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Abstract: Using minute-by-minute data from over 60,000 smart thermostats in house-
holds distributed across the United States, we analyze the persistence of energy consumption
behaviors in response to external weather shocks. The analysis examines habitual behavior
and provides insight into what affects long term change and what triggers the decision to
reconsider one’s passive choices. Our preferences for indoor temperatures demonstrate ha-
bituation to outdoor temperatures. This habituation is asymmetrical between positive and
negative changes and non-linear at the extremes. While our indoor temperature preferences
habituate to match small outdoor changes, our preferences revert to long term means in
response to extreme temperature change. We also find people are more likely to make ac-
tive choices when outdoor temperature is salient. Finally, we show there is heterogeneity
in how preferences respond as a function of social norms, political preferences, and change
costs. Results provide guidance on how conservation policies impact energy use–failure to
understand the influence of habit on decision making can lead us to over-estimate the impact
of short term policy nudges but underestimate the long run impact of small changes. Our
results also inform how changing average temperatures and changing cultural attitudes may
affect energy conservation behaviors.
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1 Introduction

Economics typically presumes that people make active and conscious decisions toward the

goal of some utility maximizing outcome. However, many of our daily decisions are made

implicitly, following habitual rules. Active choice requires effort and attention, therefore

many of our choices are made passively. While this category of habitual consumption includes

many aspects of our routine, one particularly good example is the temperature setting on our

home thermostats. We tend to not give much thought to the indoor temperature even though

Americans spend over $86 billion annually on household heating and cooling, accounting for

more than half of the residential energy use in the U.S.1

Smart thermostats offer a unique opportunity to understand how consumers make active

versus passive choice. Such thermostats have programmable temperature settings to control

the heating and cooling in a home. They have become increasingly popular particularly in

newer and remodeled homes. Smart thermostats also allow users to use their smartphone

to adjust their program settings or to temporarily override the current program. In this

paper, we utilize high-frequency (minute-by-minute) data obtained from a smart thermostat

company of over 60,000 smart thermostats in households distributed across the United States

to study the persistence of habits in consumers’ temperature setting behavior. We show that

implicitly made decision are a key determinant of home heating and cooling consumption

and expenditures.

Our study seeks to ask three questions related to habit formation, 1) is there persistence

in consumers’ thermostat setting habits; 2) what triggers consumers to make an active choice

in indoor temperature settings, rather than to passively continue with an implicit one; and

3) how does the relationship between set points and environment differ between households

and how can this heterogeneity be explained by cultural attitudes toward the environment.

Our analysis of habituation provides direct policy implications on how conservation poli-

cies impact energy use because most policy analyses rely on static assumptions about de-

1Source: U.S. Energy Information Administration (EIA), Residential Energy Consumption Survey.
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mand. As a result, they may overestimate the short-term impact of policy interventions to

change consumption behavior, but underestimate the long-term impact of small behavior

shifts. For example, it may be hard to shift behavior in the short run, but small shifts (such

as turning off the lights, or changing light bulbs) may lead to long run changes in habit.

Recent empirical work on habit formation has focused primarily on small scale laboratory

based psychology studies. What has remained largely unstudied is the evidence of habit

formation in an economic decision made in the field, particularly one that is often made

passively. Exceptions include Royer et al. (2015) which find that a short term (one month)

behavioral nudge to exercise has minimal effect on long term exercise; Meer (2013) which

finds that a sports related shock to alumni donations has lasting effects on donations along

the extrinsic margin, and Allcott and Rogers (2014) that find small but lasting energy

consumption effects from a nudge involving messages on electricity bills that can persist for

years.

Consumer thermostat temperature setting behavior provides a unique empirical testing

ground for the study of habit formation for two reasons. The first is that habit models

(e.g. Becker and Murphy (1988) and Rozen (2010)) are based on the idea that consumption

preferences are serially correlated in response to external shock: the more I consume on one

day increases the marginal utility of consumption on the next. Indeed, we expect people will

habituate to unexpectedly warmer temperatures on day one and therefore prefer warmer

temperatures on day two. However, biological models and evidence suggest the opposite

is also possible: people may seek homeostasis (Brager and deDear, 1998). Animals (and

humans) exposed to extreme heat seek out cooler environments to compensate, generating

negative serially correlated preferences.

The second feature of temperature preferences is that it allows us to test models of active

versus passive choice. Bernheim and Rangel (2004) develop a model of how habitual behavior

can be triggered by external cues in the environment that shifts consumers between a hot and

cold state. More recently, Landry (2013) develops a model of how decision making is costly
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and develops an endogenous model of when decision points arise for habit-forming goods.

Both models emphasize how both environmental cues and the history of past consumption

can impact triggers for active choices. We will seek environmental triggers for active choices

in temperature settings.

Our empirical findings first confirm that habits create persistence in consumers’ home

energy consumption behavior as proxied by thermostat settings. Households’ indoor tem-

perature settings are highly correlated with their previous settings. We also find that tem-

perature choices respond to external temperature shocks and that the degree of response

varies by household, and by cultural awareness. We find evidence for both habituation–small

increases in outdoor temperatures lead to increases in our preferred indoor set points–but

also for mean reversion or homeostasis–our immediate response to an extremely warm day

is to lower our indoor set points. We find that the salience of the weather shock matters.

We respond more to extreme temperatures (e.g. in the 99th percentile). In terms of when

we make active versus passive choices, we find mixed evidence for the idea of choice sati-

ation–the idea that making a choice today satiates my urge to make changes. Instead, we

find that people are more likely to make active choices after having already made an active

choice, a finding consistent with time inconsistency (e.g. I may change thermostats settings

today without accounting for the fact that my preferences may be different tomorrow).

The paper is organized as follows. Section 2 provides a brief background on smart

thermostats. Section 3 presents the conceptual framework. Section 4 discusses the data

used in the study, followed by a series of descriptive analyses in Section 5. Section 6 outlines

the empirical strategy in this study. Section 7 presents the main estimation results and

discusses policy implications. Concluding remarks are offered in Section 8.
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2 Smart Thermostats

The data consist of minute-by-minute thermostat and external weather readings for over

60,000 households across the country from February 2012 to March 2014, totaling approxi-

mately 50 billion observations. Thermostats work based on a set point. When the thermostat

is on, it will turn on the air conditioning unit to cool the house until the set point is reached

during summer months, or heat the house until the desired set point is reached in winter

months. Programmable smart thermostats adjust these set points automatically, allowing

users to, for example, raise or lower the set points when people are asleep or away in order

to save energy. Units typically have different programs for weekdays and weekends. At any

time, if users are unhappy with the temperature, they can either change the program, or

override the program temporarily. The override setting will disappear after the specified

temperature (under override) is reached.2 In our data, despite the automatic nature of the

smart thermostats once programmed, overrides still occur - the median user overrides once

every 9 days.

The smart thermostats in question are Wi-Fi enabled programmable thermostats, capable

of either four or seven unique temperature set points per day. The thermostat can be easily

programmed via its companion web and mobile applications, which can also be used to

make remote adjustments to the thermostat settings when the user is not at home. These

thermostats report a significant amount of data related to their operation to their remote

management platform (approximately 50,000 data points per thermostat per month).

Past research on smart thermostats and smart electricity metering in general have shown

that providing users greater information about their usage tends to reduce demand (Faruqui

and Sergici (2010); Dulleck and Kaufmann (2000)). Such programs reduced long run demand

by 7% though they had little impact in the short run. Smart thermostats are popular with

utility companies as they give utility companies more control for Demand Side Management

2Most smart thermostats also have a “hold” setting, where one needs to actively press a corresponding
button and can override the programmed settings permanently until the user actively cancels. In our data,
“hold” settings are rarely observed so we dropped such observations.
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(DSM)-reducing energy usage at times of peak demand-and to help meet federal guidelines.

3 Conceptual Framework

We propose and test a number of competing behavioral hypotheses to guide our discussion

about the persistence of habits and the factors that trigger active choices. We then consider

the role of heterogeneity in explaining habits that are suggestive for future work.

3.1 Habit Formation

The standard model of rational addiction in Becker and Murphy (1988) has time consis-

tent consumers making consumption decisions over a good characterized by reinforcement -

more consumption in the past increases the marginal utility for consumption today - and tol-

erance - more consumption in the past decreases the absolute utility from consuming today.

In other words, given a utility defined over the time path of consumption of an addictive good

c(t), the “addictive stock of past consumption” S(t) is increasing in past consumption, and

consumption over a non-addictive good y(t), such that U(t) = u[c(t), S(t), y(t)], tolerance is

defined as ∂u
∂S
< 0, and reinforcement is defined as ∂c

∂S
> 0.

