
Decomposability of DiSAT for Index Dynamization

Edgar Chávez1, Marı́a E. Di Genaro2, Nora Reyes2, and Patricia Roggero2

1Centro de Investigación Cientı́fica y de Educación Superior de Ensenada, México

elchavez@cicese.mx
2Departamento de Informática, Universidad Nacional de San Luis, Argentina

{mdigena,nreyes,proggero}@unsl.edu.ar

Abstract

The Distal Spatial Approximation Tree (DiSAT) is

one of the most competitive indexes for exact prox-

imity searching. The absence of parameters, the most

salient feature, makes the index a suitable choice for

a practitioner. The most serious drawback is the static

nature of the index, not allowing further insertions

once it is built. On the other hand, there is an old

approach from Bentley and Saxe (BS) allowing the

dynamization of decomposable data structures. The

only requirement is to provide a decomposition oper-

ation. This is precisely our contribution, we define a

decomposition operation allowing the application of

the BS technique. The resulting data structure is com-

petitive against the static counterparts.

Keywords: similarity search, dynamism, metric

spaces, non-conventional databases.

1 Introduction

The metric space approach has become popular in re-

cent years to handle the various emerging databases

of complex objects, which can only be meaningfully

searched for by similarity [1, 2, 3, 4]. Some exam-

ples are non–traditional databases, text searching, in-

formation retrieval, machine learning and classifica-

tion, image quantization and compression, computa-

tional biology, and function prediction. These prob-

lems can be mapped into a metric space model [1]

as a metric database. That is, there is a universe X

of objects, and a non negative real valued distance

function d : X×X−→R
+∪{0} defined among them.

This distance satisfies the three axioms that make

the set a metric space: strict positiveness, symmetry,

Citation: E. Chávez, M. E. Di Genaro, N. Reyes and P. Rog-

gero. ”Decomposability of DiSAT for Index Dynamization”. Jour-

nal of Computer Science & Technology, vol. 17, no. 2, pp. 110–

116, 2017.

Received: February 28, 2017. Revised: May 31, 2017.

Accepted: August 30, 2017.

Copyright: This article is distributed under the terms of the Cre-

ative Commons License CC-BY-NC.

and triangle inequality. We have a finite database

U⊆ X,which is a subset of the universe.

Thereby, “proximity” or “similarity” searching is

the problem of looking for objects in a dataset, that are

“close” or “similar enough” to a given query object,

under a certain (expensive to compute in time and/or

resources) distance. The smaller the distance between

two objects, the more “similar” they are. The database

can be preprocessed to build a metric index, that is, a

data structure to speed up similarity searches. There

are two typical similarity queries: range queries and

k-nearest neighbors queries.

A large number of metric indices have been pre-

sented along the years [1, 3, 2]. The Distal Spatial

Approximation Tree (DiSAT) is a recent index derived

from a simple modification of the SAT [5]. The main

drawback of (DiSAT) is its static nature. Although for

some applications a static scheme may be acceptable,

many relevant ones do require dynamic capabilities.

Actually, in many cases it is sufficient to support inser-

tions, such as in digital libraries and archival systems,

versioned and historical databases, and several other

scenarios where objects are never updated or deleted.

In this paper we introduce a new dynamic version of

DiSAT, by using the Bentley-Saxe method (BS) [6].

This method allows to transform a static index into

a dynamic one, if on this index the search problem

is decomposable. In [7] some static indexes are ana-

lyzed in combination with the BS method, obtaining

certains acceptable results, but DiSAT in a static sce-

nario has shown to outperform all these index. Now,

we are focused only on supporting insertions, bulk-

loading and range searches. A preliminary version of

this paper appeared in [8].

The rest of this paper is organized as follows. In

Section 2 we describe some basic concepts, and the

BS method. Next, in Section 3 we detail the Dis-

tal Spatial Approximation Trees (DiSAT), and some

notions of its close relatives: Spatial Approximation

Trees (SAT) and the Dynamic Spatial Approximation

Trees (DSAT). Section 4 introduces our dynamic vari-

ant of DiSAT. In Section 5 we show the experimental

evaluation of our proposal. Finally, we draw some

conclusions and future work directions in Section 6.

