n/8, etc. There is a point where the resulting low-pass
output is quite short and no further filtering is useful.
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Before filtering the CGM signals, we apply a common technique known as
“padding” the signals [13], which is extending the signal si in some way for i < 1
and/or i > 288. This is necessary for some of the low-pass filter calculations for k near
288 and some of the high-pass calculations for k near 1. Some ways to pad signals
might be by adding 0’s on the end, or extending the series as if it were periodic. (For
example, if the original signal has length 28, then assign s29 = s1, s30 = s2, etc.) Since
a CGM day is 24 hours, the periodic approach makes sense here.

When filtering each CGM day q, the first round yields two signals of length 144.
Other rounds produce signals of lengths 72, 36, and 18, and the fifth produces length
9. At this point, we no longer have an even number of entries and the low-pass output
of length 9 is quite short, so we end the scheme, leaving us with low- and high-pass
outputs on five different levels. In Figure 2 we see two examples of CGM days and
their corresponding scale-5 “blurs.”
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Figure 2 CGM days and scale-5 wavelet blurs.

Creating wavelet scalograms and signatures

If speed was not important, we could compare the original signals using classic dis-
tance formulas. For example, for any pair of signals of equal length q = {qi } and s =
{si }, i = 1, . . . , n, there are several distances, or norms, that we can calculate between
these signals, such as the 1-norm, the 2-norm, or the infinity norm (or sup norm):
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‖q − s‖1 =
n∑

i=1

|qi − si |,

‖q − s‖2 =
√√√√

n∑
i=1

(qi − si )2,

‖q − s‖∞ = max
1≤i≤n

|qi − si |.

However, to perform a signal match quickly is important, and for larger n and a large
database of signals, these calculations can take considerable time. In this section we
will describe how to reduce the original CGM signals to shorter signatures that can be
compared instead.

A wavelet scalogram is a visual representation of the high-pass filter output that
highlights the most dramatic changes in the signal. For our method, for each CGM
day we create a scalogram as follows: We start with the five scales of analysis that are
calculated from a CGM signal, giving us 279 high-pass outputs (from scales of length
144, 72, 36, 18, and 9). After identifying the 16 largest and 16 smallest (most negative)
entries. we replace those largest entries with the tag +1, the smallest entries with the
tag −1, and the remaining 263 entries with the tag 0. This is a lossy process (it cannot
be reversed) and it is an example of percentile thresholding, which is often applied in
signal processing to filter output.

After thresholding, the scalogram is created by using our time of day as the x-axis
and scale as the y-axis. At each scale we populate a row of rectangles, one for each
high-pass output entry, and color the rectangles black for a top-16 entry (a tag of +1),
gray for the bottom-16 entries (a tag of −1), and white for the rest of the entries. When
comparing the scalogram to the original time series, one can see that, in general, black
and gray areas of the scalogram correspond to places of interesting behavior in the
time series. Black areas usually correspond to where blood glucose is rising, while
gray is where blood glucose is falling, and we might get some black or gray rectangles
on the left or right end due to the periodic padding of the signal. The scale indicates
the length of time of the behavior, with the larger scale capturing behavior over longer
periods of time. Two examples of scalograms can be found in Figure 3.

From each scalogram we can create a 71-item vector for each day that we will call
a signature. The first nine entries will be the nine low-pass output values on the fifth
scale, each rounded to the nearest integer. The remaining entries are the tags from the
fifth, fourth, and then third scales. In Figure 3, the left example is∗ 269-36827, and
here is the signature for this CGM day, divided up as it was created:

[67, 79, 133, 63, 92, 165, 191, 148, 155;
−1, 1, −1, 0, 1, 1, −1, 1, 1;
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, −1, −1, 0, −1, 1, 1, 0;
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,

−1, 0, −1, 0, −1, 0].

In this way we can represent each CGM signal q (of length 288) by a shorter,
structured signature q̃ of nine positive integers and 68 tags from the set {−1, 0, 1}.
Once these signatures are calculated, we will use them instead of the original signals
to compare CGM days.

∗given by patient number in the Jaeb database and “Excel Day,” where January 1, 1900 at 12 midnight is “1.”
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Figure 3 CGM days and scalograms.

