
Generic LSH Families for the Angular Distance
Based on Johnson-Lindenstrauss Projections and

Feature Hashing LSH
Luis Argerich

Universidad Nacional de Tres de Febrero
y

Facultad de Ingenierı́a
Univesidad de Buenos Aires
Email: largerich@fi.uba.ar

Natalia Golmar
Facultad de Ingenierı́a

Universidad de Buenos Aires
Email: ngolmar@gmail.com

Abstract—In this paper we propose the creation of generic LSH
families for the angular distance based on Johnson-Lindenstrauss
projections. We show that feature hashing is a valid J-L projec-
tion and propose two new LSH families based on feature hashing.
These new LSH families are tested on both synthetic and real
datasets with very good results and a considerable performance
improvement over other LSH families. While the theoretical
analysis is done for the angular distance, these families can also be
used in practice for the euclidean distance with excellent results
[2]. Our tests using real datasets show that the proposed LSH
functions work well for the euclidean distance.

I. INTRODUCTION

Locality Sensitive Hashing (LSH) is a modern solution to
the Approximate Nearest Neighbors problem (ANN) for large
datasets. The basic idea of LSH is to hash similar items
to the same bucket. After hashing a query point we can
recover the points in the bucket as candidates and compute the
distance to the query only for those points. This is a significant
improvement over the brute force approach of comparing the
query point against all the other points in the dataset.

In this paper we work with LSH for the angular distance
over the unit sphere. The angular distance is widely used
in areas such as information retrieval and word embed-
dings.[13][14][15] In the practice the LSH schemes created for
the angular distance can also be used for the euclidean distance
with very good results. This work will propose two new LSH
Families based on Feature Hashing and show, in practice, that
they have similar results to other well known LSH families
and significant performance improvements for both synthetic
and real datasets. We will also generalize the LSH families
for the angular distance to the use of any form of a Johnson-
Lindenstrauss projection and show that classical LSH families
for the angular distance can be generalized deriving a minhash
function from a Johnson-Lindenstrauss projection.

II. PRELIMINARIES AND NOTATION

LSH was introduced by Indyk and Motwani in 1998 [7][6].
They basic idea of LSH is to hash similar points to the
same bucket, this allows approximate O(1) query time when

retrieving near neighbors. Given a query point we hash the
point and then go to the bucket pointed by the LSH function
and compare the query against the points found in the bucket.
A very good LSH function will minimize the number of
points to be compared and maximize the number of real near
neighbors found in the bucket.

We define a minhash h(x) → [0..m) as the result of
applying a hash function to a d dimensional point x and
obtaining a bucket number to store the point between 0 and
m− 1. For a hash function to be considered a good minhash
we require the following conditions:

1) The hash function needs to be easy to compute.
2) It should be easy to extend the hash function to a

family of hash functions allowing an arbitrary number
of minhashes to be created for the same point.

3) The probability of a collision needs to be related to the
distance between the points and it has to be a continuous
monotonous function. So if d(x, y) ≤ d(x, z) then
P [h(x) = h(y)] ≥ P [h(x) = h(z)]. The inequalities
are not relevant as long as the function is monotonous
and continuous.

We say an LSH family of hash functions H is p1, p2
sensitive for d1 and d2 distances: H(d1, d2, p1, p2) if for any
two given points x, y then when the points are at distance d1
or less then P [h(x) = h(y)] ≥ p1 and when the points are at
a distance p2 or greater then P [h(x) = h(y)] ≤ p2.

It can be shown that conditions 2 and 3 are enough to
amplify any family H to arbitrary values of p1 and p2, this
can be done using a process known as amplification.