Building on Becker-Murphy, Rozen (2010) axiomatizes the class of time consistent linear

models of intrinsic habit formation and derives the following representation:

Uh(c) =
∞∑
t=0

δtu

(
ct −

∞∑
k=1

λkh
(t)
k

)
(1)

where h
(t)
k represents different histories of consumption, and λk ∈ (0, 1) represents the weights

of past consumption on the addictive capital stock. In the smart thermostat setting, this

implies that current temperature settings reflect past set points. Thus, our first testable

hypothesis regarding the persistence of habits is as follows
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Hypothesis 1 Habit Persistence Hypothesis: Today’s set point is positively correlated with

yesterday’s set point.

When considering deviations of today’s set point from yesterday’s, the Habit Persistence

Hypothesis implies that such deviations should be at or close to zero since most households

will rely on habitual routines for their indoor temperature settings.

We then seek to uncover the factors that make consumers depart from their persistent

habitual routines and seek to test hypotheses that help explain consumers’ responses to

external weather shocks as well as the underlying heterogeneity. The general predictions on

how set points are related to weather shocks can be ambiguous due to the competing forces

at work. Specifically, we propose the following two (competing) hypotheses:

Hypothesis 2 Habituation Hypothesis: Exposure to warmer (cooler) outdoor temperatures

will make consumers choose warmer (cooler) indoor temperatures.

And

Hypothesis 3 Homeostasis Hypothesis: Exposure to extreme hot (or cold) outdoor temper-

atures will make consumers change their indoor set point in the opposite direction: i.e. lower

(or higher) set points.

Our analysis, however, departs from the typical models of habit in that most studies of

habit focus on positive reinforcement (i.e. habituation with λk > 0). We argue that tempera-

ture preferences may also be negatively autocorrelated (i.e. λk < 0), particularly when facing

strong weather shocks.3 Studies on thermal comfort and indoor energy consumption, such

as Brager and deDear (1998), document survey evidence that shows that people experience

homeostasis when it comes to ambient temperature. That is, our Homeostasis Hypothesis

implies that the body has a preferred internal average temperature, and prolonged exposure

3Extreme weather shocks could be in terms of day-to-day changes or levels. And we will explore the
implications of each.

7



to hotter (cooler) outside environments, can increase the desire to seek out cooler (hotter)

indoor environments to compensate.

Furthermore, Becker-Murphy and Rozen, like most economic models, presume that an

active choice is made once (and only once) for every time period. However, in our data,

households do not make active choices regarding their indoor temperatures on a daily basis,

and we are thus interested in how external cues (e.g. Bernheim and Rangel 2004) and

past consumption affects choice. Conceptually, our notion of habitual choice is inspired by

Landry (2013) in which the interval between when we make choices varies endogenously.

Making a choice temporarily satiates the desire to make more choices, but the longer the

waiting interval between the choices, the greater the desire to make more choices increases.

However, it is also possible that strong cues can activate more desire to make an active

choice. Therefore, in terms of active choices of temperature settings, we have two competing

theories:

Hypothesis 4 Choice Satiation Hypothesis: Consumer’s desire to make decisions is subject

to choice satiation; the likelihood of active choices on any given day is negatively autocorre-

lated.

And

Hypothesis 5 Cue Salience Hypothesis: Consumers tend to make more active choices when

encountering salient external shocks; active choices should be positively autocorrelated if cues

are positively autocorrelated.

In the simplest version of the framework, people have finite attention. Making an active

choice has significant transaction costs, e.g. Peffer et al. (2011) find that a big determinant

of how smart thermostats are used depends on the ease of use of the design. Therefore,

changes in thermostat settings are only made when the benefits outweigh the costs of the

choice. The benefits to making a choice increase as the capital stock of habit accumulates. If

making a choice today temporarily satiates the desire to make future choices, then we would
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expect an active choice today to decrease the likelihood of active choices in the near future,

which generates the Choice Satiation Hypothesis.

On the other hand, both the Landry (2013) and the Bernheim and Rangel (2004) models

allow for cues to trigger choices as well. Therefore, we will look for whether a model choice

based on cues serves as a better fit for the data. Outside temperature will be the primary cue

of interest, but the salience of the cue will be of particular importance (e.g. Mullainathan

2002).

Another potential reason the data may reject Choice Satiation could be due to time

inconsistency. When users of a smart thermostat make changes, they can either temporarily

override their settings or make change that persist into the future. One relevant form of

time inconsistency is projection-bias (Loewenstein et al., 2003) where people assume their

set point preferences on an unusually warm day should apply to all future days as well. If

people insufficiently appreciate that their preferences today will differ from their preferences

in the future, then an active today may lead to more active choice tomorrow.

3.2 Heterogeneity

While heterogeneity can arise from many sources, we are focused on two types of

household-specific heterogeneity: heterogeneity due to differences in the cost of adjusting

thermostat settings and heterogeneity in cultural attitudes.4 The former can be inferred

from households’ frequency of thermostat change while the latter can be proxied by monthly

and state variation in Google search frequency for topics related to the environment.

In order to compare household-level heterogeneity with geographic level heterogeneity, we

first ask whether one type of heterogeneity dominates the other. As a back of the envelope

exercise, we formulate a simple linear probability model that estimates the probability that

the target indoor temperature today changes from yesterday’s and test the relative explana-

tory power of different types of heterogeneity by comparing the R2s of each specification.

4In Appendix B, we also explore additional sources of heterogeneity based on seasonality, time of the
day, day of the week, time of the year, departure from the mean temperature, and political affiliations.
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The R2 statistic is admittedly a crude measure, although Gronau (1998) argues that R2 can

be appropriate for linear probability models.

Consider the following specification:

Cit = α0 + θ1 ·∆Tit · 1(∆Tit > 0) + θ2 ·∆Tit · 1(∆Tit < 0) + τt + ξi + µit (2)

where Ct is a dichotomous variable that captures whether there are changes in the set point

in either direction relative to the day before; Tt represents the outdoor temperature and

∆Tit is the change in outdoor temperatures relative to the day before; 1(∆Tit > 0) and

1(∆Tit < 0) are indicator functions that decompose the outdoor temperature changes into

positive and negative components; τt is the day fixed effect, captured by dummies for year,

month and day of the week; and ξi is the household fixed effects.

We estimate Equation 2 using a linear probability model that captures the household

fixed effects and obtain a R2 of 0.1278.5 We then estimate a similar specification except we

exclude the household fixed effects and rely only on the differences in weather patterns (due

to geographic locations) to explain the changes in indoor temperature set points. We obtain

a corresponding R2 is 0.0197. Hence, there is evidence that household fixed effects provide

much stronger explanatory power than differences in weather conditions that households

face across different geographic locations. We will thus focus on the role of this kind of

heterogeneity in explaining set point reactions to weather shocks.6

Within the realm of household fixed effects, households can differ in their costs of changing

target indoor temperatures as well as their temperature preferences. Hence, we propose the

following testable hypotheses regarding the role of each:

Hypothesis 6 Change Cost Hypothesis: Households with a lower cost of changing thermo-

stat settings will respond more to external weather shocks.

5Detailed estimated coefficients will be presented in the empirical results section.
6We also tried other specifications with different controls for weather conditions but the dominance of

the household fixed effects in explaining variations in set point changes does not change.
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Households with lower cost of changing thermostat settings will tend to pay more attention to

their thermostat settings and change the set points more frequently. We would expect these

households to respond more to external weather stimuli compared to those with relatively

high costs of changing target set points.

On the other hand, if we proxy households’ temperature preferences by the cultural

attitudes that they have toward topics related to weather and environment, we can then

formulate the following hypothesis:

Hypothesis 7 Awareness Hypothesis: Households living in areas with higher environmental

awareness will habituate more while those in higher weather awareness regions will respond

more to external weather shocks.

If a household lives in a region during a month when more people are searching online

for terms related to the environment or related to the weather, they are more likely to

be aware of the environment or of the weather when they make their set point choices.

That awareness may affect how they may make different set point and energy consumption

decisions. Awareness about the environment is about weighing the social cost against the

private cost of energy consumption decisions, whereas awareness about the weather concerns

the role of attention. We thus hypothesize that more attention paid to the weather will make

the household respond more to outdoor temperature shocks while more attention to “green”

issues will make a household habituate more to the outdoor temperature.

4 Data

The data for this study come from multiple sources. In addition to proprietary minute-

by-minute smart thermostat usage data from a major smart thermostat producer in the

U.S., we utilize weather data from the National Oceanic and Atmospheric Administration

(NOAA) and data from Google Adwords on internet search intensity for keywords related to

11



economy, environment, energy, weather and thermostat in order to capture cultural attitudes

around these topics.

