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Abstract

A question in the design of carbon dioxide trading systems is how allowances are to be initially
allocated: by auction, by giving away fixed amounts, or by allocating based on output, fuel, or other
decisions. The latter system can bias investment, operations, and pricing decisions, and increase
costs relative to other systems. A nonlinear complementarity model is used to investigate long-run
equilibria that would result under alternative systems for power markets characterized by time varying
demand and multiple generation technologies. Existence of equilibria is shown under mild conditions.
Solutions show that allocating allowances to new capacity based on fuel use or generator type can
distort generation mixes, invert the operating order of power plants, and inflate consumer costs. The
distortions can be smaller for tighter CO2 restrictions, and are somewhat mitigated if there are also
electricity capacity markets or minimum-run restrictions on coal plants.

Subject classification: emissions trading, allowance allocations, electricity, air pollution, auction,
grandfathering, cost-effectiveness, greenhouse gases, climate change, global warming, carbon dioxide,
generation investment

JEL Classification Numbers: C61; L94; Q4; Q53

1 Introduction

Pollution cap-and-trade policies operate by allocating or selling permits to emit (or “allowances”) to
eligible pollution sources, who are then allowed to trade permits among themselves so that every polluter
holds a number of allowances at least equal to their emissions. If the cap allows fewer emissions than
would otherwise occur, the allowances have a positive market price. Under certain assumptions, such
systems result in least-cost control of the emissions [24].
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The first large-scale emissions cap-and-trade system was instituted in the US for electric sector SO2

emissions by the 1990 Clean Air Act Amendments. Since then, cap-and-trade systems have been adopted
in the US for NOx and proposed by the US Environmental Protection Agency for mercury. Meanwhile,
the EU has leapfrogged the US by adopting a cap-and-trade policy for the greenhouse gas CO2. This
system, called the Emissions Trading System (ETS), came into effect in 2005. Meanwhile, although there
is no US federal CO2 reduction requirement as of 2007, several states have initiated their own emissions
reduction efforts, the most noteworthy being the Regional Greenhouse Gas Initiative (RGGI). CO2 cap-
and-trade programs are anticipated to have much larger economic impacts than previous emissions trading
programs. The cost involved with significant CO2 reductions and the economic value of trading such
allowances are likely to be about an order of magnitude greater than for NOx and SO2 [9]. Wholesale
electricity price increases in Germany and the Netherlands of 40% or more in 2005 have been blamed
upon the introduction of the ETS [21].

There are many aspects of the design of a cap-and-trade system that can affect its economic efficiency
and impacts upon consumers. One of the most important–and most debated–features is the initial
allocation of allowances. The potentially high value of CO2 allowances means, for example, that tens of
billions of dollars of economic rents are created by the ETS system. Understandably, the power industry
would prefer that this rent be given to them through a free initial assignment of allowances to existing and
perhaps new power sources, while others argue that the government should auction the allowances and
use the resulting revenues for tax relief or public programs [12]. However, not only income distribution
is affected by who gets the economic rents associated with CO2 allowances. Rules for initial distribution
of allowances can also affect economic efficiency, potentially distorting investment, operation, and output
pricing decisions and raising the social cost of reducing emissions [20]. “Social cost” is defined here in the
manner usually used by economists as the sum of producer and consumer surpluses. We do not consider
external pollution costs. As an example of such a distortion, if a contingent allocation system (also called
“output-based” or “input-based” allocation) gives allowances in a way that depends on present or future
generator decisions, incentives to deviate from least-cost investment mixes and operation are introduced.
For instance, in the EU ETS, allowance allocations after 2007 depend upon emissions in 2005-2007,
arguably providing an incentive to expand pollution in these years. The potential for distortion is clear
from the analysis in [1] showing that the value of ETS allowances can be 70–105% of fixed plant costs.
As another example, if a present polluting facility would lose its allowance allocation if it shuts down,
then this provides an incentive to keep non-economic capacity in operation. On the other hand, if new
investment is allocated free allowances, this can instead create a bias towards new investment. Further
if dirtier new sources are allocated more allowances per unit capacity or unit output, as is done in at
least eight EU countries [15], then technology choices can be skewed. Also, if different jurisdictions in
the same power market have different allocation rules, as in the EU ETS, the location of investment can
also be distorted.

Economic inefficiencies can result not only from distortions in production, but also from distortions
in product pricing and consumption. As an example, free allocation to new entry can distort overall
market prices, depressing prices below socially optimal levels if entry is made artificially cheap by the
free provision of allowances. Also, existing distortions in retail power prices arising from average-cost
based price regulation, which is still the rule in many US states and some EU countries, can be worsened
by free allowance allocation [3]. There are strong political forces that support contingent allocation
schemes, and the result is that most of the national allocation plans in the EU ETS are based upon such
schemes [17, 23]. This support is in spite of numerous modeling studies that have compared the relative
efficiency of such schemes compared to grandfathering and auctions, and that have found the latter to
be superior.

In general, theoretical analyses show that allocating allowances in proportion to output tends to result
in greater sectoral output (since there is an implicit subsidy of output), greater reductions in emissions
rates per unit output, and higher control costs than grandfathering or auctioning, if there are not other
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distortions in the economy [7]. However, in the presence of other market failures, such as inefficient tax
policies or emissions policies that differ among sectors or countries, output-based policies can actually be
welfare improving relative to grandfathering and auctions [5, 8]. As an example, if the cement industry
is subject to CO2 limits in some countries but not others, and cement is internationally traded, an
output-based allocation in the regulated countries can lead to less distortion and lower social cost [4].

In this paper, however, we focus on the effects of allocation policies on a single market sector (power)
that we assume is subject to the same rules throughout the market. We propose models for evaluating the
long-run implications of different emissions allocation schemes for economic efficiency and consumer costs
of the electric power sector. We compare investment, operating, and pricing outcomes of two general
allocation approaches: contingent allocation schemes that allocate allowances free to new investment,
and systems in which the initial allocation of allowances does not depend on present or future capital or
operating decisions (either grandfathering or auction). The models can be used to investigate whether
statements such as the following are likely to be true: “If the expansion of the generation park (by
incumbents or newcomers) is associated with a free allocation of emission allowances, then players will
base their long-term investment decisions on the long-term marginal costs, including the costs of the CO2

allowances, but by subtracting the subsidy that lowers the required mark-up for the fixed costs. ... On
balance, the power price will not be increased (ceteris paribus)” [14]. We do not address other important
issues concerning the design of emissions allocation systems. Some of these include [20]: transparency
and transactions costs; international competitiveness of affected industries; which economic sectors are
covered; possibilities for obtaining allowances by funding emissions reductions in developing countries; the
effect of mechanisms, such as price ceilings, designed to stabilize prices; the value of “banking” schemes
to buffer interannual variations in emissions; or the efficiency implications of different ways to dispose of
auction revenues.

Previous modeling studies of the power sector can be divided into two groups. The first includes
detailed simulation analyses of near term (e.g., 2005–2025) market developments using large-scale linear
programming or other optimization-based models for calculating market equilibria. The second consists
of theoretical analyses designed to show general results, often for the long-term. Short-run analyses
have considered the present mix of generation capacity in particular markets, and simulated competitive
entry of new generation over the next decade or two under alternative allowance schemes. For instance,
Neuhoff, Grubb, and Keats [16] use the IPM linear programming model to simulate effects on coal and
natural gas investments, prices, and generator revenues under an exogenous (fixed) CO2 price and no
demand elasticity. As another example, Bartels and Musgens [2] apply a linear programming model
formulated for 11 European power markets, and find that giving all new capacity the same number of
allowances irrespective of emission rates (“sector benchmarking”) resulted in less distortion than fuel-
specific formulas that gave more allowances to technologies with more emissions. More coal plants were
added in the latter case than under either sector benchmarking or allowance auctions. An earlier study
[3] applies Haiku, a multidecadal equilibrium model for the US. The latter model, unlike the above
linear programs, considers price elasticity and average cost-based regulation of retail electricity prices.
As a result of inefficient retail pricing, grandfathering is found to have much higher social costs than
auctioning, unlike in other studies. Finally, Palmer, Burtraw, and Kahn [18] use Haiku to determine the
minimum fraction of allowances that should be given away to generators in order to ensure that they
would not be worse off after the implementation of allowance trading; this number (approximately 20%
for the RGGI program) was surprisingly small.

