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Abstract—Complex networked computer systems are subjected to up-
grades on a continuous basis. Modeling and simulation (M&S) of such
systems helps with guiding their engineering processes when testing design
options on the real system is not an option. Too often many system’s
operational conditions need to be assumed in order to focus on the questions
at hand, a typical case being the exogenous workload. Meanwhile, soaring
amounts of monitoring information is logged to analyze the system’s per-
formance in search for improvement opportunities. Concurrently, research
questions mutate as operational conditions vary throughout its lifetime.
This context poses many challenges to assess the validity of simulation
models. As the empirical knowledge base of the system grows, the question
arises whether a simulation model that was once deemed valid could be
invalidated in the context of unprecedented operation conditions.

This work presents a conceptual framework and a practical prototype
that helps with answering this question in a systematic, automated
way. MASADA parses recorded operation intervals and automatically
parameterizes, launches, and validates simulation experiments. MASADA
has been tested in the data acquisition network of the ATLAS particle
physics experiment at CERN. The result is an efficient framework for
validating our models on a continuous basis as new particle collisions
impose unpredictable network workloads.
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I. INTRODUCTION

Simulating complex computer systems can be a vital requirement
to gain insights into a system’s behavior. Simulations are often used
to study possible effects of alternative operation conditions in a real
system, and to drive courses of action in search for improvements. Many
key activities need to be orchestrated during a simulation study, e.g. the
development of efficient models, acquisition of reliable measurements
from the system, verification of correctness of the models, and validation
of simulation results.

In many cases simulations are used in engineering projects to drive
the design of new features for an existing system. Once changes are
introduced, new experiments are planned on the upgraded system to
validate the expected results forecasted during the simulation phase.

Simulation frameworks are required to provide solid means for
guaranteeing both correctness and reproducibility. As projects grow and
evolve in time, the ability to trace back design decisions and relate
them with the simulations studies they were based on becomes an
increasingly important requirement.

Several well-known simulation frameworks and methodologies exist
offering a systematic description of stages to derive reproducible
simulation results [1], [2].

Yet, there is a lack of practical tools to help ensuring reproducibility.
Tools can be designed to control that required processes are exhaustively
followed, preconditions are continuously verified, and steps in a
validation cycle are explicitly defined.

Important tasks need to be neatly orchestrated such as model
parameterization, definition of simulation metrics and comparison of
results against the real system’s behavior. There is also a need to verify
that decisions made during certain tasks do not fall in contradiction with
those made in others. An inconsistent usage of units of measurement
is just one illustrative example. The situation can become increasingly
problematic in large and complex systems where tasks usually require

interaction with heterogeneous information repositories and massive
measurement databases.

Process automation is a robust technique to orchestrate tasks in
software development projects and is a established tool in many
manufacturing industries, but is barely used to assist simulation-based
projects.

Routine simulation tasks are often performed manually, following
workflows that are rarely explicitly defined. This increases the efforts
demanded from experts and scientists to take care of consistency issues,
e.g. while parameterizing models or while validating simulation results
on a continuous basis.

In this work we introduce a conceptual framework and prototype tool
that improves simulation reproducibility and consistency by means of
controlled automated model parameterization and simulation validation.
The framework helps to structure the process of transforming values
from the real system into parameters of the simulation models, and
to systematically reuse those values during verification and validation
tasks.

A practical prototype tool is implemented and tested for a case study
in the ATLAS experiment [3] at CERN [4] where the Trigger and Data
Acquisition (TDAQ) farm and communication network [5] plays the
role of the real system under study.

Our proposed scheme diminishes the chances of introducing errors
during model parameterization and enables new validation processes
to be integrated with measurement databases that are populated on a
continuous basis with the TDAQ system daily operation.

II. THE DEVS MODELING AND SIMULATION FRAMEWORK

The Discrete Event System Specification (DEVS [1]) is a math-
ematical formal specification based on general systems theory for
modeling and simulation of discrete, continuous and hybrid systems
[2], [6]. Since its first specification in 1976 [7] DEVS-based tools
have been implemented in several programming languages and applied
to a wide range of areas in nature, physics, engineering, computing,
etc. The formal specification allows for analytic manipulation, offering
hierarchical composition of structural (coupled) and behavioral (atomic)
models defined by compact tuples of mathematical sets and functions.

