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Effects of Aging and Dietary Phytoestrogens on Sperm Production in Sprague Dawley Rats 

 

 
Estrogens, in addition to testosterone, are physiologically relevant to normal sperm production in the 

testis and sperm maturation in the epididymis. Previous studies from our lab demonstrated that daily 

sperm production declines from 15 to 18 months of age in Sprague Dawley rats, and treatment with 

estrogen during this period attenuated the age-associated decline. Phytoestrogens are present in 

standard rodent diets at high levels (350-650 mg/kg) and may be potential endocrine disruptors. The 

purpose of this study was to investigate the effect of removing dietary phytoestrogens during aging 

on sperm production.  Retired breeder Sprague Dawley rats were obtained at 9 months of age, 

divided into three groups and further housed until 15 or 18 months of age. At 15 months of age, one 

group of animals was switched to a low phytoestrogen (0-20 mg/kg) rodent chow.  A second group 

of animals was maintained on the high phytoestrogen diet. Groups one and two were maintained on 

their respective diets for three months until they were 18 months old.  At 18 months of age, animals 

were euthanized and reproductive tissues were collected for analysis. The third group of animals was 

euthanized and tissues collected at 15 months of age. Results show that daily sperm production in 

both 18 month groups declined approximately 23% compared to animals 15 months of age, but was 

not different based on diet. The number of Sertoli cells decreased with age by about 21%, but the 

decrease was not affected by dietary phytoestrogens as cell numbers in both 18-month old groups 

were similar. Interestingly, concentrations of testosterone were not significantly different between 

ages or with dietary phytoestrogen content. However, there was a decrease in serum (~37%) and 

testicular (~42%) estradiol concentrations with age. Collectively these results further support the 

hypothesis that sperm production decreases with age, and the relationship between estradiol and 

Sertoli cells helps to maintain fertility. The findings also suggest that removal of dietary 

phytoestrogens does not affect the age-related decline in efficiency of spermatogenesis and daily 

sperm production.  
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Chapter 1. Introduction 

 

Given the potential effects of estrogen on spermatogenesis, dietary phytoestrogens have 

become a point of study in recent years. These phytoestrogens are often found in soy based 

products common to eastern cultures and becoming increasingly prevalent in western culture. 

Multiple studies have demonstrated a disruption to reproductive function due to phytoestrogen 

exposure. The majority of studies using rat models focus on the pre-pubertal developmental 

effects of phytoestrogens. However, the effects of manipulating phytoestrogen levels in adult 

males remains sparse and with variable results. 

The effects of aging on spermatogenesis is also an area of interest given that human 

males experience a depletion of germ cells, reduced testosterone production, and lower motility 

of sperm with age. Previous studies in my lab investigated hormone concentrations and sperm 

production in aging rat models (Clark and Pearl, 2014). The results showed that testosterone 

levels did not significantly decline, but estradiol concentrations began dropping at 15 months. 

This age corresponded to an adult human roughly 47 years old. Alongside the falling estrogen 

levels, there was a significant drop in sperm production after 15 months. This decline in sperm 

production was prevented in animals given supplemental estrogen during aging. These results 

suggest a role for estrogen in maintaining spermatogenesis and male fertility. Given the changes 

observed with estrogen and spermatogenesis during aging, it is possible that this time period may 

be a target for disruption by phytoestrogens. However, no studies to our knowledge have 

investigated the effects of dietary phytoestrogens during aging.  
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Purpose 

            The purpose of this study was to determine the effects of aging and dietary 

phytoestrogens on testicular function.  

 

Scope 

Testicular function includes both the production of hormones and the production of 

sperm via spermatogenesis. Loss of function in either of these parameters can have significant 

effects on fertility. We will determine the extent that testicular function is altered by age or diet 

by focusing on testosterone and estradiol levels, as well as measuring total sperm production. We 

will also consider how both aspects of testicular function can interact to impact fertility. 

 

Assumptions  

1. Estradiol has a role in maintaining spermatogenesis and male fertility 

2. Rats between the ages of 15 and 18 months appear sensitive to estrogen treatment 

indicating a possible target for endocrine disruption 

 

Hypothesis  

We hypothesize that dietary phytoestrogens negatively affect testicular function during 

aging, and removal of the endocrine disruptor will improve the age-related decline of 

spermatogenesis. 
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Significance 

Because males are the contributing factor in up to 50% of infertility cases, a greater 

understanding of male reproductive physiology is essential. The effects of aging on testicular 

function are becoming increasingly relevant as couples are delaying the time they attempt to 

conceive. Phytoestrogens are a known endocrine disruptor commonly found in soy-based food 

products. Additional knowledge regarding the extent of this disruption could prove useful as soy-

based diets are becoming increasingly prevalent in western cultures. This study is to our 

knowledge the first to examine the effects of dietary phytoestrogens during aging. 
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Chapter 2: Review of Literature 

 

Testicular Anatomy and Function 

Normal testicular function includes both the production of hormones and the production 

of sperm by process of spermatogenesis. These two primary functions of the testis occur within 

different compartments: the seminiferous tubules and the area between the tubules or the 

interstitial space. The coordination of these two components enables proper testicular function 

and fertility in mammalian males. A human testis contains between 200-300 lobules of 

extensively folded seminiferous tubules. Spermatogenesis occurs within this seminiferous tubule 

compartment. The interstitial compartment contains Leydig cells which produce testosterone and 

estradiol in response to luteinizing hormone (LH). Peritubular myoid cells rest just outside the 

basement membrane of the tubules, thus surrounding the seminiferous tubule. These flat 

contractile cells provide a level of support to mammalian seminiferous tubules. 