- ORIGINAL ARTICLE -

Journal of Computer Science & Technology, Volume 17, Number 2, October 2017

110

2 Previous Concepts

The metric space model can be formalized as fol-

lows. Let X be a universe of objects, with a non-

negative distance function d : X×X−→ R
+ defined

among them. This distance satisfies the three axioms

that make (U,d) a metric space: strict positiveness

(d(x,y) = 0 ⇔ x = y), symmetry (d(x,y) = d(y,x)),
and triangle inequality (d(x,z)≤ d(x,y)+d(y,z)). We

handle a finite dataset U ⊆ X, which can be prepro-

cessed (to build an index). Later, given a new object

from X (a query q ∈ X), we must retrieve all similar

elements found in U. Two queries are:

Range query: Retrieve all elements in U within dis-

tance r to q.

k-nearest neighbors query (k-NN): Retrieve the k

closest elements to q in U.

In this paper we are devoted to range queries. Nearest

neighbor queries can be rewritten as range queries in

an optimal way [9, 10], so we can restrict our atten-

tion to range queries. The distance is assumed to be

expensive to compute. Hence, it is customary to de-

fine the complexity of the search as the number of dis-

tance evaluations performed, disregarding other com-

ponents such as CPU time for side computations, and

even I/O time. Given a dataset of |U| = n objects,

queries can be trivially answered by performing n dis-

tance evaluations.

There exist a number of methods to preprocess the

database in order to reduce the number of distance

evaluations. (See [2, 3, 1] for more complete surveys.)

Most of those structures work on the basis of discard-

ing elements using the triangle inequality, and most

use the classical divide-and-conquer approach. Algo-

rithms to search in general metric spaces can be di-

vided into two large areas: pivot-based and clustering

algorithms. However, there are also algorithms that

combine ideas from both areas.

Bentley and Saxe Method

The Bentley-Saxe method allows to transform any

static data structure into a dynamic counterpart if it is

decomposable [6]. Our data structure is an index for

proximity searching. A search problem with a query

operation Q is decomposable if there exists an effi-

ciently computable binary operator ✷ satisfying the

condition:

Q(q,X1∪X2) =✷[Q(q,X1),Q(q,X2)]

where the ✷ operation has to be associative and con-

mutative [6, 7]. That is, the answer to a query on a

dataset X1 ∪X2 has to be computed efficiently from

the answer to queries for each X1 and X2. In the par-

ticular case of range queries on X, the ✷ operation is

the union of the sets obtained with the query operation

Q.

The main idea of BS method is to partition the in-

dexed set X in certain subsets X0,X1,X2, . . . ,Xm (if

|X| = n, m = ⌊logn⌋) to reduce the size of the index

of each subset that need to be rebuilt when an object

is inserted or deleted [7]. This partition satisfies thatS
0≤i≤mXi =X andXi∩X j = /0 for i 6= j, and |Xi|= 2i.

Then, the main data structure of BS is composed by

a set of data strutures T0,T1, . . . ,Tm, where Ti is an

empty data structure if Xi = /0, otherwise Ti is a static

data structure that contains 2i objects. Observe that

for any value of n, there is a unique collection of sub-

sets that must be non-empty. When a new object is in-

serted into the index, the algorithm proceeds with the

same principle used for incrementing a binary counter.

At query time, the search is solved independently by

searching on each non-empty Ti and then the results

of all individual searches are combined.