In contrast to these studies, theoretical analyses tend to involve simpler models and more general
conditions. Some theoretical analyses use two-period models to address the distortion that arises if
decisions in one period affect emissions allocations in the next period, as in the first two phases of
the EU ETS. These demonstrate the existence of a bias towards over-investment in the first period
[2, 16, 23] to gain more allowances later. But Neuhoff, Martinez, and Sato [17] point out that incentives
to new entry can help mitigate market power in existing concentrated markets, and can also offset a
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bias towards keeping old plants running if shutting them down would cause allowances to be forfeited.
Other theoretical results include the following. If allowances are given free to new investment, this
increases the effective demand for allowances by generators, inflating the price of emissions allowances
and the cost of compliance if power demands are fixed [23]. The papers [16, 17] explore how long-
run choices between two new generation technologies could be distorted by fuel-specific allocation rules
compared to auctions assuming a zero-profit, free-entry equilibrium. They show that distortions are worse
if the price of allowances is fixed, as dirty technologies will significantly expand if given more allowances
than clean technologies. However, the investment distortions are less (but power prices are higher) if
instead emissions are capped, because emissions prices rise. An innovative long run analysis by Smeers
and Ehrenmann [22] looks at the complications introduced by particular market failure in the power
market: the existence of market power mitigation rules in the power market that can depress returns
on investment and yield suboptimal capacity additions. In a second-best analysis, they show that it is
possible to design a free allocation of allowances to new generation capacity that can largely offset those
investment disincentives, and actually improve market efficiency.

The models of this paper are more elaborate than other theoretical analysis of allowance allocation in
power markets, with the possible exception of [22] because of its consideration of capacity market failures.
The most comparable models are those of [16, 17]. Like those models, we consider a long run, free-entry
equilibrium among more than one technology. We also share their implicit assumptions that long-run
contract markets and short-run spot markets are arbitrage, that generators are price takers (although
firms exhibiting market power can be handled easily), and that there are constant returns to scale in
generation. The models of this paper are, however, more general than previous theoretical models in the
following respects. Neuhoff, Grubb and Keats [16] consider up to two supply technologies, and assume a
fixed operating order; in particular, when they consider two technologies, they assume that coal plants
are always operated in preference to gas plants. Our model is more general in that any number of plant
types can be considered, and the operating (“dispatch”) order is endogenous; this is important, because
our solutions show that dispatch orders can change if allowance prices are high enough. Our model also
automatically considers corner solutions, in which some plant variables are zero. Also, minimum output
constraints can be imposed, reflecting the reality that some types of capacity (modern coal plants) cannot
be cycled on and off on a daily basis; this results in a more realistic characterization of the ability of
power supply systems to adapt to changing emissions prices. Capacity markets are included in addition
to energy markets, unlike other models. On the demand side, our model can consider arbitrary temporal
distributions of demand, which can be price-responsive, unlike the models of Neuhoff and his colleagues.
Finally, our models allow the number of allowances allocated per MW of new capacity (capacity-based
allocation) or per MWh of energy output (sale-based allocation) to be endogenous. In particular, the
allocation rule specifies the total number of allowances that are to be available to new capacity, and
the amounts per MW or per MWh are automatically adjusted to achieve that target. Since several EU
national allocation plans place a ceiling on the number of allowances to be allocated to new investment,
some type of rationing similar to this may need to be instituted when enough entry has occurred so
that ceiling is reached [20]. However, a price is paid for this added complexity; our general models are
formulated as nonlinear complementarity problems for which analytical solutions cannot be derived. This
means that it is not possible to obtain general analytical results showing the equilibrium as an explicit
function of parameters, unlike [2, 16, 23]. Instead, our models need to be solved repeatedly for different
parameter sets. Further, the inclusion of endogenous per MW or per MWh allowance allocations results in
bilinear equilibrium conditions that make it more difficult to compute or show the existence of equilibria.

The paper is organized as follows. Following a statement of the model, along with several variants, we
demonstrate that a solution exists under general conditions. By using path solver, the model is solved
under several sets of input assumptions in order to explore the inefficiencies that result from different
emissions allocation systems. In particular, we calculate the inefficiency that results from two different
rules for allocating allowances to new investment, both of which discriminate between different plant
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technologies: one that allocates allowances based on a per MW of capacity rule (potential emission rule),
and another that allocates allowances in proportion to emissions (actual emission rule). The results
show that as the percentage of allowances granted free to new construction increases, the inefficiency
(quantified as the loss of producer and consumer surplus) also increases. We also consider how the
results are affected by the simultaneous imposition of a capacity market, as well as by the presence of
minimum-run constraints that more realistically simulate the operation of coal plants.

2 Model Definition

We summarize the notation used in the model formulation; first the parameters, which are all nonnegative,
next the input functions, and finally the models’ variables, which include the firms’ variables and the
market prices of capacity and emission allowances. The physical units are noted within parentheses.
Figure 1 depicts the various components in the market structure and their interrelations.

Parameters: all positive except possibly CAPf and CAP which can be zero,

F Set of firms
T Set of time periods ≡ {1, · · · , T}
CAPf Minimal amount of energy that firm f has to generate (MW)
MCf Marginal cost for firm f , excluding cost of emission allowances (EURO/MWh)
Ef Emission rate for firm f (tons/MWh)
Ff Annualized investment cost of firm f ’s capacity (EURO/MWyr)
Rf Ratio of allowances allocated to firm f per unit of capacity relative to firm 1
R̂f Ratio of allowances allocated to firm f per weighted unit of sales relative to firm 1
E Total emission allowances supply (tons/yr): E > EGF

EGF Amount of emission allowances that are grandfathered or auctioned (tons/yr)
Ht Hours in period t (hr/yr), here assumed to be 8760/T
χ Unit converter = 1 MW 2 yr/EURO
CAP Total capacity requirement (MW)

E > EGF means that a certain volume of free allowances is guaranteed to new entrants. For example,
In EU ETS phase I, a fraction of the allowances have been reserved for eligible new entrants.

Functions:

dt(•) Demand function for energy, strictly decreasing (MW)
πt(•) The inverse of dt(•); (EURO/MWh)
eNP (•) Nonpower emission, nonincreasing (tons/yr)

Variables:

pt = πt


∑

g∈F
sgt


: Energy price during period t (EURO/MWh)

pe Emission allowance price (EURO/ton)
pc Capacity price(EURO/MWyr)
αf Emission allowance for firm f (tons/MWyr)
sft Energy sold by firm f in period t (MW)
s̄ft = sft − CAPf (MW)
capf Capacity for firm f (MW)
µft Dual variable associated with firm f ’s capacity constraint in period t (EURO/MWyr)

There are three main components in the basic model: (a) firms’ profit maximization problems, (b)
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Figure 1: Market structure

market clearing conditions for the the emission, capacity, and energy markets, and (c) allowances alloca-
tion rules. Each of these components is described in detail below.