The tubule can be thought of in terms of two distinct layers: the peripheral basement 

membrane and the internal epithelium. Germ cells progress from the basement membrane 

through the epithelial layer as they undergo maturation. Development of the germ cells occurs 

due to a predetermined program and via communication with neighboring Sertoli cells (Jégou, 

1993). Sertoli cells, located within the epithelium, are activated upon encountering follicle-

stimulating hormone (FSH) and testosterone. Despite resting on the basement membrane, Sertoli 

cells send cytoplasmic projections throughout the entire epithelium which support germ cell 

development. The Sertoli cells form tight junctions with each other that contribute to the blood-

testis barrier, which protects the germ cells from the male immune system and other potential 

blood-borne factors (Lie et al., 2013; Mruk and Cheng, 2015). Maturing spermatid heads create 
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deep indentations into the Sertoli cell and are gradually transported towards the luminal portion 

of the seminiferous tubule (Hess, 1990).  

Once spermatogenesis begins in the seminiferous epithelia, there are three phases of 

sperm development: mitosis, meiosis, and remodeling. Near the basement membrane, germ cells 

undergo waves of mitosis, thus increasing germ cell numbers. These mitotic cells are 

spermatogonia. Type A spermatogonia are the most basal cells and are responsible for 

maintaining stem cell populations, but they also divide to form type B spermatogonia. Type B 

cells will eventually divide and give rise to spermatocytes that progress through a process called 

spermatocytogenesis. The primary spermatocytes undergo the first meiotic cell division (meiosis 

I) to form secondary spermatocytes, followed by a second division (meiosis II) to form round 

spermatids. Spermatids undergo remodeling to eventually become elongated spermatozoa. This 

remodeling involves production of flagellum and acrosome, shaping of the head, condensation of 

nuclear chromatin, and formation of a mitochondrial sheath (Clermont, 1972). Spermiogenesis is 

complete when the cells are released into the lumen of the seminiferous tubule to proceed 

through the epididymis for further modification (Leblond and Clermont, 1952). Any given cross 

section of the seminiferous tubule will show one stage of developing germ cells (Fig. 1). In 

humans, up to six stages may be observed depending on the position in the tubule; whereas 

fourteen stages may be visible in a rat testis. This spermatogenic cycle qualitatively describes a 

seminiferous tubule based on the developmental states of the germ cells present in the 

epithelium. Endocrine changes within the testis can have distinct effects depending on what stage 

a given seminiferous tubule is in (Toyama et al., 2001). 
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Figure 1. Cross Section of Rat Testis in Stage VI.  

LU: Lumen of seminiferous tubule 

BM: Basement Membrane 

Ep: Epithelial layer 

S: Sertoli cell nuclei 

G: Germ cell nuclei 

R: Round spermatid nuclei 

E: Elongated spermatid nuclei 

Scale Bar is 100 m 
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Hormones and Spermatogenesis 

 Spermatogenesis is dependent upon the hormones of the hypothalamic-pituitary-gonadal 

axis (HPG axis). The combined contributions of all three glands maintain proper reproductive 

physiology in adulthood. Gonadotropin-releasing hormone (GnRH) secreted from the 

hypothalamus stimulates the release of LH and FSH from the anterior pituitary gland. FSH 

directly activates Sertoli cells to release factors necessary for spermatogenesis (Smith and 

Walker, 2015). Examples include DMRT responsible for sex determination, the iron transporter 

transferrin, and factors that assist with proliferation of germinal stem cells such as VEGF. LH 

stimulates Leydig cells to produce and release testosterone which also stimulates Sertoli cells. 

The HPG axis is highly conserved between mammal species, so effects observed within animal 

models can be reasonably attributed across mammalian species, including humans. The 

importance of FSH and testosterone for spermatogenesis is well established (Walker and Cheng, 

2005). The FSH receptor is a G protein-coupled receptor present primarily within Sertoli cells. 

Binding of FSH to their receptors causes increased cAMP production that varies depending on 

the stage of the seminiferous tubule. Higher cAMP raises the levels of PKA which increases 

phosphorylation of multiple proteins in the Sertoli cell responsible for regulating the expression 

of transcription factors. Testosterone binds to intracellular receptors to recruit coactivator 

proteins and stimulate gene transcription. Both FSH and testosterone can activate MAP kinase 

pathways in Sertoli cells to stimulate proliferation. Similar to FSH, testosterone can also elevate 

Ca2+ levels in Sertoli cells, but does not act to elevate cAMP production (Loss et al., 2007). 

Together, FSH and testosterone are essential for spermatogenesis and their shared mechanisms 

allow a level of redundancy in supporting spermatogenesis.  
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Other hormones such as estradiol also contribute to male fertility/infertility. Similar to 

testosterone, the production of estrogen within the testis requires support from the Sertoli cells 

and Leydig cells. The enzymatic complex aromatase is responsible for the conversion of 

testosterone to estradiol. Expression of aromatase has been observed within Sertoli cells, Leydig 

cells, spermatocytes and round spermatids, and evidence suggests that germ cells could be the 

main source within the testis (Carreau et al., 2003; Hess 2003). Estrogen receptors (ESR1/ESR2) 

are expressed within the testis and epididymis of multiple species, including humans and rats, 

indicating the male reproductive tract as a source and target for estrogen regulation (Carreau and 

Hess, 2010; Hess et al. 2011). The two receptors are located in Leydig cells and the efferent 

ductule epithelium. ESR1 is also expressed in Sertoli cells and germ cells of the rat testis, where 

the hormone appears to impact modulation of libido, erectile function, and spermatogenesis 

(Schulster et al., 2016). However, specifics regarding the potential effects of estrogen on 

spermatogenesis are still being defined.  