Matching CGM days

In this section we will define a measure of similarity S between two signatures q̃ and s̃.
We will consider these signatures (and the corresponding CGM days) to be “similar” if
the measure S(q̃, s̃) is sufficiently small. Starting with a test signal, we will be satisfied
with matches that twist and turn in ways like the test signal, and which possess glucose
values that are close to the test signal’s values during most periods of the day. Figure
4 contains a few examples of what we have in mind, with days that are similar to test
day 337-36931.

Our measure S will be defined by calculating a “penalty” that comes from compar-
ing the “high” parts of the signatures, and then a separate penalty by comparing the
“low” parts. The “high” parts of the signatures can be used to find signals with coin-
cidental twists and turns. The basic idea is that the more the −1 and +1 tags match
in the two signatures, the more the signals will have similar shape. We will quantify
this by calculating penalties when the tags do not match, giving greater weight to the
entries in the fifth scale and fourth scale (the two bottom rows of the spectogram). For
signatures q̃ and s̃, we define h(q̃, s̃) as follows: for each pair of corresponding entries
in the “high” parts of the signatures, we assign the following penalties:

−1 0 1

−1 0 6 12
0 6 3 6
1 12 6 0
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Figure 4 Matched CGM days with 337-36931.

Additionally, for the fourth scale, we double the penalties, and for the the fifth scale,
they are quadrupled. Then all penalties are added together to compute h. Because of
the uncertainty of the 0 tag, there are penalties whenever it appears, but there is a
smaller penalty for a pair of 0’s.

If we try using h alone as our similarity measure, matches of a test signal will have
comparable ups-and-downs, but can be quite distant from each other vertically. For
instance, a CGM signal and a second signal created by adding 100 to the first signal
would match perfectly, but this is not what we have in mind for similarity. For this
reason, the “low” parts of the signatures must also be taken into account.

A natural approach to compare “low” entries would be to use vector space norms such
as the 1-norm, the 2-norm, or the infinity norm that were mentioned above. But each of
these three norms are flawed when used to compare signatures. To decide how to use the
“low” entries, a discussion of what we will desire to identify as “similar” is necessary.

If two CGM days appeared to follow the same history for most of the 24 hours and
diverged for an hour or two, but not in an extreme way, then that would be acceptable
as “similar.” Consequently, if two signals agreed more or less on seven or eight of their
nine low entries, while on the other entries the differences were not extreme, and h
for this pair was small, then we would want our similarity measure between these two
days to be small. Also, for type-1 diabetes, all differences between CGM signals are
not the same. First of all, any reading above 240 is considered a “high,” and the target
of the type-1 diabetic patient and any caregiver is to maintain blood glucose numbers
between 70 and 140 mg/dL. It is then the case that a difference of 10 between 75
and 65 is the difference between “in range” and ”low,” and this difference is just as,
if not more important than, the difference between 65 and 55. In turn, both of these
differences are much more important than between 310 and 300.

Consequently, if we think of using these norms to define penalties between CGM
days that are “not similar,” the use of any one of these norms is problematic. For both
the “2-norm” and the “infinity norm,” there is a high penalty for isolated corresponding
entries that are significantly different. So for two signals that agree for nearly their
whole length but differ significantly in one small period of time, the calculation of
either of these norms can yield relatively large values. The “1-norm” will take into
account all nine differences between the two “low” signatures, but unless we weight
the individual differences based on the value of “low” entries, we will either over-
penalize or under-penalize certain differences.

Rather than modify the “1-norm,” we propose using a combination of these three
norms as part of our similarity measure, favoring pairs of CGM days that are assessed
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low penalties from all three norms. Of the nine differences between the “low” entries,
pairs of signals where the largest of the nine differences are relatively small, and the
average of the nine differences are also relatively small, will have a similarity measure
which is relatively small. With this in mind, we define the following similarity measure
between two different CGM signatures q̃ and s̃:

S(q̃, s̃) = 0.01‖q̃ − s̃‖1 + 0.02‖q̃ − s̃‖2 + 0.04‖q̃ − s̃‖∞ + 0.01h(q̃, s̃), (4)

where the first three norms are calculated on the first nine entries of the signatures, and
h applies to the rest of the entries. We also set S(q̃, q̃) = 0, for all q̃, since h(q̃, q̃) �= 0.
Small coefficients are included in each part of the formula for S to give our measure
of similarity a reasonable size when applied to CGM data, and to help with potential
future computer calculations (e.g., dealing with a matrix of similarity measures). The
coefficients were determined through trial-and-error by visually studying the matches
that were identified for selected test signals.