4.1 Thermostat Usage Data

The proprietary smart thermostat data provide extremely detailed minute-by-minute

panel observations on households’ thermostat set points, ambient temperature readings, out-

door temperature readings, and actual utilization of different HVAC modes, such as heating

and cooling as well as a combination of different fan modes. We consider a two-year sample

period from February 2012 to March 2014. The raw dataset contains more than 50 billion

minute-level observations for over 60,000 households across the country. Due to computa-

tional burdens, we restrict Statistical Areas (MSA) around the country with population over

500,000 people. We aggregate the minute-by-minute observations to the daily level, resulting

in over 25 million daily-level observations. We then perform the following data trimming

procedures: 1) we focus on households with only one thermostat in their residences;7 2) we

drop observations with missing or inconsistent outdoor temperature and set point readings;

3) we drop households with less than 25 observations in the sample period. The thermostat

usage data also contain the 5-digit zip codes of households’ residences. This allows us to con-

veniently match the thermostat data with data on external weather shocks as well as data

from google search trends in the neighborhood. Our final sample contains approximately

27,000 households and 10.5 million observations.

Table 1 outlines the main descriptive statistics of our assembled dataset. The average

daily ambient temperature reading is very close to the average set point temperature, sug-

gesting that the average HVAC units are effective in maintaining the target temperature.

The small variations of ambient and target temperatures also imply a relatively stable zone

of comfortable indoor temperatures that do not vary a lot with respect to outdoor condi-

tions. We divide the sample based on the four Census Regions and find 35% of the sample

7This represents over 80% of all the households in the sample.
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lives in the South while the rest of the sample is distributed fairly evenly across the North-

east, Midwest and West. Climate and weather conditions are understandably highly variable

across the country, which underscores the importance of distinguishing the heterogeneity due

to household preferences from geographic locations. The average daily duration of running

heating or cooling units is approximately 100 and 125 minutes (when these units are turned

on), respectively, though as suggested by the standard deviations, there are large variations

of how and when consumers operate these units.8

Table 1: Summary statistics

Variable Mean S.D.

Outdoor temp 58.46 20.43
Ambient temp 71.15 5.73
Set point temp 70.70 7.25
Daily heating duration(minutes) 98.35 183.03
Daily cooling duration(minutes) 123.82 222.52
Daily morning target change freq 1.54 3.32
Daily afternoon target change freq 1.33 3.25
Daily evening target change freq 1.59 3.23
Daily midnight target change freq 1.13 3.27
Daily precipitation ( 1

10
th of mm) 24.61 82.18

Daily snowfall (mm) 1.91 15.56
Daily snow depth (mm) 9.59 46.95
Forecast outdoor temp 55.69 18.99
Northeast 0.18 0.39
Midwest 0.22 0.42
West 0.23 0.42
South 0.36 0.48
Program set point change freq 3.97 1.08
Daily user target change freq 5.59 12.30
Days since last override 15.92 23.29

Number of Observations 10,665,178
Number of Households 26,963

In addition, since the smart thermostats in this study are programmable, we have in-

formation on the programmed operations of thermostat at different times of the day. This

8In the regression analyses, we include cooling and heating minutes in order to control for variation in
household insulation.
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allows us to deduce whether consumers choose to override existing thermostat settings by

comparing the actual number of set point changes against the programmed number of set

point changes. Table 1 suggests that a household in the sample would on average override

its thermostat setting approximately every two weeks, and an average household changes the

thermostat set points more frequently than the programmed changes. This suggests that

consumers may not always have the patience to wait for the programmed adjustments from

the smart thermostats, and will choose to adjust the temperature set points themselves if the

room temperatures are not ideal. Unsurprisingly, thermostat users tend to be at home when

making set point adjustments - we note in Table 1 that mornings and evenings see higher

frequencies of changes in thermostat settings, implying that the majority of the overriding

takes place during the hours when consumers are presumably at home.9

4.2 Weather and Google Adwords Data

The weather data from NOAA contains daily precipitation, snowfall and snow depths

from the airport weather station closest to the MSA of interest.10 The data are then matched

to the thermostat usage data by the MSA of residence. As expected, the weather data contain

large variations as suggested in Table 1.

Besides the heterogeneity due to differences in the cost of adjusting optimal indoor tem-

peratures, another dimension of heterogeneity we explore stems from consumers’ different

cultural attitudes toward topics that may in turn affect their energy consumption decisions.

For example, if consumers are more environmentally aware and more “green”, then they

could be more attentive to their temperature settings compared to those who are less aware,

which can result in a different responses to external weather shocks. In our study, we follow

the approach of recent studies like Stephens-Davidowitz (2014) which utilize search data

9It is also possible that consumers tend to override the programmed temperature settings when their
routine work and leisure schedules change, e.g. when one has to unexpectedly come home early from work
or stay up late.

10Precipitation is measured in tenths of a millimeter while snowfall and snow depths are measured in
millimeters. In the case of multiple weather stations in the same MSA, we selected the weather station that
is closest to the center of the MSA.
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from Google as a measure for (aggregate) cultural attitudes. Stephens-Davidowitz (2014)

argues that keyword searches, at least at aggregate levels, reveal what different people truly

care about.

Google Adwords is an online advertising service that allows advertisers to present their

advertisement to internet users based on the keywords previously searched by the users. The

Adwords data allows us to track internet search traffic based on specific keywords entered.

Unlike Google Trends data, which have recently been heavily utilized in behavioral stud-

ies (e.g. Stephens-Davidowitz 2014; Edelman 2012), the Adwords data have the advantage

of providing the actual frequency of keyword searches instead of a scaled search intensity

index.11 We then utilize Google Adwords to track inquiries related to the economy, environ-

ment and disasters, energy, weather, and thermostat and group monthly inquiry volumes on

different topics based on the states where the searches originated.12

The Adwords data in our study range from July 2012 to March 2014, covering most of

the sample period for our thermostat data. The data are aggregated at the state-month level

allowing us to capture variation over time, while controlling for household level fixed effects.

We expect environmental awareness and worries about global warming to lead to “greener”

energy consumption behavior, e.g. habituate one’s indoor temperature settings to outdoor

temperatures. On the other hand, awareness of weather can lead to more attention to one’s

thermostat settings, which in turn may result in larger responses to external weather shocks.

11We scale the search frequency by the population of each state.
12We use Google Correlate to identify a set of keywords related to a common theme. Google Coorelate

identifies keywords that are often searched for together. Keywords related to the economy include ”job
search”, ”unemployment”, and ”economy”. Environment related keywords include ”pollution”, ”coral”,
”BP”, ”dolphin”, ”crisis”, ”oil”, ”disaster”, ”environment”, ”EPA”, and ”global warming”. Keywords related
to energy include ”solar”, ”energy”, and ”electric”. Weather keywords include ”sunny”, ”temperature”,
”heat”, ”rain”, and ”forecast”. Keywords related to thermostat usage include ”Honeywell”, ”thermometer”,
”thermostat”, and ”Nestlabs”.

15



5 Descriptive Statistics

We begin by providing some descriptive statistics to demonstrate the habitual persistence

in how people set target temperature and to gain intuition about the heterogeneous responses

to weather shocks. Our main results from multivariate analysis follow in Section 7.

5.1 Persistence of Temperature Settings

We examine the persistence in thermostat setting habits via two channels. The first

channel is through intertemporal changes in set points. If behaviors are habitual and active

choice is costly, then the household will rely on the indoor temperature setting from the

previous day. Figure 1 plots the distribution of intertemporal set point changes, i.e. the

difference between today’s and yesterday’s set points, with an incremental interval of 0.1

degree. Most of the intertemporal set point changes are within one degree from yesterday,

with close to 50% of the distribution at or within 0.1 degree neighborhood from zero.13

Today’s set point closely resembles yesterday’s set point, implying persistent habits in setting

indoor temperatures.
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Figure 1: Distribution of Intertemporal Set Point Changes

Next, we consider the pattern of active choices made by households by plotting the fre-

quency of manual overrides of set point settings. Panel (a) of Figure 2 plots the distribution

13We also experimented with separating distributions by summer and winter seasons, but the overall
distribution did not change.
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Figure 2: Distributions of Override Status

Note: Panel (a) plots the distribution of the proportion of sample days with overrides per household.
Panel (b) plots the interval between overrides and presents the distribution of the average number of
days since the last override (by households).

of the proportion of sample days with overrides per household, effectively this is the distri-

bution of the average probability of override. The distribution is clearly skewed to the right

with the 25th percentile, median and 75 percentile of probability of overriding being approx-

imately 8%, 18% and 33%, respectively. Panel (b) of Figure 2 plots the interval between

overrides and presents the distribution of the average number of days since the last override

(by households). We observe a similar distribution where the median override interval for

most households is over ten days. In our heterogeneity analysis we will compare the set point

response of households who make frequent overrides with those who do not.