Estradiol binds to the estrogen receptors widely distributed throughout the testis in both 

testicular cells and germ cells (Carreau et al., 2011). ESRl appears to regulate spermiogenesis 

while ESR2 influences spermatocyte apoptosis and spermiation, the release of elongated 

spermatids from the seminiferous tubule (Dumasia et al, 2016). The receptors have varying 

affinities to environmental estrogens, and multiple studies have attempted to pinpoint the exact 

role of the hormone in reproductive physiology with conflicting results. Estradiol treatment of 

hypogonadal mice induced increased testicular development (Ebling et al., 2000). Estradiol may 

also increase the stimulatory effects of FSH on testicular maturation in rats (Kula et al., 2001). 

Other evidence points to possible negative effects of estrogen within the testis. Elevated estradiol 

in the male testis of mice and rats may cause increased germ cell apoptosis and disrupt the 
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functions of Sertoli cells and Leydig cells (Walczak-Jedrzejowska et al., 2013; Yu et al., 2014; 

Leavy et al., 2017). There is a clear need to better understand how estrogen and estrogen-like 

compounds interact with and impact the male testis. 

Given the potential effects of estrogen on spermatogenesis, dietary phytoestrogens have 

become a point of study in recent years. These phytoestrogens are often found in soy based 

products common to eastern cultures and are becoming increasingly prevalent in western culture. 

Among the most common phytoestrogens found in human diets and rat feed are the isoflavones 

genistein and daidzein (Degen et al., 2002). The structural similarities to estradiol (Fig. 2) allow 

phytoestrogens to bind estrogen receptors, particularly ESR2, and often with higher affinity 

(Lund et al., 2004; Sullivan et al., 2011). Multiple mammalian studies have demonstrated a 

disruption to reproductive function due to phytoestrogen exposure. Rodent diets containing high 

amounts of phytoestrogens appear to increase germ cell apoptosis (Assinder et al., 2007; 

Jefferson et al., 2012). These changes are often attributed to disruption of the HPG axis, such as 

decreasing basal FSH secretion and total FSH production (Arispe et al., 2013). This endocrine 

disruption can also affect testosterone levels. Exposure to phytoestrogens can cause an overall 

decrease in testosterone within the rat testis (Weber et al., 2001; Hancock et al., 2009; Napier et 

al., 2014). The sensitivity of specific stages in the spermatogenic cycle to endocrine disruption is 

also known to occur. The conversion of round spermatids between stages VII and VIII within 

Sprague-Dawley rats is highly testosterone-dependent, and manipulation of diet has been shown 

to impact spermatogenesis in a stage specific fashion (Kainz et al., 1988; O’Donnell et al., 1994; 

Gonzales et al., 2013). 

While high isoflavone intake may reduce overall fertility and sperm production in 

humans, there appears to be no significant effects on sperm motility, sperm morphology or 
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ejaculate volume (Chavarro et al., 2008). Long-term exposure of dietary phytoestrogens did not 

appear to affect LH and androgen levels in mice, but did cause reduced proportions of haploid 

germ cells and affected androgen-response gene expression in Sertoli cells (Cederroth et al., 

2010). The majority of studies using rat models focus on the pre-pubertal developmental effects 

of phytoestrogens (Casanova et al., 1999; Odum et al., 2001; Degen et al., 2002; Sherrill et al., 

2010; Napier et al., 2014). However, the effects of manipulating phytoestrogen levels in adult 

mammalian males remains sparse and with variable results (Assinder et al. 2007; Trifunović et 

al. 2014). 

 

 

 

 

 

 

 

 

Figure 2: Comparison of Chemical Structure: 17β-estradiol (left) and genistein (right) 

commonly found in soy based diets. 
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Aging and Spermatogenesis 

The effect of aging on spermatogenesis is also an area of recent interest given that a 

higher percentage of the population is delaying the time they attempt to conceive and have 

children. Human males experience a depletion of germ cells, reduced testosterone production, 

and lower motility of sperm with age (Sibert et al., 2014). Degeneration of the seminiferous 

tubule during stages VII-VIII in aged hamsters was accompanied with decreased spermatogonia 

proliferation (Bernal-Mañas et al., 2014). Other evidence supports a decrease in basement 

membrane thickness coinciding with a drop in germs cells leading to hypospermatogenesis in 

humans (Paniagua et al., 1987; Pop et al., 2011).  

Recently, the role of Sertoli cells in maintaining spermatogonial stem cells has also 

received attention. Sertoli cells form a spermatogonial stem cell niche on the basement 

membrane to support the essential maintenance of stem cell populations in the testis. 

Furthermore, this stem cell niche has variable activity, with reduced replication of stem 

spermatogonia during stage VII-VIII of the seminiferous cycle (Johnston et al., 2011; Grasso et 

al., 2012). A measurable decrease in the Sertoli cell populations of the testes with age has been 

reported in humans, and this decrease correlates with diminished sperm production (Petersen et 

al., 2015).  

Among the general population, approximately 15% of couples are unable to conceive and 

are thus considered infertile. Of these couples, the male is responsible or is a contributing factor 

in 40-50% of the cases. Male infertility results from improper testicular function, however the 

precise cause for testicular dysfunction is unclear in about 50% of cases. Previous work in our 

lab investigated hormone concentrations and sperm production in aging rat models (Clark and 

Pearl, 2014). The results showed that testosterone levels did not significantly decline, but 
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estradiol concentrations began dropping at 15 months of age which corresponds to an adult 

human roughly 47 years old. There was also a significant drop in sperm production after 15 

months of age. This decline in sperm production was reduced in animals given supplemental 

estrogen during aging. These results suggest a role for estrogen in maintaining spermatogenesis 

and male fertility. Data also suggests that this time period (between 15 and 18 months of age) 

may be a target for disruption by phytoestrogens. The purpose of this study was to determine the 

effects of aging and dietary phytoestrogens on testicular function. Dietary phytoestrogens may 

negatively affect testicular function during aging, and removal of these endocrine disruptors 

would improve the age-related decline of spermatogenesis. 
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Chapter 3: Methodology 