2.1 Firms’ optimization problems

For simplicity, each firm is assumed to own only one type of generating capacity. Taking as exogenous
the emission allocation αf , as well as the the prices (for energy pt for t ∈ T , emission allowances pe,
capacity pc), the firm f solves the following profit maximization problem, whose objective function is
revenue less cost, to determine its capacity capf and sales sft:

maximize
capf , (sft)t∈T

∑

t∈T
Ht ( pt −MCft − pe Ef ) sft + ( pc + peαf − Ff ) capf

subject to CAPf ≤ sft ≤ capf , ∀ t ∈ T
(1)

Although the amount of allowances granted per MW of new investment depends on the emissions per
MW-year of that capacity type (see the emission rules later), each generator believes (naively) that it
cannot affect that amount, and treats it as exogenous. The problem (1) is a linear program whose
optimality conditions are straightforward to write down:

0 ≤ s̄ft ⊥ Ht (−pt + MCft + pe Ef ) + µft ≥ 0, ∀ t ∈ T
0 ≤ µft ⊥ capf − s̄ft − CAPf ≥ 0, ∀ t ∈ T
0 ≤ capf ⊥ −pc − pe αf + Ff −

∑

t∈T
µft ≥ 0,

(2)

where ⊥ is the perpendicularity notation between two vectors, which in this case simply expresses the
complementary slackness condition in linear programming.
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When firms instead exert market power, their revenues from energy sales change from linear to
nonlinear functions of the sales variables:

∑

t∈T
Ht sft pt −→

∑

t∈T
Ht sft pt


∑

g∈F
sgt


 ,

and an additional term corresponding to the derivative of the price function pt(•) with respect to sft will
appear in the first complementarity condition in (2). The rest of the paper focuses on the case where
all firms are price-takers. Refinements of the firms’ problems are possible; for instance, the model could
accommodate spatially distributed generation and sales variables as well as bounded transmission; see,
e.g., the previous models [13, 19], as well as linear constraints, such as a “min-run capacity constraint”
that is of the form sf ≥ γfcapf for a firm-dependent constant γf > 0. Nevertheless, the main focus here
is on the emission allocation rules to be introduced momentarily, which introduce a new dimension to
electric power equilibrium problems that has not been analyzed before. Therefore, we will work with (1)
and its equivalent optimality conditions (2) from now on.

2.2 Market clearing conditions

The price pe of emission allowance is determined by the complementarity condition:

0 ≤ pe ⊥ E − eNP (pe)−
∑

(g,t)∈F×T
Ht Eg sgt ≥ 0, (3)

which stipulates that allowance price is positive only when demand for allowances equals the available
supply. Notice that this formulation assumes that allowances can be purchased from or sold to sectors
of the economy other than electric power; this is consistent with the EU ETS. The function eNP (pe)
represents the effective demand for allowances from other sectors [11].

Similarly, the capacity price pc is determined by the complementarity condition:

0 ≤ pc ⊥
∑

g∈F
capg − CAP ≥ 0, (4)

which stipulates that capacity price is positive only when demand for capacity equals the supply.
The final market clearing condition stipulates that energy supplies equal the quantity demanded:

∑

f∈F
sft = dt(pt), for all t ∈ T , or equivalently, pt = πt


∑

f∈F
sft


 .

Because this condition is an equality, the associated price pt is unrestricted in sign.

2.3 Emission allocation rules

All emissions rules considered satisfy the condition that the amount of allowances available for allocation
equals the amount allocated to capacity:

E − EGF =
∑

f∈T
αf capf . (5)

We distinguish two types of emission allocation rules for determining αf , both being based on certain
(weighted) averages of CO2 emission:
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(I) The potential emission (or input) rule (in terms of capacity), where

αf capf =
Rf capf∑

g∈F
Rg capg

( E − EGF ), ∀ f ∈ F , (6)

provided that the denominator is positive; or equivalently, αf = αRf for a common endogenous
variable α, due to the allowance allocation balance (5). Under this rule, the emission allowance
allocated to new capacity of a particular type is fixed ahead of actual operations and is proportional
to the ratio of the firm’s capacity to a weighted sum of the capacity owned by all firms.

(II) The actual emission (or output) rule (in terms of sales), where

αf capf =

R̂f

∑

t∈T
Ht sft

∑

(g,t)∈F×T
Hg R̂g sgt

(E −EGF ), ∀ f ∈ F ; (7)

provided that the denominator is positive; or equivalently, αf = α̂R̂f

∑

t∈T
Htsft

capf

(if capf > 0) for a

common variable α̂, due to the same emission balancing constraint (5). If the R̂f are equal for all
f , then this rule allocates allowances in proportion to sales. However, if R̂f instead is the emissions
rate per MWh, then allowances are allocated in proportion to emissions. In that case, in contrast
to rule (I), this rule ensures that if, say, a plant emits 75% of the CO2, it receives 75% of the
allowances E −EGF that are allocated to new capacity.

There are simple conditions ensuring that the denominators in (6) and (7) are positive, such as when
CAPf > 0 for some f ∈ F . Subsequently, in order for the above rules to be well-defined irrespective of
whether the denominator is zero, we write

αf capf =





α Rf capf for (6)

α̂ R̂f

∑

t∈T
Ht sft for (7) (8)

for some nonnegative variables α̂ and α to be determined. Needless to say, other allocation rules are
possible, such as some combination of the two expressions in (8), or output-based rules in which allowances
are allocated to production rather than to capacity. In the rest of the paper, we focus on rules (I) and
(II).

2.4 Model solution

The model seeks a set of electricity sales (sft)(f,t)∈F×T , capacities
(
capf

)
f∈F , dual variables (µft)(f,t)∈F×T ,

emission allowances (αf )f∈F , emission allowance price pe, and capacity price pc, satisfying, for some non-
negative scalars α and α̂ corresponding the emission allocation rules (I) and (II), respectively, the following
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conditions:

0 ≤ s̄ft ⊥ Ht


−πt


∑

g∈F
(s̄gt + CAPg)


 + MCft + peEf


 + µft ≥ 0, ∀ (f, t) ∈ F × T

0 ≤ µft ⊥ capf − s̄ft − CAPf ≥ 0, ∀ (f, t) ∈ F × T
0 ≤ capf ⊥ −pc − pe αf + Ff −

∑

t∈T
µft ≥ 0, ∀ f ∈ F

0 ≤ pe ⊥ E − eNP (pe)−
∑

(g,t)∈F×T
Ht Eg ( s̄gt + CAPg ) ≥ 0

0 ≤ pc ⊥
∑

g∈F
capg − CAP ≥ 0

(8) and
∑

g∈F
αg capg − (E −EGF ) = 0.

(9)

3 Nonlinear Complementarity Formulations

To establish the existence of a solution to the model with the emission rules (I) and (II), we derive
equivalent formulations of (9) under these rules as standard nonlinear complementarity problems (NCPs).

3.1 The rule (I)

For the emission rule (I): αfcapf = αRfcapf for all f ∈ F , we introduce a reformulation of (9) that
replaces this rule by a complementarity condition. Specifically, we multiply the emission allowance balanc-
ing constraint

∑

f∈F
αfcapf = E − EGF by the variable pe, turn the resulting equation into an inequality,

introduce the nonnegative variable σ ≡ αpe, and impose complementarity between σ and the modified
emission inequality. The resulting NCP is as follows:

0 ≤ s̄ft ⊥ Ht


−πt


∑

g∈F
(s̄gt + CAPg)


 + MCft + peEf


 + µft ≥ 0, ∀ (f, t) ∈ F × T

0 ≤ µft ⊥ capf − s̄ft − CAPf ≥ 0, ∀ (f, t) ∈ F × T
0 ≤ capf ⊥ −pc − σ Rf + Ff −

∑

t∈T
µft ≥ 0, ∀ f ∈ F

0 ≤ pe ⊥ E − eNP (pe)−
∑

(g,t)∈F×T
Ht Eg ( s̄gt + CAPg ) ≥ 0

0 ≤ pc ⊥
∑

g∈F
capg − CAP ≥ 0

0 ≤ σ ⊥ σ
∑

g∈F
Rg capg − ( E − EGF ) pe ≥ 0.

(10)

Note the difference between (9) and (10): the former is a mixed NCP in the variable (x, α), where

x ≡
{

(sft)(f,t)∈F×T , (µft)(f,t)∈F×T ,
(
capf

)
f∈F , (αf )f∈F , pe, pc

}
;

the latter is a standard NCP in the variable

xI ≡
{

(sft)(f,t)∈F×T , (µft)(f,t)∈F×T ,
(
capf

)
f∈F , pe, pc, σ

}
.
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The following result summarizes the connection between (10) and (9) with the emission rule (I) under
the mild condition (11), which postulates that, in the event where CAP +

∑

f∈F
CAPf = 0, at least one

firm’s investment cost for capacity is not too high.