5.2 Responses to Weather Shocks

Figure 3 plots the average daily outdoor temperature along with the average daily ther-

mostat target temperature (set point). From the plot we can see that they are correlated,

lending support for the Habituation Hypothesis. Table 2 shows the probability of override

and the average magnitude of the set point change in response to outdoor temperature. For

example, the first row shows how people respond when the outdoor temperature is hotter

than 99 percent of other days for a given MSA in a given year. The table shows override
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probability and magnitude of change increases as the outdoor temperature becomes more

extreme (either extremely cold or extremely hot) supporting the Choice Salience Hypothe-

sis. The table also suggests an asymmetry between the hottest days and the coldest days

suggesting evidence for Homeostasis. We will formally test the asymmetric response using

an event study described in Section 6.2.
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Figure 3: Average Outdoor Temperature vs. Average Set Point

Table 2: Responses to Weather Shocks

Prob. of Override ∆Set Point | Override

99th percentile temperature 0.273 -0.059
(hottest) (0.306) (1.233)
90th percentile temperature 0.252 0.016

(0.225) (0.617)
75th percentile temperature 0.246 0.014

(0.215) (0.464)
25th percentile temperature 0.269 -0.057

(0.229) (0.586)
10th percentile temperature 0.291 -0.076

(0.249) (0.687)
1st percentile temperature 0.322 -0.148
(coldest) (0.319) (1.589)

Prob. of Override is the probability of overriding. ∆Set Point | Override is the average
intertemporal set point difference conditional on overriding.

The fact that temperature settings respond to temperature could be driven by more

traditional market mechanisms such as price which also responds to temperatures. On the
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other hand, for most households, prices change infrequently and most households are largely

unaware of recent price changes. Therefore it is unlikely that prices are driving the observed

behavior. More formal regression analysis and the use of energy prices as controls (both for

electricity but also for gasoline which is more salient) support the idea that prices have little

explanatory power over high frequency shifts in behavior.14

5.3 Heterogeneity

The two types of heterogeneity we focus on is the household level variation in the trans-

action costs associated with changing indoor temperatures and the variation due to monthly

state level changes in cultural awareness. To study the former, we divide households based

on their percentile ranking in the distribution of the average number of days since the last

override.15 We classify a household with an override interval of three days or less (approx-

imately the 25th percentile or below in the distribution) as a “low change cost” household

while households with an override interval of 20 days or more (approximately the 75th per-

centile or above in the distribution) we classify as a “high change cost” household, under the

assumption that a higher overriding frequency implies a lower cost of changing set points.

Panels (a) and (b) of Figure 4 plot the average set points and outdoor temperatures, respec-

tively, based on the heterogeneity in the propensity to override temperature settings. The

figures suggest that while the two groups experience identical outdoor temperature patterns,

they have noticeable difference in set point patterns - the low cost households have a higher

average set point than the high cost households year around. The empirical section will in-

vestigate formally how response to external weather shocks differs between households with

different implied transaction costs.

14It is possible that households are sensitive to cost minimization even if they are not sensitive to prices.
We explore this possible channel in the appendix by testing household set point decisions against a 7 day
moving average of outdoor temperatures.

15Alternatively, we can divide households based on the estimated household fixed effects after controlling
for weather as it is possible that one could live in an area that encourages more or fewer changes in set
points, however, this alternative method yields largely the same results as the variation in outdoor weather
explains fair less of the variance than individual household fixed effects as shown in Section 3.2
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Figure 4: Heterogeneity Due to Change Costs

Note: Panels (a) and (b) plot the average set points and outdoor temperatures, respectively, based on
the heterogeneity in the propensity to override temperature settings.

We also consider heterogeneity of household preferences due to shifts in cultural attitudes

as measured by the monthly state level keyword Google search intensity on topics related to

weather and environment. Search intensity varies over time allowing us to separate identify

cultural attitudes from geographic fixed effects in our regression analyses. However, even

by just looking at geographic differences, we see a pattern for how search intensity might

matter. Panels (a) and (b) of Figure 5 plot the set point responses and outdoor temperatures,

respectively, for states with the highest search intensity and states with the lowest search

intensity. The patterns clearly suggest that while households in respective groups share

similar average outdoor temperatures, households in high search intensity regions (i.e. more

sensitive to weather patterns) show less habituation (compared to those living in low search

intensity regions) as they set higher target temperatures in the winter and lower set points in

the summer. Households living in high search intensity regions tend to pay more attention

to weather and could thus be more sensitive to changes in outdoor conditions which leads

to less habituation. Such patterns support the Awareness Hypothesis.

Panel (c) and (d) of Figure 5 explore the role of cultural attitude toward the environment

and plot the set point responses and outdoor temperatures, respectively, based on the search

intensity of environment related topics from the relevant states. Again, while households
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Figure 5: Heterogeneity Due to Cultural Awareness

Note: Panels (a) and (b) plot the set point responses and outdoor temperatures, respectively, for states
with the highest search intensity for weather related terms and states with the lowest search intensity.
Panel (c) and (d) plot the set point responses and outdoor temperatures, respectively, based on the
search intensity of environment related terms.

in each respective group experiences similar average outdoor temperatures, their set point

patterns differ, with more environmentally aware households (households from high search

intensity states) setting a lower thermostat temperature, particularly in the winter months.

We will further investigate both types of cultural attitudes in the empirical analysis.
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6 Empirical Strategy

The descriptive statistics provides strong evidence that set point choices are persistent

over time.16 To look at responses to external shocks, we estimate consumers’ short run

thermostat usage patterns as a response to external weather shocks and how they depend on

underlying heterogeneity due to variation across households and shifts in culture attitudes.

We finally conduct an event study of household responses to extreme and unexpected weather

shocks.

6.1 Fixed Effects and Linear Probability Models

Our main regression model estimates the frequency consumers adjust set point tempera-

tures and the magnitude of such adjustments in response to external weather patterns. For

household i, the changes of the average outdoor temperature from the previous day is given

by

∆Tt = Tt − Tt−1

where Tt represents outdoor temperature.

Similarly, the dependent variable of interest is the day-to-day change in the average set

point given by

∆St = St − St−1

where St is the set point temperature on day t.

We then estimate the following baseline model with household specific fixed effects:

∆Sit = α0 + θ1 · ||∆Tit|| · 1(∆Tit > 0) + θ2 · ||∆Tit|| · 1(∆Tit < 0) + τt + ξi + µit (3)

16In Appendix A, we consider alternative empirical specifications based on dynamic panel models to
further study the persistence of habits.
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where 1(∆Tit > 0) is an indicator function that equals to 1 if Tt − Tt−1 > 0. Essentially,

we decompose the outdoor temperature change into positive and negative components to

address the potential asymmetric responses to temperature increases and decreases in dif-

ferent seasons. If consumers respond to weather shocks symmetrically, then we will expect

|θ1| = |θ2|.17

We also augment Equation 3 with controls for other weather events and estimate the

following full model

∆Sit = α0 + θ1 ·∆Tit · 1(∆Tit > 0) + θ2 ·∆Tit · 1(∆Tit < 0)

+ λ1Zi,t + λ2Zi,t−1 + τt + ξi + µit

(4)

where Zit is a vector of other external weather events faced by household i, including precip-

itation, snowfall and distributions and patterns of extreme day-to-day temperature changes

such as dummies for temperature changes being within the highest and lowest 1st percentile,

10th percentile and 25th percentile for the region in a given year. We also control for the

number of minutes the HVAC unit was active from the previous day in order to address

variations in house insulation.

The other main dependent variable we study is a dichotomous variable, Cit, that captures

whether the household made a change in the set point relative to the day before and is given

17On the other hand, such response may also be reference-dependent, e.g. the response to a two-degree
increase from 65 degrees can differ from that to a two-degree increase from 32 degrees. Following Deschenes
and Greenstone (2011), we set 65 degrees Fahrenheit as the reference point for the outdoor temperature to
capture possible reference-dependent responses to outdoor temperature shocks. The temperature 65 degrees
Fahrenheit or 18 degrees Celsius is the typical threshold used to calculate a degree day, a unit used to
determine building energy consumption. We introduce interaction terms that capture increases or decreases
of outdoor temperatures relative to 65 degrees and estimate the following model:

∆Sit = α0 + θ1 ·∆Tit · 1(∆Tit > 0) + θ2 ·∆Tit · 1(∆Tit < 0)

+ φ1 ·∆Tit · (65− Tit) · 1(∆Tit > 0) + φ2 · (65− Tit) ·∆Tit · 1(∆Tit < 0)

+ τt + ξi + µit

In this equation, coefficients φ1 and φ2, would tell us whether changes in outdoor temperature depend
on 65 degrees as a reference. Our estimates (available upon request) do not show any dependence on a 65
degree reference point.