III. AMPLIFICACION OF LSH FAMILIES

For any LSH family H(d1, d2, p1, p2) where p1 is the
probability of retrieving points that are close to a query point,
we would like p1 to be as high as possible. 1 − p1 is the
occurrence of false negatives meaning that some points that
are closer than d1 to our query point won’t be retrieved. On
the other hand p2 is the probability of retrieving points that are
further than desired to our query point; p2 is the probability

AGRANDA, Simposio Argentino de GRANdes DAtos

46JAIIO - AGRANDA - ISSN: 2451-7569 - Página 1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/130168192?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


of false positives we would like p2 to be as small as possible.
In general terms false negatives affect the precision of the
LSH scheme while false positives affect its performance as the
number of distances that need to be compared can be high.

The rate of false positives can be reduced using more than
one minhash over the same hash table, if we use r minhashes
then the candidate points are the intersection of the points
found in the buckets pointed by hr−1i=0 (x). This applies to
both p1 and p2 so in general for r hash functions used in
conjunction the collision probability p becomes pr.

The rate of false negatives can be reduced using more than
one hash table, then we can say that a point is candidate to be
close to our query if it is a candidate in either of the b hash
tables used. This means that the probability of collisions p is
1− (1− pr)b

So using r hash functions and b hash tables we get the LSH
family H(d1, d2, 1− (1− pr1)b, 1− (1− pr2)b)

As long as the probability of a collision is a monotonous
function of the distance between the points then, for any
LSH family, we can achieve arbitrary values for p1 and p2.
The cost of increasing b is related to space as more hash
tables are needed while the cost of increasing r is related to
performance as more hash functions are needed. The process
of amplification shows why condition 2 is important as an
arbitrary number of different minhashes might be needed.

A minhash function is neutral if it’s probability of collision
is equal to 1 minus the normalized euclidean distance between
the points. Minhash functions that show a curve above this
line have a higher probability of collision so they have less
false negatives and more false positives. Minhash functions
below the neutral line have a lower collision probability and
then produce less false positives but more false negatives.
Depending on the constraints of space or performance we
might prefer one case or the other. This is an important
observation because it directly points to a practical rule for
choosing minhash functions.

IV. PREVIOUS WORK

A. Hyperplanes LSH

Our first LSH family for the angular distance is based on
random hyperplanes minhashes and was proposed by Charikar
in 2002 [4]. The construction is very simple: every minhash
uses a random hyperplane vi of the same dimensionality as the
points to be hashed, the minhash is then defined as the sign
of the dot product between the point and the random vector.
hi(x) = sign < vi, x >. Since the minhash can only take 2
values each minhash defines a bit, we can create a d′ − bit
minhash using d′ minhashes. Since each hyperplane can be
seen as a partition of the unit hypersphere in two halves then
we can see that the probability of collision is related to the
distance 1 between the points. In concrete the probability of
collision is 1− α

π where α is the angle between the vectors.

1from now on we’ll use distance to refer indistinctly to the angular distance
or the euclidean distance in the unit hypersphere

It was also shown in [4] that a random vector formed by
just ±1 elements is enough as a random hyperplane. This
is related to a Johnson Lindenstrauss projection presentd by
Achlioptas[1].

B. Voronoi LSH

Voronoi LSH [3] uses T random Gaussian vectors of the
same dimensionality as the data points. The minhash is defined
as h(x) = argmaxi=0...T−1< Gi, x > This means that using
T Gaussian vectors each minhash can create T different
values. It is easy to show that if T = 2 then Voronoi LSH
is the same as Hyperplanes LSH because choosing the closest
point from two random points in the sphere is the same as
randomly partitioning the sphere bisecting the two random
points. In general Voronoi LSH with T = 2K Gaussian vectors
is similar to Hyperplanes LSH with k hyperplanes.

C. Cross Polytope LSH

The Cross Polytope LSH method was introduced by Tere-
sawa and Tanaka in 2007 [10]. Each minhash uses a random
rotation from d to d′ dimensions and then the nearest vertex
of the d’-dimensional cross polytope is chosen as the value of
the minhash. In d′ dimensions each polytope has 2d′ vertices,
for example in <2 the polytope is a square determined by the
vertices (0,1);(1,0);(-1,0) and (0,-1).