Proposition 1. Assume that

max


CAP +

∑

f∈F
CAPf , χ max

f∈F

{ ∑

t∈T
Ht [πt(0)−MCft ]− Ff

}
 > 0. (11)

If (x, α) is a solution of (9) under the emission rule (I), then

σ ≡ ( E − EGF ) pe∑

g∈F
Rg capg

(12)

is well defined and xI is a solution of (10). Conversely, if xI is a solution of (10), then

α ≡ E −EGF∑

g∈F
Rg capg

(13)

is well defined, and with αf ≡ αRf for all f ∈ F , (x, α) is a solution of (9) under the emission rule (I).

Proof. To prove the first assertion, let (x, α) be as given. We first show that capf > 0 for some f ∈ F .
Suppose not, then capf = sft = 0 for all (f, t) ∈ F × T , which implies CAP +

∑

f∈F
CAPf = 0. From the

first and third line in (9), we deduce, for all f ∈ F ,
∑

t∈T
Ht [−πt(0) + MCft ] + Ff ≥ 0;

or equivalently,

max
f∈F

{∑

t∈T
Ht [ πt(0)−MCft ]− Ff

}
≤ 0,

which contradicts (11). Therefore, the scalar σ in (12) is well defined; moreover, σ = peα, yielding
σRf = peαf . Consequently, (10) follows from (9). Conversely, let xI be a solution of (10). By the same
argument as before, we deduce that capf > 0 for some f ∈ F . Therefore, the scalar α in (13) is well
defined; let αf ≡ αRf . We then have

∑

f∈F
αfcapf = E −EGF . Consequently, (x, α) is a solution (9)

under the emission rule (I). ¤

Condition (11) implies that if CAP +
∑

f∈F
CAPf = 0, then max

f∈F

{∑

t∈T
Ht [ πt(0)−MCft ]− Ff

}
> 0,

which allows each firm to produce zero power. If no firm sells any power, then the power price will be
expected to very high at each time interval. Therefore, it is reasonable to assume that there is at least
one firm which will find it profitable to invest; i.e., whose total short-run and investment cost is less than
their revenue, on a per MW of investment basis.
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It turns out that if CAP +
∑

f∈F
CAPf > 0, then the NCP (10) is equivalent to the set of Karush-

Kuhn-Tucker (KKT) conditions of the variational inequality (VI) defined by the pair (KI,ΦI), where
KI ≡ K ×<+ with

K ≡


( s̄, cap ) ≥ 0 :

∑

g∈F
capg − CAP ≥ 0 and capf − s̄ft − CAPf ≥ 0, ∀ (f, t) ∈ F × T





being an unbounded polyhedron in the variables s̄ ≡ (s̄ft)(f,t)∈F×T and cap ≡ (
capf

)
f∈F , and

ΦI(s̄, cap, pe) ≡





Ht


−πt


∑

g∈F
( s̄gt + CAPg )


 + MCf + pe Ef







(f,t)∈F×T
Ff − ( E − EGF ) pe∑

g∈F
Rg capg

Rf




f∈F

E −
∑

(g,t)∈F×T
Ht Eg ( s̄gt + CAPg ) − eNP (pe)




is a non-monotone map. Indeed, note that ΦI is well defined on the set KI because for every element
(s̄, cap) ∈ K, we must have capf > 0 for some f ∈ F . Letting pc and µft be the multipliers of the
functional constraints in K, we can readily write down the KKT conditions of the VI (KI, ΦI) and conclude
that they are equivalent to the NCP (10) under the identification (12) for σ. When CAP = 0 <

∑

f∈F
CAPf ,

the set
K =

∏

f∈F

{ (
( sft )t∈T , capf

) ≥ 0 : capf − s̄ft − CAPf ≥ 0, ∀ t ∈ T }

is the Cartesian product of separable sets. While the VI formulation is quite compact, one obvious
advantage of the NCP (10) is that it applies to the case where CAP = CAPf = 0 for all f ∈ F ; in the
latter case, the set KI contains the origin where the function ΦI fails to be well defined.

3.2 The emission rule (II)

The NCP formulation for (9) under the emission rule (II) is somewhat different. For one thing, there
is no change of variables in the formulation; in particular, the variables αf are kept in the formulation.
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The derivation in this subsection permits CAP +
∑

f∈F
CAPf = 0. Specifically, consider the NCP:

0 ≤ s̄ft ⊥ Ht


−πt


∑

g∈F
(s̄gt + CAPg)


 + MCft + peEf


 + µft ≥ 0, ∀ (f, t) ∈ F × T

0 ≤ µft ⊥ capf − s̄ft − CAPf ≥ 0, ∀ (f, t) ∈ F × T
0 ≤ capf ⊥ −pc − αf pe + Ff −

∑

t∈T
µft ≥ 0, ∀ f ∈ F

0 ≤ αf ⊥ αf capf − α̂ R̂f

∑

t∈T
Ht ( s̄ft + CAPf ) ≥ 0, ∀ f ∈ F

0 ≤ pe ⊥ E − eNP (pe)−
∑

(g,t)∈F×T
Ht Eg ( s̄gt + CAPg ) ≥ 0

0 ≤ pc ⊥
∑

g∈F
capg − CAP ≥ 0

0 ≤ α̂ ⊥
∑

g∈F
αg capg − (E −EGF ) ≥ 0

(14)

in the variable (x, α̂). The following result establishes the equivalence of the above NCP with (9) under
the emission rule (II).

Proposition 2. A pair (x, α̂) is a solution of (9) under the emission rule (II) if and only if it is a solution
of (14).

Proof. The “only if” statement is obvious. Conversely, if (x, α) is a solution of (14), it suffices to show
that the following equalities hold:

∑

g∈F
αg capg − ( E −EGF ) = 0 and αf capf − α̂ R̂f

∑

t∈T
Ht Ef ( s̄ft + CAPf ) = 0, ∀ f ∈ F .

Indeed if the first equality does not hold, then α̂ = 0 by complementarity, yielding 0 ≤ αf ⊥ αfcapf ≥ 0.
In turn, this implies αfcapf = 0 for all f ∈ F ; thus E − EGF = 0, which contradicts the assumption
that E > EGF . Similarly, if αfcapf − α̂R̂f

∑

t∈T
HtEf (s̄ft + CAPf ) > 0 for some f ∈ F , then αf = 0 by

complementarity, which contradicts the inequality itself. ¤

Similar to the VI (KI, ΦI), if CAPf > 0 for all f ∈ F , the NCP (14) is equivalent to the KKT
conditions of the VI (KII, ΦII), where KII ≡ KI = K ×<+ and

ΦII(s̄, cap, pe) ≡





Ht


−πt


∑

g∈F
( s̄gt + CAPg )


 + MCf + pe Ef







(f,t)∈F×T

Ff −

( E − EGF ) pe R̂f

∑

t∈T
Ht ( s̄ft + CAPf )

capf

∑

g∈F
R̂g

∑

t∈T
Ht (s̄gt + CAPg )




f∈F

E −
∑

(g,t)∈F×T
Ht Eg ( s̄gt + CAPg ) − eNP (pe)




.

12



4 Existence of Solutions

For the analysis in this section, we introduce the following mild condition on the supply of allowances:

E > eNP (0) +
∑

(g,t)∈F×T
Ht Eg CAPg. (15)

This condition merely says that the total number of allowances is sufficient to cover the emissions resulting
from the sum across firms of the lower bounds upon generation, net of the supply of allowances from other
sectors at an allowance price of zero. This is not restrictive, because at a price of zero, it is likely that
the supply from other sectors is nonpositive (as other sectors would likely be willing to buy allowances at
such a low price), and because the minimum required generation is likely to be a small fraction of total
generation, thereby requiring few allowances.

We also impose the following condition that is a slight strengthening of (11):

max
f∈F





∑

t∈T
Ht


πt


∑

g∈F
CAPg


−MCft


− Ff



 > 0. (16)

This condition states that at least one firm would find investment profitable (fixed and variable cost less
than revenue) if every generator is producing just its individual lower bound. This is a mild restriction,
as the power price would likely be very high when everyone is producing at their lowest possible level.

The following proposition shows that under these two conditions, any solution to the model (9) is
nontrivial.

Proposition 3. Under (15) and (16), any solution of the NCP (10) and (14) must have s̄ft > 0 for some
(f, t) ∈ F × T .