23



by

Cit = 1(∆Sit > 0; ∆Sit < 0).

We have shown the importance of household fixed effects in Section 3.2. Nonlinear

models, such as probit and logit, do not perform with the presence of fixed effects. The

Chamberlain conditional random effects logit model also does not apply well in our context

because it is reasonable to assume that variations in weather shocks can be correlated with

location. Thus, despite its limitations, our main specification employs a linear probability

model of Cit with household fixed effects.

To study households’ override decisions, we adopt a model similar to Equation 4 but with

the dummy for set point override as the dependent variable. Finally, we consider temporal

and spatial variations of energy usage by separating the above specification by summer (May

to September) and winter (November to March) seasons and consider heterogeneity in culture

attitudes as measured by keyword search intensity.18

6.2 Event Study

Since not all households respond to temperature shocks on a regular basis, we follow

the main analysis with an event study (as in Jacobson et al. (1993)) to consider households

responses when facing the most extreme weather events. An event study also allows us to

examine the temporal response to exogenous weather events. The extreme weather condi-

tions include the days with the largest snowstorms in a given winter as well as the highest

and lowest one percentile of the observed outdoor temperature for an MSA in a given year.

18In Appendix B, we utilize the same empirical specifications and explore additional sources of hetero-
geneity based on seasonality, time of the day, day of the week, time of the year, departure from the mean
temperature, and political affiliations.
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In particular, we estimate the following equation with household fixed effects:

Sit = β0 + ξi + τt + Xit
′η1 +

14∑
k=−14

ϑkIi,t−k + εit (5)

where Sit is a household’s (average) set point decision at time t; ξi and τt denote the household

and time fixed effects, respectively; Xit is a vector of covariates that control for current

weather conditions: outdoor temperature, precipitation, snowfall and snow depth (where

applicable); Ii,t−k is a set of event time dummies that take a value of 1 if the household is

at day t − k from the event and 0 otherwise. The key set of parameters, ϑk, captures the

temporal effect of unexpected weather events.

7 Results and Discussion

7.1 Responses to Outdoor Temperature Shocks

7.1.1 Set Point Responses

We first consider household set point responses by decomposing the outdoor tempera-

tures into positive and negative changes. The dependent variables include 1) a dichotomous

variable that measures whether there is a change (positive or negative) in set points; and

2) the actual set point change compared to the day before. Panel (a) of Table 3 presents

the baseline results. Columns (1) and (2) present the estimates from the linear probability

model (with household fixed effects) on the set point change dummy. The results suggest

that positive and negative day-to-day changes in outdoor temperatures will both increase

the probability of changing set points in both winter and summer. For instance, every 10

degree increase in outdoor temperature in the summer months will lead to a 0.68 percentage

point higher likelihood of changes in set points compared to the day before. We also find

evidence for asymmetry. Columns (2) and (4) estimate the magnitude of set point changes

using a household fixed effects model. Decreases in outdoor temperature are the main driver

25



of set point change in winter while increases in outdoor temperature are the main driver for

summer months. Overall, set point changes are positively correlated with changes in outdoor

temperatures in both summer and winter months, suggesting Habituation (i.e. exposure to

warmer outdoor temperatures will make consumers choose warmer indoor temperatures).19

The small magnitudes of the coefficients suggest that most consumers passively accept

the setting as it was on the day before. However, while effects are small on any given day,

cumulatively they become more meaningful. A 0.68% chance of adjusting the set point on

any given day implies a 20% chance of adjusting in any given month. Temperature is not

particularly salient on most days. Therefore, we proceed to examine whether households

respond more to particularly salient (or extreme) weather changes.

Panel (b) of Table 3 considers the effect of extreme variations of day-to-day temperature

changes, using a similar specifications as in Panel (a) but regressed on a set of indicator

variables denoting the extremeness of weather that day. Columns 1 and 3 consider the prob-

ability of set point changes. Consistent across both winter and summer months, the more

extreme a temperature change that one faces, the more likely we are to observe adjustments

in set points. For example, in the summer months, if today’s temperature relative to yes-

terday’s is among the hottest 3 days of the year (i.e. top one percentile temperature in the

MSA in a given year), then on average a household is 0.72 percentage points more likely to

adjust its set points compared to the baseline.20 In Column 2, we find that for day-to-day

temperature changes in the top 90th percentile, people raise their set point by 0.022 degree,

again supporting habituation. We observe a similar pattern for extreme cold changes in

Column 4. Outdoor temperature changes in the coldest extremes cause one to lower indoor

temperatures. This is consistent with how people may respond to small incremental changes

19Note the coefficient on the variable “||∆T ||” corresponds to the magnitude of set point change. Thus,
in summer months, decreases in negative outdoor temperature changes will lead a 0.00138 degree increase in
set point. Although the sign of the coefficient goes against our habituation hypothesis, it size is an order of
magnitude smaller than the other variables in the regression model, and of negligible size compared to the
main habituation finding.

20We add up the current day coefficients on 99th percentile, 90th percentile and 75th percentile dummies
since a 99th percentile hottest day-to-day change is also included in the 75th percentile based on our coding.
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in outdoor temperatures as seen in Panel (a). Finally, the fact that extreme temperature

changes yield increasingly larger and more frequent changes supports the Choice Salience

Hypothesis.

It is worth noting that since most households do not make day-to-day changes the effect

size conditional that a set point change made is noticeably larger. Also whether a consumer’s

response to extreme temperature changes is the same as their respond to extreme temper-

ature levels may differ. To address these concerns, in Section 7.1.3, we will estimate our

model conditionalal on making an active set point choice (i.e. overriding their temperature

settings) during the most extreme weather days (hottest or coldest days of the year) and

investigate how their response evolves over time using an event study approach.

7.1.2 Overriding Decisions

Another related empirical exercise we conduct is regarding when and why consumers

decide to use the override feature to initiate a temporary override of the existing thermostat

temperature settings. Overrides are active but temporary; they will be replaced by the

original program once the desired temperature has been reached. We use the same fixed

effects model as in the set point analysis but employ a dichotomous dependent variable

“override” that is equal to 1 if the household overrides the thermostat settings. We also

include a variable to capture the number of days since the last override. We consider two

specifications, each separated for summer and winter, involving different combinations of

outdoor weather patterns, and document the results in Table 4.

In each specification, the coefficient on the number of days since the last override is

negative. In other words, the more days that have passed since the consumer last made an

active choice, the less likely it is for her to make another one. The idea of Choice Satiation

is that choices are costly, so immediately after an adjustment is made, the desire to re-adjust

should be immediately reduced. We find the opposite, suggesting that it is likely that in

addition to persistent habits, the salience of making an adjustment makes one want to make
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an adjustment again.

Positive temperature changes in the summer and negative changes in the winter both in-

crease the likelihood of making an active adjustment. These results are consistent with those

presented in the previous section, where set points are mostly influenced by positive day-to-

day temperature changes in the summer and negative changes in the winter. In other words,

when it feels less comfortable outside, one responds by making an active choice to habituate

(via overriding the existing set point settings). Curiously, when facing extreme temperature

changes, consumers are less likely to override when they face more extreme temperatures.

Specifically, the most extreme temperature change in the summer (hottest one percentile)

will make a household approximately 3 percentage points less likely to override while the

coldest day-to-day changes in the winter will make one over 2 percentage points less likely

to override, further supporting habituation. Given that the average probability of overriding

for a household in the sample is about 20% (median 18%), the average estimated impact

of the extreme weather on overriding is in fact quite significant. This is contrary to what

we saw from Table 3 where extreme temperatures induce more frequent permanent program

changes, suggesting that people may overreact to extreme weather events (Loewenstein et al.,

2003).

Overall, it appears that consumers habituate to both winter and summer temperatures.

In both seasons, when setting long term set points, choices are positively correlated with

small and extreme outdoor temperature changes.

7.1.3 Event Study of Responses to Extreme Weathers

Here we present results of the event study as specified in Section 6.2 focusing on the

subset of households that appear in the entire event window for a particular MSA and who

overrode thermostat settings during the weather events of interest.21 Panels (a) and (b) of

Figure 6 plot the estimated event time coefficients, a week before and four weeks after the

21This results in approximately 8,000 households.
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event of interest, in terms of set point levels and set point change frequencies, respectively.

These estimated coefficients represent the consumers’ responses to extreme weather events,

where the extreme weather events of interest include the coldest one percentile outdoor

temperature, hottest one percentile outdoor temperature, and largest snow storm of the year.

The event study results show that households do respond slightly in advance of the event

(likely due to forecasts).22 More importantly, we find strong evidence toward homeostasis

and cue salience when facing extreme temperature related shocks - consumers significantly

increase (in winter) and decrease (in summer) set points on the event day. The effect persists

before fading away after three days following the event. When facing snow storms, we observe

a similar pattern except households tend to maintain the higher set point for several more

days after the event. Note that the magnitudes of the findings are larger than the average

effects we find earlier, since here we are finding the average effect conditional on those who

made an active choice.