The Cross Polytope method is actually a variant of Voronoi
Hashing, if we accept a Gaussian matrix as a pseudo-rotation
and we consider the maximum absolute value plus the sign of
the element instead of just the maximum value then Voronoi
Hashing is the same as the Cross Polytope method. For exam-
ple using 5 Gaussian vectors we might get the following results
for two points x, y: x→ (3, 2,−5,−1, 2) y → (1, 4,−6, 3, 1).
Using Voronoi Hashing the minhash for x is 0 the index of
the maximum value while the minhash for y is 1. Using Cross
Polytope we observe that both would be closer to the vertex
(0, 0,−1, 0, 0) and this is the same as taking the index and sign
of the maximum absolute value of the vectors as the minhash
which is 2 for both vectors.

To speed up the computation of the rotation a pseudo-
rotation using Hadamard matrices has been proposed [2].

D. Fast Cross Polytope LSH

Kennedy[8] proposes a faster version of the Cross Polytope
method using a Fast Johnson Lindenstrauss transform from the
original d dimensions to a reduced space with m dimensions
and then the random lifted rotation from m to d′ dimensions.
Our experiments show that for small dimensionality vectors
this method is actually slower in practice that a direct random
rotation and the other methods studied. As the dimensionality
of the vectors is larger this method can become more efficient
but then a direct dimensionality reduction of the vectors using
feature hashing can be applied.

E. Even Faster Cross Polytope LSH

Instead of a FJL transform feature hashing can be used
making the method from [8] a lot faster. This means FH is

AGRANDA, Simposio Argentino de GRANdes DAtos

46JAIIO - AGRANDA - ISSN: 2451-7569 - Página 2



used to project from d to m dimensions and then a random
rotation is used from m to d′ dimensions. Experiments show
that the results offer very similar precision but are significant
faster but yet not as fast as the other methods studied in this
work.In general the two-step approach from d to m and from
m to d′ to obtain a minhash is not a speed improvement over
a direct minhash from d to d′.

V. JOHNSON-LINDENSTRAUSS PROJECTIONS FOR LSH

We have mentioned that any function h(x) where P [h(x) =
h(y)] = f(||x − y||) with f monotonous can be used as a
minhash. In particular a family of functions that transforms
the points from one dimensional space to another preserving
the norms of the vectors can be used and thus any projection
derived from the Johnson-Lindenstrauss lemma is usable as a
minhash. This can be proven for sparse vectors independently
of the number of vectors to be used via the Restricted Isometry
Property (RIP) as described in [16], for non-sparse vectors
the number of points matters as the Johnson-Lindenstrauss is
applied and then for a large number of points the pairwise
distances between vectors is preserved with a small error. We
notice that if the number of points is not small then we don’t
need to use LSH so we can say that the pairwise distances
between points are preserved with a high probability.

Voronoi LSH is indeed a direct application of a Johnson-
Lindenstrauss projection using a Gaussian Matrix [1]. Hyper-
planes LSH is another application of a JL projection using a
matrix with ±1 random elements [1].

We now show that for any random projection that is also a
Johnson-Lindenstrauss transform two generic families of LSH
functions can be created defining two minhashes.

Theorem 1: If p is a randomizable Johnson-Lindenstrauss
projection from d to d′ dimensions then p can be used to
construct at least two different LSH families for the angular
distance based in the following minhashes.

1) argmax0..d′−1< pi, x > with pi being the ith column
of p

2) sign(< pi, x >) with pi being the ith column of p

The theorem is almost self-proven. For method 1 we are
comparing the closest point from a set of random points in
the unit sphere, since the projection preserves the distances
the probability of a collision is a monotonous function of the
original distance between the points. For method 2 we are
bisecting the sphere in two halves, the probability of two points
being in the same halve is again a monotonous function of the
original distance between the points because p preserves the
distances between the points.