 

Animals and Experimental Design 

Sprague Dawley rats are a well-established model for the study of male reproductive tract 

function and testicular aging. Rats have strong similarities to humans when compared to other 

animal models (Iannaccone and Jacob, 2009) and changes observed in human males during aging 

also occur in rats. Fifteen rats were acquired from Harlan Laboratories at nine months of age 

after breeding retirement and housed in the animal facility at Western Michigan University with 

approval of the WMU Institutional Animal Care and Use Committee (IACUC). Animals were 

assigned to one of three groups: 1) 15-month phytoestrogen diet; 2) 18-month phytoestrogen 

diet; or 3) 18-month phytoestrogen-free diet containing 0-20 mg/kg of phytoestrogens. Prior to 

15 months of age, all animals were fed a standard rodent diet (Tekland 2014; Harlan) which 

contains 350-650 mg/kg of phytoestrogens. The most common isoflavones found in such diets 

are genistein and daidzein. At 15 months of age, one group of animals (n=5) was shifted to a 

phytoestrogen-free diet, one group of animals (n=5) was maintained on the diet containing 

phytoestrogens until 18 months of age, and one group of animals (n=3) were euthanized (Fig. 3). 

At 18 months of age, animals were euthanized for testis and blood sample collection. One testis 

from each animal was weighed, divided into two halves along the longitudinal axis and snap 

frozen. One half was used for determination of sperm production and the other half for hormone 

concentration analysis. The other testis was placed in bouins fixative for morphometric analyses. 

Samples were also collected from animals (n=3) sacrificed at 15 months of age. The 15-month 

group of animals originally contained 5 animals, but two animals died prior to 15 months. 

 

 

 



20 

 

 

 

 

 

 

Figure 3. Experimental Outline 

 

 

 

 

 

Daily Sperm Production 

Daily sperm production (DSP) was determined using procedures similar to those 

previously published (Clarke and Pearl, 2014). Frozen testis samples were thawed and 

homogenized in 0.9% NaCl/0.05% Triton X-100 at room temperature using an OmniTip tissue 

homogenizer. The homogenate was brought to a total volume of 30 ml, stored at 4C for twenty-

four hours, and the number of homogenization-detergent resistant spermatids was counted using 

a hemocytometer. The hemocytometer is comprised of two sides containing 25 squares each. 

Five squares on each side were counted together and multiplied by five to account for the entire 

grid. This provided the number of elongated spermatids in the homogenate. The number of 

elongated spermatids counted, divided by the weight of testis homogenized provided sperm/gram 

of testis. Sperm/gram of testis provided a measure of efficiency for spermatogenesis. 

Sperm/gram multiplied by total testis weight equals the number of elongated spermatids. Daily 

sperm production was calculated as the total number of elongated spermatids per testis divided 

by 6.1 days, which is the amount of time for elongated spermatids to be found in the rat 

seminiferous tubule.  

 

 

 

15-month phytoestrogen diet 

18-month control (phytoestrogen diet) 

18-month phytoestrogen free 
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Morphological Analysis 

 Fixed testis samples were embedded in paraffin, cut into sections of approximately 5 m 

thickness utilizing a Leica RM 2125 rotary microtome, and placed on superfrost plus slides. The 

sections were deparaffinized in citrisolv and hydrated in an alcohol series (100%, 95%, 70%, 

water). The resultant sections were then stained with periodic acid Schiff (PASH) reagent, and 

counter stained with hematoxylin. Sections were visualized and image captured at a 20x 

magnification using an Eclipse Ni-U microscope capable of bright field microscopy with digital 

camera and NiS imaging software. The imaging allowed analysis of seminiferous tubule 

diameter and epithelial height. Seminiferous tubule diameters, a marker of spermatogenic 

capabilities, were measured from round tubules and averaged based on four measurements in 

each tubule. As the actual site of germ cell development, the height of the epithelium could 

provide more specific insight into the spermatogenic capacity within the tubules. Five 

measurements from the basement membrane to the apical surface were averaged for each imaged 

tubule. All tubules were also examined to determine the stage within the spermatogenic cycle. 

Approximately 75 tubules were examined in each of the three groups. 

 The number of Sertoli cells was determined by labeling a Sertoli cell specific 

transcription factor, GATA-4. Tissue sections were deparaffinized and hydrated as described 

above. Antigen retrieval was performed by placing slides in Coplin jars in a steamer and heating 

to 93C for five minutes before the slides were cooled to room temperature. Tissues were 

blocked with goat serum for 20 minutes and incubated overnight at 4C with rabbit anti-human 

GATA-4 (1:100; sc-1237; Santa Cruz Biotechnology). Following primary antibody incubation, 

sections were incubated with goat anti-rabbit biotinylated secondary antibody followed by an 

avidin-biotin HRP complex (ABC reagent, Vector). Immunostaining was visualized by 
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incubating tissue slides in NovaRed Chromogen for 7 minutes followed by counterstaining with 

ImmunoMaster hematoxylin for 30 seconds. The sections were then dehydrated in an alcohol 

series and coverslipped. 

The number of Sertoli cells was estimated using the physical dissector method similar to 

that previously described by Sterio (1984) and Gundersen (1986). Images of the same tubule 

from two serial sections were taken using an Eclipse Ni-U microscope and NiS imaging 

software. A measurement frame was placed on each picture in the same location. The area of the 

measurement frame was the same on both pictures placed side to side to allow Sertoli cells 

present in one image but not both to be counted. The number of cells per paired sections and the 

area of the measurement frame used were recorded. Approximately 200 Sertoli cells per animal 

were counted. The number of Sertoli cells per unit volume was determined by first adding the 

total right and left side counts together, dividing by the total area and multiplying by 10. This 

number was then multiplied by the testis volume to get the Sertoli cell number. Testis volume is 

the weight of the testis multiplied by 1012.  