A DEVS-based simulation platform [8] was developed to reproduce
the TDAQ network behavior under different conditions, evaluate
candidate changes for the network control algorithms before their com-
missioning, and analyze simulation data to detect potential unanticipated
behaviors.

III. MODELING AND SIMULATION METHODOLOGY IN THE ATLAS
EXPERIMENT

The TDAQ system is in charge of reading out, collecting, and
processing in real time vast amounts of physics data produced by
the ATLAS detector at CERN [3]. The flow of incoming data is slotted
in smaller data structures called physics ”Events”. ATLAS generates
Events at 40 MHz, yielding a raw throughput of approximately 60
Terabyte/s, which is filtered at TDAQ system to store permanently
only a fraction of relevant Events (at a rate of 1 kHz, approximately 1
Gigabyte/s).
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The TDAQ system is composed of several parallel applications,
which collect data and run physics algorithms to reconstruct the Events
from smaller data fragments. Applications are hosted across roughly
2000 multicore servers that communicate over a 10 Gbps Ethernet-
based network [9] structured with approximately 100 switches. The
applications, data control algorithms and network design are in constant
evolution. The effect of candidate changes is hard to anticipate, requiring
thorough engineering processes.

An iterative and incremental simulation methodology (coherent with
the DEVS formal framework) is used to focus each iteration on specific
goals and to enable flexibility for choosing the degree of accuracy
required for each evaluation.

This methodology strictly separates the entities System, Model, and
Simulation and relates them formally by means of the DEVS formalism:
the System is first experimented with and then a DEVS model is built,
meanwhile Model and System properties can be formally verified. The
Model is afterwards read by the Simulator and, according to the DEVS
specification (formally verified [1]) a simulated output trajectory is
generated that can be validated against the initial experiments with
System. Experimental frameworks and parameters are defined for each
of the three entities in order for this cycle to be formally correct.

IV. CONCEPTUAL FRAMEWORK

We define an architecture that relies on a conceptual framework
to transform values from the system under study into values of
the simulation model and vice versa. We categorize these values as
parameters (values used to configure either the system or the simulation)
and metrics (logged values for dynamic variables, either monitored on
the system or produced by each simulation).

Figure 1 shows several relationships between the real system’s values
and the simulation values, both for parameters and metrics.

Figure 1: MASADA Conceptual Framework.
Relationships between different data values (Parameters or Metrics)

according to their domains (Real System or Simulation)

We define the relationships in terms of the transformations needed to
make values of one domain suitable for the other domain. Relationships
are in turn categorized according to three aspects, depending on the
nature of each given bond:

Type We define type as either parameterization, validation or internal
verification. The type of the relationship depends on the domain
and range of the relationship. It also defines the kind of tasks to
be performed during the simulation phase, and whether it is carried
before, after or independently from the simulation execution.

Cardinality We define one-to-one, one-to-many, many-to-one and
many-to-many relationships between domains. This depends on the
type of variable that comes into play and it has an important role in
the domain and range of the transformation function applied.

Transformation A transformation function could be a statistical
operation (e.g. a many-to-one averaging of multiple time-series into
one simulation parameter), or simply the identity for the one-to-one
or one-to-many cases.

Aspects describing the relationships are interdependent. Each imple-
mentation of an instance of this framework will depend on the given
data sources, the simulated system and the goals of the simulation
experiments. Results are generated from raw data via a relationship that
involves a Transformation and a Type. It is an association of values.
On the one hand we have the unprocessed data, and in the other hand
the exact process required to transform it into a suitable format for its
validation, verification, parameterization or definition of new data.

For the parameterization and definition types, transformations are
needed to extract values from the configuration of the real system
and translate them into configurations of the simulation models.
Example transformation functions for one-to-one relationships are
scaling procedures. An example for many-to-one relationships is the
lumping of several metrics down to a single simulation parameter by
means of aggregation procedures. These values are refilled into raw
values by the relationship entity. The distinction between them is their
targets: in one case parameters are generated, in the other case metrics
are defined.

As for the validation type, transformations enable the comparison of
many-to-many relationships like system metrics against simulation met-
rics, many-to-one like metrics to parameters, one-to-one for simulation
parameters against systems parameters, and one-to-many for simulation
parameters against systems metrics.