We now have the pieces needed to create a system for matching CGM signals: First,
there is a one-time calculation of signatures for all signals in the database. Once this
investment in calculation is complete, it is then relatively quick to find matches for
our test signal by using the signatures and S. It is this speed of matching that is the
rationale for our proposed method. It would be simpler, but significantly longer in
time, to just compare all the original signals using one of the three norms above, or
some combination of those norms.

Figure 5 shows a second set of examples of matching a test day, in this case day
59-36688 in the Jaeb database. Similar days are identified by values of S less than 10.
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Figure 5 Matched CGM days with 59-36688.

Further discussion

How might this method of matching CGM days be used in practice with patients,
caregivers, and doctors? Currently a patient can use CGM data to fine-tune short-term
blood glucose management: determining at any time if extra insulin is needed to “cor-
rect a high,” or if a “fix” of extra carbohydrates is required for low blood sugar. For
long-term management, a blood test known as A1C∗ is done every three months, pro-
viding a measure of average blood glucose over the past six months. However, the
A1C test doesn’t capture issues of range and volatility of CGM readings.

∗glycated hemoglobin is known as HbA1C, or just A1C.
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One idea is to use the similarity measure S to compare the days of a patient with
“exemplary” days—near-perfect glucose days where all CGM readings are between
70 and 140 and there is very little change from one reading to the next. With such a
comparison, a patient and treatment team can analyze how close the patient’s days are
to these “exemplary” days, and this may shed light on issues of range and volatility.
The more that is understood about a patient’s blood glucose dynamics, the better that
variables such as medication, food, and activity can be adjusted [4, 10].

Specifically, it might be enlightening to find days with large S values compared to
“exemplary”days.Ananalysis like thiscanbe revealing for somepatients, suchaspatient
484 in the Jaeb database. For this patient, the reported A1C in the Jaeb data files was
6.6%, a very good reading, and it corresponds to an average blood glucose of around 150.
However, a study of the patient’s CGM data using our similarity measure S shows fewer
exemplary days than would be expected. Graphs of individual days, such as 484-37036
and 484-37171 (see Figure 6), suggest that for this patient, there are many highs and
lows of short duration that an A1C score would not detect. With this understanding,
treatment plans could be adjusted to address these issues of volatility and range.
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Figure 6 Patient 484: Two days with significant highs and lows, but a good average.

Returning to the Shazam app, the methods used to match an audio clip to a song
in its database are similar to what has been described in this paper, but more compli-
cated. For instance, Fourier analysis is used instead of wavelet filters, which leads to
the creation of spectograms rather than scalograms. The signature/similarity measured
calculations also involve finding peak values in the spectrogram, but in a significantly
different way. Also, modifications are needed to take into account that only a short
segment of a song is the test signal, rather than the whole song. Details can be found
in [15]. The scalograms that we created are based on standard wavelet scalograms [2]
and the use of wavelet scalograms with audio signals is demonstrated in [3]. That paper
also incorporates quantization, which is a variant on the use of tags that is described
in this paper.

Finally, the Shazam algorithm and the methods in this paper are part of the field
of data science, which has seen massive growth in the past few years. Advances have
been fueled by the growing availability of large data sets as sensors and storage devices
have gotten smaller and cheaper, and more legacy data is made freely available on the
Internet. New innovations are anticipated over the next 10–20 years [7], and there are
many parts of upper-level collegiate mathematics that can open doors to this discipline.
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Appendix: Preprocessing the CGM data

To create our set of CGM signals to search through, we only used the days in the Jaeb
databasewhichhadat least209outof288possibleCGMreadings.This ledto42,799days
comingfrom346patients.Forthedaysthatwereused,whenCGMreadingsweremissing,
the previous known reading was used as a reasonable replacement. So the database that
we used consisted of 42,799 days, each with 288 CGM positive integer readings.
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