What is also notable is that extreme events have a second order impact on set points

that persist a month later. Just as people respond to hot temperatures outside with cooler

temperatures within. Weeks later, people respond to cooler indoor temperatures with warmer

set points three weeks later as they respond homeostatically to a preferred internal setpoint.

The effect is more pronounced in response to hot days (F-test = 36.13, p-value < 0.001)

peaking 23 days after the event, but can be observed in response to the coldest days as well,

where the immediate response of warmer indoor set points is counteracted by cooler indoor

set points several weeks later (F-test = 34.48, p-value < 0.001).

These findings are echoed by corresponding patterns in set point change frequencies as

shown in Panel (b). However, here we see some evidence for the choice satiation hypothesis.

While snow fall does not seem to have any lasting response, we see set point adjustments

decline for a full month after an extreme hot or extreme cold event.

22We did collect forecast data from NOAA but results were difficult to interpret. It is difficult to know
what forecasts people were paying attention to and when.
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Figure 6: Event Study of Responses to Extreme Weathers

Note: Panels (a) and (b) plot the estimated event time coefficients, a week before and four weeks
after the event of interest, in terms of set point levels and set point change frequencies, respectively. The
dependent variable is the target set point. The plotted coefficients are on days since the extreme weather
event of interest, and 95% confidence intervals are presented. Standard errors are clustered at household
level. Household and time fixed effects are included. P < 0.01 for F-test on the joint significance of the
event coefficients.

7.2 Heterogeneity

To explore the mechanisms at play, we analyze heterogeneity by investigating how differ-

ences in household transaction costs affect the link between weather patterns and set point

choices. We also explore additional sources of heterogeneity due to seasonality, time of the

day, day of the week, time of the year, departure from the mean temperature, and political

affiliations, and those results are reported in Appendix B.

7.2.1 Propensity of Households to Change Set Points

As discussed in Section 4.1, We divide the households based on their percentile ranking in

the distribution of the average number of days since the last temporary override. We classify

a change interval of 3 days or less (approximately the 25th percentile or below in the distribu-

tion) as “low change cost” and a change interval of 20 days or more (approximately the 75th

percentile or above in the distribution) as “high change cost”, under the assumption that a

higher overriding frequency implies a lower cost of changing set points. We then estimate
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a linear probability model where the dependent variable is a permanent set point program

change indicator as well as a model for size of set point change using the same specifications

presented earlier. Table 5 presents the estimated outcomes on the main variables of interest

for summer and winter months, respectively. The directions of the estimated coefficients are

similar to baseline estimates in Table 3. However, we find strong roles of heterogeneity in

terms of change costs - across most specifications, the low cost households respond more to

daily temperature changes, in terms of the likelihood of set point changes and the magnitude

of the set point changes, suggesting larger Habituation responses.23

7.2.2 Cultural Attitudes

We further investigate the role of heterogeneity in households’ cultural attitudes. Here,

we measure cultural attitudes using the monthly frequency that people in that state searched

for certain keywords under the topics potentially related to thermostat usage, e.g. economy,

weather, energy, thermostat, and environment (see Section 4.2 for more details on how these

keywords were selected). Among the keywords, we are particularly interested in search

intensity related to weather and environment.

Table 6 Panel (a) describes how consumers with different weather awareness (captured

by the search intensity of weather related keywords) respond to weather cues. We compare

households in months when their state has a high frequency (highest 25th percentile) of

weather-related keyword searches against months when their state is less weather aware

(lowest 25th percentile). The inclusion of household fixed effects ensure we are only capturing

the time varying impacts. We also divide the comparison by seasons.

Consumers with high weather keyword search intensity demonstrate a stronger habit-

uation response in winter months compared to those who living in low search intensity

states, though such patterns are not apparent for summer months. The results support the

23In a separate specification, we also consider responses to extreme temperature changes based on hetero-
geneity and find that the low change cost group also demonstrates stronger evidence toward Cue salience,
where active choices are positively autocorrelated due to the salience of the shocks.
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Awareness Hypothesis, where the high search intensity group on weather related keywords

is expected to pay more attention and be more responsive to weather patterns. Table 6

Panel (b) describes how households with different degrees of environmental awareness (cap-

tured by the search intensity of environment related keywords) respond to weather cues.

Here, we do not find support toward Awareness Hypothesis as there is no clear pattern that

“greener” consumers (with high environmental awareness) habituate more to the outdoor

temperatures.

Overall, we find partial support for the imporance of cultural awareness. The results do

underscore the importance of distinguishing between different types of heterogeneity when

evaluating the impact of external stimuli on set point choice. In the appendix, we outline

empirical results for the roles of additional sources of heterogeneity.

7.3 Discussion

Overall, our results support the persistence of habits in consumer’s thermostat set point

decisions. There is evidence that consumers tend to habituate to daily outdoor temperature

variations in both summer and winter. However, when facing extreme weather events (in

both summer and winter) that present large stimuli to their temperature comfort decisions,

we find that on average households in the opposite direction, toward homeostasis. Responses

also grow as the shocks becomes more salient. To get a sense of magnitudes of these effects,

analysis with a small subset of the data (90 households from California) where we have access

to electricity meter readings, tells us that each degree of set point change in summer months

(for the entire day) can save as much as 3% or 39Wh of electricity per hour (by comparison

the households in this sample used approximately 1300 Wh each hour). Over the course of a

year, 39Wh per hour translates into approximately 340kWh. For an average electricity price

in Californa of 18 cents/kWh, this works out to approximately $62 per year per household

per degree set point change.24

24Such an estimate is certainly an upper bound as the impact would be largest in summer.
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It is important for policymakers to understand how consumers respond to external shocks

for decisions that they typically make implicitly and on a routine basis as well as the un-

derlying heterogeneity at play. Recent growth in empirical studies on habit formation seeks

to address key questions such as whether consumers form habits over time based on their

past decisions, how persistent such habits are, and under what conditions they will alter the

habit. For example, Bronnenberg et al. (2012) examine how preferences of migrants in the

U.S. toward consumer packaged goods reflect their past experiences. Atkin (2013) finds that

the food varieties that migrants in India consume resemble the typical diet of the region

from where these migrants were born. And Fujiwara et al. (2016) confirm habit formation

affects voting turnouts. Our study contributes to the discussion by considering a routinely

made and yet largely ignored decision regarding home energy consumption.

Our findings also have important implications for policy and economic welfare. For exam-

ple, While largely influenced by persistent habitual routines, consumers’ energy consumption

decisions do respond to external stimuli, even simply from increased cultural awareness as

proxied by Google searches. The demonstrated importance of salience implies that pol-

icy campaigns in altering energy consumption decisions can be successful if the stimuli are

salient enough. The successful implementation of such energy conservation policies also re-

quires understanding the underlying household heterogeneity because our empirical results

suggest that households with differing costs respond quite differently to identical events.

8 Conclusion

In this study, we utilize a proprietary dataset of households’ smart thermostat usage to

study habit formation in consumers’ home energy consumption. We find persistent habits in

thermostat setting behavior, where the current setting strongly correlates with past settings.

Consumers habituate to small changes in outdoor weather but react in the opposite direction

to extreme stimuli. In terms of when we make active versus passive choices, we find evidence
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against the idea of choice satiation. We are more likely to make active choices after having

already made an active choice. Instead our results are more compatible with the importance

of salience on choice.

Clearly, more could be done to further disentangle this rich dataset on consumers’ ther-

mostat usage. For instance, with the current ongoing discussion regarding big data and

machine learning, one avenue would be to take advantage of the minute-by-minute nature of

the dataset and explore the time-series patterns of consumers’ set point decisions. Also, the

pattern of permanent changes and temporary overrides could provide insight into behavioral

theories of time inconsistency and projection bias. We leave that for future research. The

intent here is to provide a first pass at understanding the patterns of how we make (or do

not make) passive consumption decisions, how we develop habit, how we respond to exter-

nal cues, and the relative importance of factors such as habituation, homeostasis, choice

satiation, and salience. Beyond providing a better sense of how such choices are made, we

also provide guidance on the impact of government nudges toward lasting solutions to shape

household energy use.
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Appendix A: Dynamic Panel Models and Results

Dynamic Panel Specifications

As an alternative empirical strategy to examine the persistence of habits, we additionally

estimate daily thermostat set points as a function of a series of past set point choices and past

temperature cues. Specifically, we estimate the current thermostat set points as a function

of lagged thermostat set points, current and lagged outdoor temperatures, day fixed effects,

and household specific fixed effects. To fix ideas, we have the following baseline specification

for household i on day t with a one-period lag on set points and outdoor temperatures:

Sit = β1 + δ1Si,t−1 + γ1Ti,t + γ2Ti,t−1 + τt + ξi + εit (6)

where Sit is a household’s (daily average) set point decision on day t; Ti,t is the daily average

outdoor temperature on day t; τt is the day fixed effect, captured by dummies for year,

month and day of the week; ξi is the household fixed effect.