 

Hormone Analysis 

Blood and testicular concentrations of testosterone and estradiol were determined by 

competitive ELISAs (Enzo Life Sciences). For testicular concentrations, samples were thawed at 

room temperature and minced into small pieces. Pieces were homogenized in buffer, and 

subsequently centrifuged to remove any large portions of unsolubilized tissue. For testosterone, 

serum and tissue homogenates were mixed with a steroid displacement reagent for 15 minutes 

and diluted in assay buffer to fall within the range of the standard curve. Testosterone samples 

were assayed in triplicate. The plates were analyzed using an Epoch Microplate 

Spectrophotometer and Gen5 statistical software. For estradiol, serum and testis samples were 
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extracted in diethyl ether. After freezing the aqueous layer in liquid nitrogen, the ether was 

allowed to evaporate at room temperature overnight before the estradiol was reconstituted in 

assay buffer. Reconstituted samples were run in triplicate in the ELISA. Total protein in testis 

homogenates was measured using a BCA protein assay. Total protein was used to normalize 

testicular steroid values. 

 

 

Statistical Analysis 

While five animals were collected in each of the 18 month groups, data from only four 

animals in each group was used for analysis. One animal in the phytoestrogen group was 

excluded because it was a unilateral cryptorchid. One animal in the phytoestrogen-free group 

was excluded from analysis because it displayed non-age related tubular atrophy/degeneration 

(Creasy et al., 2012). Data was analyzed by two-way ANOVA using GraphPad Prism statistical 

software and values reported as means  SEM. The data was tested for normality to ensure the 

assumptions of the ANOVA were satisfied. If the overall ANOVA was significant, differences 

between ages and treatments were determined using Tukey’s multiple comparison test. 

Differences were considered significant if p  0.05. 
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Chapter 4: Results 

 

Sperm Production 

The average estimated body weight of the animals was changed as result of the shifted 

diets. Rats raised for 15 months on a standard diet had an average weight of 560.7  14.34 

grams. The weights of animals maintained on the standard diet until 18 months averaged 550.2  

6.48 grams. Rats shifted to a phytoestrogen-free diet at 15 months had an average weight of 493 

11.82 grams at 18 months (Fig 4). Animals switched to phytoestrogen-free rat feed had 

significantly lower body weights than animals only exposed to standard rat feed. The average 

testis weight was similar between the three age groups (Fig. 5). The 15-month old animals had an 

average testis weight of 4.6  0.26 grams. The 18-month rodents raised on standard and 

phytoestrogen-free diets had average testis weights of 4.29  0.08 grams and 4.23  0.08 grams, 

respectively. The number of detergent-resistant spermatids within homogenized testis tissue were 

counted. The number of spermatids counted divided by the weight of tissue homogenized yields 

sperm per gram of tissue. At 15 months, the average sperm/gram was calculated to be 101.16  

5.52 x 106. The average sperm/gram of testis of both the 18-month standard rodent diet and 18-

month phytoestrogen-free diet groups were numerically similar (80.47  4.64 x 106 and 87.32  

1.7 x 106 respectively) and lower than the 15-month group. The average sperm/gram of testis of 

the 18-month group raised on standard rodent feed was significantly reduced when compared to 

the 15-month group (Fig. 6). There was, however, no significant difference in sperm/gram 

between the 15-month group and the group raised for three months on a phytoestrogen-free diet.  

 The estimated total number of elongated spermatids was calculated by multiplying 

sperm/gram of testis by the total weight of both testes from the animals. Elongated spermatids 

are the mature sperm that will be released from the testis and have the potential to fertilize an 
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egg.  At 15 months of age, the number of elongated spermatids was 462.89  10.51 x 106. Rats 

raised to 18 months on a standard rodent diet had 345.1  20.45 x 106 elongated spermatids, 

while the 18-month phytoestrogen-free animals had 368.74  6.13 x 106 elongated spermatids. 

Both 18-month groups showed a significant reduction in the number of elongated spermatids 

when compared to the 15-month old animals. There was no significant difference based on diet 

(Fig. 7). 

 Daily sperm production (DSP) values continued the trend of decreased production with 

age and no difference with diet (Fig 8). At 15 months, the rat average daily sperm production 

was 75.88  1.72 x 106. The 18-month old rats raised on a standard diet had an average DSP of 

56.57  3.35 x 106. Animals raised to 18 months on a phytoestrogen-free diet had DSP values at 

60.45  1.01 x 106.  

 

Testicular Morphology 

 Cross sections of the testis were stained with PASH and analyzed using bright field 

microscopy to identify any structural abnormalities that could contribute to altered 

spermatogenic efficiency in the animals. Visual observations of the seminiferous tubules did not 

appear to show any gross differences between the three age groups. 

Seminiferous tubule diameters serve as an indicator for spermatogenic capacity, and 

reduced tubule diameters might explain reductions observed in spermatogenesis. The average 

tubule diameter at 15 months was 288.5  1.36 m. At 18 months, animals maintained on a 

standard rodent diet had tubule diameters of 294.3  7.37 m whereas rats shifted to a 

phytoestrogen-free diet had tubule diameters at 292.9  3.81 m. Average seminiferous tubule 

diameters were not significantly different based on age or diet (Fig. 9). The seminiferous 
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epithelium is the specific region within the tubule where germ cell development occurs. Thus, 

the epithelial height was also separately measured as a parameter for effective sperm production. 

Within each age group, the tubule diameters and epithelial heights were examined at specific 

spermatogenic stages. Stages were consolidated into three groupings (stages I-VI, stages VII-

VIII, stages IX-XIV) based on relative similarities of the tubules. Measurements of epithelial 

height at 15 months averaged to 82.78  5.6 m, while the 18-month groups exposed to standard 

or phytoestrogen-free diets had average values of 84.13  1.74 m and 89.38  1.94 m, 

respectively. The average epithelial heights were not significantly different by age or diet (Fig. 