3 Distal Spatial Approximation Trees

The Distal Spatial Approximation Tree (DiSAT) [11]

is a variant of the Spatial Approximation Tree (SAT)

[5], both are data structures aiming at approaching the

query spatially by starting at the root and getting it-

eratively closer to the query navigating the tree. In

both cases the trees are built as follows. An element

a is selected as the root, and it is connected to a set of

neighbors N(a), defined as a subset of elements x ∈U
such that x is closer to a than to any other element in

N(a). The other elements (not in N(a)∪{a}) are as-

signed to their closest element in N(a). Each element

in N(a) is recursively the root of a new subtree con-

taining the elements assigned to it. For each node a

the covering radius is stored, that is, the maximum

distance R(a) between a and any element in the sub-

tree rooted at a. The starting set for neighbors of the

root a, N(a) is empty. Therefore we can select any

database element as the first neighbor. Once this ele-

ment is fixed the database is split in two halves by the

hyperplane defined by proximity to a and the recently

selected neighbor. Any element in the a side can be

selected as the second neighbor. While the zone of the

root (those database elements closer to the root than

the previous neighbors) is not empty, it is possible to

continue with the subsequent neighbor selection. The

SAT considers the elements of U−{a} in increasing

order of distance tho a, but DiSAT considers exactly

the opposite order.

The main difference between SAT and DiSAT the

separation between hyperplanes (more separated in

the DiSAT), which in turn decreases the size of the

covering radius; the two parameters governing the

performance of these trees. The performance im-

provement consists in selecting distal nodes instead

of the proximal nodes selected in the original algo-

rithm. Considering an example of a metric database

illustrated in Fig. 1, the Fig. 2 shows the SAT and

Fig. 3 the DiSAT obtained by selecting p6 as the tree

Journal of Computer Science & Technology, Volume 17, Number 2, October 2017

111

6

p14p7

p10

p9

p8

p15

p5

p1

p13

p12

p11

p2

p4

p3

p

Figure 1: Example of a metric database in R
2.

7

p 10

p 9

p 8

p 15

p 5

p 1

p 13

p 12

p 11

p 2

p 4

p 3

p 14

p 6

p

Figure 2: Example of the SAT obtained if p6 were the

root.

root. In both cases we also depict the covering radii

for the neighbors of the tree root. It is possible to ob-

tain completely different trees (SATs or DiSATs) if

we select different roots, and each tree probably may

have different search costs.

Algorithm 1 gives a formal description of the con-

struction of DiSAT. Range searching is done with the

procedure described in Algorithm 2. This process is

invoked as RangeSearch(a,q,r,d(a,q)), where a

is the tree root, r is the radius of the search, and q

is the query object. One key aspect of DiSAT (SAT

too) is that a greedy search will find all the objects

previously inserted. For a range query of q with

radius r, and being c the closest element between

{a}∪N(a)∪A(a) and A(a) the set of the ancestors

of a, the same greedy search is used entering all the

nodes b ∈ N(a) such that d(q,b) ≤ d(q,c) + 2r be-

cause any element x ∈ (q,r)d , can differ from q by

at most r at any distance evaluation, so it could have

been inserted inside any of those b nodes [3, 5]. In the

process, all the nodes x founded close enough to q are

reported.

Dynamic Spatial Approximation Tree

The Dynamic Spatial Approximation Tree

(DSAT) [12] is an online version of the SAT. It

7

p 10

p 9

p 8

p 15

p 5

p 1

p 13

p 12

p 11

p 2

p 4

p 3

p 6

p 14p

Figure 3: Example of the DiSAT obtained if p6 were

the root.

Algorithm 1 Process to build a DiSAT for U∪ {a}
with root a.

BuildTree(Node a, Set of nodes U)

1. N(a)← /0 /* neighbors of a */

2. R(a)← 0 /* covering radius */

3. For v ∈U in increasing distance to a Do

4. R(a)←max(R(a),d(v,a))
5. If ∀b ∈ N(a), d(v,a) < d(v,b) Then

6. N(a)← N(a)∪{v}
7. For b ∈ N(a) Do S(b)← /0

8. For v ∈U −N(a) Do

9. c← argminb∈N(a)d(v,b)

10. S(c)← S(c)∪{v}
11. For b ∈ N(a) Do BuildTree(b,S(b))

is designed to allow dynamic insertions and deletions

without increasing the construction cost with respect

to the SAT. A very surprising and unintended feature

of the DSAT is the boosting in the searching perfor-

mance. The DSAT is faster in searching even if at

construction it has less information than the static

version of the index. For the DSAT the database is

unknown beforehand and the objects arrive to the

index at random as well as the queries. A dynamic

data structure cannot make strong assumptions about

the database and will not have statistics about all the

database. However, it has a parameter to tune: the

maximum arity of the tree. The thumb rule for tuning

this parameter is that low arities are good for “easy”

metric spaces and large ones for “difficult” metric

spaces. Nevertheless, if an incorrect arity is chosen,

it is possible to affect significantly the tree efficiency.