It can be seen that when p is a Gaussian projection method
1 is Voronoi Hashing. And when p is a random projection
filled with ±1 method 2 is hyperplanes LSH.Remembering
that Cross-Polytope LSH is a form of Voronoi LSH this means
that all the LSH families we have described can be generalized
to the creation of a minhash from a Johnson-Lindenstrauss
projection.

In this work we will show that Feature Hashing is also a JL
projection and that will be the theoretical foundation to use it
to create a minhash and a LSH family for the angular distance.

VI. FEATURE HASHING FOR LSH

Feature Hashing [9] , also known as The Hashing Trick
is a very simple method for dimensionality reduction from
the original d dimensions to d′. A nice advantage is that
when a feature of our data is categorical it can be hashed
into several dimensions without needing to know the total
number of different values for the feature. To mitigate the
effect of collisions Weinberger [11] proposed the use of a
second hash function that will return the sign to be used (±1).
With the addition of the second function the effect of collisions
is mitigated and several features can be hashed into the same
target space with minimal interplay[11].

A. Feature Hashing is a Johnson Lindenstrauss Transform

Feature hashing as a random projection is used in [16] to
transform sparse vectors preserving pairwise distances, [11]
also shows that FH preserves the distances between vectors.

We start showing that Feature Hashing can be represented
as a matrix. Each feature (column) of our original vectors is
mapped by the first hash function from d dimensions to d′

and the second hash function determines the sign. This is the
same as multiplying the original (1xd) vector by a dxd′ matrix
where each row contains exactly one ±1 element. If we use
k hash functions instead of just one then each row contains
up to k ±1 elements and it might contain up to ±k valued
elements due to collisions.

So for example if we have the data-point V =
(0, 1, 0, 3, 0.5, 0, 1) in <7 and we use FH to convert it to d′ = 4
dimensions we can use the following hash function:

h(0) = 2 s(0)=+1
h(1) = 1 s(1)=+1
h(2) = 3 s(2)=-1
h(3) = 0 s(3)=+1
h(4) = 1 s(4)=-1
h(5) = 2 s(5)=-1
h(6) = 3 s(6)=-1

This means the resulting vector is V ′ = (3, 0.5, 0,−1).
This is the same as multiplying our 1x7 vector by a 7x4

matrix in the form:

(
0 1 0 3 0.5 0 1

)
∗



0 0 1 0
0 1 0 0
0 0 0 −1
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


=
(
3 0.5 0 −1

)

Now we’ll show that these kind of matrices preserve the
norms of the vectors from the original space which is a
generalization of [9] and [17].

AGRANDA, Simposio Argentino de GRANdes DAtos

46JAIIO - AGRANDA - ISSN: 2451-7569 - Página 3



Theorem 2: Given A a dxd′ matrix where each row has k
±1 elements and the rest are zeros. We want to show that this
matrix preserves the norms of the vectors from d dimensions
projected into d′ dimensions up to a given scale factor.

||w|| ≈
√
k||v||

To prove the theorem we start from the fact that if we have a
vector vd in <d and we apply a dense random projection with
±1 elements the square of the projection has an expected value
equal to the square of the norm this is because of concentration
of measures.

Each column of our dxd′ matrix is equivalent to a random
projection of d elements, hence when we compute v ∗ A we
are obtaining d′ different random projections. The difference
is that our matrix doesn’t have d ±1 elements in each column.
The total number of non-zero elements in our matrix is d ∗
k ignoring collisions. Then the average number of non-zero
elements in our matrix is dk

d′

Since we know that with d ±1 elements the square of the
projection has an expected value equal to the square of the
norm, then if we have k

m ±1 elements the square of the
projection has an expected value equal to k

m ||v||
2

w2
i =

k

m
||v||2

We can now compute the expected value of the norm of vm
as:

w2
i =

k

m
||v||2∑

i

w2
i = m

k

m
||v||2√∑

i

w2
i =

√
m
k

m
||v||2

||w|| =
√
k||v||

And this proves the theorem.