10). Average seminiferous tubule diameters did not show any significant changes when analyzed 

by spermatogenic stage (Fig. 9). However, there was a significant reduction in epithelial height 

for both 18 month groups between tubules in stages 1-6 to tubules in stages 7-8 (Fig. 10). This 

marks the transition when the tubule is preparing to release spermatozoa into the lumen.  

 Sertoli cells are essential to proper testicular function, and evidence suggests reduced 

Sertoli cell numbers can negatively impact spermatogenesis. The 15-month animals had an 

estimated 78.29  6.74 x 106 Sertoli cells. Rats raised to 18 months on standard rodent feed had 

Sertoli cell counts of 64.48  0.75 x 106, while animals shifted to a phytoestrogen-free diet had 

counts of 60.96  0.88 x 106.  Sertoli cells were significantly reduced with age, but no difference 

was detected between the standard rodent diet and the phytoestrogen-free rat feed (Fig. 11). 

Thus, reduced numbers of Sertoli cells may account for the reduced sperm production. 

 

Hormone Levels 

 Both testis and serum hormone levels were measured utilizing competitive ELISAs. At 15 

months, testosterone in the testis was 1.0  0.3 ng/mg protein. The 18-month group fed 
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maintained on a standard rodent diet had 0.52  0.08 ng/mg protein of testosterone. Animals fed 

phytoestrogen-free food from 15 to 18 months showed testosterone levels of 0.62  0.15 ng/mg 

protein (Fig. 12). The serum levels of testosterone at 15 months were 7.63  1.8 ng/ml. At 18 

months, the serum testosterone was 5.75  0.35 ng/ml for standard feed and 9.2  1.45 ng/ml for 

phytoestrogen-free feed (Fig 13). Testis and serum testosterone concentrations appeared lower 

with age. However, these values were not significantly different with age or by dietary 

phytoestrogens. 

 Estradiol is also present within the testis and is known to be critical for maintaining 

spermatogenesis. Testis estradiol at 15 months was found to be 18.3  115.4 pg/mg protein, 10.4 

 2.3 pg/mg protein at 18 months on a normal diet, and 10.8  1 pg/mg protein at 18 months with 

a phytoestrogen-free diet (Fig 14). Serum estradiol was 58.9  8.69 pg/ml at 15 months, 38.5  

1.6 pg/ml at 18 months and a standard diet, and 35.98  2.7 pg/ml at 18 months without dietary 

phytoestrogens (Fig. 15). There was a significant decrease in testicular estradiol with age, but no 

difference due to dietary phytoestrogens (Fig. 14). Serum estradiol was significantly reduced 

between 15 months and both the 18-month groups. No significant difference in serum estradiol 

levels was present between the two diets (Fig. 15). 
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  Figure 4: Body Weight 

The average body weight of animals switched to a phytoestrogen-free diet was significantly 

lower than the weights of animals raised to 15 or 18 months on a standard rodent diet. 

Animals groups raised on the same diet had similar average body weights. 

Columns labeled with different letters (A vs. B) indicate a significant difference based on  

p  0.05. 
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Figure 5: Paired Testis Weight 

The average paired testis weights of the three groups were not significantly different. 
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Figure 6: Sperm per gram of Testis 

At 15 months, the sperm per gram of testis was significantly higher when compared to 

animals raised to 18 months on a standard diet, but not those raised on a phytoestrogen-free 

diet. While values were reduced with age, the two groups raised to 18 months were not 

significantly different suggesting that diet did not impact spermatogenesis.  

Columns labeled with an * indicate a significant difference based on  

p  0.05. 
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Figure 7: Elongated Spermatids (paired testis) 

The number of elongated spermatids in both testes at 18 months was significantly lower than 

animals at 15 months. No difference was observed between the two 18-month groups. 

Columns labeled with different letters (A vs. B) indicate a significant difference based on  

p  0.05. 
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Figure 8: Daily Sperm Production (paired testis) 

There was a significant reduction in sperm production between the 15-month animals and 

those raised to 18 months on either the standard or phytoestrogen-free diets. Daily sperm 

production was not altered at the 18 months based on the animal’s diets. 

Columns labeled with different letters (A vs. B) indicate a significant difference based on  

p  0.05. 
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Figure 9: Seminiferous Tubule Diameter 

Tubule diameters were not significantly different based on age or diet. Additionally, 

analyzing diameters based on spermatogenic stage within age groups did not yield any 

significant differences. 
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Figure 10: Seminiferous Epithelial Height 

The epithelial height was not significantly different based on age or dietary phytoestrogens. 

When factoring in spermatogenic stage, epithelial height was reduced in the 18-month groups 

between stages 1-6 and stages 7-8.  

An * signifies a significant difference between stages within a specific age group based on  

p  0.05 
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Figure 11: Sertoli Cell Counts 

The number of Sertoli cells was significantly diminished when comparing the 15-month 

animals to the 18-month groups. There were no differences due to dietary phytoestrogens. 

Columns labeled with different letters (A vs. B) indicate a significant difference based on  

p  0.05. 
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Figure 12: Testis Testosterone 

Testosterone levels were not significantly different within the testis due to age or dietary 

phytoestrogens. 
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Figure 13: Serum Testosterone 

Testosterone levels within the serum were not significantly different when comparing age or 

diet. 
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Figure 14: Testis Estradiol 

Testicular estradiol values were reduced when comparing the 15-month rats to those raised to 

18 months on a standard diet (p=0.044). Rats shifted to a phytoestrogen-free diet also showed 

diminished estradiol in the testis (p=0.054). There was no significant difference between the 

18-month age groups.  