Proof. We prove the proposition only for (14). Assume for the sake of contradiction that some solution
of this NCP has s̄ft = 0 for all (f, t) ∈ F × T . We claim that pe = 0. Indeed, if pe > 0, then

0 = E − eNP (pe)−
∑

(g,t)∈F×T
Ht Eg CAPg ≥ E − eNP (0)−

∑

(g,t)∈F×T
Ht Eg CAPg > 0,

which is a contradiction. Hence, we have, for each f ∈ T ,

0 ≤
∑

t∈T



Ht


−πt


∑

g∈F
CAPg


 + MCft


 + µft





≤
∑

t∈T
Ht


−πt


∑

g∈F
CAPg


 + MCft


 + Ff ,

which contradicts (16). ¤

We recall that the temporal price functions πt(•) are strictly decreasing and the nonpower emission
function eNP (•) is nonincreasing. The following is the main existence theorem for the model (9) with the
emission rules (I) and (II).

Theorem 4. Under conditions (15) and (16), the model (9) has a solution.
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We prove the above theorem via the two equivalent NCPs: (10) for emission rule (I) and (14) for
emission rule (II). In turn, the proofs for these two NCPs are quite similar. Both are based on the
application of a fundamental existence result for a general NCP summarized below. A proof of this
lemma can be found in [6, Theorem 2.6.1].

Lemma 5. Let Φ : <n → <n be a continuous function. If there exists a constant c > 0 such that all
solutions of the NCP: 0 ≤ x ⊥ Φ(x) + τx ≥ 0 for τ > 0 satisfy ‖x‖ ≤ c, then the NCP: 0 ≤ x ⊥ Φ(x) ≥ 0
has a solution. ¤

To avoid repetition, we present the proof for the NCP (14) only; see Subsection 4.1. We choose this
NCP because there is an extra perturbation step that is needed in applying the lemma, whereas one can
follow the same argument and directly apply the lemma to the NCP (10).

4.1 Proof for the NCP (14)

Toward the proof of solution existence to the NCP (14), we consider a perturbation of the function ΦII

in order to deal with the general case where some CAPf = 0. Specifically, for each ε > 0, let

ΦII
ε (s̄, cap, pe) ≡





Ht


−πt


∑

g∈F
( s̄gt + CAPg )


 + MCf + pe Ef







(f,t)∈F×T



Ff −
( E − EGF ) pe R̂f

∑

t∈T
Ht ( s̄ft + CAPf )

( capf + ε )


 ε +

∑

g∈F
R̂g

∑

t∈T
Ht (s̄gt + CAPg )







f∈F

E −
∑

(g,t)∈F×T
Ht Eg ( s̄gt + CAPg ) − eNP (pe)




,

which is well defined on the set KII. We first show that the VI (KII, ΦII
ε ) has a solution for each fixed

but arbitrary ε > 0. For this purpose, we take an arbitrary sequence of positive scalars {τk}; for each k,
let (s̄ε,k, capε,k,µε,k, pε,k

e , pε,k
c ) be a tuple satisfying

0 ≤ s̄ε,k
ft ⊥ Ht


−πt


∑

g∈F
(s̄ε,k

gt + CAPg)


 + MCft + pε,k

e Ef


 + µε,k

ft + τks̄
ε,k
ft ≥ 0, ∀ (f, t) ∈ F × T

0 ≤ µε,k
ft ⊥ capε,k

f − s̄ε,k
ft − CAPf + τk µε,k

ft ≥ 0, ∀ (f, t) ∈ F × T

0 ≤ capε,k
f ⊥ −pε,k

c + Ff −
(E −EGF )pε,k

e R̂f

∑

t∈T
Ht(s̄

ε,k
ft + CAPf )

(capε,k
f + ε)


ε +

∑

g∈F
R̂g

∑

t∈T
Ht(s̄

ε,k
gt + CAPg)



−

∑

t∈T
µε,k

ft + τkcapε,k
f ≥ 0,

∀ f ∈ F

0 ≤ pε,k
e ⊥ E − eNP (pε,k

e )−
∑

(g,t)∈F×T
Ht Eg

(
s̄ε,k
gt + CAPg

)
+ τk pε,k

e ≥ 0

0 ≤ pε,k
c ⊥

∑

g∈F
capε,k

g − CAP + τk pε,k
c ≥ 0.
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We claim that under condition (15), the sequence {(s̄ε,k, capε,k, µε,k, pε,k
e , pε,k

c )} is bounded. We show
this in several steps: first the sequence {pε,k

e }; next the sequence {s̄ε,k
ft } for all (f, t) ∈ F × T ; then the

sequence {capε,k
f } for all f ∈ F .

Boundedness of {pε,k
e }. Assume for the sake of contradiction that {pε,k

e } is unbounded. Then for an
infinite index set κ ⊂ {1, 2, · · · ,∞}, we have

lim
k(∈κ)→∞

pε,k
e = ∞. (17)

Without loss of generality, we may assume that pε,k
e > 0 for all k ∈ κ. It follows by complementarity that

E − eNP (pε,k
e )−

∑

(g,t)∈F×T
Ht Eg

(
s̄ε,k
gt + CAPg

)
+ τk pε,k

e = 0, ∀ k ∈ κ.

For any k ∈ κ such that s̄ε,k
f0t0

> 0 for some pair (f0, t0), we have

Ht0


−πt0


∑

g∈F
(s̄ε,k

gt0
+ CAPg)


 + MCf0t0 + pε,k

e Ef0


 + µε,k

f0t0
+ τks̄

ε,k
f0t0

= 0,

which yields

pε,k
e ≤ E−1

f0


πt0


∑

g∈F
CAPg


−MCf0t0


 . (18)

On the other hand, if k ∈ κ is such that s̄ε,k
ft = 0 for all (f, t), then we have

0 = E − eNP (pε,k
e )−

∑

(g,t)∈F×T
Ht Eg CAPg + τk pε,k

e

≥ E − eNP (0)−
∑

(g,t)∈F×T
Ht Eg CAPg > 0,

which contradicts (15). Consequently, the bound (18) holds for all k ∈ κ; contradicting the limit (17).

Boundedness of {s̄ε,k
ft } for every (f, t) ∈ F × T . Assume for the sake of contradiction that for some

pair (f0, t0) and an infinite set κ ⊂ {1, 2, · · · , },
lim

k(∈κ)→∞
s̄ε,k
f0t0

= ∞. (19)

Without loss of generality, we may assume that s̄ε,k
f0t0

> 0 for all k ∈ κ. It follows by complementarity
that

0 = Ht0


−πt0


∑

g∈F
( s̄ε,k

gt0
+ CAPg )


 + MCf0t0 + pε,k

e Ef0


 + µε,k

f0t0
+ τk s̄ε,k

f0t0

≥ Ht0


−πt0


∑

g∈F
CAPg


 + MCft + pε,k

e Ef0


 + max(µε,k

f0t0
, τk s̄ε,k

f0t0
)

which implies

max(µε,k
f0t0

, τk s̄ε,k
f0t0

) ≤ Ht0


πt0


∑

g∈F
CAPg


−MCft − pε,k

e Ef0


 .
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Since the right-hand side is bounded, by (19), it follows that

lim
k(∈κ)→∞

τk = 0. (20)

But this contradicts the inequality: E−eNP (pε,k
e )−

∑

(g,t)∈F×T
HtEg

(
s̄ε,k
gt + CAPg

)
+τkp

ε,k
e ≥ 0. Therefore,

{s̄ε,k
ft } is bounded for all (f, t) ∈ F × T .