B. Method 1: Feature Hashing LSH

Having shown that Feature Hashing is a form of Johnson-
Lindenstrauss projection and established that any Johnson-
Lindenstrauss projection can be used as a minhash, we propose
two LSH families based in Feature Hashing. The first one is
a direct application of Feature Hashing.

Each minhash uses a random dxd′ matrix M with k ±1
elements in each row. The minhash is then computed as:

h(x) = argmax
i=0..d′−1

< x,Mi >

Where Mi is the ith column of M . Using different random
matrices we can create different minhashes to amplify the
family.

C. Method 2: Directional Feature Hashing LSH

In method 2 we are again using a dxd′ matrix M with k
±1 elements, then we consider the sign of each element in d′

and build a d′-bits minhash as the result. This is the same as
hyperplane LSH but using only k ±1 elements in each random
hyperplane. If the method is usable then we have a direct
improvement in performance compared to the LSH families
we have studied.

h(x) = sign(< x,Mi >)

Where Mi is the ith column of M

VII. RESULTS

We now turn to results we obtained applying these methods
to a synthetic and real dataset. For the synthetic dataset
we build random vectors with d = 128 dimensions in the
unit hypersphere. For the real dataset we used the SIFT 1
million dataset [5] that is widely used for Near Neighbors
experiments. We note that for SIFT the vectors are not in the
Unit Hypersphere but the methods proposed work very well for
the euclidean distance showing that in the practice these LSH
families can be used for both angular or euclidean distances.

Figure 1. Results for random vectors in the unit hypersphere for d=128

The first graph (Figure 1) shows the probability of collisions
by the Euclidean distance for different LSH families in the
Unit hypersphere.

The graph shows several interesting things. Hyperplane LSH
is almost the same as Directional Feature Hashing but the
second is faster because its vectors are sparser. Both families
have the lowest rate of false positives but also the highest
rate of false negatives. Using less bits for each minhash it is
easy to decrease the number of false negatives with the cost
of increasing the false positives.

Feature Hashing has the highest rate of false positives and
the lowest rate of false negatives. The effect can be mitigated
using more hash functions for the same minhash, which means
using more than 1 ±1 element in each row of the matrix.
Voronoi LSH, Cross Polytope and the Fast Cross Polytope are
very similar, which is expected as we have shown they are
almost exactly the same thing.

AGRANDA, Simposio Argentino de GRANdes DAtos

46JAIIO - AGRANDA - ISSN: 2451-7569 - Página 4



For the SIFT dataset we run an experiment setting a desired
value of p = 0.95 for distances 0.2 or less and p = 0.05 for
distances 0.6 or more. This means that vectors that are at
distance 0.2 or less will have a probability of collision of 0.95
or more while vectors that are at distances 0.6 or more will
have a probability of collision of 0.05 or less.

The idea was to see which values of r (number of hash
functions) and b (number of hash tables) were needed to
amplify each minhash to the target probabilities for each
method.

Method r b Total
Voronoi LSH (T=64) 6 15 90
Cross Polytope (T=64) 6 18 108
Hyperplane (T=6) 5 22 110
Feature Hashing (T=64,k=1) 7 16 112
Fast Cross Polytope (T=64) 6 15 90
Directional Feature Hashing (T=6) 5 20 100

Table I
NUMBER OF HASH FUNCTIONS AND HASH TABLES NEEDED FOR

p1 = 0.95 AND p2 = 0.05

The results are very interesting, we can see that all the meth-
ods use a similar number of total hash functions. Hyperplane
LSH and Directional Feature Hashing need less functions per
table but more tables, so they are very good when space is
not limited and performance is critical. Feature Hashing needs
less hash tables but more hash functions so it is a family to
consider when space is critical. In general each LSH family
can work better or worst depending on the data and the target
probabilities for false negatives and false positives. All these
LSH families are usable and need to be considered carefully
when choosing a LSH family for an application.

Next we did some speed tests on the SIFT dataset, we
multiplied the speed of a single hash function by the number
of hash functions needed in each family to obtain a 0.05
probability for both false positives and false negatives. This
is done to even out the advantages and disadvantages of each
particular function.