Columns labeled with different letters (A vs. B) indicate a significant difference. 

 



39 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: Serum Estradiol 

Estradiol was significantly reduced between 15 and 18 months regardless of diet. The 18-

month groups were not significantly different from each other based on diet. 

Columns labeled with different letters (A vs. B) indicate a significant difference based on  

p  0.05. 
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Chapter 5: Discussion and Conclusions 

 
The purpose of this study was to investigate the effects of dietary phytoestrogens on 

testicular function in aging rats. It was hypothesized that the high phytoestrogen content of 

standard rodent diets contributed to reduced testicular function, and removal of these isoflavones 

would improve the age-related decline of spermatogenesis. This study demonstrated that sperm 

production declined with age. Both estradiol concentrations and Sertoli cell numbers also 

declined with age. This suggests estradiol and/or Sertoli cells having a role in maintaining sperm 

production with age. Altered diets in the 18-month animals did not appear to affect the age-

related changes observed. This is the first study to characterize the effects of endocrine 

disruption during aging in adult male rats. 

At 18 months of age, rats raised on either a phytoestrogen-free or phytoestrogen-

containing diet showed significant loss of sperm production compared to 15 months of age. 

Although average sperm/gram was not significantly reduced for rats raised on a phytoestrogen-

free diet, the overall average daily sperm production decreased. When accounting for the total 

testis weight of the animals, there was a loss of elongated spermatids/paired testis weight similar 

to that experienced by the 18 month animals raised on standard rodent feed. Given that both 18-

month groups were not significantly different from each other suggests that the loss of sperm 

production was independent of diet, and therefore a result of advanced aging. This change in 

daily sperm production is consistent with losses previously observed in lab rats (Clarke and 

Pearl, 2014). Possible causes for reduced sperm numbers are lower hormone levels and Sertoli 

cell numbers, altered HPG-axis, and morphology (Gunes et al., 2016; Sibert et al., 2014).  

Reduction in fertility may be caused by changes in testis morphology, specifically the 

seminiferous epithelium. Rats aged to 24 months can exhibit epithelium degeneration in up to 
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85% of total tubules (Wright et al., 1993). This study only examined rats between the ages of 15 

and 18 months. When only considering age, changes in either seminiferous tubule diameter or 

height/thickness of the seminiferous epithelium were not observed. However, when analyzing 

the seminiferous cycle of the tubules, 18-month old animals had reduced epithelial heights in 

stages VII-VIII when compared to stages I-VI. Stages I-VI contain germ cells proceeding 

towards maturation and eventual release into the lumen. Germ cells in stages VII-VIII are 

localized near the lumen in preparation for release into the reproductive tract. Reduced epithelial 

heights are often associated with reduced sperm production because of increased germ cell 

apoptosis (Wang et al., 1999). Germ cells, like any cell in the body, follow a highly regulated 

apoptotic pathway that can become less controlled with aging. Inappropriate apoptosis can be a 

result of poor hormonal control or lack of communication between germ cells and Sertoli cells 

(Shukla et al., 2012). There may exist a genetic disposition towards developing infertility, but 

environmental effects are equally likely to impact spermatogenesis. Determining the unique 

combination of these factors is the challenge of diagnosing infertility (Kolesnikova et al., 2015). 

Previous studies have indicated decreased spermatogonial proliferation in animals during stages 

VII-VIII that may be related to Sertoli cell activity (Johnston et al., 2011; Bernal-Mañas et al., 

2014). It is also worth noting that studies of rats with more advanced aging show further loss of 

Sertoli cells leading to regressed tubules devoid of germ cells. The loss is largely due to a 

breakdown of the blood-testis barrier (Levy et al., 1999).  

Sertoli cells are among the most essential components of reproductive physiology in 

males. The cells support germ cell development throughout the entire seminiferous epithelium 

and help to maintain the structural integrity of the blood-testis barrier (Franca et al., 2016). This 

blood-testis barrier prevents leukocytes or antibodies from encountering developing germ cells 
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and triggering an autoimmune response (Johnson and Setchell, 1968). Sertoli cell numbers 

directly correlate with the efficiency of sperm production (Orth et al., 1988). The loss of Sertoli 

cells in conjunction with reduced sperm numbers seems to confirm this relationship. Fewer 

Sertoli cells may interfere with the stem cell niche leading to reduced spermatogonial renewal at 

the basement membrane of the seminiferous tubule. A breakdown of the blood-testis barrier due 

to reduced Sertoli cell activity could also explain the observed loss of seminiferous epithelium 

seen in the 18-month old rats. This will need to be further explored in detail in future studies. 

The most likely issue related to Sertoli cell loss is diminished communication with germ 

cells (Syed and Hecht, 2001; Rosenstrauch et al., 1994). Control of this communication is a 

result of proper hormone circulation within the HPG-axis. Disruption of testosterone and FSH 

would prevent proper Sertoli cell function. This would likely increase germ cell apoptosis and 

cause the environment within the seminiferous epithelium to become less hospitable to germ cell 

development. There was a downward trend in testosterone concentrations with age, but the 

change was not significant within the 15 to 18 month time period. The lack of significance is 

likely a consequence of the small sample size used in this study. There was a high level of 

variability within the age groups when measuring testosterone. Reduced testosterone in males is 

also very gradual, so observations of rats over a longer time scale could demonstrate a more 

significant decline (Schill, 2003). The fact that testosterone levels remained unchanged at 18 

months despite dietary changes suggests that endocrine disruption via testosterone did not impact 

spermatogenesis. Were that the case, higher sperm counts in the phytoestrogen free animals 

would have been observed.  