Boundedness of {capε,k
f } for every f ∈ F . Assume for the sake of contradiction that for some f0 and

an infinite set κ ⊂ {1, 2, · · · , },
lim

k(∈κ)→∞
capε,k

f0
= ∞. (21)

Thus, by complementarity, we must have pε,k
c = 0 for all k ∈ κ sufficiently large. Since {s̄ε,k

f0t} is bounded,

we deduce µε,k
f0t = 0 for all t ∈ T and all k ∈ κ sufficiently large. Without loss of generality, we may

assume that capε,k
f0

> 0 for all k ∈ κ. It follows by complementarity that for all k ∈ κ sufficiently large,

Ff0 −
(E −EGF ) pε,k

e R̂f0

∑

t∈T
Ht ( s̄ε,k

f0t + CAPf0 )

( capε,k
f0

+ ε )


 ε +

∑

g∈F
R̂g

∑

t∈T
Ht( s̄ε,k

gt + CAPg)




+ τk capε,k
f0

= 0,

which implies that

Ff0 ≤
(E − EGF ) pε,k

e R̂f0

∑

t∈T
Ht ( s̄ε,k

f0t + CAPf0 )

( capε,k
f0

+ ε )


 ε +

∑

g∈F
R̂g

∑

t∈T
Ht( s̄ε,k

gt + CAPg)




.

The limit (21) implies that the right-hand side tends to zero as k(∈ κ) → ∞, which is a contradiction.
Hence {capε,k

f } is bounded for all f ∈ F .

Boundedness of {µε,k
ft } for all (f, t) ∈ F × T . Assume for the sake of contradiction that for some

(f0, t0) ∈ F × T and an infinite set κ ⊂ {1, 2, · · · , },

lim
k(∈κ)→∞

µε,k
f0t0

= ∞. (22)

Without loss of generality we may assume that µε,k
f0t0

> 0 for all k ∈ κ. By complementarity, we deduce

capε,k
f0
− s̄ε,k

f0t0
+ CAPf0 + τkµ

ε,k
f0t0

= 0. Since {(capε,k
f0

, s̄ε,k
f0t0

)} is bounded, (22) implies that

lim
k(∈κ)→∞

τk = 0.

Since

µε,k
f0t0

≤
∑

t∈T
µε,k

f0t ≤ −pε,k
c + Ff0 −

(E − EGF )pε,k
e R̂f0

∑

t∈T
Ht(s̄

ε,k
f0t + CAPf0)

(capε,k
f0

+ ε)


ε +

∑

g∈F
R̂g

∑

t∈T
Ht(s̄

ε,k
gt + CAPg)




+ τkcapε,k
f0

≤ Ff0 + τk capε,k
f0
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and τkcapε,k
f0
→ 0 as k(∈ κ) →∞, we obtain a contradiction to (22).

Boundedness of {pε,k
c }. This is similar to the above proof of the µ-sequence.

We have therefore completed the proof of the boundedness of the sequence {(s̄ε,k, capε,k,µε,k, pε,k
e , pε,k

c )}
under the condition (15). This is enough to apply Lemma 5 to deduce the existence of a solution to the
VI (KII, ΦII

ε ) for all ε > 0 via its KKT formulation. Let (s̄ε, capε, pε
e) be one such solution. For each

ε > 0, there exists (µε
ft, p

ε
c) such that

0 ≤ s̄ε
ft ⊥ Ht


−πt


∑

g∈F
(s̄ε

gt + CAPg)


 + MCft + pε

eEf


 + µε

ft ≥ 0, ∀ (f, t) ∈ F × T

0 ≤ µε
ft ⊥ capε

f − s̄ε
ft − CAPf ≥ 0, ∀ (f, t) ∈ F × T

0 ≤ capε
f ⊥ −pε

c + Ff −
(E −EGF ) pε

e R̂f

∑

t∈T
Ht ( s̄ε

ft + CAPf )

( capε
f + ε )


 ε +

∑

g∈F
R̂g

∑

t∈T
Ht ( s̄ε

gt + CAPg )



−

∑

t∈T
µε

ft ≥ 0, ∀ f ∈ F

0 ≤ pε
e ⊥ E − eNP (pε

e)−
∑

(g,t)∈F×T
Ht Eg

(
s̄ε
gt + CAPg

) ≥ 0

0 ≤ pε
c ⊥

∑

g∈F
capε

g − CAP ≥ 0.

By the same proof sequence as before, we can show that lim sup
ε↓0

‖ ( s̄ε, capε, µε, pε
e, p

ε
c ) ‖ < ∞. Let

(̂̄s, ĉap, µ̂, p̂e, p̂c) be the limit of a convergence sequence {(s̄εk , capεk ,µεk , pεk
e , pεk

c )} corresponding to a
sequence of positive scalars {εk} ↓ 0. It follows ready that (̂̄s, ĉap, µ̂, p̂e, p̂c) satisfies

0 ≤ ̂̄sft ⊥ Ht


−πt


∑

g∈F
( ̂̄sgt + CAPg )


 + MCft + p̂e Ef


 + µ̂ft ≥ 0, ∀ (f, t) ∈ F × T

0 ≤ µ̂ft ⊥ ĉapf − ̂̄sft − CAPf ≥ 0, ∀ (f, t) ∈ F × T

0 ≤ p̂e ⊥ E − eNP (p̂e)−
∑

(g,t)∈F×T
Ht Eg

( ̂̄sgt + CAPg

) ≥ 0

0 ≤ p̂c ⊥
∑

g∈F
ĉapg − CAP ≥ 0.

By the same proof as that of Proposition 3, we can show that ̂̄s 6= 0. Since
∑

t∈T
Ht ( s̄εk

ft + CAPf )

( capεk
f + εk )

≤

∑

t∈T
Ht capεk

f

( capεk
f + εk )

<
∑

t∈T
Ht

it follows that the sequence





∑

t∈T
Ht ( s̄εk

ft + CAPf )

( capεk
f + εk )





must have at least one accumulation point. With-
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out loss of generality, we may assume that this sequence converges to a limit, say γf ≥ 0. Note that

γf =

∑

t∈T
Ht ( ̂̄sft + CAPf )

ĉapf

, if the denominator is positive.

Define, for each f ∈ F ,

αf ≡ (E − EGF ) R̂f γf∑

g∈F
R̂g

∑

t∈T
Ht ( ̂̄sgt + CAPg )

p̂e.

It is easy to show that the following complementarity holds:

0 ≤ ĉapf ⊥ p̂c + Ff − αf p̂e +
∑

t∈T
µ̂ft ≥ 0, ∀ f ∈ F .

With

α̂ ≡ (E −EGF ) p̂e∑

g∈F
R̂g

∑

t∈T
Ht ( ̂̄sgt + CAPg )

,

it is easy to see that all conditions in (14) are satisfied.

5 An Application

To illustrate the results that can be obtained from our proposed models (as mentioned before, the NCPs
(10) and (14) are the workhorses in the experiments), we consider a competitive power market at a single
node with the following characteristics:

• Time periods: T = 20 periods per year, each Ht = 438 hours in length
• Demands: dt(pt) = at − btpt, with at = 500t and bt = t/2
• Nonpower emission: eNP (pe) = 0
• Generator types: i = 1 (coal steam), 2 (natural gas-fired combined cycle), and 3 (natural gas-fired
combustion turbine)
• Minimal generation: CAP1 = 0 MW, CAP2 = 0 MW, and CAP3 = 0 MW
• Marginal costs: MC1 = 20 $/MWh, MC2 = 40 $/MWh, and MC3 = 80 $/MWh
• Investment costs: F1 = 120, 000 $/MW/yr, F2 = 75, 000 $/MW/yr, and F3 = 50, 000 $/MW/yr
• Firms’ emission rates: E1 = 1 ton/MWh, E2 = 0.35 ton/MWh, and E3 = 0.6 ton/MWh
• Total capacity requirement: CAP = 11,000 MW, if CAP > 0.

Thus, the demand function in each period is defined so that the peak load occurs during period 20, and
load is proportional to t, if the same price is faced in each period. The demand curve parameters imply
that the price intercept of the inverse demand curve is $1000/MWh in each period; since equilibrium
prices are usually under $100/MWh, this means that demand is relatively inelastic at the equilibrium
price. A capacity market is assumed that requires 10% more capacity than the peak demand of 10,000
MW that occurs if the price in the peak period was 0$/MWh. Consumers are assumed to pay for capacity
through a non-distorting customer charge; other assumptions are possible, such as allocation of capacity
charges to peak energy prices, but are not explored here.