Figure 2. Performance of LSH methods

The Fast Cross Polytope was discarded because it was
very slow compared to the other methods, this is because
the FJL transformation takes time and then a further rotation

is needed. The two step approach was never faster than the
direct application of a simpler LSH family. Cross Polytope
and Voronoi are very similar because they are the same
thing. Hyperplane Hashing and Directional Feature Hashing
are much faster and the direct application of Feature Hashing
was the fastest method. This means that even needing more
hash functions to mitigate false positives Feature Hashing is
still the fastest LSH family for the SIFT dataset. This is very
logical as each hash function only does a limited number of
additions and subtractions, no multiplications are needed and
each element in the vector is only added or subtracted once
to the resulting vector.

The rate of how precision changes was also studied.

Figure 3. Precision rate as more Hash tables are used

It can be seen (Figure 3) that as more hash tables are used
the precision increases in an almost identical rate in all the
LSH families tested, this is logically explained as they are all
based on a form of a Johnson-Lindenstrauss transform that
preserves the norms of the vectors. The study was made to
discard the possibility of an LSH family having a steeper
precision increase which would mean that less functions would
be needed to achieve a target precision compared to the other
methods. As it can be seen that is not the case.

VIII. ANALYSIS

A. Feature Hashing LSH

Feature Hashing is a very flexible LSH family. It can be
applied in matrix form or using hash functions, the later
is very practical for data with categorical columns or text
where the other methods can’t be used without doing a data
transformation first. In matrix form we have only k non-zero
values in each row making its time complexity O(d∗k). Since
each member of the original vector is only used once and only
an addition or subtraction is performed, we can claim that the
method is optimal in terms of speed.

The number of hash functions or the number of non-
zero values in each row of the associated matrix can be
tuned to reduce the number of false-positives independently
of amplification. Adding more ±1 elements decreases the rate
of false positives at the cost of increasing the computation for
each minhash.

AGRANDA, Simposio Argentino de GRANdes DAtos

46JAIIO - AGRANDA - ISSN: 2451-7569 - Página 5



Figure 4. Collision Rate as More hash functions are used

We observe (Figure 4) that for vectors in 128 dimensions we
don’t need to use a full 128 dimension rotation to reduce the
collision probability and the number of false positives. Even
using only a few ±1 elements is enough to decrease the rate
of false positives. Sensitivity tests are needed to evaluate the
optimal number of ±1 elements in terms of performance and
false-positive rates.

The most interesting result is that for a desired LSH family
in the form H(d1, d2, p1, p2) Feature Hashing is the fastest
method at exactly the same rate of false positives and false
negatives.

B. Directional Feature Hashing LSH

Directional Feature Hashing is very similar to Hyperplanes
LSH but faster because only k±1 elements are present in each
projection. When k = d the method is equal to Hyperplanes
Hashing. The number of bits can be tuned to make the method
work as expected independently of the amplification used.

This LSH family shows that hyperplanes LSH can be made
faster just sparsifying the random projections used.

IX. CONCLUSION

We have generalized LSH families for the angular distance
showing the requirements for a function to be considered
a minhash. In general terms any randomized function that
depends on the distance between the vectors is suitable as a
minhash function. The number of different minhashes that can
be created is the size of the LSH family and a high number
is desired.

We showed how any minhash can be extended to work
within the parameters of false positives and false negatives
we expect using amplification. We proved that any form of
a random Johnson-Lindenstrauss projection can be used to
create an LSH family for the angular distance because the
projections preserve the norms of the vectors.

We showed how Feature Hashing is a form of a Johnson-
Lindenstrauss projection. Then two new LSH families were

proposed based in Feature Hashing, one with a low rate of
false negatives and a higher rate of false positives and the
other with a low rate of false positives and a higher rate of
false negatives. Depending on the constraints in performance
and space one or the other can be used and amplified to achieve
the desired results. A very important characteristic of the two
methods presented is that they are very fast in performance
and very simple to implement.