The diminished sperm counts were accompanied with lower Sertoli cell numbers and 

estradiol values in both groups of 18 month animals. Estrogen receptors are present within 
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Sertoli cells (Lin et al., 2014) and estradiol is known to enhance Sertoli cell proliferation (Yang 

et al., 2015). Studies examining ESR1 and ESR2 determined they have an important role in early 

development to establish Sertoli cell populations. There has also been an association with 

17beta-estradiol and regulation of apoptotic pathways in rat Sertoli cells, specifically when 

binding ESR2 (Dumasia et al., 2016). Estradiol can modulate nuclear transcription to trigger 

either proapoptotic or antiapoptotic genes (Royer et al., 2012). Estradiol can also modulate the 

expression of specific ion transporters, and higher estradiol levels can disrupt Sertoli cell 

metabolic function. (Martins et al., 2013; Bernardino et al., 2016). A majority of studies 

regarding estradiol’s role in Sertoli cells concern early development. This study examined 

changes in fertility in aging adult rats. It is possible that depleted estradiol levels with age cause a 

drop in Sertoli cells, possibly due to increased apoptosis caused by reduced regulation via 

estrogen receptors. 

Previous studies showed phytoestrogens have caused endocrine disruption of male 

reproduction. High isoflavone intake may cause lower sperm concentrations, including increased 

germ cell apoptosis, abnormal semen quality and hormone levels in adult male rodents and 

humans (Assinder 2007; Chavarro et al., 2008; Mínguez-Alarcón 2015). Similarly, infant 

mammals exposed to soy rich diets experience reduced fertility in adulthood (Cederroth 2010; 

Liu et al., 2012; Napier et al., 2014). However, isoflavone intake at levels normally seen in adults 

(2.14 mg/day) has not shown serious adverse effects (National Toxicology Program). The 

purpose of this study was to test if reproductive physiology could improve in aging animals after 

removing phytoestrogens from the diet. Animals switched to a phytoestrogen-free diet did not 

experience significant changes in fertility. This suggests that the phytoestrogen content of 
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standard adult rat feed does not cause significant endocrine disruption to diminish sperm 

production. 

 Phytoestrogens are known to impact is estradiol activity in the male reproduction system. 

Isoflavones can bind estrogen receptors with increased affinity when compared to 17beta-

estradiol found in the body (Lund et al., 2004; Sullivan et al., 2011). Normally, estradiol acts to 

maintain fertility, and it was previously demonstrated that injection of estradiol between 15 and 

18 months of age could diminish declining sperm counts in rats(Clark and Pearl, 2014). Estradiol 

has also exhibited inhibitory effects emphasizing the level of estradiol sensitivity of reproductive 

mechanisms within the testes (Schulster et al., 2016). Based on previous observations of the 

sensitivity to estrogen treatment in rats aged 15 to 18 months, removal of phytoestrogens could 

have a positive effect on hormone levels during this period. Phytoestrogens are capable of 

binding aromatase enzyme or even blocking expression of the gene (Lephart, 2015). Reduced 

aromatase would then prevent conversion of testosterone to estradiol. This study found no 

difference in estradiol levels at 18 months between the two diets. Results did reveal a decrease in 

estradiol with age that coincided with reduced sperm counts. Taken together, these results show 

that removing phytoestrogens from rodent diets does not improve subfertility with age. The 

results do however further emphasize the relationship between declining estradiol levels in the 

testis and reduced fertility. 

 Analysis of testosterone showed that hormone levels in the testis and in serum did not 

decline with age, thus excluding testosterone as a cause for reduced fertility in this study. 

Testosterone has the most direct role of maintaining fertility within mammalian males. 

Deficiency in either production or action of the hormone will certainly cause infertility. This is 

true for excessively high or low levels of testosterone in males (Kliesch, 2010). Complete 
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infertility may often be a result of disrupted testosterone levels, but subfertility due to aging does 

not appear to be a consequence of reduced testosterone. With regards to phytoestrogens, the 

results are consistent with previous findings. Given that testosterone levels were not different at 

18 months suggests that standard diet levels do not negatively affect testosterone production.  

These results confirm that removing phytoestrogens from rat diets will not significantly 

improve results in reproductive studies. There is also strong evidence supporting the causative 

agents of reduced fertility with aging. Alongside decreasing sperm counts was a loss of Sertoli 

cells and estradiol. Despite a marked drop in spermatogenic efficiency, a decline in testosterone 

was not observed. More likely, the loss in fertility was result of decreased support from Sertoli 

cells, and not a disruption of the HPG-axis. Results from this study also reinforce the idea that 

estradiol is essential for maintaining fertility in adulthood.  

Subfertility with aging may be due to diminished Sertoli cell counts, caused by 

decreasing estradiol levels. This study has demonstrated reduced fertility with age in rats raised 

for three months on either a phytoestrogen-free or standard diet. The time period between 15 and 

18 months was previously observed to be highly sensitive towards treatment with estradiol 

(Clarke and Pearl, 2014). Mammals are highly sensitive to estradiol in infancy while establishing 

Sertoli cell populations (Kula et al., 2001). The loss of estradiol in adulthood could serve as the 

impetus to increased Sertoli cell apoptosis, and eventual loss of germ cell populations. Issues of 

infertility in adulthood could thus be the consequence of excessively low estradiol levels. It is 

worth noting however that other evidence has shown that too much estradiol may have a 

negative impact on fertility as well (Walczak-Jedrzejowska et al., 2013; Yu et al., 2014; Leavy et 

al., 2017).  
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Future studies should aim to identify how estradiol and Sertoli cells affect 

spermatogenesis with age. Specifically, what mechanisms essential for spermatogenesis are 

impacted in adulthood. An area of interest could be analysis of how estradiol interacts with 

Sertoli cells in childhood, and how changes to this interaction may lead to reduced Sertoli cells 

in adulthood. Other studies could use this model to elucidate how the seminiferous tubule 

changes with age, and whether germ cell apoptosis is increased in aged mammalian seminiferous 

tubules. 
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