4 Our Proposal

As we mention previously, the BS method can be ap-

plied on any static data structure to transform it into

a dynamic one. We select the DiSAT because it has

Journal of Computer Science & Technology, Volume 17, Number 2, October 2017

112

Algorithm 2 Searching of q with radius r in a DiSAT

with root a.

RangeSearch(Node a, Query q, Radius r,

Distance dmin)

1. If d(a,q) ≤ R(a)+ r Then

2. If d(a,q) ≤ r Then Report a

3. dmin←min {d(c,q), c ∈ N(a)}∪{dmin}
4. For b ∈ N(a) Do

5. If d(b,q)≤ dmin +2r Then

6. RangeSearch(b,q,r,dmin)

shown that is a very competitive index and it do not

need to set any parameter, unlike other competitive in-

dexes in the literature which depend critically on cer-

tain parameters for its efficiency.

In this particular case each Ti that considers the BS

method is a tree, particularly a DiSAT, so our new dy-

namic data structure is named Distal Dynamic Spa-

tial Approximation Forest (DiSAF), because we have

a forest of DiSATs. The i-th DiSAT in the forest will

have 2i elements.

Considering the example illustrated in Fig. 1, the

Fig. 4 and Fig. 5 illustrate the two dynamic data struc-

tures, based on spatial approximation, obtained by in-

serting the objects p1, · · · , p15 one by one: DSAT with

maximum arity of 6 (Fig. 4) and DiSAF (Fig. 5). In

the DSAT the root will be p1, because it is the first

element arrived. On the other hand, as we have 15

elements, DiSAF will build four DiSATs: T0,T1,T2,

and T3. As it is aforementioned, each Ti will have 2i

elements. As the insertion order is from p1 to p15, the

final situation will have: T0 with the dataset {p15},
T1 with {p13, p14}, T2 with {p9, . . . , p12}, and T3 with

{p1, . . . p8}. We also depict the covering radii for the

neighbors of the tree roots, some covering radii are

equal to zero. On one hand, it is possible to obtain

different DSATs if we consider different maximum ar-

ities or different insertion orders, and they will likely

have different search costs. On the other hand, as

DiSAF has not any parameter, the only way to obtain

different forests is by considering different insertion

orders.

Figure 6 illustrates the before (Figure 6(a)) and the

after (Figure 6(b)) of one insertion of an element into

a DiSAF.

The insertion process of a new element x in

a DiSAF is described in the Algorithm 3. Ini-

tially, the DiSAF has an only DiSAT T0 = null.

Then, the index can be built via succesive insertions.

Retrieve(Tree T) return all the elements that

compose the tree T . The range search process is de-

tailed in the Algorithm 4.

Bulk-Loading As we mentioned, we can build a

DiSAF via successive insertions if the elements ar-

rive at any time. However, if we know beforehand

a subset of objects, we can avoid unnecessary re-

buildings when we insert elements one by one by

7

p 9

p 8

p 15

p 5

p 1

p 13

p 12

p 11

p 2

p 4

p 3

p 6

p 14

p 10

p

Figure 4: Example of the DSAT with maximum arity

of 6, inserting from p1 to p15.