In terms of optimality Spherical hashing [3] is optimal
in terms of precision but the minhashes are not practical to
compute while Feature Hashing as presented here is optimal
in terms of speed and the corresponding minhashes can be
used in the practice because they offer good precision after
amplification.

ACKNOWLEDGMENT

The authors would like to thank Ilya Razenshteyn from MIT
for his support and for answering our questions. We also want
to thank the University of Tres de Febrero (UNTREF) and
Alejandro Oliveros for the time and support for this project.

REFERENCES

[1] Achlioptas, D.: Database-friendly random projections: Johnson-
Lindenstrauss with binary coins. Journal of Computer and System
Sciences 66(4), 671–687 (2003)

[2] Andoni, A., Indyk, P., Laarhoven, T., Razenshteyn, I., Schmidt, L.:
Practical and Optimal LSH for Angular Distance. Nips pp. 1–9 (2015),

[3] Andoni, A., Indyk, P., Nguyen, H.L., Razenshteyn, I.: Beyond Locality-
Sensitive Hashing. Soda (1) (2014)

[4] Charikar, M.S.: Similarity estimation techniques from rounding algo-
rithms. Proceedings of the thiry-fourth annual ACM symposium on
Theory of computing - STOC ’02 pp. 380–388 (2002),

[5] Douze, M., Schmid, C., Jégou, H., Douze, M., Schmid, C.: Product
Quantization for Nearest Neighbor Search Herve. IEEE Transactions on
Pattern Analysis and Machine Intelligence 33(1), 117–128 (2011),

[6] Gionis, A., Indyk, P., Motwani, R.: Similarity Search in High Dimen-
sions via Hashing. VLDB ’99 Proceedings of the 25th International
Conference on Very Large Data Bases 99(1), 518–529 (1999),

[7] Indyk, P., Motwd, R.: Approximate Nearest Neighbors: Towards Re-
moving the Curse of Dimensionality. Proceedings of the thirtieth annual
ACM symposium on Theory of computing. ACM pp. 604–613 (1998)

[8] Kennedy, C., Ward, R.: Fast Cross-Polytope Locality-Sensitive Hashing
pp. 1–14 (2016)

[9] Shi, Q., Petterson, J.: Hash kernels. International Conference on Artifi-
cial Intelligence and Statistics pp. 496–503 (2009),

[10] Terasawa, K., Tanaka, Y.: Spherical LSH for Approximate Nearest
Neighbor Search on Unit Hypersphere p. 12 (2007)

[11] Weinberger, K., Dasgupta, A., Attenberg, J., Langford, J., Smola, A.:
Feature Hashing for Large Scale Multitask Learning. Proceedings of
the 26th Annual International Conference on Machine Learning (Icml),
(pp. 1113–1120). (2009),

[12] Alexandr Andoni and Ilya Razenshteyn. Optimal data-dependent hashing
for approximate near neighbors. In STOC, 2015.

[13] Hervé Jégou, Matthijs Douze, and Cordelia Schmid. Product quantiza-
tion for nearest neighbor search. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 33(1):117–128, 2011.

[14] Ludwig Schmidt, Matthew Sharifi, and Ignacio Lopez Moreno. Large-
scale speaker identification. In ICASSP, 2014.

[15] Narayanan Sundaram, Aizana Turmukhametova, Nadathur Satish, Todd
Mostak, Piotr Indyk, Samuel Madden, and Pradeep Dubey. Streaming
similarity search over one billion tweets using parallel locality- sensitive
hashing. In VLDB, 2013.

[16] Emmanuel Candest,Terence Tao. Decoding by Linear Programming
[17] Yue Lin,Rong Jin,Deng Cai,Shuicheng Yan,Xuelong Li.Compressed

Hashing.

AGRANDA, Simposio Argentino de GRANdes DAtos

46JAIIO - AGRANDA - ISSN: 2451-7569 - Página 6