Intuitively, given the persistence of habits and indoor temperature being an often implicit

choice, there are reasons to believe that set points yesterday would influence the set point

decision today. However, econometrically, adding a lagged dependent variable to the list

of independent variables brings in a series of complications when estimating panel data.

Nickell (1981) shows that the demeaning process in fixed effect estimation can potentially

lead to biased estimators in dynamic panel data (DPD) as the demeaned error may still be

correlated with the regressors. Since the inconsistency of the estimator is of order 1/T in

asymptotic theory, the bias can be especially acute in a “small T, large N” context, and a

typical practical solution in the literature is to resort to dynamic panel techniques such as

the Arellano-Bond (AB) GMM style estimator in order to obtain a consistent estimator.

On the other hand, because of the high frequency nature of the our dataset, we are

effectively facing the “large T , large N” problem in our short run (daily) analysis (T = 767)
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and employing an Arellano-Bond estimator would be computationally infeasible since it

would create an enormous set of lagged variable-based instruments. Blundell and Bond

(1998) show that in the context of dynamic panel, OLS estimates tend to overestimate

and fixed effects tend to underestimate while consistent estimates (such as the AB-style

estimates) should be between OLS and fixed effects estimates. Judson and Owen (1999)

suggest that OLS is a good choice when T is large. Since the asymptotic bias of the estimator

is approximately −(1+β)/(T −1), with T = 767 in our sample and an assumed approximate

|β| < 1, the magnitude of the bias will be less than 0.3%.25 Therefore, given that the

purpose of this study is to provide first evidence toward and discuss policy implications

of the responsiveness of consumer energy usage behavior to various stimuli, we estimate

fixed effect models to provide intuition for our short run analysis. The Wooldridge test for

autocorrelation in panel data reveals a strong indication of serial correlation (p < 0.0001).

With large T and N in the short run analysis, we can however cluster standard errors at zip

code level to ensure standard errors to be robust to serial correlations and heteroskedasticity

particularly since non-stationarity is rejected by the panel unit-root test (p < 0.0001).

Therefore, in addition to our baseline model, we estimate a specification with lags of

the dependent variable as regressors, as well as multiple lags of independent variables to

further explore short run patterns of changes in set points. We also augment the model with

controls for other weather related events, such as precipitation, snowfall, and snow, which

we denote as vector Zit. For computational purposes, we limit our attention to three lags

of independent variables. A general specification for household i on day t would take the

following form:

Sit = β0 +
3∑

k=1

δkSi,t−k +
3∑

k=0

γkTi,t−k +
3∑

k=0

λkZi,t−k + τt + ξi + εit (7)

Our data also allow us to ask what is the long run persistence of habit. Therefore in

25In fact, when we compare estimates between OLS and fixed effects estimates for various specifications
in our short run study, we find the gap between the estimates to be less than 0.2%

38



addition to our baseline model which is estimated at the daily level, we estimate a panel

model where each observation represents one month. Because the long run model has the

potential “small T” problem, we provide estimated results using an Arellano-Bond GMM

style estimator.

Dynamic Panel Results

To study the persistence of habits in thermostat setting behavior, we adopt the general

fixed effects estimation strategy with clustered standard errors and include a three-period lag

for past set points, outdoor temperatures and weather conditions, including precipitation,

snowfall and snow depth. For each specification, the dependent variable is the average daily

set point on a given day. Similar to the analyses in the main text, we run separate regressions

for summer and winter months.

Table 7 presents the results from the fixed effects model. The set point today is unsur-

prisingly positively correlated with yesterday’s set point decision, and the correlation quickly

erodes past yesterday. The patterns are consistent between summer and winter and across

specifications. The results confirm the persistence of habits in set point choices. We also

find evidence of habituation based on consumers’ set point responses to changes in aver-

age outdoor temperatures. Specifically, changes in average outdoor temperatures seem to

(marginally) affect the set point choices. The signs on the current and one-period lagged

coefficients in both summer and winter months are positive, demonstrating the effect of ha-

bituation to small changes in outdoor temperature–when it is warmer outside, one would

prefer it to be (slightly) warmer inside. The estimated coefficients on the 2-period and 3-

period lagged outdoor temperatures suggest limited partial evidence for homeostasis. Table 8

presents the long run (monthly) estimates using Arellano-Bond GMM estimator. The results

confirm the persistence of set point habits in the long run but also suggest that responses

to outdoor temperatures in the long run are generally driven by those in the current month

rather than from the previous months.
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On average, a 10-degree increase in daily outdoor temperature effects a net increases in

set point choice by approximately 0.15 degrees (if we add the coefficients from today, plus

the lagged coefficients), which is admittedly small. On the other hand, such small magnitude

of the impact is also intuitive since we consider the average impact of changes in outdoor

temperatures on set point changes and due to persistent habits, many households may not

respond to small changes in outdoor temperatures. The estimates are also consistent with

the general findings in the energy nudge literature, that the effect sizes tend to be small; we

are primarily interested in the patterns of impact in order to set the stage to evaluate how

consumers respond to potentially larger nudges like television or social media campaigns.
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Appendix B: Additional Sources of Heterogeneity

We utilize the empirical specifications described in Section 7.2.2 to explore the following

additional sources of heterogeneity and their roles in set point adjustment decisions: 1)

weekday vs. weekend; 2) time of the day, i.e. morning (6am to noon) vs. evening hours

(6pm to midnight); 3) beginning vs. the ending months of a season; 4) departure from the

mean temperatures rather than day-to-day temperature changes; and 5) political affiliations,

i.e. Republican vs. Democratic counties. Table 9 reports the findings.

In Panel (a), similar to baseline results, we find that habituation dominates during both

weekdays and weekends for both seasons, and households’ set point behavior during weekdays

does not significantly differ from that during weekends. However, if we further decompose

set point decisions based on the time of the day, we notice that there is strong evidence of

households preferring homeostasis during evening hours in both summer and winter, partic-

ularly for weekends. For instance, during a summer weekend, a household would decrease

its set point by 0.008 degree for every positive degree increase in outdoor temperature. Such

finding is to the contrary of our overall finding of consumers’ tendency toward habituation,

and it confirms the potential time of day level heterogeneity where evening changes could be

more toward comfort as house occupants are more likely to be present during those hours.

In Panel (b), we first separate the set point responses based on whether temperatures are

above or below 7-day average. While the estimates are still consistent with habituation, and

the magnitudes of the responses are slightly larger when temperatures are above average in

the summer and below average in the winter. This implies that in addition to behavioral

explanations, households’ desire to cost minimize may also play a role in set point decisions.

Interestingly, households exhibit a much stronger habituation response in May, the beginning

of the summer season, than in September. Such difference is not as obvious for winter

months. In terms of political affiliations (measured by county-level vote share from the 2012

presidential election), we do not find significant differences in set point responses between

households living in Democratic counties and those from Republican counties.
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Table 3: Impact of Outdoor Temperature

Summer Winter

(1) Prob. of Change (2) Set Point (3) Prob. of Change (4) Set Point

(a) Baseline Estimates

||∆T || if ∆T > 0 0.00681*** 0.0152*** 0.00175*** 0.000224
(0.000110) (0.000702) (5.89e-05) (0.000320)

||∆T || if ∆T < 0 0.00575*** 0.00138*** 0.00327*** -0.00886***
(0.000100) (0.000520) (5.70e-05) (0.000383)

Observations 4,223,270 4,223,270 4,575,183 4,575,183
No. of Households 26,095 26,095 25,050 25,050

Weather Covariates Yes Yes Yes Yes
Time dummies Yes Yes Yes Yes

(b) Extreme Temperature Changes

99th Pctl ∆T 0.0555*** 0.00953
(0.00412) (0.0291)

90th Pctl ∆T 0.0168*** 0.0220***
(0.00128) (0.00706)

75th Pctl ∆T -0.00169* 0.0203***
(0.000873) (0.00490)

1st Pctl ∆T 0.0183*** -0.0909***
(0.00191) (0.0111)

10th Pctl ∆T 0.00287*** -0.0249***
(0.000978) (0.00554)

25th Pctl ∆T -0.00484*** -0.0326***
(0.000744) (0.00423)

Observations 4,223,270 4,223,270 4,575,183 4,575,183
No. of Households 26,095 26,095 25,050 25,050