These transformations rely on data analysis techniques supporting the
validation analyses that will ultimately explain the degree of accuracy
with which simulations approximates reality. Descriptive and summary
statistics are good examples of transformations.

In the internal verification type, metrics and parameters are checked
for internal consistency within a given domain (system or simulation).
As for the system domain, it requires knowledge about the system
constraints, e.g. metrics that should not exceed certain parameterized
value. As for the simulation domain, model consistency checks detect
whether e.g. a metric produced by the simulator is consistent with a
parameter that specifies statistical properties on said metric.

This conceptual framework allows to store the parameters, metrics
and relationships used for a given experiment, constituting part of the
evidence needed to replicate it in the future. By so doing we enhance
reproducibility, foster the reuse of sound data management techniques,
and reduce the complexity of the simulation execution tasks.

V. THE MASADA TOOL

To test the conceptual framework we implemented the Modeling and
Simulation Automated Data Analysis (MASADA) tool, a python2.7
command line application using SQLite3 for data handling support.

The tool implements an Extract, Transform, Load architectural pattern
that connects with ATLAS experiment data sources. In particular,
we connect to PBeast [10] via its REST APIs. The application
transforms the extracted information into Python Objects that are
persisted by the ObjectRelationMapper (ORM) layer. This allows to
extend the datasources and the data types easily upgrading our simulation
parameters and metrics objects to increase precision.

In fig. 2 we present an architectural and procedural view of MASADA.
The left to right path corresponds to the parameterization process
discussed in fig. 1. This is how information flows from the real system
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Figure 2: MASADA Architectural View

into the simulated one. The right to left direction explains the process
of validation and how information is transformed from the simulation
repositories (Scilab numerical software, Open Timeseries Database or
log files) until it is suitable for comparison.

VI. VALIDATION RESULTS

We ran multipoint simulations, where each point represents a
simulation parameterized to reproduce a single physics Run, with values
taken from the TDAQ network. In this section we show how historical
validation interacts with parameters variability and multipoint validation
techniques: we simulate imitating conditions from the past subjected to
subtle changes. Then, results are compared against metrics from the real
system. In fig. 3 we plot the average amount of accepted and rejected
events aggregated by racks of servers. The plot compares one second
of TDAQ system operation. We observe that the average amount of
processed events in the real system are consistently 10% higher than in
the simulation. Meanwhile, fig. 4 shows that data presents an acceptable
degree of similarity in terms of skewness. This graph was obtained by
creating a normal probability plot to compare each measurement with
the quantiles of the normal distribution.

The validation of these data sets was very conclusive in order to guide
future modeling efforts to match the real system with more precision.
The symptoms we diagnosed with this procedure are scaling mismatches
related to the Events’ throughput. The introduction of new metrics helps
to determine which dimensions of the simulation model require further
refinements.

Moreover, MASADA can keep running the same validation process
automatically on a continuous basis as new physics collisions take place
in the ATLAS detector, enriching the system’s evidence databases.

Figure 3: Real vs Simulated Amount of Events Processed. Behavior Plot

VII. CONCLUSIONS AND FUTURE WORK
We introduced MASADA, a framework for continuous simulation

validation that tackles important aspects of validity, reproducibility and
maintainability by automating error prone data analysis and transforma-
tion tasks. The tool enables continuous simulation validation in a very
particular context, the ATLAS experiment at CERN. Having automated
the parameters extraction and metrics transformation considerably
diminished configuration time, allowing for quicker responses in the
face of changing operation scenarios. The latter allows for more complex
validation techniques like parameter variability, providing useful extra
insights about the quality of the simulation model.

MASADA also enables the reuse of best practices in data comparison
allowing for two way validations: from the real system to the simulation
(e.g.: how do we validate a relevant system metric against simulation
outcomes?) and from the simulation to the system measurements (e.g.:
how do we validate an interesting, unexpected simulation outcome
against evidences in the real system?)

There are many validation techniques available, while selecting those
that provide the best information requires careful, often crafty treatments.
This is an usual scenario in simulation projects in general. MASADA
offers a platform within which the best validation strategies can be
encoded building up a consistent and reusable repository.

The extension of the tool is currently planned to add integration
with big data-specific back-ends, such as distributed file systems and
databases, and with existing well-known scientific workflow systems.
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Figure 4: Real vs Simulated Amount of Events Processed. Probability Plot
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