We introduce the following system performance measures:

• Generation cost (M$/yr), total generation investment and fuel costs:
∑

f∈F

(
Ffcapf +

∑

t∈T
HtMCfsf

)
;
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• Social cost (M$/yr), the cost of generation plus the cost of price-induced changes in energy consumption:
PS + CS + GS, where PS is the equilibrium producer surplus, equal to the sum over all firms of the

objectives in (1); CS is the equilibrium consumer surplus:
∑

t∈T
Ht

(∫ dt(pt)

0
πt(x)dx− dt(pt)pt

)
; and GS

is the auction or grandfathering surplus, equal to the economic rent accruing to the original owners of
grandfathered allowances (or, equivalently, the revenue received by the government if it instead auctioned
those allowances). However, we exclude environmental costs from this performance measure;

• Consumer payments (M$/yr): pc

∑

f∈F
capf +

∑

t∈T
dt(pt)pt; and

• Capacity factor, the ratio of annual generation to potential generation:
∑

t∈T Htsft∑
t∈T Htcapf

.

In the computations, the NCPs (10) and (14) and the linear complementarity problem (23) below are
solved by the path solver available on the neos server (http://neos.mcs.anl.gov/neos/solvers/index.html).

5.1 The base run

To provide a basis for comparison of the two emission rules, we derive an equilibrium solution in the
absence of a CO2 limit; i.e., with E = ∞; thus the constraint (3) is absent and pe = 0. Such an
equilibrium, which we call the (emission) unconstrained solution, is the solution of the following linear
complementarity problem:

0 ≤ s̄ft ⊥ Ht


−πt


∑

g∈F
(s̄gt + CAPg)


 + MCft


 + µft ≥ 0, ∀ (f, t) ∈ F × T

0 ≤ µft ⊥ capf − s̄ft − CAPf ≥ 0, ∀ (f, t) ∈ F × T
0 ≤ capf ⊥ −pc + Ff −

∑

t∈T
µft ≥ 0, ∀ f ∈ F

0 ≤ pc ⊥
∑

g∈F
capg − CAP ≥ 0.

(23)

When the total capacity requirement CAP is 11,000 MW, capacity capf of coal, combined cycle, and
combustion turbines equal 7329 MW, 1628 MW, and 2042 MW, respectively. The bulk (94%) of the
energy is obtained from coal plants, with combined cycle facilities providing nearly all of the remainder.
Combustion turbines are built primarily to meet the capacity market requirement. Emissions amount
to 47.4 Mtons/yr. The total cost of generation is 2049 M$/yr, which also equals consumer payments
for energy, under the zero profit free-entry assumption. Energy prices pt equal the marginal cost of
generation in each period, varying from $20 to $80/MWh, depending on the marginal source of energy;
meanwhile, the capacity market price pc equals the annual cost of combustion turbine capacity, 50,000
$/MW/yr. The quantity-weighted power price is 46.1 $/MWh, of which capacity payments make up
27%. The sum of consumer surplus and producer surplus is 20911 M$/yr.

5.2 Comparative results for the allowance allocation rules

Table 1 reports the main system performance measures for a series of experiments representing alternative
assumptions regarding: the type of the contingent emission allocation, i.e., rules (I) and (II) as well as
the base run where E = ∞; the presence or absence of a capacity market; and the presence or absence of
minimum output levels (in the form of a min-run capacity constraint) for coal plants only. For each set of
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assumptions, results are presented for CO2 limits of 20 (a severe restriction) and 40 (a mild restriction)
Mtons/yr, and for three cases of 0%, 50% or 100% grandfathering of allowances (corresponding to 100%,
50%, and 0% of allowances granted to new generating plants; i.e., EGF /E = 0, .5, 1, respectively). We
take Rf in (7) and R̂f in (6) to be both equal to Ef/E1.

With the presence of a capacity market, runs 1–6 show the results for the potential emission rule
and runs 7–12 show the results for the actual emission rule. For the purpose of the comparison, we
focus on the increase in generation cost, social cost (equal to the loss of social surplus), and consumer
payments relative to the (emission) unconstrained solution obtained in Subsection 5.1. We do not report
producer surplus, because it is by assumption zero in the free entry solutions. For ease of comparison,
the increases are expressed as a percentage of the production cost of the unconstrained solution (2049
$M/yr), which also equals the consumer payment in that solution. The three percentage increases are
calculated, respectively, as:

• relative generation cost increase: 100% (generation cost - 2049 M$/yr)/2049 M$/yr;

• relative social cost increase: 100% [20911 M$/yr - (PS + CS + GS)]/2049 M$/yr; and

• relative consumer payments increase: 100% ( consumer payments - 2049 M$/yr )/2049 M$/yr.

The imposition of the CO2 constraint causes social surplus to decrease relative to the unconstrained value
of 20911 M$/yr. This decrease is not identical to the change in generation cost because of changes in
energy consumption that are caused by shifts in energy prices. If demand elasticity was instead zero, then
the change in social cost would be the same as the change generation cost. The 100% grandfathered cases
are the same for both contingent allocation rules because, of course, that level of grandfathering means
no allowances are allocated to new investment. In the case where all allowances are instead allocated
to new plants by the potential emission rule (Runs 1,4), we see that, like the actual emission rule, the
investment is greatly distorted and costs are much higher than if allowances are completely grandfathered
(or auctioned). In fact, the distortion is worse, because it is possible for new generators to receive free
allowances even if they do not generate power. The allowances given to new investment are sufficiently
valuable so that it is worthwhile to build combustion turbines, even though they don’t operate. In the
20 Mton/yr limit case, 95% of the combustion turbine capacity is never used, and is built just to collect
free allowances. Unexpectedly, the distortion is much worse in the mild (40 Mton/yr) limit case, making
the total cost of compliance almost as high as for the 20 Mton/yr case. This confirms that it should not
be assumed that the risk of distortion is less if CO2 limits are less severe.

The next set of alternative assumptions addresses the effect of assuming an energy-only market in
which there is no separate market for capacity. In this case (Runs 13–24), energy prices rise much
higher during peak periods to ensure that consumer demand does not exceed available capacity. There
are extensive debates regarding the pros and cons of capacity markets (e.g., see [10]), which we do not
consider here. Instead we merely consider the interaction of capacity and emissions markets. The main
effect observable in comparing Runs 13-24 with Runs 1-12 is in the case of the actual emission rule. Cost
increases due to investment distortion are somewhat greater without the capacity market, especially
in the 40 Mton/yr limit, and there is less investment. The decreased investment is most dramatic for
combustion turbines, which are not built at all under the actual emission rule. In contrast, under the
potential emission rule, the costs and generation mixes under 0% grandfathering (all allowances given
to new investment) are completely unaffected by the presence of a capacity market. This is because the
potential emission form of the contingent rule results in overinvestment such that the capacity constraint
is not binding.

The final set of alternative assumptions we consider is the imposition of a min-run constraint on coal
plants, since in reality they cannot really be cycled in the way they are in the solutions that have low
coal capacity factors. We assume that the output of coal plants cannot be reduced below 35% of their
capacity; as a result, in periods where that constraint is binding, energy prices can actually be negative.
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This phenomenon is occasionally observed during low demand periods in real power markets. The min-
run assumption significantly raises costs in all scenarios, particularly so in the no-CO2 constraint case,
because it has the most coal capacity. As a result, the cost impact of imposing a CO2 limit is reduced by
well over half. This can be seen by comparing Runs 25-27 with Runs 1-3, which, aside from omitting the
min-run constraint, make the same assumptions. The cost and generation mix distortions resulting from
using a contingent allocation rule (in this case, the potential emission rule) is diminished somewhat, but
remains large. The cost of complying with the 20 Mton/yr limit is more than doubled compared to the
equilibrium under 100% grandfathering or auctioning of emissions.

5.3 Detailed results for the actual emissions rule

To take a more detailed look at the effect of grandfathering, we solved a set of problems with the
percentage of allowances grandfathered varying from 0% to 100% in increments of 10%, assuming the
presence of a capacity markets. The results are plotted in Figures 2–5. We show the results for the
actual emission rule under the two levels of CO2 restrictions: 20 Mtons/yr (Figures 2 and 4) and 40
Mtons/yr (Figures 3 and 5). In the horizontal axis of each figure, we vary the fraction of emissions that
are grandfathered from 0% to 100%. Thus, the equilibrium on the far left allocates all allowances to new
investment by the actual emission rule, which means that freely granted allowances exactly equals actual
emissions for each plant type, so that generators pay nothing, on net, for their emissions. On the other
hand, at the right-hand extreme, all allowances are grandfathered or auctioned, so that new capacity has
to pay for 100% of their emissions.