Weather Covariates Yes Yes Yes Yes
Time dummies Yes Yes Yes Yes
Household FE Yes Yes Yes Yes

For Columns (1) and (3), the dependent variable is a dummy for whether there is a change in set point temperature, and the specifications
are estimated using a linear probability model with household fixed effects. For Columns (2) and (4), the dependent variable is the set point
change from the day before, and the specifications are estimated with household fixed effects. 75th Pctl ∆T is a dummy that equals to 1 if
the day-to-day temperature change is above 75th percentile for the location in a given year. Other extreme temperature change variables are
defined in a similar way. Weather covariates include precipitation, snowfall and snow depth. Day dummies include dummies for year, month,
and day of week. We also control for daily heating and cooling duration for relevant seasons. Robust standard errors shown in parentheses
are clustered at zip code level. *** p<0.01, ** p<0.05, * p<0.1
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Table 4: Override Decisions and Extreme Temperatures

(1) Override (2) Override
Summer Winter

Days since last override -0.00384*** -0.00259***
(9.38e-05) (7.46e-05)

||∆T || if ∆T > 0 0.00164*** -0.00240***
(0.000202) (5.77e-05)

||∆T || if ∆T < 0 -0.00149*** 0.00332***
(9.60e-05) (0.000111)

99th Pctl ∆T -0.0243***
(0.00370)

90th Pctl ∆T -0.00455***
(0.00125)

75th Pctl ∆T 0.000539
(0.000868)

1st Pctl ∆T -0.00991***
(0.00177)

10th Pctl ∆T -0.00521***
(0.000947)

25th Pctl ∆T -0.00685***
(0.000716)

Observations 4,223,270 4,575,183
No. of Households 26,095 25,050
Weather Covariates Yes Yes
Day Dummies Yes Yes
Household FE Yes Yes

The dependent variable is the dummy variable for override de-
cisions and is estimated with a linear probability model with
fixed effects. 75th Pctl ∆T is a dummy that equals to 1 if
the day-to-day temperature change is above 75th percentile
for the location in a given year. Other extreme temperature
change variables are defined in a similar way. Weather co-
variates include precipitation, snowfall and snow depth. Day
dummies include dummies for year, month, and day of week.
Robust standard errors shown in parentheses are clustered at
zip code level. *** p<0.01, ** p<0.05, * p<0.1
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Table 5: Heterogeneity in Temperature Adjusting Propensity

Prob. of Change Set Point

(1) Low Cost (2) High Cost (3) Low Cost (4) High Cost

(a) Summer

||∆T || if ∆T > 0 0.00794*** 0.00468*** 0.0246*** 0.00539***
(0.000251) (0.000185) (0.00158) (0.00111)

||∆T || if ∆T < 0 0.00766*** 0.00320*** -0.000803 0.00329***
(0.000224) (0.000168) (0.00122) (0.000874)

Observations 1,061,269 1,050,119 1,061,269 1,050,119
No. of Households 7,087 6,227 7,087 6,227

Weather Covariates Yes Yes Yes Yes
Time dummies Yes Yes Yes Yes
Household FE Yes Yes Yes Yes

(b) Winter

||∆T || if ∆T > 0 0.00264*** 0.00108*** -0.000706 0.00155***
(0.000133) (0.000100) (0.000694) (0.000598)

||∆T || if ∆T < 0 0.00432*** 0.00249*** -0.0149*** -0.00468***
(0.000124) (9.74e-05) (0.000951) (0.000613)

Observations 1,142,852 1,148,661 1,142,852 1,148,661
No. of Households 6,560 6,128 6,560 6,128

Weather Covariates Yes Yes Yes Yes
Time dummies Yes Yes Yes Yes
Household FE Yes Yes Yes Yes

For Columns (1) and (2), the dependent variable is a dummy for whether there is a change in
set point temperature, and the specifications are estimated using a linear probability model with
household fixed effects. For Columns (3) and (4), the dependent variable is the change in set point
from yesterday, and the specifications are estimated with household fixed effects. Change cost is
based on the override intervals, with a change interval of 3 days as high cost (highest 25% percentile)
and 20 days as low cost (lowest 25% percentile). Other control variables are the same as as those
in the baseline model in Table 3. Robust standard errors shown in parentheses are clustered at zip
code level. *** p<0.01, ** p<0.05, * p<0.1
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Table 6: Heterogeneity in Cultural Attitudes

Summer Winter

(1) High Awareness (2) Low Awareness (3) High Awareness (4) Low Awareness

(a) Weather

||∆T || if ∆T > 0 0.00827*** 0.0119*** 0.00182*** 0.000976
(0.00116) (0.00112) (0.000617) (0.000621)

||∆T || if ∆T < 0 0.00279*** -0.00505*** -0.0129*** -0.00650***
(0.000989) (0.000961) (0.000751) (0.000648)

Observations 1,018,713 975,269 1,139,843 1,136,425
No. of Households 12,353 12,062 11,876 11,124

Weather Covariates Yes Yes Yes Yes
Time dummies Yes Yes Yes Yes
Household FE Yes Yes Yes Yes

(b) Environment

||∆T || if ∆T > 0 0.0104*** 0.0121*** 0.00104 0.000546
(0.00125) (0.00111) (0.000686) (0.000589)

||∆T || if ∆T < 0 0.000246 -0.00297*** -0.000824 -0.00566***
(0.00103) (0.000959) (0.000640) (0.000618)

Observations 989,091 969,525 1,155,618 1,138,918
No. of Households 13,864 9,508 10,636 9,162

Weather Covariates Yes Yes Yes Yes
Time dummies Yes Yes Yes Yes
Household FE Yes Yes Yes Yes

The dependent variable is the change in set point from yesterday. Specifications are estimated with household fixed effects.
Panels A) and B) group households based on their sensitivity to weather and environment related topics, respectively, as
measured by the state level monthly keyword search intensity. High and low awareness are based on the highest and lowest
25th percentile in related key word search intensity. Control variables are the same as as those in the baseline model in Table
3. Robust standard errors shown in parentheses are clustered at zip code level. *** p<0.01, ** p<0.05, * p<0.1
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Table 7: Appendix: Short Run Persistence of Temperature Setting Habits

(1) Set Point (2) Set Point (3) Set Point (4) Set Point
Summer Winter Summer Winter

L.target 0.811*** 0.801*** 0.810*** 0.800***
(0.00266) (0.00258) (0.00267) (0.00258)

L2.target -0.0240*** -0.0711*** -0.0231*** -0.0692***
(0.00267) (0.00279) (0.00268) (0.00279)

L3.target 0.0926*** 0.102*** 0.0908*** 0.0998***
(0.00134) (0.00153) (0.00135) (0.00152)

outdoor 0.00439*** 0.00399*** 0.00383*** 0.00262***
(0.000364) (0.000235) (0.000369) (0.000242)

L.outdoor 0.0107*** 0.0121*** 0.0108*** 0.0131***
(0.000497) (0.000336) (0.000498) (0.000345)

L2.outdoor -0.00178*** -0.00307*** -0.00132*** -0.00196***
(0.000403) (0.000291) (0.000402) (0.000292)

L3.outdoor -0.00707*** -0.00636*** -0.00707*** -0.00619***
(0.000342) (0.000250) (0.000337) (0.000253)

Observations 4,154,510 4,519,783 4,154,510 4,519,783
No. of Households 26,028 25,025 26,028 25,025
Weather Covariates No No Yes Yes
Day dummies No No Yes Yes
Household FE Yes Yes Yes Yes

The dependent variable is the target set point. The specifications are estimated with house-
hold fixed effects. Weather covariates include precipitation, snowfall and snow depth. Day
dummies include dummies for year, month, and day of week. Robust standard errors shown
in parentheses are clustered at zip code level. *** p<0.01, ** p<0.05, * p<0.1
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Table 8: Appendix: Long Run Persistence of Temperature Setting Habits

(1) Set Point (2) Set Point
Summer Winter

L.target 0.599*** 0.645***
(0.0138) (0.00726)

L2.target -0.0685*** -0.122***
(0.00545) (0.00421)

L3.target 0.00246 0.0534***
(0.00483) (0.00357)

outdoor 0.0840*** 0.0545***
(0.00496) (0.00302)

L.outdoor 0.0214*** -0.0320***
(0.00498) (0.00332)

L2.outdoor 0.0191*** -0.0415***
(0.00444) (0.00315)

L3.outdoor -0.00600 -0.0405***
(0.00569) (0.00314)

Observations 84,754 151,008
No. of Households 14,140 23,733
Weather Covariates Yes Yes

The dependent variable is the monthly average target set
point. The specifications are estimated with Arellano-
Bond estimator. Weather covariates include current and
lagged precipitation, snowfall and snow depth. ***
p<0.01, ** p<0.05, * p<0.1
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