7

p 9

p 5

p 1

p 13

p 12

p 11

p 2

p 4

p 3

p 6

p 14

p 10

p 15

p 8

root T3

root T2

root T0

root T1
p

Figure 5: Example of the DiSAF, inserting from p1 to

p15.

building a DiSAF with a bulk-loading algorithm. If

we have a subset Y ⊆ U, with s = |Y | elements,

the bulk-loading process partitionates Y in subsets

Y0,Y1,Y2, . . . ,Y⌊log s⌋+1. Then, a static DiSAT is built

with each subset and all the trees obtained form to-

gether the DiSAF with the whole Y . Later, we can

insert elements one by one into this DiSAF as they

arrive (by using Algorithm 3).

The Algorithm 5 describes the process of a bulk-

loading with a set of elements S into a DiSAF. It can

be noticed that if |S| = n we firstly need to calculate

in bin the binary representation of n (at line 1). We

named as bini the i-th bit of this representation. If the

bit bini is equal to zero the corresponding DiSAT Ti

in the DiSAF structure will be null (line 10). Other-

wise, if bini is equal to one, we need to build a DiSAT

Ti with 2i elements (at line 8) by using the original

BuildTree algorithm (Algorithm 1) of DiSAT. Finally,

the DiSAF structure will have some trees, each one

with the adequate quantity of elements. Then, it will

be possible to continue inserting the elements one by

one if we want.

Journal of Computer Science & Technology, Volume 17, Number 2, October 2017

113

Algorithm 3 Insertion of a new element x in a DiSAF

with at most m trees.

Insert(Element x)

1. S← /0, k←min0≤i≤m i, such that Ti = null

2. For i from 0 to k−1 Do

/* retrieve all the elements of Ti */

3. S← S ∪ Retrieve (Ti)

4. Ti← null /* Ti is a new empty tree */

5. Tk← BuildTree(x, S)

6. If k = m Then

7. Tk+1← null, m← k+1

Algorithm 4 Searching of q with radius r in a DiSAF

with at most m trees.

RangeSearchNew(Query q, Radius r)

1. A← /0

2. For i from 0 to m−1

3. If Ti 6= null Then

4. Let x be the root of Ti

5. A← A ∪ RangeSearch(x,q,r,d(x,q))
6. Report A

Algorithm 5 Bulk-loading of a set of elements S in a

DiSAF.

BulkLoading(Set of elements S)

/* the representation base-2 of n = |S| */

1. bin← n2

2. For i from 0 to ⌊logn⌋+1 Do

3. If bini 6= 0 Then

/* Ti will be a DiSAT with 2i objects */

4. Yi← ∞
5. For j from 1 to 2i Do

/* let be an element x ∈ S */

6. Yi←Yi∪{x}
7. S← S−{x}

/* let be an element a ∈ Yi */

8. Ti← BuildTree(a, Yi−{a})
9. Else

/* Ti will be an empty DiSAT */

10. Ti← null

+1k +2k +3k +4k +5k +6k +7kk

SAT+

SAT+

SAT+

SAT+

(a) Before the insertion.

+1k +2k +3k +4k +5k +6k +7kk

SAT+

SAT+

(b) After the insertion.

Figure 6: Example of the insertion into a DiSAF.

Lazy Rebuilding It is possible to reduce the high

reconstruction costs as consequence of each inser-

tion by amortizing them between several insertions.

It suffices with delaying the reconstruction of the

DiSAF until enough insertions amortize their cost.

In [13, 14] different lazy rebuilding techniques are

presented to delay reconstruction during insertion,

because in many data structures for decomposable

searching problems each insertion do not actually

need to restore the “shape” of the structure immedi-

ately when it occurs, as long as the structure remains

“in reasonable shape”.

5 Experimental Results

For the empirical evaluation of the indices we con-

sider three widely different metric spaces from the

SISAP Metric Library (www.sisap.org) [15].

Dictionary: a dictionary of 69,069 English words.

The distance is the edit distance, that is, the min-

imum number of character insertions, deletions

and substitutions needed to make two strings

equal. This distance is useful in text retrieval to

cope with spelling, typing and optical character

recognition (OCR) errors.

Color Histograms: a set of 112,682 8-D color his-

tograms (112-dimensional vectors) from an im-

age database. Any quadratic form can be used as

a distance; we chose Euclidean as the simplest

meaningful distance.