Two sets of results are shown for each emissions cap: Figures 2 and 3 show the effect of the different
policies upon three categories of costs and the price of allowances pe, while Figures 4 and 5 show how
the mix of generation investment and the operation of coal and combined cycle plants are affected. (The
results for the three cases of 0%, 50% and 100% grandfathering of allowances are already reported in
Runs 7–12 in Table 1.)

Note that consumer payments are in excess of generation investment and fuel costs if some of the
allowances are grandfathered (Figures 2 and 3). This is because in the zero profit equilibrium, the
revenues that generators receive have to cover not only investment and fuel costs, but also the purchase
of grandfathered (or auctioned) allowances. From a social cost point of view, however, the expense
associated with such allowances is just an income transfer from generators (and thus consumers) to the
owners of the grandfathered allowances (or the government, if instead those allowances are auctioned).
Figure 3 shows that under complete grandfathering, the 40 Mton/yr limit has a very small social cost: 19
M$/yr, or less than 1% of total investment and operating cost. However, the stricter 20 Mton/yr limit is
much more expensive, 395 M$/yr, which is almost 20% of the unconstrained generation cost, see Figure
2. Comparing the right-hand bars of Figures 4 and 5, we see that the cost difference arises because much
more gas-fired generation is required in order to meet the stricter standard.

Under both limits, costs increase further if instead some or all allowances are freely given to new
entry under the actual emission rule. The distortions, as measured by generation or social cost, are mild
until the fraction of grandfathered allowances falls below 80%, and then increase rapidly as that fraction
falls further. In the extreme case of all allowances being freely allocated, the costs of the CO2 constraint
are greatly inflated. For instance, rather than 19 M$/yr and 395 M$/yr under the loose and tight CO2

constraints, respectively, the social costs of the constraint rise to 242 M$/yr and 512 M$/yr, respectively
(12% and 25%, respectively, of the unconstrained generation cost). Thus, the free allocation of allowances
to new entry has inflated the cost of meeting the CO2 constraint by more than an order of magnitude
under the loose CO2 constraint.

Although intuition might suggest that the inefficiency would be less under the looser constraint, it is
actually about twice as large (242 minus 19, as opposed to 512 minus 395) as under the tight constraint.
The reasons for these distortions are revealed by Figure 4 and Figure 5. As the fraction of allowances
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that are grandfathered decreases, the price of emissions allowances increases. Surprisingly, this results
in greater investment in coal-fired capacity but paradoxically relatively little change in generation from
such facilities. What is happening is that allowance prices climb to the point ($31/ton) where natural
gas plants are cheaper to run, on the margin, than coal plants, when the opportunity cost of allowances
is factored into the cost. The dispatch order is then reversed compared to the 100% grandfathered
case, with combined cycle plants being base loaded and coal plants being cycled on and off. This is
reflected in the shifts in capacity factors shown in the figures. Base loading the combined cycle plants
greatly increases their capacity factors, while coal plant output falls to as little as 30% of their maximum
possible production. The allowances are so valuable that the net capacity cost of coal plants, including
the value of the free allowances they are given, falls below the capital cost of peaking turbines, which
no longer enter the market. This is reflected in the price of capacity dropping below the turbine capital
cost.

The large increases in social cost resulting from contingent allocation of allowances primarily reflect
these distortions in investment. For instance, in the 40 Mton/yr limit case, the increase in capital costs
arising from the larger investments in coal facilities at the expense of cheaper gas-fired plants amounts
to 234 M$/yr, out of the total increase in social cost of 242 M$/yr relative to the least-cost way of
achieving that standard. The results indicate that energy prices are lower under 0% grandfathering than
under 100% grandfathering. This is partially consistent with the conjecture of the Netherlands Bureau
for Economic Policy Analysis [14] that much of the value of freely-granted allowances is passed back to
consumers in the long run. However, not all that value is returned; much of it is instead eaten up by the
investment distortions. If the economic rent associated with grandfathered allowances could be returned
to consumers either via tax reductions or other mechanisms, then consumers would generally be much
better off with 100% grandfathering than with contingent allocation of allowances.

6 Conclusion

In this paper, we have presented complementarity problem formulations for the analysis of alternative
emissions allowance allocation systems in electric power markets. Existence of solutions was proven under
mild conditions. An example illustrates the potential for investment distortion arising from allocation
rules that give allowances to new capacity. Future work could address formulation of more realistic
models including, for instance, transmission or carbon sequestration alternatives; parameterization based
on actual markets; extension to other allowance allocation systems, such as output-based allocation [4];
and representation of interlinked markets in which different markets are subject to different rules, as is
presently the case in the European Union.
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1 0% 28.7% 31.6% 28.7% 3088 5540 5361 27.6% 73.2% 0.3% 34.35 0
2 50% 16.9% 19.4% 31.3% 863 7747 2390 97.8% 52.6% 0.9% 29.54 14617
3 100% 17.6% 19.3% 39.5% 852 8084 2064 97.8% 51.1% 0.3% 22.45 50000
4 0% 26.5% 29.2% 26.5% 8094 559 12155 53.9% 99.2% 0.1% 32.46 0
5 50% -0.2% 2.5% 29.8% 6803 1729 2468 64.0% 32.0% 1.0% 30.77 8462
6 100% 0.1% 0.9% 21.6% 6076 2871 2053 71.1% 23.9% 0.5% 11.01 50000
7 0% 23.8% 25.0% 23.8% 2459 8541 0 33.7% 48.6% N/A 30.77 29115
8 50% 20.1% 21.2% 35.1% 1600 7889 1511 51.8% 52.7% 0.0% 30.77 50000
9 100%
10 0% 10.6% 11.8% 10.6% 10140 860 0 42.8% 74.6% N/A 30.77 4593
11 50% 5.0% 6.2% 35.0% 8359 1211 1430 51.9% 53.0% 0.0% 30.77 50000
12 100%

2049 20911 2049 7329 1628 2042 65.10% 17.65% 0.59% 0.00 50000
13 0%
14 50% 22.8% 23.8% 39.1% 1976 6557 290 43.2% 61.9% 5.6% 30.77
15 100% 18.7% 20.6% 42.4% 886 7601 0 97.7% 53.3% N/A 22.45
16 0%
17 50% 5.1% 5.8% 38.2% 8038 553 301 54.3% 99.3% 5.0% 31.43
18 100% -0.1% 0.9% 23.2% 6160 2365 0 70.7% 25.7% N/A 11.01
19 0% 25.3% 24.8% 25.3% 2226 6851 0 37.8% 60.2% N/A 30.77
20 50% 21.6% 22.5% 37.9% 1606 7109 0 53.4% 57.3% N/A 30.77
21 100%
22 0% 17.1% 15.9% 17.1% 9752 807 0 44.5% 79.5% N/A 30.77
23 50% 4.2% 4.9% 36.7% 7859 889 0 55.6% 63.4% 47.3% 30.77
24 100%

1893 21020 1893 7329 1232 0 65.10% 19.79% N/A 0.00 N/A
25 0% 13.4% 13.5% 13.4% 1441 7018 5811 58.5% 57.8% 0.6% 30.77 0
26 50% 5.1% 5.0% 18.1% 863 7747 2390 97.8% 52.6% 0.9% 29.54 14617
27 100% 5.8% 4.9% 25.5% 852 8084 2064 97.8% 51.1% 0.3% 22.45 50000

2278 20628 2278 2287 6671 2042 0.9% 0.4% 0.0% 0.00 50000
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Table 1. Summary of Model Results
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Figure 2: Cost and price comparison (20 Mton limit) Figure 3: Cost and price comparison (40 Mton limit)
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Figure 4: Capacity and capacity factor comparison
(20 Mton limit)

Figure 5: Capacity and capacity factor comparison
(40 Mton limit)
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