Journal of Computer Science & Technology, Volume 17, Number 2, October 2017

114

NASA images: a set of 40,700 20-dimensional fea-

ture vectors, generated from images downloaded

from NASA. The Euclidean distance is used.

When we evaluate construction costs, we build the

index with the complete database. If the index is dy-

namic, the construction is made by inserting one by

one the objects, otherwise the index knows all the el-

ements beforehand. In order to evaluate the search

performance of the indexes, we build the index with

the 90% of the database elements and we use the re-

maining 10%, randomly selected, as queries. So, the

elements used as query objetcs are not in the index.

We average the search costs of all these queries. All

results are averaged over 10 index constructions with

different datasets permutations.

We consider range queries retrieving on average

0.01%, 0.1% and 1% of the dataset. This corre-

sponds to radii 0.051768, 0.082514 and 0.131163 for

the Color Histograms; and 0.605740, 0.780000 and

1.009000 for the NASA images. The Dictionary have

a discrete distance, so we used radii 1 to 4, which re-

trieved on average 0.00003%, 0.00037%, 0.00326%

and 0.01757% of the dataset, respectively. The same

queries were used for all the experiments on the same

datasets. As we mention previously, given the exis-

tence of range-optimal algorithms for k-nearest neigh-

bor searching [9, 10], we have not considered these

search experiments separately.

We show the comparison between our dynamic

DiSAF, the DSAT, and the static alternatives SAT and

DiSAT. The source code of the different SAT versions

(SAT and DSAT) is available at www.sisap.org.

A final note in the experimental part is the arity param-

eter of the DSAT which is tunable and is the maximum

number of neighbors of each node of the tree. In our

experiments we used the arity suggested by authors in

[12]. The Figure 7 illustrates the construction costs of

the all indices, on the three metric spaces. As it can be

seen, DiSAF is surpassed for the other three indexes,

because it has to rebuild the trees too many times. On

the other hand, DSAT do not make any reconstruc-

tion while it builds the tree via insertions. It has to be

considered that SAT and DiSAT are built with all the

elements known at the same time, not dynamically.

We analyze search costs in Figure 8. As it can be

noticed, DiSAF surpasses DSAT in most of spaces.

The only index that is always better than DiSAF is the

DiSAT, but as we already mention it is static. From

this, it is clear that DiSAT surpass the strategies used

in SAT and DSAT. We retain the parameterless nature

of DiSAT overcoming DSAT.

6 Conclusions and Future Work

We presented a dynamic version of the DiSAT, accept-

ing insertions. Deletions can be simulated by mark-

ing the object as deleted. The resulting searching

times are not significantly impacted. We have to stress

 0

 100

 200

 300

 400

 500

 600

 700

 800

 10 20 30 40 50 60 70 80 90 100

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database used

Construction cost per element for n = 69,069 words

SAT
DSAT, Arity 32

DiSAT
DiSAF

 0

 200

 400

 600

 800

 1000

 1200

 10 20 30 40 50 60 70 80 90 100

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database used

Construction cost per element for n = 112,682 color histograms

SAT
DSAT, Arity 4

DiSAT
DiSAF

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 10 20 30 40 50 60 70 80 90 100

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database used

Construction cost per element for n = 40,700 feature vectors

SAT
DSAT, Arity 4

DiSAT
DiSAF

Figure 7: Construction costs for the three metric

spaces considered.

out that very few data structures for searching metric

spaces are dynamic. Furthermore, we have shown that

the heuristic used in DiSAT and DiSAF to partition

the metric space is better than that used in SAT and

DSAT: distal nodes produce more compact subtrees,

which in turn give more locality to the underlying par-

titions implicitly defined by the subtrees.

We are currently pursuing a fully dynamic DiSAF

addressing implementation details. There are many

open problems ahead to offer a practitioner a robust,

all purpose index for proximity search under the met-

ric space model.

Acknowledgements

The source codes of SAT and DSAT have been

downloaded from the SISAP Metric Library

(www.sisap.org).

Competing interests

The authors have declared that no competing interests

exist.

Journal of Computer Science & Technology, Volume 17, Number 2, October 2017

115

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 1 2 3 4

D
is

ta
nc

e
ev

al
ua

tio
ns

Search radius

Query cost per element for n = 69,069 words

SAT
DSAT, Arity 32

DiSAT
DiSAF

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0.01 0.1 1

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database retrieved

Query cost per element for n = 112,682 color histograms

SAT
DSAT, Arity 4

DiSAT
DiSAF

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0.01 0.1 1

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database retrieved

Query cost per element for n = 40,700 feature vectors

SAT
DSAT, Arity 4

DiSAT
DiSAF

Figure 8: Search costs for the three metric spaces con-

sidered.

References

[1] E. Chávez, G. Navarro, R. Baeza-Yates, and J. L.

Marroquı́n, “Searching in metric spaces,” ACM

Computing Surveys, vol. 33, pp. 273–321, Sept.

2001.

[2] H. Samet, Foundations of Multidimensional and

Metric Data Structures (The Morgan Kaufmann

Series in Computer Graphics and Geometric

Modeling). San Francisco, CA, USA: Morgan

Kaufmann Publishers Inc., 2005.

[3] P. Zezula, G. Amato, V. Dohnal, and M. Batko,

Similarity Search: The Metric Space Approach,

vol. 32 of Advances in Database Systems.

Springer, 2006.

[4] M. Hetland, “The basic principles of metric

indexing,” in Swarm Intelligence for Multi-

objective Problems in Data Mining (C. Coello,

S. Dehuri, and S. Ghosh, eds.), vol. 242 of Stud-

ies in Computational Intelligence, pp. 199–232,

Springer Berlin / Heidelberg, 2009.

[5] G. Navarro, “Searching in metric spaces by spa-

tial approximation,” The Very Large Databases

Journal (VLDBJ), vol. 11, no. 1, pp. 28–46,

2002.

[6] J. L. Bentley and J. B. Saxe, “Decomposable

searching problems i. static-to-dynamic transfor-

mation,” Journal of Algorithms, vol. 1, no. 4,

pp. 301–358, 1980.

[7] B. Naidan and M. L. Hetland, “Static-to-

dynamic transformation for metric indexing

structures (extended version),” Information Sys-

tems, vol. 45, pp. 48 – 60, 2014.

[8] E. Chávez, M. E. D. Genaro, N. Reyes, and

P. Roggero, “Distal spatial approximation for-

est,” Libro de Actas del XXII CACIC 2016,

pp. 804–813, 2016.

[9] G. R. Hjaltason and H. Samet, Incremental Simi-

larity Search in Multimedia Databases. No. CS-

TR-4199 in Computer science technical report

series, Computer Vision Laboratory, Center for

Automation Research, University of Maryland,

2000.

[10] G. R. Hjaltason and H. Samet, “Index-driven

similarity search in metric spaces,” ACM Trans-

actions on Database Systems, vol. 28, no. 4,

pp. 517–580, 2003.

[11] E. Chávez, V. Ludueña, N. Reyes, and P. Rog-

gero, “Faster proximity searching with the distal

sat,” Information Systems, vol. 59, pp. 15 – 47,

2016.

[12] G. Navarro and N. Reyes, “Dynamic spatial ap-

proximation trees,” Journal of Experimental Al-

gorithmics, vol. 12, pp. 1.5:1–1.5:68, June 2008.

[13] M. H. Overmars, The design of dynamic data

structures. Lecture notes in computer science,

Berlin, New York: Springer-Verlag, 1983.

[14] M. H. Overmars and J. van Leeuwen, “Worst-

case optimal insertion and deletion methods for

decomposable searching problems,” Informa-

tion Processing Letters, vol. 12, no. 4, pp. 168

– 173, 1981.

[15] K. Figueroa, G. Navarro, and E. Chávez,

“Metric spaces library,” 2007. Available at

http://www.sisap.org/Metric Space Library.html.

Journal of Computer Science & Technology, Volume 17, Number 2, October 2017

116

